Lawrence Berkeley National Laboratory Recent Work

Title

SOLID STATE STRUCTURE AND CHEMISTRY OF THE CHOLINE HALIDES AND THEIR ANALOGUES. REDETERMINATION OF THE BETAINE HYDROCHLORIDE STRUCTURE, [(CH $\left.)^{\wedge} \mathrm{NCHgCOOH}\right]+\mathrm{Cl} "$

Permalink

https://escholarship.org/uc/item/4sn7m9nz

Authors

Fischer, Mark S.
Templeton, David H.
Zalkin, Allan.
Publication Date
1969-12-01

SOLID STATE STRUCTURE AND CHEMISTRY OF THE CHOLINE HALIDES AND THEIR ANALOGUES. REDETERMINATION OF THE BETAINE HYDROCHLORIDE STRUCTURE, $\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{NCH}_{2} \mathrm{COOH}\right]^{+} \mathrm{Cl}^{-}$

Mark. Sischer, David H. Templeton, and Allan Zalkin

December 1969

AEC Contract No. W-7405-eng - 48

TWO-WEEK LOAN COPY

This is a Library Circulating Copy which may be borrowed for two weeks.
For a personal retention copy, call
Tech. Info. Dívision, Ext. 5545

DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.

UNIVERSITY OF CALIFORNIA
Lawrence Radiation Laboratory
Berkeley, California 94720
AEC Contract No. W-7405-eng-48

SOLID STATE STRUCTURE AND CHEMISTRY OF THE CHOLINE HALIDES AND THEIR ANALOGUES. REDETERMINATION OF THE BETAINE HYDROCHLORIDE STRUCTURE, $\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{NCH}_{2} \mathrm{COOH}\right]^{+} \mathrm{Cl}{ }^{-}$ Mark S. Fischer, David H. Templeton, and Allan Zalkin

The crystal structure of betaine hydrochloride, $\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{NCH}_{2} \mathrm{COOH}\right]^{+}$ Cl^{-}, has been redetermined by x-ray diffraction from the intensities of 782 independent reflections collected on a scaming counter diffractomoter. The crystals are monoclinic, space group $\mathrm{P}_{1} / \mathrm{c}$, with cell parameters $a=7.428 \AA, b=9.108 \AA, c=11.550 \AA$, and $\beta=96.71^{\circ}$. The positions of the hydrogen atoms have been found, and the conventional R value has beon reduced to 0.026 . Final atomic positions differ from those of Clastre by as much as $0.16 \AA$. The mean $C-N$ bond length is $1.499 \pm 0.004 \AA$ (uncorrected for thermal motion). The cation assumes a completely staggered conformation with the acidic hydrogen atom as far away as possible from the nitrogen atom. The hydrogen bonding from the carboxyl group to the chloride ion is relatively strong compared to the hydrogen bonding in choline chloride.

The structures of choline $\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right]^{+} \mathrm{X}^{-}$and betaine $\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{NCH}_{2} \mathrm{COOH}\right]^{+} X-$ compounds are of interest because of both the unusual radiation sensitivity of choline chloride (rolvort, Adams, Bennett, Hughes, Kirk, Lemon, Noller, Ostwald ziad Calvin, 1953) and the frequent occurence of these compourds in biological. systems. They are compohents of complex lipids, and they can act as transusthylating agents. The related acetylcholine is essential to nerve impulse transfer.

Related structures which have been determined previously include choline chloride (Senko and Templeton, 1960), muscarine iodide (Jellinok, 1957) and acotylcholine bromide (Canepa, Pauling and Sorum, 1966). Clastre (196\%) has published a preliminary structure report for bedaine hydrochloride, in which he refined the R value for two of the two-dimensional projections down to 0.18 . Bond distances which we calculated from his published atomic coordinates implied that the C-N bond lengths ranged from 1.19 to $1.63 \AA$ in length. We undertook this structure investigation to provide an accurate structure, to locate the positions of the hydrogen atoms, and to investigate the packing.

Experimental

Small colorless crystals of betaine hydrochloride were kindly supplied to us by Dr. R. M. Lemmon. These were then recrystallized in the form of colorless needles by the evaporation of a watermethanol solution to dryness at room temperature. The unit-cell dimensions were obtained from careful measurements of the Bragg scattering angles for the $\mathrm{h} 00,0 \mathrm{KO}$, and 00ℓ reflections, as measured on a manually operated General Electric XRD-5 diffractometer. The alpha doublet ($\lambda=1.5405 \AA$ for $C u K a_{1}$) was resolved for those reflections of highest order. The crystal used for both the determination of cell dimensions and the collection of data was mounted on the crystallographic baxis, and the β angle was obtained directly from the angle on the φ circle between the h 00 and the 00ℓ reflections. The unit cell paraneters (at 23°) are shown in Table 1. The absence of reflections $\underline{h} O \underline{\ell}$ with $\underline{\ell}$ odd and $0 \underline{0} 0$ with \underline{k} odd indicate the space group $\mathrm{P} 2 / \mathrm{c}$. The crystal, which was nounted on the needle axis, measured $0.09 \times 0.09 \times 0.43 \mathrm{~mm}$. The four most prominent faces were the (100), (001), (100) and (001). The observed density of $1.314 \pm .005 \mathrm{~g} \mathrm{~cm}^{-3}$, which was determined by flotation in a chloroformethylene dichloride mixture, agrees well with the value $1.313 \mathrm{~g} \mathrm{~cm}^{-3}$ calculated for a molecular weight of 153.5 , for $Z=4$, and for a unit cell volune of $776 \AA^{3}$.

Integrated intensities were measured with a card controlled, automated General Electric XRD-5 diffractometer. The copper radiation was filtered by a 0.001 inch thick nickel foil placed
between the crystal and the receiving slit, and a $0-2 \theta$ scan was. employed. The intensitics were measured for all reflections lying within half a sphere in reciprocal space corresponding to d-spacings $\geqq 1.006 \AA\left(2 \theta \leq 100^{\circ}\right)$. The intensities of equivalent reflections; were averaged to give 794 independent reflections of which 782 were above background. The 32 largest intensities were remeasured at lower x-ray flux to avoid flooding of the counter. Crystal decsy, monitored by 24 periodic measurements of six standard reflections, was less than 5\%. The calculated linear absorption coefficient μ is $39 \mathrm{~cm}^{-1}$ (for Cuka). The data are uncorrected for absorption effects, which may vary by a factor of the order of 1.15 for the extreme cases.

Net intensities I and their standard deviations $c(I)$ were calculated expressions from the $\mathrm{A}: I=I_{\text {gross }}-\left(t_{I} / 2 t_{B}\right)\left(B_{1}+B_{2}\right)$ and $\sigma^{2}(I)=I_{\text {eross }}+$ $\left(t_{I} / 2 t_{B}\right)^{2}\left(B_{1}+B_{2}\right)$, where B_{1} and B_{2} are the number of counts for each background reading and t_{Y} and t_{B} are the tines spent seming counting
the peak and it $_{0}$ the background. For n measurerents of the intensity of a particular reflection (n was always $\geqq 2$), the intensities were averaged and $\sigma(\bar{I})$, the standard deviation of the nean, was calculated from $\sigma_{L}(I)$ equal to the larger of $\left[\Sigma\left(I_{i}-I\right)^{2}\right]^{\frac{1}{2}} /(n-1)$ and $\left[\sum_{0}^{2}\left(\frac{I}{2}\right)\right]^{\frac{1}{2}} / n$ by using the relationship $\sigma^{2}(\bar{I})=\sigma_{L}^{2}(I)+(p I)^{2}$, where p, a constant, was set equal to 0.04 to reduce the weights of the most intense reflections.

The full matrix least squares progran used was our local unpublished version for the CDC 6600 computer. The atomic scattering
factors used during this analysis were those given by Cromer and Vann (1968) for the $\mathrm{Cl}^{-}, \mathrm{Cl}, \mathrm{O}, \mathrm{N}$ and C atoms and those of Stewart, Davidson and Simpson (1965) for the hydrogen atoms. The scattering factor for the N^{+}atom was calculated from the scatterine factor of N^{+3} (Hurst and Matson, 1959) by using the relationship $\mathrm{f}\left(\mathrm{N}^{+}\right)=$ $\left[2 f(N)+f\left(N^{+3}\right)\right] / 3$. For the chlorine atom the ancmalous dispersion corrections of Cromer (1965) were used. The function minimized in the least-squares refinements was $R_{2}^{2}=\Sigma_{W}\left(\left|F_{o}\right|-\left|F_{c}\right|^{2} / \Sigma_{W}\left|F_{o}\right|^{2}\right.$. In the early stages of refinement, the weights w were set equal to 1.0 , but in the later stages they were set to 0 when $I=0$ and to $1 / \sigma^{2}(F)$ otherwise; $\sigma(F)$ was calculated from $\sigma(\bar{I}): \sigma\left(F^{2}\right)=\left(I_{p}\right)^{-1} \sigma(\bar{I}), \sigma(F)=$ $\left[\sigma\left(F^{2}\right)\right]^{\frac{1}{2}}$ if $I \leqq \sigma(\overline{\mathrm{I}})$ and $\sigma(\mathrm{F})=\dot{F}-\left[\mathrm{F}^{2}-\sigma\left(\mathrm{F}^{2}\right)\right]^{\frac{1}{2}}$ if $I>\sigma(\bar{I})$. Johnson's ORTEP program (1965) was used for the stereoscopic pictures and as an aid in the thermal analysis.

Structure Determinetion and Refjnement

Because at the tine we were not avare of Clastre's report (1964), the structure was solved independently. The chlarine-chlorine vectors vere evident in a Patterson map, but thejr interpretation was ambiguous. The y coordinate of chlorine is near $\frac{1}{4}$; therefore, the inversion vector ($2 \underline{x}, 2 \underline{y}, 2 z$) and the screw axis vector ($2 x, \frac{1}{2}, 2\left(\underline{2}+\frac{1}{4}\right)$) both appear in the Harker section at $y=\frac{1}{2}$. The ambiguity escaped notice, and by bed luck the wrong choice was made. As a result, the chlorine \underline{Z} coordirate was assigned a value which was $\frac{2}{4}$ less than the correct one. A Fourier map phased by this chlorino aton indicated eight other atoms. These nine atoms, some of which were later noticed to to at unacceptable bork distances, gove $R=\Sigma| | F_{0}\left|-\left|F_{c}\right|\right| \Sigma\left|F_{0}\right|=0.33$ for all the data but $R=0.09$ for reflections with both k and ℓ even. This result suggested errors of $\frac{1}{2}$ in some \mathbb{Z} or \mathbf{z} coordinates. Addition of $\frac{1}{2}$ to the y coordinates of three atoms gave more reasonable bond distances and decreased R to 0.31, but calculation of interatonic distances showed that molecules related by the inversion center were too close togother, with some ators less than $2 \AA$ opart. Therefore, the entire molecile was moved one-fourth of the unit cell in the \underline{z} direction, at which point R dropped to 0.10 .

After the thermal motion of the chlorine atom was aproximated by an ellipsoidal anicotropic model, a Fourier difference map revealed the positions of the twelve hydrogen atoms anong the highest seventeen peaks. The hyurogen atoms were given indivibual
isotroric temperature factors and all other atons were given anisotropic temperature factors. The R velue dropped to 0.02%. The values of $\left|F_{o}\right| /\left|F_{c}\right|$ for the reflections of highest intensity were all less than 1.0. Therefore, an extinction correction of the form $\mathrm{F}_{0}^{\prime}=\mathrm{F}_{0}(1.0+\mathrm{cI})$, where $\mathrm{c} \quad=2 \times 10^{-8}$, was applied to give a maximum correction of 5% for the strongest reflection, and R dropped to 0.026 .

Up to this point, the atomic scattering factors of Cl^{-}and ncutral N had been used. Two other possibilities vere tried. The first, with N^{+}and Cl^{-}, gave an R value of 0.032 , and the second, with both N and $C l$ neutrel, gave an R valve of $0 . C 27$; the Jargest shifts in tho atomic positions and bond distances were all less than one third of the respective standard deviations. All further discussion will be for N neutral and Cl^{-}atons. The final weighted R_{2} value was 0.034 and the standard deviation of an observation of unit weight was 1.33. The largest shirt of any parameter in the final least squares refinement uas less than one per cent of its standard deviation. There was no systematic trend in $\left|F_{0}\right| /\left|F_{c}\right|$ as a function of either 2θ or the intensity. The highest peak on the final difference calculation was 0.11 electrons \AA^{-3}.

Results and Discussion

A stercoscopic view of one molecule, which shows the nunbering scheme of the atoms, is presented in Figure 1. The observed structure factor amplitudes $\left|F_{0}\right|$ as well as the final calculated structure factors $\left|F_{c}\right|$ are listed in Table 2. The final positional and thermal parameters for the hydrogen atoms are given in Table 3 while those for the non-hydrogen atoms are given in Table 4.

The atomic positions found in this investigation differed from those of Clestre (190\%) by as little, as $0.02 \AA$ for the chlorine atom to as much as $0.16 \AA$ for atom $C(2)$. The mean difference was $0.07 \AA$, which is more than twenty tines the estinated standard deviations in this investigation. Clastre made no statement concerning the precision of his results.

Selected intramolecular distances and angles are listed in Tables 5 and 6, respectively. Because of thermal motion, the observed bond distances tend to be less than the time-average distances between atoms. Our ignorance of the phase relations of thermal motion prevents an unambiguous correction for this effect, but some estimates have been made on the basis of a riding model. For bonds $\mathrm{N}-\mathrm{C}(1), \mathrm{N}-\mathrm{C}(3), \mathrm{C}(5)-\mathrm{O}(1)$, and $\mathrm{C}(5)-\mathrm{O}(2)$, for which this model seems reasonably consistent with the observed thermal parameters, the corrections fall in the range 0.010 to $0.018 \AA$.

The orientations of the methyl and methylene groups are very nearly stageered around each of the four C-N bonds, the departures
from an entirely staggered conformation being only 9.4° for N-C(1), 4.3° for $\mathrm{NCC}(2), 1.6^{\circ}$ for $\mathrm{N}-\mathrm{C}(3)$, and 1.9° for $\mathrm{N}-\mathrm{C}(4)$. The plane of the carboxyl group is at an angle of 6.7° to that of atoms N, $C(4)$, and $C(5)$. The result is that the entire cation confoms within about $0.1 \AA$ to the symmetry of a non-crystallographic mirror plane. The mirror plane passes through (or near) atoms $H(12), O(1), O(2)$, $C(5), C(4), N, C(3)$, and $H(7)$ and relates $H(8)$ to $H(9), H(10)$ to $H(11)$, and the methyl groups $C(1)$ to $C(2)$. The carboxyl group is planar within experimental error.

The carboxy] group is twisted around bond $C(4)-C(5)$ in such a way that atorn $O(2)$ is almost as close to and $O(1)$ as far from the nitrogen aton in the same molecule as is possible. This results in an extended shape for the molecule in which the carboxyl hydrogen aton is remote from the positively charged ammonium group and thus can easily hydrogen bond to the chloride ion. The $0-\mathrm{H} \cdot \mathrm{Cl}$ angle ${ }^{\text {. }}$ is $168 \pm 2^{\circ}$, and the 0.0 Cl distance of $2.955 \pm .002 \AA$ is much shorter than, for example, the $0 \cdots C l$ distance of $3.03 \pm .02 \AA$ distance in choline chloride (Senko and Terapleton, 1960).

The molecular packing is shom in Figure 2, and the closest internoleculor approaches are Listed in Table 7. For the bonded hyarogen atoms of this molecule, the center of gravity of the electron distribution as detarmined by x-ray diffraction is sonewhat removed from the equilibsium nuclear position. Therofore, the intramolecular CoH and OwH distances listed in Table 5 are systematically shorter and the intermolecular paching distances in Table 7 involving hydrogen atoms are systematically longer by epproximately $0.1 \AA$ than the equilibrium intornuclear separation as would bo determined by neutron diffraction, for examplo.

This wouk has been performed under the anspices of the U.S. Atomic Energy Comission. He thank Dr. R.M. Leman for supplying us with his crystals and Prof. M. Calvin for the support of part of this work.

Table 1. Unjt Cell Parameters

	This Work	Clastre
a	$7.428 \pm .002 \AA$	$7.45 \pm .02 \AA$
b	$9.108 \pm .005$	$9.15 \pm .02$
c	$11.550 \pm .003$	$11.65 \pm .02$
B	$96.71 \pm .03$	97.0

Table 2. Otseryed and Canculated Stanture Fotos Amplitute of Betarie Hzdrochlorido

Asterisks indicate zeromeighted data.

Table 3. Final Atomic Fractional Coordinatee end Thermal Fevoreso with Thoir Sinndard Devintions for Hydrogen Atora in Retaio Hydrochlozide.

The numbers in parenthesis here and in succecding tables are the standard deviations of the least significant digit(s). The themal parameters are in units of square Angstrons. The temperature factor has the form: $T=\exp \left[-D(\sin \theta / \lambda)^{2}\right]$

Aton	X	I	Z	B
$H(1)$	$.7362(26)$	$.1512(25)$	$.7369(18)$	$4.6(5)$
$H(2)$	$.8486(29)$	$.2080(21)$	$.6421(16)$	$3.3(4)$
$H(3)$	$.6466(32)$	$.2250(20)$	$.6230(20)$	$4.1(5)$
$H(4)$	$.8855(26)$	$.3019(24)$	$.8857(17)$	$4.0(4)$
$H(5)$	$1.0216(28)$	$.3508(20)$	$.7967(14)$	$3.7(4)$
$H(6)$	$.9188(27)$	$.4692(25)$	$.8622(16)$	$4.4(5)$
$H(7)$	$.9151(28)$	$.4549(20)$	$.6139(15)$	$3.9(4)$
$H(8)$	$.8157(26)$	$.5774(27)$	$.6754(16)$	$4.5(5)$
$H(9)$	$.7100(30)$	$.4784(24)$	$.5804(18)$	$4.8(5)$
$H(10)$	$.6136(25)$	$.5103(22)$	$.8037(16)$	$3.7(4)$
$H(11)$	$.5008(23)$	$.4191(17)$	$.7108(15)$	$2.7(4)$
$H(12)$	$.3407(27)$	$.3397(25)$	$.9524(18)$	$4.3(5)$

Table 4. Enal Atomic Eroctional Conedinates and Themer Parameters with Their Standerd Derintions for G, C, N, and Q Atoms in Betoine E-Trochlorjoe.

The themal parameters are in units of square Angstroms. The temperature factor has the form: $T=\exp \left[-\frac{1}{4} \Sigma B_{i j} h_{i} h_{j} /\left(b_{i} b_{j}\right)\right]$, where h_{i} is the ith viller index, b_{i} is the ith reciprocal axis length, and i and j are cycled η through 3 .

Atom	$\underline{\underline{x}}$	Y	\underline{z}	3_{11}	B_{22}	\underline{B}_{33}	B_{12}	${ }_{13}$	B_{23}
C1	. $21472(6)$. 24207 (5)	1.09234 (4)	3.34 (3)	$4.38(3)$	3.59 (3)	-. 30 (2)	1.17(2)	-.23(2)
$O(1)$. 37681 (18)	. 39010 (16)	. $90178(12)$	$3.60(7)$	$4.38(7)$	3.99 (7)	. $52(6)$	1.64 (5)	. $67(6)$
$O(2)$. $58012(19)$.21083(15)	. $89939(12)$	4.37(7)	3.71 (7)	3.95 (7)	. $59(6)$	1.25(5)	. $96(5)$
N	. $76178(16)$. $37283(14$)	$.73148(11)$	2.50(6)	$2.77(8)$	2.77 (6)	. $03(5)$.40(5)	. $17(5)$
C(1)	.74561 (36)	. 22375 (24)	. 67674 (23)	3.45(11)	$3.77(11)$	3.56(11)	-. 04 (8)	. 85 (11)	-.70(9)
C (2)	. $91492(23)$. $374,01(28)$. $52812(20)$	2.51 (9)	$4 \cdot 45(12)$	$4.18(11)$.16(9)	-. $06(8)$	-. 4.4 (10)
$c(3)$. $80332(35)$. 48153 (27)	. $64025(22)$	3.84 (11)	4.11 (12)	$4.74(12)$. 05 (9)	$1.65(10)$. 91 (10)
$C(4)$. $58779(24)$.1,2035(22)	$.77360(16)$	2.45(8)	3.09(9)	3.13(9)	.09(7)	. $31(7)$	-.09(8)
$C(5)$. 51843 (24)	. 32588 (23)	. $36515(14)$	2.63 (9)	3.45 (10)	$2.65(9)$	-. $13(8)$. 26 (7)	-. 30 (7)

Table 5. Intramplecular Distancea (in í) in Petaine Hxdrochrocide

Standard deviations have been estimated by the method of leest squares and are indicated in parenthesis.

Atoms	Distance	Atoms	Distance
$N-C(1)$	1.496(3)	$C(3)-H(7)$	$0.95(2)$
$\mathrm{N}-\mathrm{C}(2)$	1.498(3)	$C(3)-\mathrm{H}(8)$	0.96 (2)
$\mathrm{N}-\mathrm{C}(3)$	1.504 (3)	$\mathrm{C}(3) \mathrm{mH}(9)$	$0.92(2)$
$\mathrm{N}-\mathrm{C}(4)$	$1.497(2)$	$\mathrm{C}(4)-\mathrm{H}(10)$	$0.90(2)$
$C(4)-C(5)$	$1.500(3)$	$\mathrm{C}(4)-\mathrm{H}(11)$	$0.91(2)$
$C(5)=0(1)$	$1.316(2)$	$O(1)-4(12)$	$0.82(2)$
$c(5)-0(2)$	1.193(2)	$\mathrm{H}(12){ }^{\bullet} \mathrm{Cl}$	2.15(2)
$\mathrm{C}(1) \mathrm{H}(1)$	$0.95(2)$	$O(1) \cdot{ }^{\circ} \mathrm{Cl}$	2.955 (2)
$\mathrm{C}(1)-\mathrm{H}(2)$	0.92 (2)	$\mathrm{O}(2){ }^{\bullet \cdot} \mathrm{N}$	2.893(2)
$\mathrm{C}(1) \mathrm{m}(3)$	0.91 (2)	$O(2) \cdot \mathrm{C}(1)$	$2.979(3)$
$\mathrm{C}(2)-\mathrm{H}(4)$	$0.93(2)$	$O(2){ }^{\circ} \mathrm{C}(2)$	3.090(3)
$\mathrm{C}(2)-\mathrm{H}(5)$	0.93(2)	$O(2) \cdot{ }^{\circ} H(1)$	$2.38(2)$
$\mathrm{C}(2)-\mathrm{H}(6)$	$0.95(2)$	$\mathrm{O}(2){ }^{\circ} \mathrm{H}(4)$	2.44(2)

Table 6. Intramolecular Bond Anfles (in perges) for Betaine Hydrochtoride.

Atoms	Anctes
$C(1)-N-C(2)$	$109.75(16)$
$C(1)-N-C(3)$	$108.31(16)$
$C(1)-N-C(4)$	$111.70(15)$
$C(2)-N-C(3)$	$108.50(15)$
$C(2)-N-C(4)$	$111.11(14)$
$C(3)-N-C(4)$	$107.04(15)$
$N=C(4)-C(5)$	$116.35(15)$
$C(4)-C(5)-0(1)$	$125.97(17)$
$C(1)-C(5)-0(2)$	$125.07(17)$
$O(1)-C(5)-0(2)$	$108.4(15)$
$C(5)-0(1)-H(12)$	$168.4(21)$

Table 7. Shortst Interralecular Distancee (in i) fot Grystala of Betaine Hedrochloride

The equivalent position numbers are 1 for $x, y, z ; 2$ for $x, \frac{1}{2}-y, \frac{3}{2}+z$; 3 for $-x,-y,-z$; and 4 for $-x, \frac{1}{2}+y, \frac{1}{2}-z$.

Atom 1	Atom 2	Distance	Position Mumber of $\operatorname{Aton} 2$	Atom 2: $\underset{\sim}{x}$	Transl y	$\frac{\text { ations in }}{\text { z }}$
Cl	H(10)	. 2.79(2)	3	1	1.	2
	H(11)	$2.80(2)$	2	0	0	0
	H(2)	$2.88(2)$	2	-1	0	0
	H(6)	2.88(2)	3	1	1	2
	H(7)	$2.89(2)$	2	-1	0	0
	H(5)	3.02(2)	2	-1	0	0
	H(8)	3.18 (2)	3	1	1	2
	H(3)	3.20(2)	2	0	0	0
	H(9)	3.21(2)	4	1	-1	1
	H(4)	3.26(2)	1	-1	0	0
	H(8)	3.42(2)	4	1	-1.	1
$c(1)$	O(1)	3.270(3)	4	1	-1	1
	O(2)	3.34,8(3)	2	0	0	-1
C(2)	$0(1)$	3.440(3)	1	1	0	0
C(4)	$0(2)$	3.459(3)	4	1	0	1
$O(1)$	O(1)	3.396(3)	3	1	1.	2

Figure 1. Stereoscopic view of one molecule of betaine hydrochlonide.

Figure 2. Stereoscopic view of one unit cell of betaine hydrochloride.

References

Canepa, F.G., Pauling, P. and SHrum, H. (1966). Noture 210, 90\%.
Clastre, J. ($196 / 4$) . C.R.ACAD. Scj. Paris 259, 3267.
Cromer, D.T. (1965). Acta Cryst. 18, 17.
Croner, D.T. and Mann, J.B. (1968). Acta Cxysts. A21, 321.
Hurst, R.P. and Matsen, F.A. (1959). Acta Cayst, 12, 7.
Jellinek, F. (1957). Acta Cryst. 10, 277.
Johnson, C.K. (1965). ORIFP, A Fortran Thermel-EMIInsoided Plot Program for Crystal-Structure IIlustrations, ORNL 3794, revised. Oak Ridge, Tennossee.

Senko, M.E. and Templeton, D.H. (1960). Acta Cryst. $13,281$.
Stewart, R.F., Davidson, E.R. and Simpson, W.T. (1865). I.Chem. Phys. 42, 3175.

Tolbert, B.Mo, Adams, P.T., Bennett, E.L., Hughes, A.M., Kirk, Mo R., Lemmon, R.M., Noller, RoMo, Osiwald, Re and Calvin, M. (1953). J. Aner, Chem. Soce 75, 1867.

LEGAL NOTICE

This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:
A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or
B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.
As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.

TECHNICAL INFORMATION DIVISION LAWRENCE RADIATION LABORATORY

UNIVERSITY OF CALIFORNIA
BERKELEY, CALIFORNIA. 94720

