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ABSTRACT OF THE DISSERTATION

A Fine-grain Parallel Execution Model
for Homogeneous/Heterogeneous Many-core Systems

By
Tongsheng Geng
Doctor of Philosophy in Electrical and Computer Engineering
University of California, Irvine, 2018

Professor Jean-Luc Gaudiot, Chair

Computing systems have undergone a fundamental transformation from single core devices to
devices with homogeneous/heterogeneous many-cores connected within a single or multiple
chips. However, while the core count per chip continues to increase dramatically, the available
on-chip memory per core is only getting marginally bigger. How to successfully explore
parallelism and deliver scalability is a major research issue and we have successfully attacked

three main problems:

First, it is well known that, in homogeneous shared-memory many-core systems, traditional
coarse-grain multithreading models are reaching their limits. We have thus proposed and
designed a fine-grain event-driven multithreading execution model that will deliver the paral-
lelism required to efficiently operate with dependence-heavy applications in shared-memory
systems. By performing finer-grained and hierarchical synchronization, even ”almost embar-

rassingly parallel” workloads can obtain large performance improvement.

Second, it has been recognized that, in heterogeneous High Performance Computing sys-
tems, the performance depends on how well the scheduler can allocate workloads to the
appropriate computing devices and make communication and computation to overlap effi-

ciently. With different types of resources integrated into one system, the complexity of the

x1



scheduler correspondingly increases. Moreover, when the applications have varying problem
sizes on different heterogeneous resources, the complexity of the scheduler grows accordingly.
Our proposed profile-based Iterative Dynamic Adaptive Work-Load balance scheduling ap-
proach (IDAWL) combines offline machine learning with online scheduling offers a general

approach to efficiently utilize, in a dynamic fashion, available heterogeneous resources.

Finally, for those applications where the computation can be naturally expressed as streams,
our Stream-based fine-grain program execution model, was developed to explore parallelism
of hierarchical heterogeneous resources. It can exploit two levels (coarse- and fine-grain) of
parallelism, efficiently utilizing locally available heterogeneous resources to construct stream-

ing pipeline stages and minimize data movement to enhancing data locality.
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Chapter 1

Introduction

Computing systems have undergone a fundamental transformation from single core devices to
devices with homogeneous/heterogeneous many-cores connected within a single or multiple
chips. In the past decade, The number of Processing Elements (PEs) found in general-
purpose high-performance processors has increased hundred-fold, as demonstrated by, e.g.,
the latest processors from Intel® and IBM@®). Further, heterogeneous resources(GPUs,
FPGAs, storage, etc.) are widely used in High-Performance Computing (HPC) platforms.
For instance, the number of platforms of the Top500 equipped with accelerators has sig-
nificantly increased during the last years [1]. In the future it is expected that the nodes’
heterogeneity and count will increase even more: hybrid computing nodes mixing general
purpose units with accelerators, I/O nodes, nodes specialized in data analytics, etc. The
interconnect of a huge number of such nodes will also lead to more heterogeneity. Many
issues must be envisioned in new software/hardware systems, including programmability,
scalability, performance evaluation, and power efficiency [2]. Better performance and power
consumption obtained from the use of more appropriate resources according to the com-
putations to perform will be obtained at the cost of code development and more complex

resource management. How to successfully exploit parallelism and deliver scalability is a



major research issue in both Homogeneous and heterogeneous many-core systems.

In contrast to the rapid development of the hardware, the programming models and pro-
gram execution models (PXMs), in the area of software parallel computing in homogeneous
shared-memory many-core systems used by scientific applications, have remained mostly the
same: MPI is used for inter-node communication and OpenMP is still favored for shared-
memory computations. However, while the OpenMP standard has evolved to provide ways
to define fine-grain task-dependence graphs in OpenMP4 [3] and OpenMP4.5 [4], a large ma-
jority of application programmers use OpenMP features that are mostly related to parallel
for loops, a coarse-grain style to express parallelism, i.e., a programming style which re-
quires the insertion of global barriers rather than finer-grain point-to-point synchronizations
between individual threads. As long as the core count remained low in terms of shared-
memory compute nodes, global barriers were reasonable. However, this approach is not
scalable: as the core count increases, the stress sustained by the memory subsystem leads to
unacceptable contention on the various memory banks (both at the cache and DRAM lev-
els). Moreover, the coarse-grain approach is still sustainable for CPU-bound workloads, but,
with memory-bound applications, global barriers may kill performance due to the hardware
synchronization mechanism, while high-performance based synchronization constructs rely
on some sophisticated variation of busy-waiting (potentially mitigated with a sleep policy)
which can hog the memory subsystem, particularly in the case of “almost embarrassingly

parallel” algorithms and programs.

In heterogeneous High Performance Computing systems, the performance depends on how
well the scheduler can allocate workloads to the appropriate computing devices and make
communication and computation efficiently overlap. With different types of resources inte-
grated into one system, the complexity of the scheduler correspondingly increases. Manual
scheduling workloads is time-consuming, error-prone and becomes nearly infeasible for de-

velopers since any changes of hardware may render the original scheduling approach useless.



A good heterogeneity-aware scheduler must leverage load-balancing techniques in order to
obtain the best workload partition between CPUs and general-purpose accelerators—e.g., a
GPU. Naive heuristics may result in worsened performance and power consumption. This is
particularly the case for iterative algorithms, such as stencil-based computations which re-
quire regular host-accelerator synchronizations. An unbalanced workload may cause a huge
drag in performance. At the same time, stencil-based computations are at the core of many
essential scientific applications: stencils are used in image processing algorithms, e.g., con-
volutions; partial differential equation solvers, Laplacian transforms, or computational fluid

dynamics; linear algebra, the Jacobi method; etc.

Finally, streaming applications (where the computation can be naturally expressed as streams)
include scientific computations, embedded applications, as well as the emerging field of so-
cial media processing. Program execution models centered on streams have been studied
by many researchers and have been an active field of research for the past 30 years [5-9].
The most relevant early work on streams is the data flow execution model pioneered by
Dennis [10, 11], the Synchronous Data Flow (SDF) model [12, 13] and Program Dependence
Graph(PDG) model [14]. Other work include data-flow software pipelines [15, 16, 16-18].
However, these models do not address the parallelism and resources utilization problems
existing in highly heterogeneous and hierarchical system. Moreover, it should be noted that
core count per chip continues to increase dramatically while the available on-chip memory
per core is only getting marginally bigger. This means that data locality, already a must-have
in high-performance computing, will become an even critical point in streaming processing

since smooth data movement will be a must in streaming processing.

The goal of this work is to propose a fine-grain event-driven parallel execution model to
solve parallel computing, resource utilization and scalability issues coming with the new
era of High-Performance computing. Specifically, it deals with the coarse-grain synchro-

nization issues in homogeneous shared-memory many-core system, workload balance and



streaming parallelism issues in hierarchical heterogeneous many-core system. The structure
of this document is as follows. Section 2 reviews a fine-grain event-driven program execution
model, abstract machine and correspondingly runtime system as background information;
Section 3 proposes to demonstrate the need for fine-grain synchronization in homogeneous
shared-memory many-core systems; Section 4 proposes an approach, combining offline ma-
chine learning with online scheduling, to offers a general approach to efficiently utilize, in
a dynamic fashion, available heterogeneous resources; Section 5 proposes a stream-based
fine-grain program execution model for streaming applications to explore parallelism of hi-
erarchical heterogeneous resources; Section 6 concludes this work and presents the planned

future work.



Chapter 2

The Codelet Abstract Machine and

Runtime System

The Codelet Model [19] is a fine-grain event-driven program execution model which targets
current and future multi- and many-core architectures’. In essence, it is inspired by data

flow model of computation [20] and dynamic [21] models.

The quantum of execution is the Codelet, a fine-grain task that executes a sequence of ma-
chine instructions until completion and runs on a von Neumann type of processing element.
A Codelet fires when all its dependencies (data and resource requirements) are met. A

Codelet cannot be preempted while it is firing, 7.e., while it is executing its instructions.

Each time a Codelet produces data items or releases a shared resource, it signals the other
Codelets which depend on such data item(s) and/or resource(s). Such a group of Codelets
can be modeled as a directed graph called a Codelet Directed Graph (CDG) where Codelets
are the nodes and their dependencies are the edges. In general, a given CDG statically

specifies the dependencies between the Codelets it contains.

LA short introduction is available at http://www.capsl.udel.edu/codelets.shtml.


http://www.capsl.udel.edu/codelets.shtml

A Threaded Procedure (TP) is a container that comprises a CDG and data to be accessed by
the Codelets it contains. A TP is essentially an asynchronous function: once it is invoked, its
caller resumes its execution. The TP itself can be scheduled to run anywhere in one of the
clusters of the Codelet Abstract Machine, and the Codelets can run on any of the cluster’s
Computation Units. However, once scheduled, a TP and its content (data and code) must
remain allocated in its cluster. However, individual Codelets may be scheduled for execution

in any of the computation units comprised in the cluster.

The Codelet model relies on a Codelet Abstract Machine (CAM), which models a general
purpose many-core architecture with two types of cores: scheduling units (SUs), which
perform resource management and scheduling, and computation units (CUs), which carry out
the computation. Compared to CUs, SUs have two more functions: control and synchronize
all the CUs. A CAM is an extensible, scalable and hierarchy model. One cluster contains at
least one SU, one or more CUs, and some local memory. Clusters can be grouped together
to form a chip, which itself has access to some memory modules; Multiple chips consist of
a node, and multiple nodes form a full CAM. The communication of between and within

components of each level of hierarchy is done by the interconnection network.

A CAM is meant to be mapped on real hardware: the number of clusters, and computation
units per cluster will be directly influenced by the actual hardware architecture on which a
codelet program should be running. Further, different configurations may be used on the

same target hardware, depending on the nature of the application.

The Delaware Adaptive Run-Time System (DARTS) [22-24] is a faithful implementation
of the CAM. It is written in portable C+-+, and runs on any UNIX-based distribution. It
targets shared-memory nodes. DARTS executes on regular multi-core chips and assigns a
role to each core or thread: each processing element is either a SU or a CU. It also implements
the configurable CAM, which can be configured at run-time by the user (or in code by the

programmer). By default, DARTS’s CAM considers each socket to be a cluster, and assigns



a single SU per cluster. Furthermore, there are two queues or pools, ready queue and
waiting queue, to store these Codelets. When all the requirements of one Codelet are met,
this Codelet will be moved from waiting queue to ready queue and SUs will push it to CUs
ready queue to execute or execute by himself if all the CUs are busy or their ready queues
are full. In specific case, to reduce data movement and utilize the data locality character,
DARTS can pin the Codelets into CUs when the same Codelets are invoked repeatedly or
periodically. DARTS is also extendable. Section 4.2.2 introduces Heterogeneous-DARTS
which extend DARTS to support both CPU and GPU resources parallelism computing.

Section 5 introduces Streaming-DARTS to support stream processing.



Chapter 3

Exploiting Fine-Grain Event-Driven

Multithreading

3.1 Introduction and Motivation

In the past decade, the number of Processing Elements (PEs) found in general-purpose high-
performance processors has increased between forty and a hundred times, as demonstrated
by, e.g., the latest processors from Intel® and IBM®). Further, the recent appearance of

“accelerators” have reached even higher PE counts in recent years.

In the meantime, the programming models and Program execution Models (PXMs) used by
scientific applications have remained mostly the same: MPI is used for inter-node commu-
nication and OpenMP is still favored for shared-memory computations. However, while the
OpenMP standard has evolved to include finer-grain tasks with OpenMP3 [25], and even
to provide ways to define task-dependence graphs in OpenMP4 [3] and OpenMP4.5 [4], a
large majority of application programmers use OpenMP features that are mostly related to

parallel for loops, sometimes exploiting the nature of their scheduling and the size of their



iteration blocks. In turn, this approach tends to favor a rather coarse-grain style to express
parallelism, i.e., a programming style which requires the insertion of global barriers rather

than finer-grain point-to-point synchronizations between individual threads.

As long as the core count remains low in terms of shared-memory compute nodes, global
barriers is reasonable. However, it is not scalable: as the core count increases, the stress
sustained by the memory subsystem leads to unacceptable contention on the various mem-
ory banks (both at the cache and DRAM levels). Moreover, the coarse-grain approach is
still sustainable for CPU-bound workloads, but, with memory-bound applications, global
barriers may kill performance due to the underlying hardware: on x86 machines, syn-
chronization usually leverages the use of atomic operations, which can seriously hamper
performance in a multi-core, multi-socket environment [26]. In particular, memory-bound
workloads tend to tax the interconnection network which links sockets together. In general,
high-performance based synchronization constructs rely on some sophisticated variation of
busy-waiting (potentially mitigated with a sleep policy) which can hog the memory subsys-
tem, as the system software designer expects contention to be low and the workload to be
well-balanced—particularly in the case of "almost embarrassingly parallel” algorithms and
programs. However, recent compute nodes feature a high core and hardware thread count:
cores and hardware threads nowadays share more and more resources, such as functional
units, caches, and DRAM banks. As a result, it could be tedious and error-prone to par-
allelism even ”almost embarrassingly parallel” workloads with a high compute-to-memory
operations ratio, such as matrix multiplication. On more memory-intensive kernels, the same
problem arises, but on a larger scale. One such example is the use of partial differential equa-
tion iterative solvers for linear equation systems, in particular the application of Jacobi or
Gauss-Seidel methods to a linear system by resorting to a stencil-based iterative solver: every
element of an n-dimensional grid depends on its immediate neighbors, and potentially more
remote ones. Such algorithms are used in a multitude of applications, e.g., to solve Laplace

equations used in heat conduction and computational fluid dynamics solvers.



Section 3 demonstrates the need for fine-grain synchronization even in the presence of rather
coarse-grained workload partitioning using a stencil-based iterative solver, 5-point 2D stencil
kernel, as an example. Different variants of 2D stencil(section 3.2), including coarse-grain
variants and fine-grain variants, are running on two different types of machines featuring
x86 processors, with a different number of processing elements per chip, but also a different
number of sockets per node. Furthermore, a realistic stencil-based computation mini-app,
LULESH(Livermore Unstructured Lagrangian Explicit Shock Hydrodynamics) [27-29], is
introduced in section 3.2.4 to support the idea that in a dependence-heavy context, yet with
a uniform amount of work per thread, fine-grain synchronization matters, even in “regular”

general-purpose systems.

3.2 Methodology: Apply Fine-Grain Parallelism

This section starts from a coarse-grain “parallel for” loop implementation of a simple, naive
5-point 2D stencil computation expressed in OpenMP/ and ported it to leverage the Codelet
Model in DARTS. After that, Fine-grain task mechanism introduced in OpenMP/.5 [4] and
fine-grain model of Codelet will be described including data dependence and synchronization
constructs. A realistic application, LULESH [27-29], will be used as an example to evaluate

the differences of fine-grain and coarse-grain synchronization.

3.2.1 Basic Implementation of a Parallel Coarse-Grain 5-Point 2D

Stencil Computation

The code presented in Listing 3.1 is a naive OpenMP version of a coarse-grain multithreaded
5-point 2D stencil computation. To simplify the problem, a given number of time step instead

of convergence test is considered. This version of the stencil code privatizes everything,

10



void stencil_5pt(double* restrict dst, double* restrict src,
const size_t n_rows, const size_t n_cols,
size_t n_steps)

{

typedef double (xArray2D) [n_cols];
# pragma omp parallel default (none) shared(src, dst) \
firstprivate (n_rows, n_cols, n_tsteps)

O© 0O Ul WhN -

{
Array2D D = (Array2D) dst, S = (Array2D) src;
10 size_t n_ts = n_tsteps;
11 while (n_ts-- > 0) {
12 || # pragma omp for nowait
13 for (size_t i=1; i<n_rows-1; ++i)
14 for (size_t j=1; j<n_cols-1; ++j)
15 D[i]J[j]l = 0.25 * (S[i-11[jl+S[i+11[j] + S[ilJ[j-11+S[il1[j
+11);

16 SWAP_PTR (&D,&S) ;
17 ||# pragma omp barrier
18 }
19 }

20 || ¥

Listing 3.1: Nailve 5-Point 2D Stencil kernel-—OpenMP version. Everything has
been privatized, but threads can only proceed to the next time step if they all have
swapped their array pointers.

so that each thread can perform all computations including pointer swapping and moving
forward to the next time step. The computation itself is located in a parallel for loop
(see line 13). There is no the implicit barrier at the end of the loop because of using for
nowait clause, so that threads that finish processing their own iteration chunk may proceed
to swap their source and destination pointers for the next time step. The only required
synchronization is the global barrier (line 17) before looping to the next iteration in the
while loop, to ensure that all threads have properly swapped their array pointers before

resuming the computation.

A direct translation of Listing 3.1’s code into a DARTS framework can be found in Listing 3.2
and 3.3. Obviously, comparing with Openmp version, the DARTS version of code is more
verbose using DARTS runtime system API. The various keywords emphasized in bold red
are macros defined to simplify the writing of DARTS programs. A short description of the

various keywords is provided in Table 3.1. Listing 3.2 defines a Threaded Procedure(TP)
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Keyword H Description

DEF_TP Defines a new threaded procedure
DEF_CODELET Defines a new codelet

DEF_CODELET_ITER Defines a new codelet with a specific ID
SYNC Signals a codelet within the same TP frame
SIGNAL Signals a codelet in another TP frame
SIGNAL_CODELET Signals a codelet from a TP setup phase
LOAD_FRAME Loads the threaded procedure frame
FIRE(CodeletName) Code to run when CodeletName is fired
INVOKE (TPName, ...) | Invokes a new TP from a codelet

Table 3.1: Codelet Model macros and their meaning.

1 || DEF_.CODELET ITER ( Compute, O, NO_META_DATA );

2 || DEF_.CODELET ( Barrier, 2, NO_META_DATA );

3 ||DEF.TP(Stencil) {

41| // Data

5 double *dst, *src;

6 size_t n_rows, n_cols, n_tsteps;

7 // Code

8 Compute* compute;

9 Barrier  Tbarrier;

10

11 Stencil (double* restrict p_dst, double* restrict p_src,
12 size_t p_nRows, size_t p_nCols,
13 size_t p_nTSteps)

14 : dst(p_dst), src(p_src)

15 , n_rows (p_nRows), n_cols(p_nCols), n_tsteps(p_nTSteps)
16 , compute (new Compute [g_nCU])

17 , barrier(g_nCU,g_nCU,this ,NO_META_DATA)

18 {

19 for (size_t cid = 0; i < g_nCU; ++cid) {

20 compute [cid] = Compute{1l,1,this ,NO_META_DATA,cid};
21 SIGNAL CODELET ( compute [cid]) ;

22 }

23 }

24 || s

Listing 3.2: Coarse-Grain 5-Point 2D Stencil kernel—DARTS version. Stencil TP
definition and its associated codelets.

named Stencil and two Codelets, named Compute and Barrier. Compute Codelet is defined
with default 0 dependence counts and Barrier Codelet is defined with default 2 dependence

counts. The dependence count can be overridden when the Codelet is instantiated in T'P.

The Stencil TP is essentially a C++ struct which allocates the right amount of Codelets
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1||FIRE(Compute) {

2 LOADFRAME(Stencil) ;

3 typedef double (*xArray2D) [n_cols];

4 Array2D D = (Array2D) FRAME(dst),
5 S = (Array2D) FRAME(src) ;
6 const size_t n_rows = FRAME(n_rows),

7 n_cols = FRAME(n_cols),

8 n_steps = FRAME(n_steps);

9

10 // current codelet’s ID

11 size_t cid = getID(),

12 lo = lower_bound(n_cols,cid),

13 hi = upper_bound(n_cols,cid);

14 for (size_t i = lo; i < hi-1; ++1i)

15 for (size_t j = 1; j < n_cols-1; ++j)

16 D[i]J[j] = 0.25 * (S[i-1]1[jl+sCi+1]1[jl+ S[il[j-11+sS[i]l[j+11);

17 SYNC(barrier) ;
18 EXIT TP() ;
191 ¥

21 ||FIRE(Barrier) {
22 LOADFRAME(Stencil) ;
23 if ( FRAME(n_tstep) == 0 ) {

24 SIGNAL(done) ;
25 EXIT TP () ;

26 }

27

28 double *src = FRAME(dst), *dst = FRAME(src);
29 size_t n_rows = FRAME(n_rows), n_cols = FRAME(n_cols),

30 n_tsteps = FRAME(n_tsteps);

31 Codelet *done = FRAME(done) ;

32

33 INVOKE(Stencil, src, dst, n_rows, n_cols, n_steps-1,
34 done) ;

35 EXITTP() ;

36 || ¥

Listing 3.3: Coarse-Grain 5-Point 2D Stencil kernel—DARTS version. Compute
Codelet and barrier Codelet definition. a new TP is invoked at each new iteration
step.

for a given cluster of cores, and holds the data which the Codelets can access. The Compute
Codelet proceeds to execute the stencil operation for one time step over a chunk of the data.
When it is done firing, it signals the Barrier Codelet, which collects all the signals of all
firing Computes. Barrier then proceeds to invoke a new Stencil TP where the source
and destination arrays are swapped in the parameters list, and the time step is decreased.

This variant performs poorly compared to OpenMP since creating a new TP in every time
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step yields a rather high overhead which involves dynamically allocating and deallocating

intermediate data structures to hold the TP frame, as well as creating a set of Codelets to

process portions of iteration space.

0 O Uik Wi

FIRE(Compute) {
LOADFRAME(Stencil) ;
typedef double (xArray2D) [n_cols];
Array2D D = (Array2D) FRAME(dst), S = (Array2D) FRAME(src) ;
const size_t n_rows = FRAME(n_rows), n_cols = FRAME(n_cols),
n_steps = FRAME(n_steps);
size_t cid = getID(), // current codelet’s ID
lo = lower_bound(n_cols,cid),
hi = upper_bound(n_cols,cid);
RESET(compute [cid]) ;
for (size_t i = lo; i < hi-1; ++1i)
for (size_t j = 1; j < n_cols-1; ++j)
D[il[j] = 0.25 * (S[i-11[j1+S[i+1]1[j]1 + SCil[j-11+S[il[j+1]1);
SYNC(barrier) ;
EXIT TP() ;
}
FIRE(Barrier) {
LOADFRAME(Stencil) ;
if ( FRAME(n_tstep) == 0 ) SIGNAL(done), EXIT TP() ;
RESET(barrier) ;
for (size_t i = 0; i < g_nCU; ++i) SYNC(compute[i]);

EXIT TP() ;
}

Listing 3.4: Coarse-Grain 5-Point 2D Stencil kernel—DARTS version. Compute
Codelet and barrier Codelet definition. Codelets reset themselves until the last
iteration step is reached.

To reduce the overhead, a better version of the same coarse-grain behavior is provided in

Listing 3.4. Adding RESET function to Codelet help reuse the same TP frame. The SYNC call

allows a Codelet to signal a sibling contained within the same TP frame. In new version,

Compute Codelets reset their dependence count when they are fired. Barrier signals the

end of the computation if there are no more time steps, or it resets itself, and then signals

Compute Codelets. This version is the “base” code we will be using to compare to OpenMP

and refine in the section 3.3. Figure 3.1 illustrates this approach.
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Figure 3.1: A Coarse-Grain Version of a Naive Stencil Computation. Each codelet resets
itself if there are remaining iteration steps.

3.2.2 Basic Implementation of a Parallel fine-Grain 5-Point 2D
Stencil with OpenMP

The naive OpenMP code leverages the regular coarse-grain fork-join execution model to
parallelism code. As the loop is scheduled statically, the same OpenMP thread is tasked to
process the same iteration chunk for each time step. Tiling method can be used to optimize
the naive code. As a result, even though as much asynchrony as possible was added to the
code, there is still a need to issue a global barrier to wait between two time steps, to ensure
each thread can start processing the new time step with the most up-to-date rows during

the kernel’s execution.

Figure 3.2 illustrates the fine-grain OpenMP/.5’s tasks Data Flow Graph(DFG). OpenMP4.5
tasks directives, i.e.,task depends: in, task depends:out can help configure the connec-
tions between tasks. There are two types of tasks, task-comp and task-scomp. task-comp
is a “regular” computing task, while task-scomp combines both a regular computation and

a pointer swapping steps. ck(i) stands for chunk; (the i*" iteration chunk in the loop/block
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of matrix rows to process), and ts(j) stands for “time step j,” the j** time step in the it-
erative computation. The 2D stencil computation is partitioned into different chunks. Each
chunk features the same number of columns and a similar amount of rows (the last chunk
may feature a few more or a few less lines than the others, which mimics the way OpenMP’s
parallel loops work). For each time step, there are different sets of dependencies to resolve,
depending on which neighboring iteration chunks are being processed. Hence, task-comp
for chunk; of time step j cannot begin computing until task-scomps of both chunk;_; (the
“upper chunk”) and chunk;,» (the “lower chunk”) finish computing at time step j — 2.

OMPFG

Figure 3.2: A Fine-Grain Version of 2D Stencil Computation with OpenMP.

3.2.3 Parallel Stencil Computations Using the Codelet Model

This section presents the various steps which were followed to produce a parallel fine-grained
version of the 5-point 2D stencil code in the Codelet Model. DARTS explicitly specify how
parallelism is created, orchestrated, and ended. It is necessary for fine-grain synchronization
control including creating Codelets data dependencies and scheduling Codelets on specific

threads.
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3.2.3.1 Distributing The Computation Over Multiple Clusters In The Codelet

Abstract Machine

|
|
I
I
I
PartitionTPs { compute | . .... compute 1. .... compute compute ..., compute \ ..., compute
| (Y] .1 o1 (V) 1) o1
|

U ..... \I@{ VA

Figure 3.3: A Medium-Grain Version of a Naive 5-Point 2D Stencil Computation. The
computation is decomposed into several sub-Codelet graphs, allowing a machine to hold
multiple synchronization units for a better workload balance.

As described in section 2, DARTS, by default, maps each single socket to a CAM’s cluster
of cores comprising one SU as control element and a serial of CUs as processing elements. As
a consequence, parallelism is inherently hierarchical in this setting. Programming Codelet
applications thus leads to building “natural” hierarchical barriers. The new naive version
with RESET function, shown in Listing 3.4 and Figure 3.1, is faithfully implementing one
SU CAM. However, this configuration centralizes all Codelet graph creations onto a single
processing element. This has several drawbacks. First among them, it effectively forces all
cores to issue an atomic operation on the same memory location, thus forcing the serialization
signals when a time step has been achieved. Second, it prevents the system from performing
load-balancing when needed. To ensure a better load-balancing on a multi-socket shared-
memory node, it is preferable to map multiple clusters from the CAM, each with its own

SU.

The way shown in Listing 3.3 partitions the Codelet graph into sub-graphs, each contained

within its own TP, and each confined to a given cluster of cores, hence maintaining local-
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ity. To avoid paying the overhead cost of dynamically allocating and deallocating Codelets
array when create new TP in each time step, mentioned in section 3.2.1, the same array
of Codelets is passed from invocation to invocation: the Codelets are created only once the
first iteration step has been started and destroyed only once the last iteration step has been
reached. Figure 3.3 provides a high-level view of the resulting codelet graph. This results in

a somewhat medium-grained version of the stencil computation, shown in section 3.3.

3.2.3.2 Toward a Finer-Grain Approach

The goal is to allow portions of work to proceed with the next iteration step, as long as the
shared rows they require to update their portion of the matrix are available. To make it
simple, new version of code is still still decomposing the work along the rows of the matrices.
However, each Codelet simply signals its neighbors when it is done updating the rows they
depend on to move to the next iteration step. Hence, some Codelets may proceed to update
the system at step S;y1 while others are still finishing step .S;. Figure 3.4 provides a diagram
of the resulting Codelet graph where only one TP is created to hold the whole Codelet graph,
where all dependencies are statically determined. The stress on the memory subsystem is
not expected to be excessive, however, since signals are now only sent between “neighboring”

cores.

3.2.3.3 Reducing the Stencil Computation’s Footprint

To reduce the memory footprint of the computation, instead of systematically using two
matrices to iterative compute new values at each time step (subsequently requiring to ex-
change array pointers), it is possible to allocate a small buffer per Codelet in each invoked
TP. Each buffer must be large enough to hold a set of at least three full rows in the ma-

trix. As a result, The original naive loop thus becomes more complex, as each Codelet must
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Figure 3.4: A Fine-Grain Version of a Naive 5-point 2D Stencil Computation. A single TP
is generated, which holds the full Codelet graph. Codelets only signal the neighbors which
read and write shared rows.
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Figure 3.5: A Fine-Grain In-Place Version of a Naive 2D Stencil Computation. Multiple
TPs can be generated, which hold a portion of the overall Codelet graph. Codelets only
signal the neighbors which read and write shared rows. A single matrix is required.

now first write the new values of the system to its local buffer first, then must write the
newly updated row(s) back to the original matrix. However, this scheme lends itself well

to fine-grain synchronization.Indeed, as Figure 3.4 only features TPs, Codelets, and their
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dependencies, but not the actual code or data that are held in the TP frames, then it is
also an adequate representation of an “in-place” version of a fine-grain version of an n-point
stencil computation. However, this version suffers from the same limitation as the previous
fine-grain variant: it requires to invoke a single TP, thus forcing the CAM to be mapped
with a single SU for the whole machine, and, in turn, to accept that all TP creations will
involve a potentially heavy serial step. Note also that since this implementation requires to
allocate enough space for three full rows of the original matrix, there is no guarantee these

buffers will fit in individual core’s L1 data caches, or even L2 caches.

Hence, a final refinement is to allow for the distribution of the fine-grain “in-place” variant
over multiple TPs. While the previous variants, including the initial fine-grain one, were
relatively easy to implement, this specific implementation requires some careful coding when
setting up the overall Codelet graph, as Codelets will reset themselves and signal each other
not only within the same TP frame, but also across frames. However, the basic structure
remains the same, and it clearly can be automated by a compiler. The resulting Codelet
graph is shown in Figure 3.5. In this last variant, each Codelet graph features three types of
Codelets: Compute performs the actual computation, as before. The CheckDown and CheckUp
Codelets are signaled when rows shared by “upper” and/or “lower” neighbors are ready to
be updated. In turn, they also signal other compute Codelets to let them know that the rows
they are sharing with their neighbors are cleared for reading. Note we elected to partition
the matrices row-wise to keep the case study simple, but further partitioning (along both

rows and columns) would follow the same principles.

3.2.4 A More Realistic Stencil-based Computation: LULESH

Livermore Unstructured Lagrangian Explicit Shock Hydrodynamics, or LULESH, is a “proxy

app,” i.e., an application that is representative of a more complete and more complex type
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of application currently in use in national laboratories all over the world and in particular
in the US. Specifically, such applications are used to model deformation events, and in the
particular case of LULESH, the Sedov blast wave problem for one material in three dimen-
sions. It is a hexahedral mesh-based physics code with two centerings, Nodal centering and
element centering, and time simulation constraints [27, 29]. As with all other “proxy” (or
“mini”) applications published by US national laboratories, the implementation prioritizes
clarity over optimization. As a result, while the application is representative of more com-
plex (and more complete) shock hydrodynamics currently deployed in production in various
laboratories, e.g., in terms of computation steps, data movements, etc., it lacks many of the

optimization that can be found in production-level implementations.

Well known code transformations, such as tiling, loop fusion, or loop distribution, is not the
purpose of this section. The impact of transitioning from a coarse-grain implementation of
the code toward a fine-grain one, and, in the context of this mini-app, how much performance
can be hoped to be gained when “drowned” within a more complex application environment

is the interesting part.

The “official” LULESH application [29] uses OpenMP’s coarse-grain synchronization con-
structs, as shown in Figure 3.6. For example, the Nodal centering function, one of most
time consuming functions of LULESH, copes with all nodes’ kinematics value such as force,
acceleration, positions, velocities etc. The synchronization barrier will be used for every
kinematics value calculation. The synchronization cost is proportional to the number of

nodes.

To avoid global barrier, a tree barrier approach can be used to control synchronization gran-
ularity. The tree can be balanced or unbalanced for a given arity k. The tree structure
barrier impact the overall performance by reducing atomic operations in the overall compu-
tation. For instance, there are 8 processing elements in the hardware platform, if the arity

of each node is set to 2 which ensures a balanced tree, as shown in Figure 3.7, then every
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Figure 3.6: LULESH Compute-Sync Graph. — OpenMP version — Coarse Grain

Figure 3.7: LULESH Compute-Sync Graph. — DARTS version, — Balanced Compute-Sync
Tree
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Figure 3.8: LULESH Compute-Sync Graph. — DARTS version, — Unbalanced Compute-Sync
Tree

inner code will have 2 children; if the arity of each name is set to 4, as shown in Figure 3.7,
then this tree is unbalanced. There is no standard criteria to determine which type of tree
is more efficient. The hardware,especially the number of available cores in one cluster, the
structure of clusters and the memory hierarchy, affect the finally performance. In this tree
structure, every Codelet fulfills two functions: computation and synchronization, excepted

the root Codelet, which only performs synchronizations.

3.3 Experiments
This section describes the results of each specific computation—naive coarse-grain 2D stencil,

fine-grain 2D stencil, and LULESH—implemented using OpenMP and DARTS. We compare

the results obtained in each case.
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3.3.1 Experimental Testbed

Processor # # Total | L1D L2 L3
Platform type Sockets | PEs per | PEs | (KiB) | (KiB) | (MiB) Comments
Socket
A Intel 2 16 32 32 256 20 Private L2 ;
Sandy Bridge Hyperthreading
B Intel 4 12 48 32 256 15 Private L2 ;
Sandy Bridge Hyperthreading

Table 3.2: Compute Nodes Characteristics. “PE” = “Processing element.” L2 and L3 caches
are all unified. Hyperthreaded cores feature two threads per core. Platform A features 64 GB
of DRAM; Platform B features 128 GB.

\ Platform \ Linux distribution \ Kernel version \ GCC version \

A CentOS 7.1 3.10.0 8.1
B Ubuntu 16.04 LTS 3.13.0 8.1

Table 3.3: System Software Stack used for the experiments.

The hardware platforms characteristics are described in Table 3.2. Table 3.3 provides the
information related to the system software running on each compute node.Each platform
offers a relatively varied system software layer, with compilers and OS kernels being slightly
(or even widely) different from node to node. All experiments are run by pinning threads to
a given processing element, and by setting the OMP_PROC_BIND environment variable to true
(for OpenMP). DARTS automatically pins its work queues to the underlying processing

elements. !

3.3.2 Experimental Protocol

Eight different variants of stencil code: Seq is the baseline and is a benchmark that runs
sequentially on one CPU core; OpenMP runs the same code as Seq with added OpenMP di-
rectives running on all the available CPU cores; Naive is a single TP implementation of the

stencil computation, both OpenMP and Naive are described in Section 3.2.1); OpenMPFG is

LAIl the code is available on the Git repository: https://github.com/gengtsh/darts-heterogeneous.
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the fine-grain variant which makes use of the tasking mechanisms available in OpenMP/.5,
described in section 3.2.2; NaiveTPsPtr implements the same logic as Naive, but distributes
the work across several TPs, illustrated in Figure 3.3; FineGrain implements the fine-grain
synchronization scheme and illustrated in Figure 3.4; InPlace’s Codelet graph is identical
to FineGrain’s. However, FineGrain allocates two (dst and src) matrices, while InPlace
only allocates one matrix and a small 3-row buffer within a compute Codelet. Hence, the
synchronization logic of InPlace is more complex than FineGrain’s. InPlaceTPs imple-
ments the same in-place variant, but distributes the computation across multiple TPs, de-
scribed in Section 3.2.3.3 and illustrated in Figure 3.5. To summarize, OpenMP and Naive
implement coarse-grain synchronization scheme, NaiveTPsPtr and InPlaceTPs implement
medium-grain synchronization scheme, and FineGrain and InPlace implement Fine-Grain

synchronization scheme.

The experiments utilize the following protocol:

1. All 2D stencil computations run for 30 time steps

2. Each variant instance is run 20 times to increase the stability of the run, then the
accumulated times are averaged after removing the 2 most extreme values (min and

max).

3. Each binary containing a variant is run 10 times from the command line, and average

the accumulated times once again.

The reason why computing the the average of different invocations of the binaries for each
variant is because the overall system environment introduces enough noise to generate tim-
ings that can significantly differ, for sequential, CAM, as well as OpenMP model variants—

especially for smaller input sizes.

LULESH experiments were done in a similar way as 2D Stencil: All the computations were
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repeated 20 times and the whole executable were run 10 times each.

3.3.3 Experiment Results — 5-Point 2D Stencil Kernel

The results for strong scaling are shown in Figures: 3.9, 3.10, 3.11, 3.12, 3.13, and 3.14. Since
there are eight different variants, as described in section 3.3.2, to maintain the readability
of the Figures, only Seq, OpenMP, OpenMPFG and two best DARTS variants will be shown in

these Figures.

i6 T

OpenMP —8—

MNaive —a—

14 = NaiveTPsPtr ]
OpenMPFG .

12 -

SpeedUp (baselin:sequential)

1 #) 11 16 21 26 31
number of threads

Figure 3.9: platform A: Strong Scaling— Matrix size: 1000 x 1000.

The default CAM is used in the case of DARTS: each socket of the target platform is mapped
to a cluster of cores. Each cluster thus features n—1 Compute Units (CUs) and one Scheduling
Unit (SU). Hence all CUs are physically close to each other, ensuring that a TP allocated
to a cluster displays some level of locality (at least at the L3 cache level). In other words,

compact mapping polices, allocating software threads as closely as possible on the available
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Figure 3.10: platform A: Strong Scaling— Matrix size: 3000 x 3000.
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Figure 3.11: platform A: Strong Scaling— Matrix size: 5000 x 5000.
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Figure 3.12: PlatformB: Strong Scaling— Matrix size: 1000 x 1000.
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Figure 3.13: PlatformB: Strong Scaling— Matrix size: 3000 x 3000.
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Figure 3.14: PlatformB: Strong Scaling— Matrix size: 5000 x 5000.

Processing Elements (PEs) according to the underlying physical topology, is used in strong
scaling test. As a result, in low-CU count case, not all the available aggregated cache will be
used, especially, on a on a 2-socket compute node, if less than half of processing element(i.e.,
one cluster /socket), then only one 1.3 module will be utilized.As described in section 3.3.2,
the average execution time will be used as the final result since the execution times followed
a normal distribution. For workloads that were mostly memory-bound, on Platform A, the
standard deviation using DARTS is at most 5%, and less than 1% on average. On Platform
B, the highest standard deviation reaches 18%, with an average of 10%.For cache-bound
workloads, the standard deviation is much higher. For example, for 1000 x 1000 matrices,
the standard deviation reaches 11% on Platform A (with an average of 5%), and 27% (with
an average of 24%) on platform B. This is in part due to the dynamic scheduling algorithm
which are used in the DARTS, which cannot guarantee that the same chunk of data will be

processed by the same processing element.
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In the OpenMP case, for both OpenMP and OpenMPFG, OMP_PROC_BIND are set to true to
ensure that threads are pinned to a given PE. However, the OpenMP run-time system and
the underlying OS are in charge of assigning a given (OpenMP) thread to the physical PEs,
which results in threads being able to use all available L3 caches (when distributed over
several sockets). Still, when resources start to be saturated, i.e., when more than half of the
processing elements (which in the case of both platforms are hardware threads) are used,
and when they start to compete for FPUs, caches, etc., the DARTS variants outperform
the OpenMP version. As the PE count increases, so does the performance gap, as shown in
Figure 3.10, 3.11, 3.13 and 3.14.In Platform A, figure 3.9 shows that the OpenMP coarse-
grain variant has a clear advantage over DARTS and OpenMPFG fine-grain when the workload
fits in the caches (i.e., when the matrix size is 1000, or possibly 2000, as it still partially fits
in the caches). Once the data grow beyond the capacity of L3 caches, as shown in Figure 3.10
and 3.11, DARTS Medium and Fine-Grain variants get the upper hand, and the OpenMPFG
yields slightly better performance than OpenMP. The same trend can be found in Platform-B
(Figure 3.12, 3.13 3.14).

In weak scaling, shown in Figure 3.15 and Figure 3.16, FineGrain and NaiveTPsPtr achieve
the best performance, with speedups reaching up to 3x compared to two OpenMP variants.
The OpenMP has a clear advantage over DARTS when the workload fits in the caches (i.e.,
when the matrix size is 1000 x 1000 on Platform A, or 1000 x 1000 and 2000 x 2000 on
Platform B, as it still partially fits in the L3 caches). In the OpenMP coarse-grain case ,
loops are statically scheduled, thus ensuring that the same PE processes the same chunk
of data, and hence minimizing cache misses. In the OpenMP fine-grain case(0penMPFG), all
the tasks, as described in Figure 3.2, are in the tasks pool, and will be invoked when their
dependencies are satisfied. Tasks are dynamically assigned to available PEs and cluster. In
contrast, DARTS’s scheduling policy is fully dynamic, and thus Codelets can be run by any
PE belonging to the same cluster of cores. Hence a given data chunk may be processed by

different PEs over two successive iteration steps, resulting in additional cache trashing.
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Once the data grows beyond the capacity of L3 caches, DARTS gets the upper hand: the
finer-grain variants either issue “local” atomic operations between neighbors (as with the
FineGrain variant), or at least provide a hierarchical way to maintain some locality within
their cluster of cores, thus reducing the overall memory traffic. In particular, the inclusive
nature of the caches in Intel processors allows the hardware to recognize when a given
memory location is owned by the “local” L3, and thus avoids a costly request for ownership
across sockets. Fine-grain DARTS variants are always better than coarse grain ones. When
problem sizes fit in the L3 cache(s), the OpenMP variant yield much better performance than
all the DARTS variants, no matter the granularity. When problem sizes are larger than the

L3 cache, the DARTS’s FineGrain and NaiveTPsPtr variants yield better performance.

3.3.4 5-Point 2D Stencil Kernel Results — Discussion

Coarse-grain synchronizations (e.g., barriers) tend to be implemented with a single memory
location, even in state-of-the-art run-time systems (for example: GCC’s OpenMP; Intel’s
implementation offers both linear and tree-based barriers). This has several negative conse-
quences: (1) all processing elements issue an atomic operation to the same location, forcing
the other PEs to flush their write buffers, sometimes more than once; (2) there is a “natural”
contention due to the target single location. By contrast, finer-grain synchronization makes
use of more locations with better locality effects. Write buffer flushes still occur, but tend
to be limited to writing back in L3 (at least in the Intel case). In addition, Codelets can
better exploit the “slack” that exists when a core is done running a thread, due to their

event-driven nature.

Finer-grain synchronization clearly does provide better results on general-purpose many-core
systems, as shown in Figures from 3.9 to 3.16. However, which variant works best varies

significantly depending on which platform running tests. On Intel-based compute nodes, the
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most refined variants did not perform very well in the end: the InPlace and InPlaceTPs
variants under performed compared to their most simple counterparts, and even compared to
the coarse-grain OpenMP variant. The main reason is the implementation is too naive: while
the InPlace variant does require less memory than the original code, its implementation is
too simplistic. When computation Codelets are being fired, 0S will allocate Codelets to
different Hard threads. However, when a huge amount of Codelets are fired within a very
small time range, some serialization operations, such as accessing OS’s "memory allocator”
, will drop the overall performance.As Intel-based nodes feature inclusive caches, the data
can only be as big as the L3s of the system. The situation maybe different, if the experiment
run on the AMD-based Processor since AMD system cache are exclusive: the aggregated
size of the L2 caches equals the aggregated size of the L3s, effectively doubling the overall
size of the data that can be held in the caches. The AMD system also relies on write-through
L1D caches (compared to Intel’s write-back L1Ds), which allows for a better utilization of

the L1D (there is roughly four times more reads than writes in the stencil computation)

Moreover, the purpose of this section is to show the benefits of “pure” fine-grain synchroniza-
tion, without resorting to classical loop transformations such as tiling or loop skewing, even
the allocation of just three complete rows is enough to quickly fill L1D caches. For example,
the smallest input size for a matrix, 1000 x 1000, requires three rows of a thousand elements
to implement the current in-place variants. However, this represents already = 2/3 of the
L1D cache of the compute nodes. Hence, to obtain an efficient in-place variant, additional

blocking and tiling techniques need to be applied.

3.3.5 Experiment Results — LULESH

Similarly to the 5-points 2D stencil kernel, the average execution time is used as final result

since the execution times followed a normal distribution. The largest standard deviation was
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Figure 3.17: Platform A: LULESH on DARTS, vs OpenMP, children n is the arity of each
node in the tree, i.e., the number of children a node can have in the tree.

The overall performance of LULESH on DARTS, relies on three parts: the underlying computer
architecture (in particular the memory aspects), the synchronization granularity, and input
data size. As shown in Figure 3.18 (Platform B — see Table 3.2), compared to the reference
OpenMP implementation, which uses coarse grain synchronization, the DARTS, Medium-
Grain synchronization variant gets relatively good performance for small data sizes. For
instance, when the input size is less than 3203, i.e., the resolution of 3D LULESH is either
over 320% elements or 321% nodes per time step. Medium grain variants (where the arity of
each node is denoted by children = 6 and children = 12) fare relatively better than the
coarse grain version (i.e., children = 24 and children = 48) and the OpenMP reference

code, but not by much. The main reason is that data fits in the various L3 caches, which
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Figure 3.18: Platform B:LULESH on DARTS, vs OpenMP, children n is the arity of each
node in the tree, i.e., the number of children a node can have in the tree.

then allows for all synchronizations to occur relatively seamlessly.

For larger matrix sizes, Fine-Grain variants (with children = 2, which builds a binary
computational tree, and children = 6) fare much better. For example, performance jumps
by a wide margin when the data size reaches 5003. This is in part due to the fact that when
the data set size increases, each individual Codelet has more work to perform, so ratio of
computation-communication cost increase while communication belongs to serialization part
and computation belongs to paralleling part. Furthermore, the Codelet graph builds a fine
grain synchronization tree, as shown in Figures 3.7 and 3.8. In it, the non-root, non-terminal
Codelets have two functions: computation and synchronization. The synchronization tree
structure can help split this large data set into a series of small and relatively independent

ones. The amount of computation is the same among all Codelets, but the communication
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cost will be reduced compared to a coarse-grain variant leveraging a barrier. Because children
Codelets only need to communicate/synchronize with their parent, data access conflicts are
reduced within one cluster and between sockets/clusters, especially in the case that the
computation spreads across all the PEs and all the clusters, fully utilizes the L3 cache, and
needs to access data in main memory. Hence, the tree structure helps control the data flow,
data transfers, and further reduces data access conflicts. For medium-sized computations,
the situation is more complex. When the data set size reaches the L2 cache boundary, e.g.,
data sizes from 400° to 480% as shown in Figure 3.18 (Platform B), the overall performance
will rely on multiple factors, such as how Codelets were bound to cores or clusters, whether
the leaves and their parent are allocated in the same socket or not, how deep of tree structure
was, etc. For this data set, the best granularity cannot be easily predicted, and some fine-

tuning is in order.

DARTS assign Codelets to different PEs and clusters by using the hwloc library and bind
units to specific cores using their ID. In this experiments, the binding method is based on the
granularity of synchronization and number of cores in one cluster. The basic rule is to try
to put parent and children Codelets in one cluster/socket to reduce the data transformation

time.

In the Figure 3.17 and 3.18, there are some special points, called changing points, which
correspond to the medium sizes always somewhere “just above” the L3 cache sizes. The
boundary between coarse-grain and fine-grain is vague since the cost of tree hierarchy com-
munication and coarse-grain communication are similar during these changing cost. Different
architectures have different changing points. For example, in Platform A (see table 3.2 and
Figure 3.17), the changing point occurs at data size 300%, but in Platform B, the changing
points are range from 400° to 4803. This is of course directly related to the sizes of the plat-
forms’ L3 size (individual and aggregated), as well as the way the workload is partitioned

among the PEs.
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3.4 Related Work

This section presents work pertaining to fine-grain and event-driven multithreading, as well

as relevant approaches to run parallel executions of stencil computations.

3.4.1 Fine-Grain Multithreading Execution and Programming Mod-

els

In recent years, several attempts at providing more dynamic ways to create parallel work
have been proposed. Many such attempts are inspired by data flow models of computation.
Among them, we can mention Concurrent Collection [30-33], which implements a dynamic
data flow inspired execution and programming model to orchestrate parallel programs exe-
cution. Cnc was used to run workloads that expose extremely fine-grain parallel algorithms,
such as stencil computations in the LULESH application [34], using classical optimizations
such as loop fusion and tiling to coarsen granularity and enhance the application’s scalability.
However, the authors lacked a cache-specific tuner and had to suffer a large overhead due to

the data collection phase.

XKaapi [35, 36] is a macro-data flow run-time which targets multi and many core (possibly
heterogeneous) systems. Much like most modern run-time systems (including DARTS), it
relies on the use of work stealing for dynamic load-balancing, as well as work over-subscription

to ensure the system is always usefully busy.

The Open Community Run-time [37] (OCR) system is an event-driven multithreading system
in part inspired by the Codelet model. It runs on both shared and distributed memory
systems, and requires the programmer to pass data and events through data blocks and event
slots. Each data block or event-driven task is assigned a global unique identifier. While this

approach may introduce additional complexities for the parallel programmer, especially in
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shared-memory systems, it results in a more seamless execution across computation nodes

in a distributed memory system.

The SWift Adaptive Run time Machine (SWARM) system is another implementation of the
Codelet model [38]. Just like DARTS, it is initially a run-time system with a hardware layer
abstraction. It can run on both shared and distributed memory systems. However, it is not

completely faithful to the initial C'odelet model.

XKaapi, OCR, and SWARM all propose a fine-grain event-driven approach to multithread-
ing. However, they do not provide an explicit way to group data flow tasks to ensure they
execute on a specific portion of the hardware (for example, to maintain spacial and temporal
locality), contrary to DARTS (which uses threaded procedures to enforce Codelet group-
ing). SWARM does get close to this concept by providing ways to “bind” Codelets to a
specific physical portion of the machine, in a manner similar to Hierarchical Tiled Array’s
locales [39]. As a result, most of these solutions tend to resort to very dynamic ways to

spawn parallelism as a whole.

The Cilk programming and execution model [40] and its subsequent evolution, is a parallel
programming language that favors fine-grain multithreading, and encourages a divide-and-
conquer approach using a fully-strict approach to evaluate a program’s computation graph,

i.€., children tasks must synchronize back with their parents.

The Habanero parallel programming language [41-43] also relies on fine-grain synchroniza-
tion mechanisms, such as phasers, data-driven futures, and async/finish constructs. Contrary
to Cilk and CilkPlus, Habanero relies on a terminally strict synchronization approach, i.e., a
child task must synchronize back with any of its ancestors (not necessarily its parent task).
While most of the research pertaining to Habanero relies on the Java virtual machine, the

Habanero programming model has also been ported to a C-like language, Habanero C.

Finally, the latest version of the OpenMP standard proposes a way to describe task depen-
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dencies in a program [3] [4]. The way task dependencies are expressed is directly inspired by
StarSs and OmpSs [44, 45]. The resulting task dependence graph is obtained in a fully dy-
namic manner. By contrast, DARTS’s Codelett graphs tend to dynamically allocate chunks

of Codelets which feature statically-defined dependencies.

3.4.2 Other Approaches to Optimize and Parallel Stencil Compu-

tations

Classical loop optimization techniques provide very efficient ways to improve sequential sten-
cil computation. Loop tiling, locality optimization and parallelization are the main method-
ology to improve stencil computation performance. Loop tiling [46-48] manipulates hyper-
planes from the iteration space to determine the tile shapes for a given computation, as well

as the scheduling order.

From a parallel optimization angle, diamond-tiling [49] focuses on concurrent start-up as well
as perfect load-balance. It enables tiles to start being processed simultaneously to improve
cache reuse and provide a high degree of concurrency. However, this technique is often used
manually, as it requires a complex mapping of tiles to different cores. Hence, this technique
is limited in that it involves a complex control flow, an architecture-specific tile size and tile
shape and an overall lower portability. Some of these limitations are addressed by Bertolacci
et al. [50] by proposing a parameterized diamond tiling technique to better schedule tile

processing.

More recently, the manipulation of the iteration space has led to better work scheduling for
many-core devices. For example, Shrestha et al. propose to perform transformations on the
iteration space using jagged-tiling to allow for a better concurrent start for processing tiles

in parallel [51, 52].
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Several works have proposed to automate the tuning and code generation of stencil-based
applications. Among them, Pochoir is a domain-specific language that allows the user to
specify a given type of stencil computation to be generated automatically for parallel ex-
ecution [53]. The Pochoir compiler then translates that specification into Cilk code to be

executed on a parallel multi/many core machine.

Kamil et al. [54, 55] propose a code generation and auto-tuning framework for stencil com-
putations targeted at multi- and many-core processors. It makes it possible to leverages the
auto-tuning methodology to optimize strategy-dependent parameters for a given hardware

architecture.

Muranushi and Makino introduced the PiITCH tiling method [56]. It leverages a temporal
blocking methodology which can achieve a target’s optimal memory bandwidth ratio well-

suited for multidimensional stencil computations.

Lesniak introduced a block-based wave-front synchronization technique for parallel stencil
calculation [57]. The matrix is divided into blocks; each diagonal block can be calculated
independently by different threads. New threads cannot be invoked until all blocks in the
current diagonal have been calculated. The iteration is completed only if the last block,
located in the lower-right corner of matrix, has been calculated. In general, the wave-front
synchronization limits the level of parallelism. Hence the parallelism level is reduced from

the center of the diagonal to the upper-left and lower-right corners of matrix.

Rawat et al. [58] have introduced their Stencil Domain Specific Language (SDSL), which
provides a target-independent description and optimization strategies for stencil computation
on multi-core CPUs with short-vector SIMD instructions, GPUs, and FPGAs. The purpose
of SDSL is to provide a programming language which can generate high-performance portable
stencil computation running on multiple platforms. It adopts both nested split-tiling and

hybrid split-tiling methods in conjunction with dimension-lifting transformation.
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None of the upper described works on stencils are directly competing with the objective,
which is to advocate for finer-grain synchronization, even faced with ”almost embarrassingly
parallel” and well-balanced workloads. However, all these techniques could clearly be used on
top of the event-driven multithreading run-time system, to improve the overall performance

of the stencil application.

3.5 Observations

Fine-grain synchronization with our event-driven multithreading model, as described in sec-
tion 3, has the advantage of exploiting the parallelism of dependence-heavy applications
compared to the coarse-grain synchronization in current high-performance general purpose
many-core shared-memory compute nodes. Several variants, coarse-grain variants imple-
mented with OpenMP4, fine-grain variants implemented with OpenMP4.5, as well as several
variants using fine-grain event-driven execution run-time system(DARTS), were developed

to leverage the granularity of the synchronization.

While there are various ways to optimize stencil-based kernels, as described in section 3.4, the
experiments, described in section 3, demonstrate that even only with a simple hierarchical
synchronization scheme, the reduction in the number of atomic operations and amount of
memory traffic in general benefits the overall execution of the program. By leveraging
such a synchronization scheme, a transformation method from a coarse-grain program into
a fine-grain one has been demonstrated. The cost of such a transformation is that what
was initially expressed as an “almost embarrassingly parallel” loop (within a time step) now
becomes a more complex computation graph. However, the advantages of using finer-grained
synchronization show that even initially “almost embarrassingly parallel” workloads such as
stencil kernels, performance can improve by up to 3.5x using regular work distribution

among processing elements. Furthermore, a realistic stencil-based LULESH application was
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used to evaluate the idea that fine-grain synchronization matters even in “regular” general-
purpose many-cores systems for applications which are dependence-heavy. Compared to the
reference coarse-grain OpenMP version, the speed up of the fine-grain tree-based approach

version reaches 1.35x.

This fine-grain synchronization work has relied on hand-coded Codelet programs. For the
type of applications studied in section 3, this only means that the code is slightly more
verbose than its OpenMP counterpart. However, for more complex parallel applications,
it can be unwieldy to apply the same methodology. Future work includes the use of an
OpenMP-to-Codelet compiler, omp2cd to observe how our fine-grain partitioning can be
automated through the use of OpenMP/.5’s compilation directives. To do so, expanding
paper [23] will be done by adding the missing directives related to task (e.g., taskloop) so
that fine-grain OpenMP4.5 code may be generated into a multi-level synchronization scheme

DARTS program.
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Chapter 4

Profile-Based Dynamic Adaptive
Work-Load Scheduler on

Heterogeneous Architecture

4.1 Introduction and Motivation

Nowadays, most High-Performance Computing (HPC) platforms feature heterogeneous hard-
ware resources (CPUs, GPUs, FPGAs, storage, etc.). For instance, the number of platforms
of the Top500 equipped with accelerators has significantly increased during the last years [1].
In the future it is expected that the nodes of such platforms’ heterogeneity will increase even
more: they will be composed of fast computing nodes, hybrid computing nodes mixing gen-
eral purpose units with accelerators, I/O nodes, nodes specialized in data analytic, etc. The
interconnect of a huge number of such nodes will also lead to more heterogeneity. Resorting
to heterogeneous platforms can lead to better performance and power consumption through

the use of more appropriate resources according to the computations to perform. However,
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it has a cost in terms of code development and more complex resource management.

Moreover, GPU boards are integrated with multi-core chips on a single compute node to
boost the overall computational processing power. The scientific applications tend to rely on
large amounts of data. Hence, heterogeneous systems pose some restrictions on how some of
the computation can be offloaded to an accelerator, e.g., GPUs, as their memory capacity is
limited, and data transfers incur very limited latancy and bandwidth [59]. A heterogeneity-
aware scheduler must leverage load-balancing techniques in order to obtain the best workload
partition between CPUs and general-purpose accelerators—to be specific, a GPU. Naive
heuristics may result in worsened performance and power consumption. Furthermore, due
to the complex and dynamic interplay between the program and hardware system [60],
efficiently executing parallel programs on many-cores continues to be a challenging problem,
where efficient execution requires dynamically and continuously matching the parallelism
programs with the instantaneous resources. It is non-trivial work since neither the programs

demands nor the system resources remain constant during the execution time.

Meanwhile, whole sectors of scientific computing rely on iterative algorithms. In particular,
stencil-based computations are at the core of many essential scientific applications: sten-
cils are used in image processing algorithms, e.g., convolutions; partial differential equation
solvers, Laplacian transforms, or computational fluid dynamics; linear algebra, to apply the
Jacobi method; etc. the iterative nature of a stencil kernel is what makes it an interesting
type of computation kernel. As a result, it must make sure everything is correctly synchro-
nized between two time steps. Thus, if such a kernel is to be used in a heterogeneous context,
the application will be required to perform host-accelerator synchronizations regularly, which

will make dynamic workload scheduling even more complicated.

Section 4 proposes an approach to solve the workload balance problems between heteroge-
neous resource during run time to obtain higher performance. The following questions are

attempted to solve in section 4 :
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1. How can a system dynamically adapt its scheduling policy according to availability of
heterogeneous resources? To answer this question, a novel approach to dynamic scheduling
of data-driven tasks on heterogeneous systems is approached relying on the concept of
co-running, as defined by Zhang et al. [61]: a system has enabled co-running, if it runs
applications decomposed in tasks which can run simultaneously on both CPUs and general
purpose accelerators. In a co-running mode, it is possible that two instances of the same
task run on both CPU and GPU processing different subsets of the input data. Co-running
friendly applications, i.e., which can run on both GPU and CPU concurrently, tend
to have low memory/communication bandwidth requirements, compared to applications
which run the workload on only one part of the system. Hence, the computation-memory
ratio and computation patterns can help identify the suitability of the workload to a

resource.

2. Are using all the computing resources simultaneously the necessary to obtain the highest
performance? To answer this question, a serial experiments were set up. As described in
section 4.4.2.2, there is no clear-cut answer, and it all depends on a wealth of parameters,

both hardware and software

3. How to build a accurate estimation model? Many researchers such as Van Craeynest et
al. [62], Power et al. [63], Garcia et al. [64], Zhang et al. [61], Chen et al. [65], and Yang
et al. [66] proved that heterogeneous system architectures are impacted significantly by
several parameters, such as number and type of cores, their topology (cores and memory
hierarchy), bandwidth, the communication congestion and synchronization mechanism,
as well as other hardware or software factors. However, the growing variety of hardware
devices increase the difficulty of building a mathematics estimation model while keeping
higher accuracy. Moreover, the mathematics model need to be rebuilt once the Hardware
changes. The GPU concurrent stream technique furthermore increase the complexity,

as described in paper [67]. A profile-based ML approach are proposed to reduce the
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complexity of establishing an estimation model while promoting its accuracy, more detail

will be described in section 4.3.3.

4.2 Background

4.2.1 Heterogeneous Computing and Co-running Applications

Heterogeneous computing is about efficiently using all computing resources in the system, in-
cluding CPUs and GPUs. Usually, GPUs have been connected to a host machine (CPU) by a
high bandwidth interconnect such as PCI Express (PCle). Here, host and device have differ-
ent memory address spaces, and data must be copied back and forth between the two memory
pools explicitly by the data transfer functions. One of the most important challenges of Het-
erogeneous computing is how to fully utilize heterogeneous resources while minimizing the
communication costs between different resources by leveraging communication-computation

overlap.

Co-running friendly application [61] can run on both GPU and CPU concurrently, and tend to
have low memory/communication bandwidth requirements compared to applications which
run the workload on only one part of the system. Hence, the computation-memory ratio
and computation patterns can help identify the suitability of the workload to a resource.
For example, if the application is characterized, such that the communication time (data
transfers) between CPUs and GPUs is far higher than the computation time of a given
workload, and if there is no overlap between computation and communication, then this
application will belong to the “co-running unfriendly class”. However, the categorization
may change when the application is developed in different hardware architectures or even in

same hardware architecture with different dataset sizes.
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4.2.1.1 Heterogeneous Hardware Communication cost

On integrated CPU/GPU architectures, Zhang et al. [61] suggested that the architecture
differences between CPUs and GPUs, as well as limited shared memory bandwidth, are two

main factors affecting co-running performance.

Lee et al. [68] analyzed a set of important throughput computing kernels on both CPUs and
GPUs. They showed the differences of optimization features, contributing to performance
improvements on these architectures. According to their conclusions, CPUs can have com-
parable performance to GPUs, if they fully utilize CPU optimization techniques, such as
cache blocking, and reorganization of memory accesses for SIMD units, among others. On
SMP (Symmetric Multi-Proces-sing) systems connected to GPU architectures, beside archi-
tectural differences, communications between CPUs and GPUs is another important factor.
GPUs and CPUs are bridged by a PCle bus. Data are copied from the CPU’s host mem-
ory to PCle memory first, and are then transferred to the GPU’s global memory.The PCle
bandwidth is always a crucial performance bottleneck to be improved. Nvidia provides ways
to pin memory to lower data transfer latency [69]. However, performance may be degraded

if the allocated pined memory size is too big.

Congestion control mechanisms have a significant impact on communications. Moreover, the
PCle congestion behavior varies significantly depending on the conflicts created by communi-
cation. Martinasso et al. [70] have explored the impact of PCle topology, a major parameter
influencing the available bandwidth. They developed a congestion-aware performance model
for PCle communication. They found that bandwidth distribution behavior is sensitive to
the transfer message size. PCle congestion can be hidden if the overlapping communica-
tions transfer very small message sizes. However, when the message size reaches some limit,

congestion will significantly reduce the theoretical transfer bandwidth efficiency.
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4.2.1.2 Concurrent Streams on GPUs

Starting with CUDA v7 (published in 2015), CUDA’s programming model was augmented
with stream-based constructs, able to schedule multiple kernels concurrently, while overlap-
ping computation and communication. This allows the system to hide host-accelerator data
transfer latency. A CUDA stream can encapsulate multiple kernels, which must be scheduled
in a particular order. CUDA streams are usable as long as the target GPU has more than

one copy engine and one kernel engine—which is true of most recent GPUs.

A main optimization of the developed application was to overlap data transfers across the
PCle bus [70]. This is only possible using CUDA streams and pinned memory in the host. Us-
ing pinned host memory enables asynchronous memory copies, lowers latency, and increases
bandwidth. This way, streams can run concurrently. However, this goal is constrained by
the number of available kernels and copy engines exposed by GPUs. Also, synchronization

must be explicit in the stream kernels.

There are GPUs with only a single copy engine and a single kernel engine. In this case,
data transfer overlapping is not possible. Different streams may execute their commands
concurrently or out of order with respect to each other. When an asynchronous CUDA
stream is executed without specifying a stream, the CUDA runtime uses the default stream
0; but when a set of independent streams are executed with different ID numbers, these

streams avoid serialization, achieving concurrency between kernels and data copies.

Figure 4.1 explains the streaming model which are used to improve the performance of the
target GPU application. This figure compares the sequential computation of two different
kernels with their respective data transfers: one single stream vs. 3 different kernels with
their respective data transfers using 3 streams. The second method is only possible in
GPUs with two copy engines, one for host-to-device transfers and another for device-to-host

transfers.
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Figure 4.1: Concurrent Streams overlap data transfer

4.2.2 Heterogeneous-DARTS Run-time System

As described in Section 2, DARTS[22-24] run-time system is an implementation of the
Codelet Model and the Codelet Abstract Machine(CAM) on which it relies [19]. A CAM is
an extensible, scalable and hierarchical parallel machine model. It is a many-core architecture
with two types of units: scheduling units (SUs), which perform resource management and
scheduling, and computation units (CUs), which carry out the computation. CUs and SUs
are grouped into several clusters and they benefit from data locality. DARTS maps these

“abstract cores” to physical processing elements (PEs).

To target CPUs-GPUs heterogeneous system, a new scheduler named CPU-GPU-Corunning
are designed to allocate/schedule computing on both CPUs and GPUs. A new type of
Codelet named GPU_Codelet is created to control /configure/run computing on GPU. Then,there

are two main Codelet types: CPU_Codelets and GPU_Codelets. They can run concurrently
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on different cores.

4.2.2.1 GPU_Codelet

GPU_Codelet consists of two parts: CUDA host code and CUDA Kernel code. The host and

kernel codes can run concurrently or sequentially, see section 4.2.1.2.

Similar with CPU_Codelet, GPU_Codelet have zero or multiple dependencies. GPU_Codelet
will be first pushed to ready pool of SU when all its dependencies are satisfied. Then, instead
of being pushed to normal CU by SU scheduler, GPU_Codelet will be pushed to Specific CU

which is equipped with GPU scheduling policy.

GPU_Codelet include sub co-running policy to decide the synchronization/asynchronization
between host and GPU kernels, whether to use concurrent streams, how many streams, and

access which GPU(s) etc..

4.2.2.2 CPU-GPU-Corunning scheduler

Theoretically, every CPU core (CU) can be the host of GPU or GPUs, which means every
CU scheduler equips with two types of ready queue, one for CPU_Codelets and one for
GPU_Codelets. However, to reduce the complexity of scheduler, the number of CUs which
can interact with GPU, called binding CUs, depends on the number of GPUs in the system.
Every binding CU can access any available GPU(s). In contrast, no-binding CUs can’t
directly interact with GPU(s). Binding CU also can run normal CPU_Codelet when there
is no GPU_Codelet available or when GPU_Codelet’s kernel code asynchronously running on

GPU(s) and its host code is finished.

CPU-GPU-Corunning scheduler have two functions: one is allocating CPU_Codelets and

GPU_Codelets to matched CU ready pool; another is checking availability of computing
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resources. The scheduler will invoke a set of back up CPU_Codelets which have the same
function of the GPU_Codelet if GPU resources are not available and estimated waiting time
is longer than running backup CPU_Codelet on CPUs including waiting time on CPUs. The
GPU_Codelet will stay in the ready pool if the waiting time is shorter than the running

backup CPU_Codelets.

A monitor module is used to record running time of all Codelet in current CU. It will
provide a reference to the scheduler when it need to estimate running time and waiting time

for future Codelets with same function but same or different workload.

4.3 Methodology: DAWL and IDAWL

This section consists two parts: propose a dynamic adaptive workload algorithm (DAWL) as

a first step, and a profile-based machine-learning estimation model as an optimization over

it (IDAWL).

4.3.1 Target: Dependence-heavy Iterative Applications

Implementing a parallel algorithm for heterogeneous computing can yield outstanding results,
but there is still a lack of tools to get better performance [69]. Further, even if it is written
with heterogeneity in mind, a parallel application may not exploit the parallelism of various
computing resources. In particular, data-parallel algorithms dealing with large blocks of data
(i.e., algorithms featuring intense arithmetic with regular (array-based) data structures), can

greatly benefit when they are implemented to run exclusively on GPUs [71, 72].

Applications targeting heterogeneous systems must be implemented with load-balancing in

mind to better exploit the various compute units in a system. As a result, the workload
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behavior for both the host and devices must be carefully analyzed. This work focuses on
parallel applications which require regular and/or periodic synchronization steps between
the host and the devices on a heterogeneous platform. Stencil-based computations have
an iterative nature, and expose heavy data-dependence patterns; they are well suited to
evaluate the proposed scheduling strategies. Furthermore, such stencils make up the core

computation kernels of some benchmarks such as Rodinia [73].

A 5-point 2D and a 7-point 3D stencil kernels will be used as case studies to explain the
Dynamic Adaptive Work-Load (DAWL) scheduling algorithm below, which is outlined in

algorithms 1, 2 and 3.

4.3.2 Dynamic Adaptive Work-Load Scheduler

A balance must be found between heterogeneous devices’ computing potential and memory
bandwidth/capacity. Equation 4.1 shows that the GPU execution time is split into two parts:

round-trip data transfers (“Xfer”) between the host and the device, and computing time.

Computep,

P naive — Xf
GPU. erH-D + NumThreadsp

+ XferD_>H (41)

Using concurrent streams (see Section 4.2.1.2), data transfers can be partly or totally over-
lapped with computing, creating a pipeline of sorts. There are many parameters required to
build an overlapping model, including the PCle bandwidth the number of concurrent stream

and copy engines et al. [67].

The model expressed in Equation 4.1 is too simple to integrate all features of multiple concur-
rent streams-based computations. Hence, Machine learning (ML) techniques are leveraged to

build a model to support predictions in a CPU-GPU ratio (see Section 4.3.3.2). Equation 4.2
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holds when programs run on multiple cores.

Compute;
NumThreadsy

CPU,pive = (4.2)

Equation 4.3 estimates the ratio r of execution time when applications run on CPUs or

GPUs.

B CPU_naive

- 4.
GPU_naive (4.3)

r

Algorithm 1 consists of two steps: (1) Choose hardware (CPUs, GPUs, or both) ; and (2)
run tasks on the selected hardware. Equation 4.3 was used in step 1. r > 1 means tasks
running on CPUs are far slower than on GPUs. Hence, all computation will be carried on
the device (GPUs); On the contrary, r» < 1 indicates CPUs should be chosen to run tasks;
when 7 is closer to 1, the tasks will be distributed in a co-running manner. In 2D and 3D
stencil, with different time step settings, r’s range may change significantly. In particular,

data transfers between host and devices affect the performance when GPUs are used.

Algorithm 1: Dynamic adaptive workload balance between heterogeneous Resources

1 Function main (HW_Info, WL(problem_size), GPU-WL, CPU_-WL, Limit_WL,
GPU_Change_ratio, CPU_Change_ratio):
stepl: decision = hardware_choose(HW _Info,WL)
step2: if decision = Co_running then
Co_running_WL_balance(HW _Info,total WL, GPU_WL, CPU_WL, Limit_WL,
GPU_Change_ratio, CPU_Change_ratio)
else if decision = CPU then
| run_CPUs(HW _Info,WL)
else
| run_GPU(HW _Info,WL)
end

[ )

© 0 N & W

How the workload must be partitioned between host and devices to enable co-running
depends on two conditions: First, the static initial workload on GPU,which should be

smaller than the available GPU memory considering the communication cost; second, the
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Algorithm 2: DAWL: Hardware Choose and Run Function

Function hardware_choose (HW_Info, WL):
if WL ; GPU_-memory_available_size then
if > 1 then
‘ decision = GPU
else
‘ decision = CPU
end
else
‘ decision = Co_running
end
Function Run Func (Hardware_Info, type, WL, Remaining. WL, Limit. WL,
Change_ratio):

© 00 N OO oA W N =

=
(=}

[y
-

12 if type = CPU then

13 | CPU_Func(HW _Info,WL)

14 else

15 | GPU_Func(HW _Info,WL)

16 end

17 if Remaining. WL;Limit_WL then

18 ‘ WL = Remaining WL;

19 else

20 (faster,Ratio) = check(CPU_status,GPU_status)
21 if faster = CPU then

22 | TWL = WL * (1-change_ratio)
23 else

24 | TWL = WL * (1+change_ratio)
25 end

26 if Remaining-WL;{TWL then

27 ‘ WL = Remaining_ WL * Ratio
28 else

29 ‘ WL = TWL

30 end

31 end

32 Remaining WL -= WL

33 sync_GPU_CPU(Remaining WL, MEM)
34 renew(WL_min,WL_max)

35 Run_Func(HW _Info, type, WL, Remaining_ WL, Limit_WL)

initial workload can be obtained with the Profile-based Estimation Model, described in Sec-

tion 4.3.3. It is based on profile information obtained from OProfile and nvprof and the

compute node’s hardware configuration, such as the number of CPU cores, LLC, the GPU
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Algorithm 3: DAWL: Asynchronous Parallel function and load balance

© w0 N o ok W Ny =

10
11
12
13
14
15
16
17
18
19
20

Function SYNC Rebalance Func(HW_Info, CPU_WL_Info, GPU_WL_Info):
CPU_WL = Rebalance(CPU_WL_Info)
GPU_WL = Rebalance(GPU_WL_Info)
IsChange = check_Hardware(HW _Info)
if IsChange=true then
CPU_WL = CPU_Update(CPU_WL,HW _Info)
GPU_WL = GPU_Update(GPU_WL,HW _Info)
end
Function Co_running WL _balance (HW_Info, total WL, GPU_-WL, CPU_WL,
Limit. WL, GPU_Change_ratio, CPU_Change_ratio):
GPU _initialize(HW _Info, GPU_WL)
CPU_initialize(HW _Info, CPU_WL)
Remaining WL = total WL - GPU_WL-CPU_WL
do
PARALLEL EXECUTION: GPU and CPU
GPU: Run_Func(HW_Info, GPU, GPU_WL, Remaining WL,
Limit_-WL, GPU_Change_ratio)
CPU: Run_Func(HW Info, CPU, CPU_WL, Remaining WL,
Limit_ WL, CPU_Change ratio)
SYNC _Rebalance_Func(HW _Info, CPU_WL_Info, GPU_WL_Info)
while Iteration =0

type etc.. The DAWL scheduling algorithm aims at minimizing workload imbalance between

heterogeneous processing elements. DAWL dynamically adjusts the workload distribution

on different computing resources based on real time information. DAWL is composed of six

steps (steps 3 and 4 are detailed in Figure 4.2):

1.

Initialize CPU, GPU configurations: determine the number of processing elements (PEs),

their initial workload, etc.

. Run the tasks with initial workload on CPUs and GPU simultaneously.

. Monitor the computation on CPUs and GPU, record their respective execution times

with their specific workload and adjust workload on PEs based on the all stored record
information. PEs are given the same amount of work at first (see Figure 4.2). Once

the GPU task is finished, it adds its execution time and current workload to the record.
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Figure 4.2: Example: CPU-GPU Workload Balancing with DAWL.

Because there is no CPUs record existing, then its computing potential is currently greater
than the CPUs’, and its next workload will be increased with a ratio of 10 to 20%. When
CPUs’ task finish, excepting adding its record (current workload and execution time),
scheduler will also adjust next workload based on all the history record of both GPU and
CPUs.

4. Adapt to borderline cases. ratio = CPU.,/(GPU.y + GPU,,), where CPU,,, and
GPU,.,, represent the amount of work finished on CPUs (resp. GPUs). When the re-
maining workload is within 10% of the total workload (see Figure 4.2), the CPUs or the
GPU only takes |ratio x remaining workload| (e.g., 27 in the Figure 4.2 case) as a next
task, no matter which one finishes first. The second part is allocated to whichever set of

PEs finishes early. Thus, the first and second parts may run either type of PE.

5. Synchronize and re-balance the workload (see Algorithm 3) when all the compute tasks in
one time step finish. The load-balancing function checks the workload information, and
computes the mean workload for each PE type. If the hardware changed, e.g., if several

CPUs are unavailable, the system must adjust the workload on both CPUs and GPU.

6. Reset CPUs and GPU and free allocated memory.
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4.3.3 Profile-based Estimation Model

4.3.3.1 Heterogeneous Systems and the Importance of their Initial Workload

~
C

Fatnode

CPU-Sequenti

a

£
-~

N

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

Size of the Problem

Speedup(baseline

—— DARTS-DAWL-2GB-1 DARTS-DAWL-4GB-1

= == = DARTS-DAWL-2GB-2 DARTS-DAWL-4GB-2

Figure 4.3: 2D stencil: speed up when GPU memory is 2 and 4GB with different initial
workload (GPU=CPU): 0.5 x av-GPU (1) vs 2000 x * (2)

While DAWL can dynamically adjust the workload according to real-time information, an
unsuitable initial workload may drag down the performance when the problem size is rel-
atively small since there are no enough time to adjust workload. As shown in Figure 4.3,
when problem sizes are close to a specific drop point, an unsuitable initial workload (such

as an initial workload on GPU close to the problem size) lowers the performance. It is not
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a guaranteed behavior; Figure 4.3 shows the performance of a small initial GPU workload
(2 GiB, DARTS-DAWL-2GB-2 and 4 GiB, DARTS-DAWL-4GB-2) can be fare better than
a big initial workload (2 GiB, DARTS-DAWL-2GB-1,4 GiB, DARTS-DAWL-4GB-1,). in
Figure 4.3, (1) stands for the initial workload equals to 0.5x total workload,(2) stands for
the initial workload equals to 2000 rows x columns of total workload, e.g. total workload
equals to 4000 (rows)x4000(columns), then (2) will equals to 2000x4000. However, Assum-
ing a small workload will yield better results by default is not always working, especially for
stencil-based applications. Indeed, they feature heavy data dependencies, and thus must be
synchronized when partitioning the workload into different tasks. A suitable initial workload

can help fully utilize the computing resources with reasonable amounts of data transfers.

4.3.3.2 Profile-based Estimation Model for an Iterative DAWL (IDAWL)

In heterogeneous many/multi-core system, hardware configuration is one of the most im-
portant information to gather to estimate the performance of applications. However, the
growing variety of hardware devices as well as their combinations increase the difficulty of
building estimation model and reduce the accuracy of the established model. Furthermore, a
tiny change in the hardware configuration may generate fantastic variations on performance.
For heterogeneous systems, building an accurate transfer-computing mathematical model

including concurrent streaming aspect is a huge challenge [67].

To solve the problem of building an accurate transfer-compute mathematical model on het-
erogeneous systems, a profile-based ML approach is proposed to reduce the complexity of
establishing an estimation model while promoting its accuracy. Such a model works for the
same type of application on same configured system. It will provide a reference for other

types of application running on the same or different configured system.

2D and 3D stencil kernels are targeted as an example to explain the principle of the ML
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approach (See Section 4.3.1). The ML approach will help optimize the DAWL algorithm
supporting execution times prediction. The resulting algorithm is called Iterative DAWL,
or IDAWL for short. A black-box ML method, (i.e., an automatic model without any user

intervention, is used). It follows three phases:

1. Collect hardware architecture information as parameters to the estimation model. Ta-
ble 4.1 and 4.2 list some parameters of the profile-based model. Besides these, the
parameters also include the host’s cache hierarchy (e.¢g L1, L2 and L3 cache parameters)
information, the system’s PCle concurrent data transfer rate, and GPU’s parameters,
including the maximum number of concurrent streaming, GPU thread dimension infor-

mation, the shared memory size etc.

2. Collect the application’s profile information at run time as training data. Different com-

binations of CPU cores and different GPUs are run:

e CPU: Since too many events can be obtained from 0Profile, option 1 will be that
collecting the events related to cache misses in the cache hierarchy; branch related
events will be as option 2 and will run only when necessary. Option 3 is all the events

left in OProfile (rarely chosen).

e GPU: option 1 collects gpu-trace and api-trace information. Option 2 collects all

the metrics in nvprof (rarely chosen for big workloads, as it is too time consuming).

e Sampling (leave-one-out cross validation): three levels of workloads (small, middle and
huge) are running on each PE type (purely) in the system. Here, small and middle
tasks are used for training and validation, and huge workload is used for testing only.
The transfer-computing model sample information is obtained by splitting the workload

with different ratios on the host and devices.

3. Utilize the information gathered from steps 1 and 2 to build a profile-based estimation

model for a given heterogeneous platform, and obtain a customized initial workload on
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different heterogeneous architectures and number of devices necessary for such initial
workload. The approach attempts to predict the overlapping and running model of large

data set by using the small and middle data sets.

e Run a set of ML algorithms: regression (including linear and logistic, each using multi-

ple meta-functions, such as polynomial, logarithmic, exponential functions), ensemble

learning (i.e., random forests), and Support Vector Machine (SVM).

e Choose the resulting model that fits best the measured data. If several models are

a good fit, pick the model that is the least computationally intensive. To evaluate
how well the model fits the data, the coefficient of determination, Rgquared, 15 used.
It is defined as the percentage of the response variation that is explained by a linear

model: Rspuared = Explained variation = (i¢1) (% < Rsquarea < 100%. 0% indicates the

Total variation

model explains none of the variability of the response data around its mean and 100%

indicates the model explains all the variability of the response data around its mean.

Build the ML estimation model: an estimation formula of the best matched statistical
model can be built to predict an application’s performance on this specific heteroge-
neous platform. For a given problem size, a minimization multi-variable function can
be used to obtain an estimation of the initial workload. The specific parameters used

to construct the formula are mentioned in Section 4.4.3

IDAWL adaptively adjusts the workload between CPUs and GPU depending on the real

time execution situation, and can further compensate the insufficient off-line ML method.

Table 4.1: Hardware Platforms

Param. CPU Parameters GPU Parameters PCle
Machines Cores | Clock # Socket | L3 Size | CPU Mem | # SM | Clock L2 Size | GPU Mem
1. Fatnode (K20) 32 2.6 GHz 2 20 MB 64 GB 13 0.71 GHz | 1.25 MB 4.8 GB 6.1 GB/s
2. Super Micro (K20) 40 3 GHz 2 25 MB 256 GB 13 0.71 GHz | 1.25 MB 4.8 GB 6.1 GB/s
3. CCSL (Valinhos) ( k40) 8 3.4 GHz 1 8 MB 16 GB 15 0.75 GHz | 1.5 MB 12 GB 10.3 GB/s
4. Debian (Titan) 12 3.4 GHz 1 12 MB 31 GB 14 0.88 GHz | 1.5 MB 6 GB 11.5 GB/s
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Table 4.2: Software Environment.

Platform GCC CUDA
Fatnode (K20) v6.2 /v8.1 | v8.0
Super Micro (K20) v4.8.5/v6.2 | v8.0
CCSL (Valinhos) (K40) vh.4 v9.0
Debian (Titan) v4.9.2 v9.1

4.4 Experiment

4.4.1 Experimental Testbed

The experiments run on four heterogeneous systems, presented in Table 4.1 and Table 4.2.

They all feature Intel processors and Nvidia GPUs.

the first column of Table 4.1 are used to describe the machines.

The number and names presented in

Socket 0 Socket 1

Core 0 Core 1 Core2 | [Core3 Cored | [Corel Core2 | |Corel
Puo PU | P2 M3 PUS PUY PUI0 PU I
PU 16 PUIT PU I8 PUIY PU 24 PU 25 PU 26 PUT
Ll Lli Ll Lii T TR Y
Lid Lld Lid Lid || |[Cta |[ wia | [ Lid || Lid

(2 [ J[e J[u ||| [ [z J[1un]

| L3 shared cache [ 13 shared cache Z
30 e | N v | O T
Lid Lld Lid Lld Lid Lid Lld L1d
Ll Lii Lli Lli Lii Lli L1i Lii

Core 4 Core 5 Core b Core7 Core 4 Core 5 Core b Core 7
PU 4 PUS PU G PUT PUI2 PU L3 FU 14 PU IS
PL 20 PU 21 PU2[[  PUD3 PU 28 PU 29 pU30||  PU3I

Figure 4.4: fatnode topology

fatnode’s general purpose CPUs are made of Intel Xeon®) E5-2670, each CPU processor
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consists of 8 physical cores and 16 logical cores, considering hyper-threading, see Figure 4.4.
processors are connected by socket and each socket has 32 GB of RAM for a total of 64 GB in
this system, and one Nvidia Tesla K20®) (Kepler architecture with Compute Capability 3.5)
board with 5 GB of global memory. Super Micro equipped with two Intel Xeon®E7 v2,each
processor has a total of 10 physical cores with hyper-threading of 3 GHz. This system has
256 GB of RAM, 128 over each socket. and embeds 4 Tesla K20 boards®@with 5 GB of global
memory each one. CCSL Valinhos equipped with one Intel i7-4770(®) processor consisting
of 4 physical cores with hyper-threading of 3.4 GHz. This system has 16 GB of RAM. and
one Tesla K40®). with 12 GB of memory. Debian equipped with one i7-4930K®)processor
consisting of 6 physical cores with hyper-threading of 3.4 GHz. This system has 20 GB of
RAM, one Nvidia Titan®board with 6 GB of global memory and one GeForce GT 630®with

2GB of global memory.

The original DARTS main focus on homogeneous many-core systems, as explained in Sec-
tion 4.2.2. an extend DARTS is used to support heterogeneous architectures to validate the
workload algorithms: DAWL and IDAWL. The new scheduler is capable of controlling and
monitoring CPU_codelets and GPU_codelets, so that the two types of tasks can synchronize

with each other!

4.4.1.1 Target Applications

Stencil-based computations are chosen,see session 4.3.1, to evaluate the two scheduling al-

gorithms: DWAL, and IDAWL.

To emphasize a worst-case scenario, stencil kernels without ghost cells are used, which en-
hances the need for synchronization.Specifically, two kernel variants: a 5-point 2D stencil,

and a 7-point 3D stencil computing over double precision numbers are focused on. The

IThe heterogeneous-DARTS source code is available at https://github.com/gengtsh/darts/darts-
heterogeneous.
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number of time steps is fixed to 30, removing the convergence test at the end of each time
step to simplify the problem and make it more deterministic. Each experiment was repeated
20 times. To obtain objective test results, the mean of test results after removing the best
and worst results are utilized. To make it worthwhile to run some of the workload on the

GPU, CUDA’s concurrent streaming described in Section 4.2.1.2 is used.

In particular, Exploiting the GPU’s available scratchpad memory is very important to en-
hance data locality and speedup the GPU computations on each streaming multiprocessor
(SM). Further, in 3D stencil, the geometry of the input arrays matters when it comes to
workload partitioning, especially when considering the GPU’s scratchpads. Hence, the di-
mensions of arrays should eked as much performance as possible from a single GPU SM. A
micro-benchmarks are run to evaluate the performance of 2D stencil naive kernels vs. L1-
tiled kernels on Intel CPUs. Ll-tiled kernels are used when running from DARTS, as they
improved the overall performance by a wide margin (from ~ 1.09x to ~ 2x, depending on
the workload size).For 3D stencil kernels, a tile has the following dimensions: 16 x 16 x 10,
which represents roughly 20KiB and fits into L1 caches on Intel CPUs. When running tiled
3D stencil kernel however, the performance worsens compared to un-tiled naive kernels. So,

the un-tiled sequential 3D Stencil is chosen for the baseline of the experiments.

Beside tiling, the initial workload is statically partitioned along the first dimension, on both
2D and 3D stencils, to validate and verify DAWL. In the 2D case, the “slices” of 2000 rows
(with a varying number of columns) is as a static block of elements to process, which denote
as slice X x. For instance, for the 2D stencils, a static partition could be a composition of
2000 x 2000 2D arrays. In the case of 3D stencils, as the overall memory footprint increases
much faster as we increase the size of any of the three dimensions, we use 200 x * X * slices,

(e.g., 200 x 100 x 100).
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4.4.1.2 Parameter Space of Experiments

numactl are used to allocate memory in a round-robin fashion and avoid NUMA-related
issues. All systems were configured so that only 2 GB were seen as available by the runtime
system, in order to reduce the “parameters surface” to explore. Indeed, as shown in Fig-
ure 4.3, the “drop” which occurs in the charts once data does not fit in the GPU memory
happens whether considering an artificial 2 GiB DRAM limit or if using the full DRAM
capacity; the performance drop is “only” delayed in the latter case. Hence, the artificial
constraint putting on the GPU DRAM capacity does not impact the overall methodology

nor its results.

4.4.2 Performance Analysis

To comprehensively characterize DAWL, a series of workload performance analyses were
performed. Five variants,the DARTS-DAWL performance with GPU-Only, CPU-Seq, DARTS-CPU,

DARTS-GPU (see Table 4.3 for details) are compared in the experiment.

There are three different way to implement GPU version code: one is using concurrent
streams for all size of workload,which is proved very inefficient when workload is less than
available GPU available global memory since the cost of synchronization; second is transfer
all the data to the GPU, which is also inefficient when the workload is larger than the available
global memory since the huge data transfer cost; third way is only using concurrent streams
method when the workload is larger than the available GPU global memory.DARTS-GPU is
using first method for 2D Stencil and using the third method for 3D Stencil, more detail are
described on session 4.4.2.1 . To keep the same amount of memory allocation of every stream,
the number of stream changes with workload. For example, the number of stream equals to 4
when the workload is smaller than the 0.5 x GPU global memory, and the number of stream

changes to 8 when the workload is closed to available GPU global memory. GPU-Only is
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using the third way.Both DARTS-GPU and GPU-Only code consist two parts: host and kernel.
Here host code run on one CPU, kernel code run on GPU. Beside transferring data between
CPU main memory and GPU global memory, host code also need to synchronize CPU and
GPU and configure GPU’s parameters, such as the number of concurrent streams, the grid
structure of GPU and so on. CPU-Seq is the implementation of Sequential code on one
CPU and is used as base line.DARTS-CPU is the implementation of multi-CPU-core code on
DARTS. DARTS-DAWL is the implementation of DAWL on DARTS. Depending on parameters
mentioned in session 4.3.2, DARTS-DAWL may run on multiple CPUs or GPU, or be co-running
on both CPUs and GPU.

Table 4.3: Stencil kernel implementation

Implementation Illustration

CPU-Seq Sequential c++ code
GPU-Only CUDA code

DARTS-CPU Multi-threads c++ code
DARTS-GPU CUDA code on DARTS

(concurrent streams)
DARTS-DAWL DAWL hybrid code on DARTS

4.4.2.1 Full Resource Usage

Figure 4.5 shows the speedup of different 2D Stencils, and Figure 4.7 does the same for 3D
Stencils, using CPU-Seq version as a baseline. Here, all CPU related versions, DARTS-DAWL
(may also use GPU depending the ratio r mentioned in section 4.3.2) and DARTS-CPU, are
using all the CPU cores as computing resources. Even though there are a lot of differences,
overall GPU-0nly’s performance drops dramatically at drop,p = 17000 x 17000 for 2D stencil,
and the same happens in the 3D Stencil, while dropsp = 400 x 800 x 800. The available GPU
global memory of the four different machines were setting to 2GB, that’s the reason why
the four machines have the same drop point. Before drop point, all the data of GPU-Only

are copied to GPU global memory. In this case, there are only two data transfer and two
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Figure 4.5: 2D stencil: Speedup of the different versions
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synchronization operations between CPU and GPU, one is at the beginning, another is at
the end. When the workloads are larger than the GPU available global memory which means
after drop point, concurrent streams approach is utilized by GPU-0Only. Because of commu-
nication and synchronization cost, the performance of GPU-0Only drop dramatically. For 2D
Stencil, as shown in Figure 4.5, DARTS-GPU is using concurrent streams all the time and its
performance on all the machines are pretty stable. The experiment that the performance
of DARTS-GPU after drop points part are very closed to GPU-Only has proved that the new
Heterogeneous-DARTS run-time system overlap can be overlooked. Since the theory that
concurrent stream method is slower than the simple one stream method when workload is
less then the available GPU Global memory is already verified or proved by 2D Stencil,
DARTS-GPU for 3D stencil will use single stream for smaller workload and concurrent streams
method for larger workload. For 2D Stencil, DARTS-CPU’s performance are stable. Except
on CCSL Valinhos, DARTS-CPU’s performance are lower than GPU-Only’s before drop point
and higher than GPU-0Only after drop point and DARTS-GPU. Because of 3D Stencil geometry
structure affect performance a lot, that’s why comparing to 2D, 3D DARTS-CPU performance

fluctuate a little.

Based on the hardware_choose function (Algorithm 1), when the problem size is smaller than
dropsp or dropsp, the application belongs to the GPU-friendly category and all the workload
will be run on GPU. When the problem size is larger than dropsp or dropsp, the application
changes to the co-running friendly category, and computation will run on both CPUs and
GPU. Figures 4.5 and 4.7 validate the mathematical model. On all systems, DARTS-DAWL’s
performance is very close to GPU-Only when the input set fits in the GPU global memory
capacity. As shown in Figure 4.3, the drop,p shifts from 17000 x 17000 to 23000 x 23000

when the GPU’s memory capacity changes from 2GB to 4GB.

Figure 4.6 zooms in Figure 4.5 for matrix sizes 17000 x 17000 and onward. As shown in

Figure 4.6 the speedup ratios are quite different on different systems with different workload.
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On fatnode and Super Micro, DARTS-DAWL and DARTS-CPU are alternately faster; on CCSL
Valinhos, DARTS-DAWL and GPU-Only are similar; on debian, DARTS-DAWL is faster than
DARTS-CPU. The changes are affected by the differences of Hardware architecture, see Ta-
ble 4.1,CCSL Valinhos’s GPU is a Tesla-K40, which has a slightly higher clock and memory
frequency than Tesla-K20, as well as improved floating-point processing capability. Further
more, comparing to other machines, CCSL Valinhos only equip 8 CPU cores with only 8
MB L3 cache. That’s why DARTS-CPU on CCSL Valinhos is far slower than GPU related
version, such as DARTS-GPU and GPU-Only. DARTS-DAWL’s performance is in between since

the GPU have to wait for CPUs to synchronize in some extent.

4.4.2.2 Varying the CPU resources

Are using all the computing resources simultaneously the necessary to obtain the highest
performance? Figure 4.8, 4.9, 4.10 and 4.11 show answer for this question. fatnode server
stands for a classical type of hardware configuration: a “regular” GPU and a two-way SMP
chip multiprocessing system,see Figure 4.4. Two different mapping policies are used to pin
compute units to physical processing elements: spread and compact. The spread policy
attempts to map compute units to a processing element (PE, i.e., a core or a thread) as
far as possible from each other according to the underlying physical topology. This policy
tends to yield good results when the application features a large memory-to-computation
ratio, there is little temporal locality to be expected, and there are possibly fewer compute
units than there are actual physical PEs, as the cache is then “owned” by a single PE. On
the contrary, compact attempts to allocate software threads as closely as possible on the
available processing elements. compact is useful when data (and caches) are shared between
threads; it ensures that locality is maximal. However, should the application’s potential for

cache locality be low, the sharing threads may end up trashing each others cache lines.

Even though the compact and spread methods affect plenty the performance, the rough trend
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is the same. When the threads number reaches a given threshold, increasing the number
of threads does not improve performance—which is expected, because of memory conflicts.
An important observation is that DAWL manages to quickly make use of the GPU to lower
the overall execution time, as soon as it can. Section 4.4.3 will detail how the estimation
model can help obtain a suitable threads number based on the application and hardware

configuration.

4.4.3 Result of Profile-based Estimation Model

As described in session 4.3.3, the first two steps of building estimation model is collecting
hardware architecture and application’s run-time profile information. The required hardware
information can be obtained through hardware spec or operating system command. To

obtain application’s run-time profile information for Machine Learning estimation model,
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sampling is a good way.

2D and 3D Stencil are using the same method to collect data. The Profile-based Estimation
Model is designed for co-running applications, which means the target problem workload is
larger than 17000 x 17000(2D stencil), 400 x 800 x 800 (3D stencil), with 2 GB of available
GPU memory. Both, the data set size, and the number of time steps are leveraged to build
estimation model.Considering the iterative nature of the application, 2D /3D stencil run with
a small number of time steps (as training set) to predict (as test set) the execution time with
a larger amount of time steps. The total sample set, including test and training data sets for
2D stencil, consists of several parameters: initial GPU workload slice (2000 x *, 4000 x x*,
8000 x x); initial CPU workload: GPU _workload x w, w € {0.5,1.0,1.5,2.0}; time step
(1, 4, 30); problem size (from 17000 x * to 35000 x % with steps of 2000); and number of

CPU cores (4, 8, 16, ...). Samples may vary between platforms, as hardware parameters
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differ a bit. The numbers of samples used used in the kernel ML profile were approximately
1000 (2D stencil) and 600 (3D stencil). These sample points were taken for leave-one-out

cross-validation machine-learning profile model.

In the second step, the algorithm runs several matching models, as mentioned in section 4.3.3.
It compares several strategies and picks the one that yields the best results, among linear
regression, logistic regression (each using multiple meta-functions and polynomial functions),
ensemble learning methods such as random forests, etc. In retrospect, it seems the model

that finds the majority of the best matches is linear regression: its Rsguareq are between 93

and 94%.

To measure the progress of the learning algorithm the Mean Absolute Percentage Error
(MAPE) was used. Table 4.4 shows the MAPE of the linear model for each machine in the

experiments.

Table 4.4: Mean Absolute Percentage Error

Machines | supermicro fatnode debian  ccsl
MAPE 7.41% 6.43% 1.68% 3.45%

The second goal in this statistical estimation model is to know which parameters had more
impact in the construction of the model. Hence, the absolute value of the t-statistic is used
for each model parameter and computed each parameter’s importance in the model. Based
on the experiment results that several parameters are enough to predict the performance of
2D stencils, table 4.5 list the most important features running on the 4 different machines,

see table 4.1.

Feature selection was obtained using a black box approach. The decision is made for the
ML algorithms based in the high correlation of all the parameters and ML modules. The
selected features may totally different if the same applications run on different Hardware

configuration platform, or the different applications run on the same or different Hardware
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Table 4.5: 2D Stencil: Important Features for ML Estimation Model

\ source H features \

The number of Sockets

CPU clock frequency

Total number of CPU threads
L2 cache size

L2 cache hit rate
Operfile L2 cache miss rate
[PC (Instruction Per Cycle)

GPU Grid/Block/Thread number
GPU Thread-block occupancy
Transfer bandwidth Host to Device
Transfer bandwidth Device to Host
The number of concurrent streams
synchronization function

Hardware spec

Nvprof

configuration platform.

Figures 4.12 and 4.13 show results for IDAWL. Compared to DARTS-CPU, which always
uses all the CPUs, this implementation uses at most half of the CPUs (depending on the
system). The new scheduler can reach up to 6x speedups compared to sequential runs, 1.6x
speedup compared to the multiple core version, and 4.8 x speedup compared to the pure GPU
version in the 2D case. In the 3D case, DARTS-DAWL uses as many threads as DARTS-CPU,
and reaches speedups up to 9x compared to the sequential version, 1.8x against multi-
cores, and 3.6x against a pure GPU version. Comparing Figures 4.12 and Figure 4.6, and
Figure 4.13 with Figure 4.7, it is clear speedups are not always obtained using profiling. This
is especially true around drop points. Drop points are unstable points, and refer to multiple
co-running hardware/software conflicts parameters, which this machine learning estimation
model did not take into consideration. Moreover, the ML algorithm can be further improved

by combining classifier algorithms and neural-network to this learning estimation model.
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4.5 Related Work

Teodoro et al. [74] have proposed and implemented a performance variation aware schedul-
ing technique along with an estimation optimization model to collaboratively use CPUs
and GPUs on a parallel system. A number of scheduling methods or library [75-77] were
combined with StarPU [78], a task programming library for hybrid architectures based on
task-dependency graphs, to perform scheduling and handle task placement in heterogeneous
systems. Panneerselvam and Swift proposed Rinnegan [75], a Linux kernel extension and
run-time library, and implemented and validated that decisions of where to execute a task
must consider not only execution time of the task, but also current heterogeneous system
conditions. Sukkari et al. [76] proposed an asynchronous out-of-order task-based formulation
of the Polar Decomposition method to improve hardware occupancy using fine-grained com-
putations and look-ahead techniques. Gaspar et al. [79] have proposed a general framework
for fine-grain applications-aware task management in heterogeneous embedded platforms.
This framework was specifically developed for run time performance monitoring and self-
reporting, and tackles OS task management and system resource utilization. In StarPU,
the user provides different kernels and tasks for each target device and specifies inputs and
outputs of each task. The run time ensures that data dependencies are transferred to the

devices for each task. Furthermore, the user can specify explicit dependencies between tasks.

The main challenge of the load-balancing mechanism is to precisely divide workload on pro-
cessing units. A simple heuristics devision approach may result in worse performance. Belvi-
ranli et al. proposed a dynamic load-balancing algorithm for heterogeneous GPU clusters
named the Heterogeneous Dynamic Self-Scheduler (HDSS) [80]. Sant’Ana et al. described a
novel profile-based load-balance algorithm [77] named PLB-Hec for data-parallel applications
in heterogeneous CPU-GPU clusters. PLB-HeC algorithm performs an online customized
estimation of performance curve models for each devices (CPU or GPU). Like a typical

data-parallel application, data in PLB-HeC is divided in blocks, which can be concurrently
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processed by multiple threads. The granularity of the block size for each processing unit is
crucial for performance: incorrect block sizes will produce idleness in some processing units
and reduce performance. To get good block sizes, PLB-HeC solves the problem in three
phrases: first, it dynamically computes performance profiles for different processing units
at runtime; second, using a non-linear system model, they determine the best distribution
of block size among different processing units; third, they re-balance the block size during
execution. PLB-Hec obtained higher performance gains with more heterogeneous clusters

and larger problems sizes.

All the works presented above rely on StarPU to implement their various strategies. Of all of
them, Belviranli et al. and Sant’Ana et al.’s work are closest to IDAWL : they rely on online
profiling, or resort to some ML techniques to perform load-balancing decisions. However,
this work and most of the previous ones tend to focus on loosely synchronized parallel
workloads, where specific tasks are often run only a specific type of processing element (e.g.,
CPU or GPU). On the contrary, IDAWL focuses on workloads that are iterative in nature,
feature heavy data dependences, and require regular and possibly frequent synchronization
operations between the device and the host. The work itself is “homogeneous”, but it can
be run on either the host or the device, depending on their state of idleness, the remaining

work size to perform, etc.

Werkhoven et al. proposed an analytical performance model that includes PCle transfers and
overlapping computation and communication [67]. A roofline model [81] was used to module
the performance of GPU kernels execution time and PCle transfer time. Their model’s main

features are the type of synchronization, stream number, and the number of copy engines

for GPU and PCle [82, 83].

Lutz et al. proposed PARTANS, an autotuning framework built for CPUs and GPUs [84].
They executed different shapes of stencil computations over two nodes with multiple GPUs.

They analyzed the impact of different data transfer structures based in the stencil shapes
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across the PCle bus. They designed a heuristic which determines the number of GPUs to

use.

Luk et al. [85] proposed an adaptive mapping approach. It relies on a new API which
maps work to either Intel Thread Building Blocks or CUDA. To handle the communication-
synchronization problem between CPUs and GPUs, Lee et al. proposed SKMD (Single
Kernel Multiple devices) [86]. It can transparently orchestrate a single kernel execution
acros asymmetric heterogeneous devices regardless of memory access patterns. O’Boyle et
al. proposed a machine-learning based approach to determine whether to run OpenCL code
on GPU or OpenMP code on multi-core CPUs at run time [87] and presented a runtime
framework [88] to decide whether to merge or separate multi-user OpenCL tasks running the

most suitable devices in a CPU-GPU systems.

These works rely on offline training models. Kaleem et al. [89] presented a scheduling tech-

niques for integrated CPU-GPU processors based on online profiling.

IDAWL dynamic scheduling approach differs in the following ways: First, it focus on the
synchronization between CPUs and GPUs; second, the communication between CPUs and
GPUs play a pivot role in IDAWL approach; third, this approach is neither purely offline
nor online. it combines two models together where an offline ML model provides an initial
workload allocation, and DAWL dynamically adjusts workload balancing to compensate

offline-ML inaccuracies, resulting in real-time adaptation.

4.6 Observations

An iterative scheduling algorithm, IDAWL as described in section 4, were designed to better
load balance tasks in a heterogeneous system. Further, it leverages a profile-based approach

based on machine learning, which allows it to converge faster to a better load-balanced
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schedule. The ML’s estimation model can obtain a customized initial workload on various
heterogeneous architectures, as well as how many devices are necessary. As a case study, we

used a 5-point 2D and a 7-point 3D stencils using an event-driven run-time system, DARTS.

This works also evaluates the limits of co-running on heterogeneous systems. Experimental
results show our approach is at worst on par with a pure GPU approach (when data fits fully
in the GPU), or yields speedups up to 1.6x against a multi-core baseline, and 4.8x against
a pure GPU execution. In the 3D case, DAWL reaches 1.8x against multi-cores, and 3.6x

against pure GPU.

The key contributions of section 4 are:

1. IDAWL, an Iterative Dynamic Adaptive Work-Load balancing algorithm for heteroge-
neous systems, which is combined with and provides data for an offline machine-learning
based profiling system.IDAWL’s efficiency with stencil-based kernels were evaluated: they
feature a high-degree of data dependence, and require regular host-accelerators synchro-

nizations.

2. On top of evaluating raw performance of a co-running solution, the limits of co-running
are evaluated with respect to data input sizes fed to our kernels: (1) if resorting to using
all available compute resources always yields better results were also evaluated; and (2)
Which parameters matter when deciding where to schedule a task in a heterogeneous

context were also provided.

Future work includes augment power-consumption parameters to enrich a IDAWL and de-
termine good trade-offs between performance and power on heterogeneous architectures.
We will also integrate more parameters in our machine learning algorithm to improve its

real-time ability to allocate work to heterogeneous processing elements.
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Chapter 5

Stream-based Event-Driven

Heterogeneous Multithreading Model

5.1 Introduction and motivation

Streaming applications, where the computation can be naturally expressed as streams, are
widely used in a lot of important areas, such as scientific computations, embedded applica-
tions, as well as the emerging field of social-media processing. Program execution models
centered on streams have been studied by many researchers and have been an active field of
research for the past 30 years [5-9, 90, 91]. The most relevant early work on streams is the
data flow execution model pioneered by Dennis [10, 11], the Synchronous Data Flow(SDF)
model [12, 13] and Program Dependence Graph(PDG) model [14]. Other work include data
flow software pipeline [15-18]. However, these models do not address the parallelism, re-
sources utilization and communication problems existing in highly heterogeneous and hierar-
chical system. Moreover, because of the physical limits that core count per chip continues to

increase dramatically while the available on-chip memory per core is only getting marginally

82



bigger. In this case, data locality, already a must-have in high-performance computing, will
become an even critical point in streaming processing since smoothly data movement play a

pivotal in streaming processing.

Heterogeneity has been studied by a number of researchers [92-97] but many of these efforts
are only targeted at isolated dimensions of heterogeneity, either the cores, the memory, or
the interconnects in isolation. While, heterogeneity can be cooperatively harnessed at cross-
cutting scope, spanning heterogeneous cores, hybrid memory hierarchies and re-configurable
and hybrid interconnect architecture and software. Especially for stream processing, it is
paramount to keep the streaming data flow at high-speed and maintain performance effi-
ciency, (e.g., throughput, delay, etc.) and energy efficiency on heterogeneous system. To
reach this goal, cross-layer cross-cutting design methodology, including algorithm design,
programming models, architecture design, and system software design, are necessary to ex-
plore parallelism and deliver scalability, since parallelism is ubiquitous and found at many

levels of the entire hardware-software stack.

The stream programming model offers a promising approach for exploiting parallelism for
many-cores architecture. Firstly, it can explore a coarse-grain parallelism [98, 99]. Streaming
parallelism is located at the data flow module-level. The multiple data flow modules can
execute concurrently on many-cores architecture; Secondly, it also can explore the fine-grain
parallelism within the body of an individual data flow module; Thirdly, both coarse and fine

grain parallelisms can be explored at the temporal and spatial dimensions.

To efficiently exploit parallelism and delivering scalability in stream processing, a number
of challenges must be overcome. To summarize,these challenges include: exploiting coarse-
and fine-grain level exploitation of parallelism, designing and using heterogeneous comput-
ing environments, dealing with heterogeneous workloads, and developing efficient adaptive
memory management mechanisms targeted at minimizing data movement (thus enhancing

locality) for the sake of both performance and energy efficiency.
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Section 5 proposes an approach, stream-based event-driven heterogeneous multithreading
model, to solved parallelism, resource allocation and streaming data flow movement problems
in High-Performance Computing. section 5.2 reviews the two level parallelism of stream pro-
cessing, and proposes new streaming program execution model (SPXM); section 5.3 describes
the details of design SPXM, including streaming Codelet Model, and streaming runtime sys-

tem; section 5.4 describes the related work of stream processing.

5.2 Streaming Program Execution Model (SPXM)

The stream-based fine-grain program execution model defined in this section is based on
the Codelet Model, see section 2 for more details, which provides a basic framework for an

asynchronous, event-driven parallel program execution model.

5.2.1 Two Levels Parallelism and Data Locality

The stream programming model offers a promising approach for exploiting parallelism for
many-core architecture. Firstly, it can explore a coarse-grain parallelism [98, 99]. Streaming
parallelism is located at the data flow module level and the multiple data flow modules could
execute concurrently on multicore architecture. Furthermore, non-strict [100, 101] aspect of
data flow models(i.e., I-Structures [102]) can be explored to facilitate out-of-order stream
processing; Secondly, it also can explore the fine-grain parallelism within the body of an
individual data flow module which often contains a collection of loops. Multiple parallelism
approaches, i.e., Data-level (Thread-level) parallelism [103], Task-level Parallelism [104],
Instruction-Level Parallelism (data flow software pipeline [15-18]), can be leveraged to op-
timize performance; Thirdly, both coarse and fine grain parallelisms can be explored at the

temporal and spatial dimensions.
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In streaming processing, maximize locality and minimize data movement are effective opti-
mization approach which can be used in both two parallel levels. Data can be classified into
two categories a) Some data are continuously streaming through the data channels in the
data flow graph. Conceptually, a (FIFO) buffer of a certain size should be allocated to such a
channel to accommodate the throughput and delay requirement, and b) Some data, that are
not streaming, should be placed in the shared memory hierarchy in order to exploit locality
and minimize data movement. The new streaming Codelet model,describe in section 5.2.2,
is developed to handle storage buffer allocation between stream producer-consumer chan-

nelsboth at the coarse-grain and the fine-grain levels.

5.2.2 Streaming Codelet Model

Stream data flow execution model pioneered by Dennis [11, 20], the Synchronous Data
Flow(SDF) model [12, 13] and Program Dependence Graph(PDG) model [14], where each
node represents a computation task (actor) and each arc represents the communication
between tasks. During program execution, each actor, which has an independent instruction
streams and address space, must fire repeatedly in a periodic schedule. However, these
models, including Codelet model which is built up on SDF, do not address the parallelism

and resources utilization problems existing in highly heterogeneous and hierarchical system.

In the new streaming Codelet model, a program(application) is partitioned into modules
which are connected by communication channels. Here, module stands for streaming Threaded
Procedure (STP), see section 2 for more details about threaded procedure. A module can be
seen as a group of streaming Codelets connected by intra-module stream channels within
a module. Modules are themselves connected through inter-module stream channels. Each
module contains at least one streaming Codelet. A stream channel is modeled as an abstract

FIFO queue where Direct Memory Access (DMA) can help speedup when the modules refer
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to big chunk of data movement. Each stream module or stream Codelet is an autonomous
computation unit which consumes data at a given rate from the input channel and produces
data at a given rate to its output channel, while this production-consumption rate can be
static or dynamic and be determined at compile or run time. At execution time, each stream
computation module is ready to run only if there are enough data items in the input channels

and enough buffer space in the output channels.

Furthermore, to explore scalability, a module (STP) itself also can be as a component of other
module called upper level module. This feature makess streaming Codelet model smoothly
applicable to the hierarchical heterogeneous many-core system. A module can either be
mapped onto one cluster made up of computing engines, onto one chip made up of clusters,
onto one computing node made up of chips or even onto a internet. Streaming Codelets
belonging to the same module can be mapped to different computing engines within a given
cluster (e.g., a data-parallel portion can be mapped to a vector-friendly computing engine,
while a more control-irregular part of the graph may be better suited to a general-purpose
computing engine). The need to pass data between Codelets may induce unreasonably long
latencies, thus requiring the use of intra-module stream channels to specify buffer sizes, buffer
address and , etc.. On the other hand, within a given portion of the machine, latencies will
be essentially non-existent, thus only requiring that streaming Codelets signal the availability

of new data, much like the original Codelet model proposes.

Streaming Codelets are Codelets with some key additional properties: for example, an inter-
face must describe buffer sizes and latencies to ensure steady state scheduling preferences in
terms of resources. This is required to implement software pipelining. Streaming Codelets
are also by nature most likely going to be persistent. In addition, and interface of streaming
Codelet should express interconnections between Codelets, since some may be mapped to
different clusters. Furthermore, a device attribute should clearly indicate that which type of

computing engine is recommended for this streaming Codelet. Based on these requirements,
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the more implement details can be found in section 5.3.

Both the modules (STP) and the streaming Codelets they contain are event-driven, with the
arrival of data as the primary event to satisfy, thereby potentially exploiting both coarse-
grained and fine-grained parallelism. At the module level, pipelining and task parallelism can
be exploited between stream computation modules. Further, each module may also contain
any degree of parallelism. This fact should be fully exploited by applying the fine-grained
streaming Codelet model to address performance and scalability needs.This is an important

point, considering the rapid increase in heterogeneity and hardware chip-level parallelism.

5.2.3 Streaming Codelet Abstract Machine Model

The original Codelet Model relies on an Codelet Abstract Machine Model (CAM), see section 2,
which is hierarchical and distributed, and provides two types of engines: the computing
engines called CUs, which perform the actual work, and the scheduling engines called SUs,
which ensure the correct scheduling and resource allocation across the machine. Computing

engines are grouped into clusters along with at least one scheduling engine.

Targeting at stream processing on heterogeneous and hierarchical system, Streaming Codelet
Abstract Machine Model (SCAM) extends original one level CAM Model to two levels to better
fit future architectures which exhibit a high diversity of computing capabilities. Hence, the
high-level layer will feature clusters of computing engines, where streaming Codelet modules
will be mapped. However, as opposed to the original CAM, SCAM’s clusters are expected to
widely differing capabilities and levels of parallelism. While the nominal capabilities and /or
degree of parallelism of a given cluster are known statically when starting a given application,
there are various reasons to force it to expose a different set of capabilities over time: faulty
components, high-contention of part or all of the cluster, elevated power consumption, etc.

Thus, the assignment of modules across a machine will partly rely on information only
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available at run-time, while additional properties must be defined and added to the basic
CAM. This high level layer, which exposes clusters of computing engines without unveiling the
engines themselves, will be visible to the high-level programmer. Specific scheduling engines

are dedicated to the distribution of work among the clusters.

The second layer of the SCAM is a low-level abstract machine model, visible to both the
compiler and the runtime system. It must identify the type of capabilities embedded in
clusters—although it is sufficient for the compiler to know what kind of support it can expect
from the low-level CAM. This allows it to generate the adequate code variants. The computing
engines contained in a cluster range from specific functions provided by a low-level component
of the cluster to fully general purpose computing units. Here again, a scheduling unit is in

charge of mapping the portions of a given module to the available computing engines.

How to put together the computing engines (cpu cores, GPUs, accelerators, FPGAs, etc.)
to operate in the high power/energy-efficient domains and high performance domains while
providing full support for the SPXM is a key question in design SCAM. To achieve this goal,
on-chip and off-chip memory systems should be optimized to feed the computing engines and
the communication structure that transports the streams. In some cases. These two elements
(memory and communication, especially communication between different types of resources)
introduce overhead orders of magnitude higher than the overhead of the computing engines.

So, in stream processing, minimize latencies and global data movements play a pivotal role.

The Runtime system of SCAM, called streaming DARTS, will manage parallelism, memory
management, communication traffic, etc. It will allocate stream modules to the appropriate
computing engines (e.g., a streaming Codelet containing a vector operation should go to the
cluster which has GPUs on it) and perform dynamic resource management to ensure that
processing and memory resources are not left idle when there are tasks/streaming Codelet
available for execution. It will creates stream channels for the communications between the

modules/streaming Codelets. Finally, it needs to schedule the streaming Codelets to the
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computing engines in order to exploit the fine-grained parallelism. Dynamically adjust re-
sources assignment besed on the run-time situation is also necessary function for the runtime

system scheduler to fully utilize the computing resources.

5.3 SPXM Design

5.3.1 Streaming Codelet

Streaming Codelet locates in the fine-grain level of SPXM and stands for the fine-grain task.
It will be mapped to and run on computing engine when all the synchronization require-
ments are satisfied. As described in section 5.2.2, it is Codelet with some key additional

properties(streaming properties):

1. ID. Instead of option in Codelet, it is necessary in streaming Codelet. It will be used
to construct streaming Codelet graph (SCG), to build up the stream data and message
channel. Streaming Codelet’s ID is unique in current streaming module. ID also can
be used by scheduler of streaming runtime system of SCAM. Scheduler can assign and
pin the streaming Codelet to specific computing engine since it will be fired (run)
repeatedly in a periodic schedule during stream processing. The pinning operation
can help streaming Codelet utilizes the data locality and reduce unnecessary data

movement.

2. Parent streaming module (STP) ID. it can help streaming Codelet locates itself in the

whole system since the SPXM is a logical hierarchical Model.

3. Data connection slot. It helps to construct SCG. Some streaming Codelets may be
mapped to different clusters of computing engines. Buffer size, buffer address and

production-consumption rate also locate in this slot. Each arc of the SCG represents
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one data communication channel between tasks. The arc can connect either streaming
Codelets or streaming modules(STPs). To help huge bulk data movement between
streaming modules/ Codelets, DMA etc. components can be added to the slot. One

streaming Codelet /module can contain one or multiple data connection slots.

. Synchronization slot. It is a basic component of event-driven model, will be equipped
with more functions, such as control production-consumption rate in further to control
the fire rule of streaming Codelet. Same with data interconnection slot, One streaming
Codelet /module can contain one or multiple synchronization slots. The consumer can
be fired only if all its synchronization slots’ requirements are satisfied. Different with

data connection slot, synchronization slot only exis in consumer side.

. Message connection slot. Same with Streamlt [9] language, SACM also provides a dy-
namic messaging system for passing irregular and low-volume control information be-
tween Streaming Codeletss and streaming modules. Messages are sent from one stream-
ing Codelet to other streaming Codelets located in the same streaming module or to
current streaming module which can broadcast the messages to all its group mem-
bers (streaming Codelets). Messages also can be transferred between streaming mod-
ules. There are several types of messages: a) change the parameters,e.g. production-
consumption rate; b) change running status,e.g., from RUNNING to STOP/SLEEP etc..
For example, if the consumer encounters some issues (the usable resources are sharply
reduced because of power limitation) which cause its data processing speed unstable
and dropping quickly, a STOP or SLEEP message will be sent to its producers once the
accumulated data over the buffer limitation. Then the producer will adjust its status
based on the received message; ¢) change allocated device,e.g., change low computing
capability of current computing engine to high computing capability computing engine
if current one can’t satisfy the performance requirement. For example, if consumer is

always in WAITING status, it can send CHANGING message to scheduler in module to
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10.

request reassign its producer’s computing engine.

Device attribute. It indicates that the current streaming Codelet will run on which
types of computing resources. Up to now, it is static assign to the streaming Codelet,

this work should be done by compiler in the future.

Fire rules. One streaming Codelet can be fired need to satisfy two requirements:
first, the synchronization requirements should be satisfied, which means the current
streaming Codelet have enough data in the input channels and enough buffer space in
the output channels; second, there is no STOP or SLEEP messages were sent to current

streaming Codelet.

History record. It records the past execution time, it can be used to build estimation

model in the future.

Reset status. It will record all the configuration/status current streaming Codelets and

can be used when the the streaming Codelet wake up from STOP and SLEEP status.

Latency. It will be used in pipeline stage.

5.3.2 Streaming Module (Threaded Procedure)

Streaming module locates in the coarse-grain level of SPXM and stands for the coarse-grain

tasks. One stream stage can contain one or more streaming modules depending on SCG and

available computing resources. It contains all the streaming properties of streaming Codelet,

but with small differences. Except these streaming properties, it is based on Threaded

Procedure:

1.

console component. Streaming module, containing a collection of streaming Codelet,

will run on the cluster. One of main functions of streaming module is synchronizing all
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its group members (streaming Codelets or low level streaming modules, as described in
section 5.2.2). The console component records all the information of its group members,

it also provides search function.

2. data connection slot. it sets up a data bridge between streaming modules, and between
streaming module with its group members. Special communication components,such

as DMA, can be added to help speed up the bulk data movement.

3. Message connection slot. it can broadcast/receive messages to/from all its group mem-
bers, send/receive messages from its peers(other streaming modules), and transfer

cross-layer message.

5.3.3 Runtime Stream Scheduler

The high level runtime stream scheduler will access which clusters/computing resources
are available and decide on which would be the best cluster to run the various streaming
modules. Once the clusters are selected, the runtime system then determines which of its
computing resources are current usable and map the SCG to the available hardware resources.
The runtime scheduler handles the case where a specific accelerator is not available to the
computation. There are various reasons for the unavailability of a specific processing unit:
the accelerator is already busy, or, for execution-time reasons, the scheduler did not assign
the Codelet to a tile that featured such an accelerator. In this case, the local scheduler will
select the code variant of the best-suited resource (e.g., an FPGA version if such a device is
ready to be used), and insert the output stream address to feed data to the next streaming
Codelets which will then apply their data transformation process in the pipeline. During
run time, the local scheduler will change the binding (between resources and Codelet) if

CHANGING message is obtained, see example in section 5.3.4.

The scheduler supports both balanced and unbalanced SDFG. If converter from unbalanced
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STP1 STP2 STP3

(b)
Figure 5.1: sheduler: unbalanced SDFG to balanced SDFG

SDFG to balanced SDFG option is activated, it can automatic convert unbalanced SDFG to
balanced SDFG and then assign and schedule tasks to corresponding computing resources.
In Figure 5.1, (a) stands for the original SDFG (b) stands for the converted SDFG, while
the tasks are grouped into three groups (3 STPs). How to map task (circle in the Figure)
depends on the available resources. Unbalanced SDFG is also supported by the scheduler. A
STOP or SLEEP message will be sent to producer when too many data are accumulated into
the consumer’s buffer. WAKEUP message will be sent from consumer to producer when the
accumulated data in consumer’s buffer reach to a suitable level. Consumer will automatically
enter into WAITING status when there are no enough data available based on the features of

event-driven tasks.
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STPO

STP1

Figure 5.2: Example: streaming Codelet graph (SCG)
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5.3.4 Detailed Example

Figure 5.2 shows an example of SCG. As described in section 5.2.2, every component,including
streaming module( Threaded Procedure) and streaming Codelet, has an unique ID. In this
Figure, rectangle stands for streaming module(STP in Figure 5.2); single circle stands for
streaming Codelet(S in Figure 5.2); double circle stands for the transfer gate between STPs
(i.e.,t1 in STP3 stands for STP1’s transfer gate in STP3.); the solid line stands for the same
layer connection, such as the line connecting S11 to S12 in STP1 group, and the line con-
necting STP1 to STP3 in STPO group; dotted line stands for the across layers connection (i.e.,
the line connecting S12 to t3 means S12 produce data to STP3); the number on the line
stands for the production-consumption token(data); no number on line stands for producing
or consuming one token. As shown in Figure 5.2, multiple streaming Codelets can connect

to the same transfer port, and one STP can own multiple transfer port.

Table 5.1: streaming Threaded Procedure STPO attributes based on the Figure 5.2

\ attributes H content \
1D [0 |
parent 1D -
STP1
group members | STP2
STP3
\ shared H share( ‘
\ receivers H - \
\ Final Codelet H default:SLEEP ‘
‘ history H execution time ‘
‘ latency H number( ‘
| device | cluster/node/... (ID) |

Only data connection graph is shown in Figure 5.2. The message connection graph will be
set up based on the runtime situation. For example, in the Figure 5.2 (when unbalanced
scheduler is used), Streaming Codelet(312) produce 6 token while Streaming Codelet(S14)

only consume 1 token. Figure 5.3 shows the mapping graph of S12 and S14. There are three
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inst STPO{

/%
* setshare: set up shared wvariables, data space
* shared wvartiable/data can be accessed by all the group

member

*/

setshare shareO;

/*
* add: add components
*/

add STP1 to STPO;
add STP2 to STPO;
add STP3 to STPO;

/%

* setczn(producer, ptoken, consumer,ctoken,address)
* ptoken: producer produced token

* ctoken: consumer consumed token

* address: option

*/

setcxn (STP1,8,STP3,4, addrl) ;
setcxn (STP1,2,S8TP2,6,addr2) ;
setcxn (STP3,4,STP2,1,addr3);

/*
* setlatency: set the largest latency (for pipeline stage)
* default latency: Infinity
*/

setlatency ( number0 );

Listing 5.1: pseudocode of Figure 5.2 STPO
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inst STP3{
setshare share3;

add S31 to STP3;
add S32 to STP3;
add S33 to STP3;
add S34 to STP3;

setcxn (831,1,834,2) ;
setcxn (S32,1,S34,1) ;
setcxn (S33,1,S34,2);

/*
* setcrossczn: producer and consumer are in differ layers
* level = producer layer - consumer layer

* STP173: layer = 1; STPO: layer=2
* S: layer = 0

*/
setcrosscxn(t1,1,833,1,1level=1);
setcrosscxn (t1,2,831,2,level=1);
setcrosscxn (t1,1,832,1,level=1);
setcrosscxn(s34,4,t2,4,level=-1);

/*

* setsync(producer, ctoken, maz)

* set synchronization slot(only consumer)

* maz: optional, the max number of token can keep in the
synchronization slot

*/

setsync (STP1 ,4) ;

setsync (534 ,4) ;

setlatency ( number3 );

Listing 5.2: pseudocode of Figure 5.2 STP3
streaming 5 1
Codelets

Figure 5.3: mapping streaming Codelets to cores example
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(S14->S12, SLEEP) (S14->512,WAKEUP)

Figure 5.4: message examplel
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Figure 5.5: message example2
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(514->512,CHANGING)

Figure 5.6: message example3

98



Table 5.2: streaming Threaded Procedure STP3 attributes based on the Figure 5.2

’ attributes H content ‘
ID 3
parent ID STPO
group members S31,523,533,534

(STP1, 8, STP3, 4, addr= addrl)
(STP3, 4, STP2, 1, addr= addr3)
(t1, 1, S33, 1, addr=, level=1)

(t1, 2, S31, 2, addr=, level=1)

(t1, 1, S32, 1, addr=, level=1)
(
(
(

data connection slot

S34,4, t2, 4, addr=, level= -1)
STP1,ctoken = 4, max=INF)
S34,ctoken = 4, max=INF)

synchronization slot

’ mesg connection slot || default: running

’ shared data/variables || share0,share3

[d |

H |

’ receivers H STP ‘

; history H execution time }
reset status

’ latency H number3 ‘

| device | cluster /node/... (ID) |

Table 5.3: streaming Codelet S12 attributes based on the Figure 5.2

\ attributes H content \
ID 12
parent 1D STP1

(S11, 1, S12, 4, addr =)

(S13, 1, S12, 1, addr =)

(S12, 6, S14, 1, addr =)

(S12, 8, t3, 8, addr =, level=-1)
(

(

data connection slot

S11,ctoken = 4,max=INF)

synchronization slot S13,ctoken = 1,max=INF)

mesg connection slot || default: running

| [ d |

| receivers | STP ‘

} history H execution time }
reset status

\ latency H number ‘

| device | CPU/GPU/FPGA/... (ID) ‘
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cores, C1,C2 and C3, exist in the system. C3’s computing capability is larger than C1 and
C2; the computing capability of C1 and C2 are equal. If the execution time of $12 and S14
are equal, then the extra token will be accumulated at S14’s buffer,as shown in Figure 5.4,
once the S14 buffer size reach/close to its maximum limitation(28 token), a SLEEP message
will be sent from S14 to S12. while S14 keep running and consuming the stored token, a
WAKEUP message will be sent to $12 when S14’s buffer size reaches to its minimum limitation
(1 token); In another case, if the execution time of S14 are faster than S12, (which will be
either the computing ability of computing engine mapped by S14 is far more better than the
computing engine mapped by S12 or the computing in $12 is more complicate than S14 and
it will take a longer time to finish, as shown in Figure 5.5), no STOP or SLEEP message will
be sent if the S14’s buffer size is less than its maximum limitation. But the if S14’s buffer
size is always less than the minimum limitation, as shown in Figure 5.6, a CHANGING message
will be sent to the STP1’s scheduler to request change computing engine of S12 to one with

higher computing ability, which will be core C3 in current system.

Listing 5.1 and 5.2 are the pseudocode of STPO and STP3 in Figure 5.2. STPO is the upper
most layer of the module.The scheduler run in this layer. As described in section 5.3.3, this
scheduler will map its group members (modules) to clusters based on the hardware resources.
STPO has three module components, STP1,STP2,STP3. Every module component in STPO has
a subscheduler which schedule, bind its group members, Codelets, to computing engines, and

synchronize all its group members.

As shown in Listing 5.1 and 5.2, every module need to set up shared spaces or variables, using
function setshare, which can be accessed by all its group members. Fully utilizing the data
locality to minimize the data movement is one of important factors to make sure the stream
flow smoothly running. Both functions setcxn and setcrosscxn will set up or change the
data connection slot for the streaming module/Codelet. Function setcxn will be used to

connect components in same layer. The connection is directed, starting from producer and
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end at consumer. The number on connection (production-consumption token) can be used
by synchronization slot. If the produced token number less than consumed token number,
the consumer has to wait. Function setcrosscxn in Listing 5.2 plays the similar roles, but
it is used to connect two components from different layers, i.e., connecting S31 to t1 which
is the transfer port of STP1 in STP3. The level attribute in data synchronization slot
indicates that whether the producer and consumer related the current line/connection are
located in same level or not. level equals to the producer layer minus to consumer layer. By
default, the level is set to zero. Function setsync in List 5.2 is to set up a synchronization
slot for the streaming module/Codelet. As described in section 5.3.1, synchronization
slot only exists in consumer side. It records its producer of current connection, the number
of token is needed to fire, the maximum and minimum number of token that buffer can
hold. Function setlatency will set the latency of current component to make sure the
pipeline can run smoothly. Table 5.1 and 5.2 show the attributes of streaming module of

STPO and SPT3. Table 5.3 shows the attributes of streaming Codelet (512).

5.4 Related Work

Lee [12, 13] proposed the concept of Synchronous data flow (SDF), where each node repre-
sents a computation task (actor) and each arc represents the communication between tasks.
In a SDF graph, the token of every data flow node will be consumed or produced maybe
specified a priory. The scheduler can be done at compile time (statically). During program
execution, each actor, which has an independent instruction streams and address space, must

fire repeatedly in a periodic schedule.

In stream processing, multiple optimization approaches about pipeline parallelism technique
have been studies by many researches in scheduling and compiler area. Hwanget al. [15]

proposed Pipeline net/chain which can be viewed as a two-level pipelined and dynamically
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reconfigurable systolic array and is constructed from interconnecting multiple Functional
Pipelines (FP) through a buffered crossbar network. Software pipelining [98, 99, 105] is an
efficient method to exploit the coarse-grained and fine-grained parallelism in stream pro-
grams, and it has been one of the successful instruction level parallelism (ILP) techniques.It
considers the whole program as a loop and takes a periodic schedule as iteration of the loop,
and successive iterations can be overlapped at run-time [106]. Single-dimension software
pipelining(SSP) [17] is a resource-constrained software pipelining method for both perfect
(data independent), and imperfect (data dependence) loop nests on single-core architectures.
Multi-threaded software pipelining (MT-SSP) [16] based on SSP could automatically extract
threads from loop nest written in a sequential language and parallel schedule these multi-
threads on homogeneous multi-core with resource constraints.Decoupled software pipelining
(DSWP) [103] exploits the fine-grained pipeline parallelism lurking in most applications to

extract long-running, currently executing threads.

Task level parallelism can be used in the every stage of pipeline. Allocating task into ap-
posite computing unit play a pivot role. Sridharanet al. [60] proposed an integer linear
programming (ILP)-based parallelization approach which can automatically extract task-
level parallelism and balance the extracted tasks for processing units which have different
performance characteristics. Furthermore, the resource allocation problem can be formu-
lated as a constraint satisfaction problem. To balance the load of the multiple applications
equally over all heterogeneous multi-processor system-on-chip(tiles), Stuijk et al. [107] pro-
posed three steps resource allocation strategy: bind the nodes of SDFG to tiles to estimate
the critically execution cycles of SDFG; construct static-order schedules to fire all of the nodes
bound to each tile and the communication cost (delay when tokens were sent between tiles)
is taken into account; use binary search algorithms to allocate time slices for all tiles to
satisfy throughput constraint. Zhu et al. [108] proposed an implicit retiming and unfloding
approach for binding and scheduling static rate-optimal scheduling of Synchronous dataflow

graphs(SDFGs) on a multiprocessor platform.

102



To deliver the optimal long-term throughput by exploring inter-tasks parallelism on Multi-
processor Systems-on-Chips (MPSoC), Tang et al. [109] use Parallelism Graph(PG) to quan-
tify and model the task-level parallelism of the SDFG, and transform the mapping problem to
graph partition problem. 0-1 integer linear programming(ILP) were utilized to solve small-
scale graph partition problem and for the large-scale problems, two-step heuristic called
greedy partition and refinement algorithm(GPRA) is proposed. However both ILP and
GPRA are incapable at producing the global optimal solution, Hybrid Genetic Algorithm
(HGA) which combine genetic algorithms(GAs) with parallelism enhancement were pro-
posed. Tang et al. focused on the task-to-processor mapping problem which no more than

one processor is allocated to each SDFG task in the mapping.

Thies et al. [110] proposed Streamlt language and corresponding compiler for streaming
applications. It includes four main language features: a structured model of streams, a
messaging system for control, a re-initialization mechanism, and a natural textual syntax.
Streamlt assumes that independent processors communicate in regular pattern and overlooks

the granularity, memory layout, network interconnect, etc..

All the works mentioned above do not address or overlook data movement (communication)
problem existing in current highly heterogeneous and hierarchical system. Indeed, on-chip
and off-chip communication is projected to become a major bottleneck in terms of perfor-
mance, energy consumption, and reliability when hundreds of heterogeneous compute engines
are integrated. Moreover, because of the physical limits that core count per chip continues to
increase dramatically while the available on-chip memory per core is only getting marginally
bigger. In this case, the stream-based event-driven model, described in section 5, focuses
on the fully utilization of data locality in fine-grain parallelism level and minimization bulk

data movement cost in coarse-grain parallelism level.
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Chapter 6

Conclusions and Future Work

A fine-grain event-driven execution model has been presented here with the goal of solving
many of the various challenges that exist in current/future high-performance hierarchical
homogeneous/heterogeneous many-core systems: exploitation of parallelism, efficient uti-
lization of resources and system scalability to satisfy the continued growing pressure for
increased processing performance requirements from industry (applications) and scientific

circles (scientific computing).

Fine-grain synchronization with event-driven multithreading model, based on the Codelet
Model, has given us large-scale parallelism exploitation of dependence-heavy applications
as opposed to the coarse-grain synchronization in current high-performance general purpose
many-core shared-memory compute nodes. The advantages of using finer-grained synchro-
nization come from the fact that, even with initially “ almost embarrassingly parallel” work-
loads such as stencil-based iterative solvers, performance can be significantly improved using
regular work distribution among processing elements. However, the fine-grain synchroniza-
tion work demonstrated here relies on a hand-coded approach. A compiler equipped with

an OpenMP-to-Codelet fine-grain function will be developed in the future.
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Our heterogeneity-aware iterative scheduling algorithm, IDAWL, has been designed to lever-
age load-balancing techniques to obtain the best workload partition between CPUs and
general-purpose accelerators—e.g., GPUs. However, naive heuristics may result in worsened
performance and power consumption, especially for the applications which feature a high-
degree of data dependence and need to regularly perform host-accelerator synchronizations.
IDAWL leverages a profile-based approach based on machine learning and online scheduling to
offer a general approach to efficiently utilize, in a dynamic fashion, available heterogeneous

resources.

Energy efficiency of our schemes will be the topic of future work. It will guarantee that our
IDAWL can reach a good trade-off point between performance and power on heterogeneous
architectures. Stream-based event-driven heterogeneous multithreading model has a huge
potential in the streaming application domain. The features of exploiting two levels paral-
lelism (coarse- and fine-grain level) to construct streaming pipeline stage, fully utilizing the
data locality to minimize the data movement and easily adding new heterogeneous compo-
nents help this model overcome the majority of issues encountering by streaming applications
on heterogeneous system. Future work will focus on how to dynamic schedule workloads and
overlap the computation and communication of different heterogeneous computing resources
to improvement the performance. Energy efficient computing, which seeks to utilize spe-
cialized cores, accelerators (FPGAs), and graphical processing units (GPUs) to eliminate
the energy overheads of general-purpose homogeneous cores, is another important topic for

future work.
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