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Abstract

This paper introduces a new notion of dispersion for kinetic equations solely based on the conservation 
laws and independent of the specific type of interactions. We present new a-priori estimates for kinetic 
PDEs and improve the Bony-type functional approach.
© 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license 
(http://creativecommons .org /licenses /by /4 .0/).

1. Introduction

In this paper, we will study solutions of partial differential equations obtaining the form below, 
where (x, ξ) ∈R2n and t ∈ R+ or t ∈R:{

∂tf (x, ξ, t) + ξ · ∇xf (x, ξ, t) = I (f, x, ξ, t)

f (x, ξ,0) = f0(x, ξ)
(1.1)

The local conservation laws of mass, momentum, and energy for the interaction term I take the 
following form:

ˆ

Rn

I (f, x, ξ, t)

⎛
⎝ 1

ξ

|ξ |2

⎞
⎠dξ = 0 (1.2)

The left-hand side of equation (1.1) implies that particles will be transported along the trajectory 
of their velocities, while the right-hand side represents changes through possibly non-linear inter-
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actions of particles. It is possible to integrate the effects of interactions along the characteristics 
of linear transport to obtain a mild form of the equation:

f (x, ξ, t) = f0(x − tξ, ξ) +
tˆ

0

I (f, x + (s − t)ξ, ξ, s) ds, (1.3)

Definition 1.

1. A function f ∈ C0(Rn
x × Rn

ξ × [0, T )) ∩ C1(Rn
x × [0, T )) is a classical solution of equation 

(1.1) with initial value f0, if and only if it satisfies equation (1.1) and conservation laws (1.2)
point wise.

2. A function f ∈ C0([0, T ); L1(Rn
x × Rn

ξ )) is a mild solution of equation (1.1) with initial 
value f0, if and only if it satisfies the integral equation (1.3) for almost every (x, ξ, t) ∈
Rn ×Rn × [0, T ) and conservation laws (1.2) for almost every (x, t) ∈Rn × [0, T ).

For these solutions, the following conservation laws hold:

φ(ξ) = a|ξ |2 + b · ξ + c (a, b, c) ∈R×Rn ×R¨

R2n

f (x, ξ, t)φ(ξ) dxdξ =
¨

R2n

f0(x, ξ)φ(ξ) dxdξ
(1.4)

We obtain the notation below to represent total mass, momentum, and energy:

(mass) M =
¨

R2n

f0(x, ξ) dxdξ

(momentum) P =
¨

R2n

f0(x, ξ)ξ dxdξ

(energy) E =
¨

R2n

f0(x, ξ)
|ξ |2

2
dxdξ

(1.5)

Let θ(x, ξ) ∈ [0, π] for |x| > 0 and |ξ | > 0 represent the angle between the specified vectors, 
and let B(x, R) ⊂ Rn be the ball of radius R centered at x. When necessary, we will use the 
notation Bx/ξ to distinguish between subsets of the spatial variable x and the velocity variable ξ .

Note that conservation laws (1.2) have no dependency on the specific structure of interactions. 
The general formalism of this paper is applicable to kinetic PDEs such as the Boltzmann equation 
with an arbitrary collision kernel or the Landau kinetic equation. A major difficulty in the analysis 
of kinetic PDEs is due to grazing interactions [7]. We will introduce a new approach to overcome 
this challenge.

The main results of this paper are formulated via four theorems that will be discussed and 
compared in this introduction. Section 1.1 and Section 1.2 introduce new estimates for kinetic 
equations based on conservation laws. Section 1.3 develops a new notion of dispersion and 
336



N. Moini Journal of Differential Equations 379 (2024) 335–362
demonstrates a relation between the Landau kinetic equation and other kinetic PDEs in the con-
text of grazing interactions. Section 1.4 and Section 1.5 discuss the technical ideas behind the 
proofs. The proofs follow in their appropriate order in Section 2.

1.1. Morawetz estimates

We begin with two estimates for solutions of (1.1). These estimates are formulated for en-
sembles of particles and interactions, and they are analogous to Morawetz-type estimates in the 
context of wave or Schrodinger equations [17,18].

Theorem 1. Assume n ≥ 2, R > 0 and f (x, ξ, t) ≥ 0 is a classical solution of (1.1) such that:

f0(x, ξ) ∈ L1
(1+|ξ |2)(R

n
x ×Rn

ξ )

∂tf,∇xf ∈ L1
loc(R

+
t ;L1

(1+|ξ |2)(R
n
x ×Rn

ξ ))
(1.6)

Then for some Cn, depending only on the dimension, we have:

1

R

∞̂

0

ˆ

Rn

ˆ

Bx(0,R)

f (x, ξ, t)|ξ |2 dxdξdt < Cn

√
ME (1.7)

And:

1

R

∞̂

0

ˆ
· · ·

ˆ

R3n×Bx(x0,R)

f (x, ξ, t)f (x0, ξ0, t)|ξ − ξ0|2 dxdξdx0dξ0dt < CnM
√

(2ME − |P|2)

(1.8)

Remarks.

1. Bony [3] proved an estimate similar to (1.8) for a class of 1-dimensional discrete models. His 
work was subsequently extended to 1-dimensional continuous models by Cercignani [5,6], 
who used it to prove the existence of global weak solutions to the 1-dimensional Boltzmann 
equation. Ha and Noh [10] extended the Bony functional approach to higher dimensions; 
for instance, they proved the following a priori estimate for the 3-dimensional Boltzmann 
equation without any assumption on the smallness of mass:

1

R

∞̂

0

ˆ
· · ·

ˆ

R9×Bx(x0,R)

f (x, ξ, t)f (x0, ξ0, t)|ξ − ξ0|2 sin2 θ(x − x0, ξ − ξ0) dxdξdx0dξ0dt < ∞

The previous theorem improves the result above and provides two new estimates, likewise 
without small-data assumptions. Another extension of the Bony functional approach can be 
found in the recent work of Serre on symmetric divergence-free tensors and compensated 
integrability, see Theorem 3.3 in [15].
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2. Morawetz-type methods can be described as follows: multiplying both sides of a PDE by 
an appropriate initial expression and integrating over space-time, followed by integration by 
parts. The goal is to choose the initial expression such that it yields terms with a definite sign. 
A key observation is that selecting an initial expression resembling the radial derivative2, 
allows us to achieve this goal. In the context of kinetic equations, functionals based on the 
expression below play a comparable role:

(x − x0) · (ξ − ξ0)

|x − x0| (1.9)

This expression can be interpreted as a measure of dispersion. The proof of Theorem 1 builds 
on the idea above and brings forth a new concept, namely the blind cone of an observer. This 
concept will be discussed thoroughly by the end of this introduction and it will be employed 
to formulate a new notion of dispersion.

3. Estimates (1.7) and (1.8) can be seen roughly as the gain of integrability via conservation 
laws; in contrast, the propagation of regularity for kinetic equations, which are first-order 
hyperbolic, does not follow from a-priori bounds. However, there are methods such as the 
velocity-averaging lemmas, initiated by Golse, Perthame, Lions, and Sentis [9], that prove 
macroscopic quantities (e.g., 

´
f (x, ξ, t)φ(ξ) dξ ) gain regularity and smoothness properties 

even when the underlying distribution does not.

Dispersive properties of kinetic transport equation have been studied extensively [13]. Con-
sider the equation below for g(x, ξ, t), where (x, ξ) ∈R2n and t ∈R:

{
∂tg(x, ξ, t) + ξ · ∇xg(x, ξ, t) = 0

g(x, ξ,0) = g0(x, ξ)
(1.10)

This situation is equivalent to having I = 0 in equation (1.1). We will use the notation g ex-
clusively for this linear case to avoid any confusion with the non-linear setting, which is the 
main subject of this paper. The explicit solution g(x, ξ, t) = g0(x − tξ, ξ) solves equation (1.10), 
nonetheless many properties of this equation are far from trivial. Bardos and Degond [1] demon-
strated a notion of dispersion for solutions of the linear equation in terms of the following decay:

|
ˆ

Rn

g(x, ξ, t) dξ | < 1

tn
‖g0(x, ξ)‖L1(Rn

x ;L∞(Rn
ξ )) (1.11)

A more intricate approach for the mathematical demonstration of dispersion has been done 
by Castella and Perthame [4,13] providing estimates over the whole space in Lp

t (L
q
x(Lr

v)), for 
solutions of the linear equation and a specific range of exponents. These estimates are analogous 
to a collection of inequalities developed by Strichartz for the Schrodinger equation and they have 
been the subject of active research in the contexts of kinetic, Schrodinger and wave equations 
[2,11,18]. Another dispersive estimate for the linear equation is by Lions and Perthame [13]:

2 For instance, x · ∇u
is the radial derivative for solutions of the Schrodinger equation.
|x|
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1

R

+∞ˆ

−∞

ˆ

Rn

ˆ

Bx(0,R)

|g(x, ξ, t)||ξ | dxdξdt ≤ 2‖g0(x, ξ)‖L1(Rn
x×Rn

ξ ) (1.12)

The equality holds as R goes to infinity. Note that estimates (1.11) and (1.12) are for the linear 
equation and are not directly applicable to the non-linear case. However, they are powerful tools 
in the small-data setting, where they can be used for the corresponding inhomogeneous linear 
PDE. In this paper, we will not make any small-data assumptions.

1.2. New a-priori estimates

Adopt the following notation:

A(t) =
¨

R2n

f (x, ξ, t)x · ξ dxdξ

AI (t) =
˘

R4n

f (x, ξ, t)f (x0, ξ0, t)(x − x0) · (ξ − ξ0) dxdξdx0dξ0

X(t) =
¨

R2n

f (x, ξ, t)|x|2 dxdξ

XI (t) =
˘

R4n

f (x, ξ, t)f (x0, ξ0, t)|x − x0|2 dxdξdx0dξ0

(1.13)

We introduce a notion of uncertainty associated with particles and interactions:

U(t) =
¨

R2n

f (x, ξ, t)|x||ξ | dxdξ (1.14)

UI (t) =
˘

R4n

f (x, ξ, t)f (x0, ξ0, t)|x − x0||ξ − ξ0| dxdξdx0dξ0 (1.15)

The justification for the terminology above will be discussed after the next theorem. The inter-
esting observation is that the following quantities are a-priori bounded:

G = sup
t

(U(t) − A(t)) (1.16)

GI = sup
t

(UI (t) − AI (t)) (1.17)

Theorem 2. Assume n ≥ 1 and f (x, ξ, t) ≥ 0 is a mild solution of (1.1) such that:

f0(x, ξ) ∈ L1
(1+|x|2+|ξ |2)(R

n
x ×Rn

ξ )

I ∈ L1 (R+;L1
2 2 (Rn ×Rn))

(1.18)

loc t (1+|x| +|ξ | ) x ξ
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Then:

G ≤ √
2X(0)E − A(0) (1.19)

GI ≤
√

2XI (0)(2ME − |P|2) − AI (0) (1.20)

Moreover:

A(t) = A(0) + 2tE (1.21)

AI (t) = AI (0) + 2t (2ME − |P|2) (1.22)

X(t) = X(0) + 2tA(0) + 2t2E (1.23)

XI (t) = XI (0) + 2tAI (0) + 2t2(2ME − |P|2) (1.24)

Remarks.

1. To the best of the author’s knowledge, the a-priori estimates (1.19) and (1.20) have not been 
previously studied. These estimates will be employed to formulate a new notion of dispersion.

2. Equation (1.23) has been explored within the framework of conservation laws in diverse 
contexts; refer to Proposition 2.11 in [13] for kinetic transport equation, and for non-linear 
equations like the Boltzmann equation, see [12]. This equation is similar to Morawetz and 
Virial identities, which can be found in both classical and quantum settings; consider chapter 
1.5 and equation (2.38) in [18]. Equations (1.21) to (1.24) are closely related to the following 
well-known observations:

X(0) =
¨

R2n

f (x, ξ, t)|x − tξ |2 dxdξ (1.25)

XI (0) =
˘

R4n

f (x, ξ, t)f (x0, ξ0, t)|x − x0 − t (ξ − ξ0)|2 dxdξdx0dξ0 (1.26)

3. An interesting implication of Theorem 2 is as follows: since A and AI go to infinity with time 
while G and GI remain bounded, we have:

lim
t→∞U(t) = +∞
lim

t→∞UI (t) = +∞ (1.27)

It is possible to interpret the uncertainty defined in (1.14) and (1.15) akin to its quantum me-
chanics counterpart, highlighting a fundamental limit on the precision of physical measurements. 
As in Fig. 1, consider an observer located at the origin and assume the speed of light is C. For 
each particle located at x there is a minimum delay of T = C−1|x| between the actual time of 
the measurement and observation. The quantity Tf (x, ξ, t)|ξ | = C−1f (x, ξ, t)|x||ξ | represents 
the uncertainty of measurement relative to an idle observer at the origin, due to this interval of 
delay for a particle at position x with velocity ξ . For a different formulation of uncertainty in the 
context of kinetic theory consider chapter I.5 in [7].
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Fig. 1. The uncertainty associated with a particle is proportional to both its velocity and its distance from the observer.

Fig. 2. The blind cone Cx0 (x, c) ⊂Rn is a subset of the space of velocities at point x. This illustration includes a blind 
cone at x relative to an idle observer at x0 and Kx0 (x, c, v) ⊂Rn.

1.3. A new notion of dispersion

We need to introduce a few concepts before explaining our main theorems. Define the blind 
cone with apex angle c > 0 at point x ∈Rn relative to an idle observer at x0 ∈Rn for |x−x0| > 0
as below:

Cx0(x, c) = {ξ ∈Rn
∣∣ θ(x − x0, ξ) /∈ [c/2,π − c/2] and |ξ | > 0} (1.28)

If the velocities of two particles at point x belong to the blind cone Cx0(x, c), then the angle 
of deflection between the particles is bounded by the apex angle of the cone. By including the 
velocities of idle particles in this set, i.e., particles with very small velocities, we will obtain 
the set of velocities associated with particles at a point in space whose interactions are almost 
grazing, that is either their angle of deflection or their relative velocity is very small:

Kx0(x, c, v) = Cx0(x, c) ∪ Bξ (0, v) v > 0 (1.29)

Consider Fig. 2 and note that both the angles of deflection and the velocities of parti-
cles depend on the observer. The expression above is based on an idle observer at point x0. 
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Fig. 3. An illustration of �x0 (c, v) ⊂ R2n. In this drawing, the balls have radius v, and cones with an apex angle c are 
oriented toward the idle observer x0 at the center.

It is possible to collect the velocities of these almost grazing particles throughout the entire 
space:

�x0(c, v) = {(x, ξ) ∈R2n
∣∣ ξ ∈ Kx0(x, c, v)} (1.30)

The set �x0(c, v) (refer to Fig. 3) consists of the velocities of all grazing particles relative to an 
idle observer at x0. The remarkable observation is the following: when averaged over time, the 
velocity of almost every particle belongs to this set, irrespective of how small c and v are chosen, 
and regardless of the specific type of interactions.

Theorem 3. Assume n ≥ 2 and f (x, ξ, t) ≥ 0 is a classical solution of (1.1) such that:

f0(x, ξ) ∈ L1
(1+|x|2+|ξ |2)(R

n
x ×Rn

ξ )

∂tf,∇xf ∈ L1
loc(R

+
t ;L1

(1+|x|2+|ξ |2)(R
n
x ×Rn

ξ ))
(1.31)

Then for any c > 0, v > 0 and x0 ∈Rn, we have:
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lim
T →∞

1

T

T̂

0

¨

�x0 (c,v)

f (x, ξ, t) dxdξdt = M (1.32)

Remarks.

1. To the best of the author’s knowledge, no similar notion of dispersion exists in the literature 
of the field.

2. The generality of this approach reveals a mathematical relationship between the Landau ki-
netic equation and other kinetic PDEs in the context of grazing interactions. We will postpone 
this discussion until after presenting the next theorem, which extends the results above.

We will extend the previous theorem to the ensemble of interactions using Galilean invariance. 
Recall the notion of a blind cone with respect to an idle observer (1.28). We will now expand this 
definition for moving observers. Define the blind cone with apex angle c > 0 at x ∈ Rn, relative 
to an observer at x0 ∈Rn moving with velocity ξ0 ∈Rn for |x − x0| > 0 as below:

C(x0,ξ0)(x, c) = {ξ ∈ Rn
∣∣ θ(x − x0, ξ − ξ0) /∈ [c/2,π − c/2] and |ξ − ξ0| > 0} (1.33)

Following the same approach as above, we will extend the definition given in (1.29) to accom-
modate a moving observer:

K(x0,ξ0)(x, c, v) = C(x0,ξ0)(x, c) ∪ Bξ (ξ0, v) v > 0 (1.34)

Note that K(x0,ξ0)(x, c, v) consists of velocities of particles at point x such that their inter-
actions are almost grazing relative to the moving observer. Now, let us define �(c, v) as the 
collection of these velocities:

�(c, v) = {(x0, ξ0, x, ξ) ∈ R4n
∣∣ ξ ∈ K(x0,ξ0)(x, c, v)} (1.35)

The set �(c, v) builds upon �x0(c, v) by considering the relative velocity of two interacting parti-
cles at different locations, in which the roles of observer and particle are interchangeable. Similar 
to the previous theorem, we make the following remarkable observation: averaged over time, al-
most every interaction occurs between particles whose velocities belong to �(c, v), regardless of 
how small c and v are chosen.

Theorem 4. Assume n ≥ 2 and f (x, ξ, t) ≥ 0 is a classical solution of (1.1) such that:

f0(x, ξ) ∈ L1
(1+|x|2+|ξ |2)(R

n
x ×Rn

ξ )

∂tf,∇xf ∈ L1
loc(R

+
t ;L1

(1+|x|2+|ξ |2)(R
n
x ×Rn

ξ ))
(1.36)

Then for any c > 0 and v > 0, we have:

lim
T →∞

1

T

T̂ ˘
f (x, ξ, t)f (x0, ξ0, t) dxdξdx0dξ0dt = M2 (1.37)
0 �(c,v)
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Remarks.

1. Theorem 3 and Theorem 4 introduce a new notion of dispersion: as uncertainty increases over 
time (see (1.27)), particles move away in an asymptotically radial manner from any observer 
(refer to Fig. 3). These results suggest that as time approaches infinity, it seems almost every 
particle originates from the observer’s location and almost every interaction is grazing relative 
to that observer, thereby establishing a general notion of dispersion.

2. For v = +∞, equations (1.32) and (1.37) follow directly from the conservation of mass across 
the entire space. Theorem 3 and Theorem 4 demonstrate that by integrating over smaller 
subsets �x0(c, v) ⊂ R2n and �(c, v) ⊂ R4n, we can still obtain similar equations for arbitrarily 
small positive c and v. Note that as c and v approach zero, these sets converge to measure-zero 
subsets.

Landau introduced his kinetic equation as a variation of the Boltzmann equation for Coulomb 
forces [7,21]. There are other variations of the main equation that can be obtained as a limit of the 
Boltzmann equation for potentials corresponding to the domination of grazing interactions [20]. 
Desvillettes [8] demonstrated this asymptotic relation by obtaining the Fokker–Planck–Landau 
equation from the Boltzmann equation. Therefore, the Landau equation is not only interesting in 
itself but also because of its connection to the Boltzmann equation when grazing interactions are 
not neglected. Theorem 3 and Theorem 4 prove that for any kinetic equation defined over the en-
tire space, grazing interactions dominate irrespective of the specific structure of the interactions, 
and solely under the assumption of conservation laws.

1.4. Blind cones and grazing interactions

In this section, we will discuss a technical lemma regarding the blind cones that will be used in 
the proofs. The important observation concerning the blind cones is as follows: for any bounded 
region of the spatial variable, it is possible to have three observers such that their blind cones 
intersect trivially at every point in the region.

Lemma 1. Assume R > 0, n ≥ 2 and Oi ∈ ∂B(0, R) ⊂ Rn
x are 3 distinct points for 1 ≤ i ≤ 3. 

Then, there exists c0 > 0 such that for all 0 < c < c0 we have:

CO1(x, c) ∩ CO2(x, c) ∩ CO3(x, c) = ∅ ∀x ∈ B(0,R) (1.38)

And in general for any (x0, ξ0) ∈ R2n:

C(x0+O1,ξ0)(x, c) ∩ C(x0+O2,ξ0)(x, c) ∩ C(x0+O3,ξ0)(x, c) = ∅ ∀x ∈ B(x0,R) (1.39)

An intuitive interpretation of this lemma is that three observers are enough to cover any 
bounded region of the spatial variable. In other words, almost every interaction is non-grazing 
relative to at least one of the three observers, providing a method to address the challenge of 
grazing interactions. It is worth noting that three moving observers serve the same purpose for 
a bounded moving region. This lemma will be used in the proof of Theorem 1, and the concept 
of the blind cone is central to the formulation of dispersion in Theorem 3 and Theorem 4, as 
discussed in the previous section.
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1.5. Galilean invariance and uncertainty

The introduction of blind cones is based on the intuition behind the notions of Galilean invari-
ance and uncertainty. Galilean invariance is the assumption that the laws of mechanics remain 
unchanged relative to different inertial frames of reference. In classical mechanics, Galilean in-
variance is a consequence of the conservation laws of kinetic energy and momentum. However, it 
is also possible to start with Galilean invariance as an axiom to foster a different perspective. For 
example, consider two colliding billiard balls with masses m and m∗, initially moving with ve-
locities (V , V∗) ∈ R6 before the collision and (V ′, V ′∗) ∈ R6 after the collision. The conservation 
laws of kinetic energy and momentum imply:

m|V |2 + m∗|V∗|2 = m|V ′|2 + m∗|V ′∗|2

mV + m∗V∗ = mV ′ + m∗V ′∗
(1.40)

It is possible to rephrase these axioms in terms of the conservation of energy and Galilean in-
variance. In other words, kinetic energy is conserved relative to any observer moving with an 
arbitrary velocity ξ0:

m|V − ξ0|2 + m∗|V∗ − ξ0|2 = m|V ′ − ξ0|2 + m∗|V ′∗ − ξ0|2 ∀ξ0 ∈ R3 (1.41)

The two formulations (1.40) and (1.41) are equivalent, and they can be derived from each 
other. Nonetheless, the second formulation, based on Galilean invariance, leads to the follow-
ing ideas:

1. The angle of deflection before and after an interaction depends on the observer.
2. Even if we assume that there is a maximum magnitude for the velocity of an observer, i.e., 

if we assume |ξ0| is bounded by the speed of light, the two formulations (1.40) and (1.41)
remain equivalent. This suggests the existence of a notion of uncertainty inherent solely in the 
conservation laws.

The observations above can be used to study irreversibility in the context of conservation laws. 
The theories based on conservation laws are advantageous due to their considerable generality; 
they remain valid independently of the specific type of interactions. However, Boltzmann-type 
entropy estimates are lost since they depend on the structure of the Boltzmann collision operator. 
Nevertheless, it is possible to develop other notions of entropy to study irreversibility based on the 
conservation laws. For interesting discussions on this subject, including a thorough comparison 
with the works of Peter Lax, consider the lecture notes by Tartar [19]. For instance, entropy can 
be defined as the average uncertainty in a system. This formulation of entropy is closely related 
to the following fundamental question: What are the differential constraints upon which Jensen’s 
inequality holds true for a non-concave function (see section 1.2 in [15]).

An important attribute of Boltzmann entropy, besides its monotonicity, is its exclusive depen-
dence on interactions, which makes it suitable for the study of irreversibility. In other words, it 
remains constant for the linear equation (1.10). The notion of uncertainty discussed in this paper 
shares a comparable property. Consider the following computation:
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U(T ) − A(T ) = U(0) − A(0) +
T̂

0

d

dt
(U(t) − A(t)) dt

= U(0) − A(0) +
T̂

0

d

dt

(¨
R2n

f (x + tξ, ξ, t)(|x + tξ |||ξ | − (x + tξ ) · ξ) dxdξ
)
dt

Thus, at least in a formal sense, we obtain:

U(T ) − A(T ) = U(0) − A(0) +
T̂

0

¨

R2n

I (x, ξ, t)|x||ξ | dxdξdt

︸ ︷︷ ︸
i(f,T )

−
T̂

0

¨

R2n

f (x, ξ, t)|ξ |2(1 − cos (θ(x, ξ))) dxdξdt

︸ ︷︷ ︸
e(f,T )

Equivalently:

i(f, T ) = U(T ) − A(T ) − U(0) + A(0) + e(f,T ) (1.42)

Theorem 2 yields the following bounds:

−U(0) + A(0) + e(f,T ) ≤ i(f, T ) ≤ G − U(0) + A(0) + e(f,T ) (1.43)

Note that although i(f, T ) is explicitly defined via the interaction term I , the right-hand side of 
equation (1.42) depends only on f . In the case of a non-negative solution to the linear transport 
equation g as in (1.10), we have i(g, T ) = 0, therefore (1.43) implies:

0 ≤
∞̂

0

¨

R2n

g(x, ξ, t)|ξ |2(1 − cos (θ(x, ξ))) dxdξdt

︸ ︷︷ ︸
lim

T →∞ e(g,T )

≤
¨

R2n

g0(x, ξ)|x||ξ |(1 − cos (θ(x, ξ))) dxdξ (1.44)

In this linear case, the difference between U(T ) and A(T ) is monotone and it reaches a minimum 
as T → ∞.

In the general non-linear case (1.1), the functional i(f, T ) is non-zero and it can be interpreted 
as a measure of irreversibility without any reference to the specific type of interactions. The 
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Bony-type functionals based on (1.9) can be seen as a measure of dispersion. Similarly, the 
functionals based on the expression below can be used to study irreversibility via uncertainty:

|x − x0||ξ − ξ0| − (x − x0) · (ξ − ξ0) (1.45)

The estimates discussed in this paper are valid independently of the specific structure of in-
teractions and they are solely based on the conservation laws. Another comparable approach is 
the study of divergence-free symmetric tensors that model many physical settings. For instance, 
the recent theory of compensated integrability developed by Serre utilizes the determinant map 
over the space of symmetric tensors to demonstrate estimates for time-space integrals based on 
conservation laws [16]. These estimates are applicable to a variety of equations including the 
Boltzmann equation, the BGK model, discrete velocity models, wave equation, Maxwell equa-
tions, and Vlasov–Poisson equation [14,15].

We will conclude this introduction with a scenario where Galilean invariance does not hold. 
Consider a system of an ideal gas confined in a finite-volume box, with no energy exchange with 
the external environment. In this setting, particles experience specular reflections at the boundary. 
For this configuration, momentum is not conserved in order to maintain the boundary. In other 
words, this model is not Galilean invariant because energy is only conserved for an observer at 
rest with the box. In contrast, equation (1.1) spans the entire space and is Galilean invariant.

2. Proofs

This section provides proofs, in the appropriate order, for the results discussed in the intro-
duction, starting with the technical lemma discussed in Section 1.4.

Proof of Lemma 1. For an arbitrary x ∈ B(0, R) define P as below:

P(x, c) = ∂B(0,R) ∩ CO1(x,2c)

For each x, the set P(x, c) is contained in ∂B(0, R) and it consists of two path connected com-
ponents (see Fig. 4). Consider the longest geodesic path on each component, set K(x) to be the 
maximum length of the two and let K0 be the supremum of K(x) for all x ∈ B(0, R). For any R, 
it is possible to choose c small enough (independent of x) such that K0 becomes as small as de-
sired. Now set c small enough such that K0 becomes smaller than the length of geodesic path on 
the sphere between any pair of the three Oi . The pigeon hole principle implies that, since each 
path connected component of P(x, c) can only contain maximum one of the three observers, 
there exists an Oi such that Oi /∈ P(x, c). Therefore, for every x ∈ B(0, R), there exists an Oi

such that the blind cones COi
(x, c) and CO1(x, c) have an empty intersection:

COi
(x, c) ∩ CO1(x, c) = ∅

This completes the proof of (1.38). To prove (1.39), note that the equation above implies that for 
any (x0, ξ0) ∈ R2n and all x ∈ B(x0, R), there exists an Oi such that:

C(x +O ,ξ )(x, c) ∩ C(x +O ,ξ )(x, c) = ∅ �
0 i 0 0 1 0
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Fig. 4. A possible configuration of the three observers. This drawing includes blind cones CO1 (x, c), CO1 (x, 2c), 
CO3 (x, c) and ball Bx(0, R). In this example, we have O3 /∈ P and CO1 (x, c) ∩ CO3 (x, c) = ∅.

Now we are ready to prove Theorem 1 using the previous lemma and (1.9). In the following 
proof, we will discuss how to use the blind cones to overcome the difficulties due to grazing 
particles and interactions.

Proof of Theorem 1. Multiply both sides of equation (1.1) with 
(x − x0) · ξ

|x − x0| for x0 ∈Rn to get:

∂tf (x, ξ, t)
(x − x0) · ξ

|x − x0| + ξ · ∇xf (x, ξ, t)
(x − x0) · ξ

|x − x0| = I (f, x, ξ, t)
(x − x0) · ξ

|x − x0|
Integrate over x and ξ , followed by a change of variables:

∂t

¨

R2n

f (x + x0, ξ, t)
x · ξ
|x| dxdξ +

¨

R2n

ξ · ∇xf (x + x0, ξ, t)
x · ξ
|x| dxdξ

=
¨

R2n

I (f, x + x0, ξ, t)
x · ξ
|x| dxdξ = 0

The last equality is due to (1.2). Continue with an integration by parts with respect to x, we get:

∂t

¨

R2n

f (x + x0, ξ, t)
x · ξ
|x| dxdξ =

¨

R2n

1

|x| |ξ |2 sin2(θ(x, ξ))f (x + x0, ξ, t) dxdξ

The positive derivative appearing in the previous equation is the time derivative of a bounded 
quantity:
348



N. Moini Journal of Differential Equations 379 (2024) 335–362
∣∣¨
R2n

f (x + x0, ξ, t)
x · ξ
|x| dxdξ

∣∣ ≤
¨

R2n

f (x + x0, ξ, t)|ξ | dxdξ

≤ (

¨

R2n

f (x, ξ, t)|ξ |2 dxdξ)1/2(

¨

R2n

f (x, ξ, t) dxdξ
)1/2 = √

2ME

The boundedness of this quantity and positivity of its derivative imply that for an arbitrary x0 ∈
Rn the following limit exists:

lim
t→∞

¨

R2n

f (x + x0, ξ, t)
(x · ξ)

|x| dxdξ ≤ √
2ME (2.1)

Furthermore:

∞̂

0

¨

R2n

f (x + x0, ξ, t)
1

|x| |ξ |2 sin2(θ(x, ξ)) dxdξdt

=
∞̂

0

¨

R2n

f (x, ξ, t)
1

|x − x0| |ξ |2 sin2(θ(x − x0, ξ)) dxdξdt ≤ 2
√

2ME (2.2)

Recall equation (1.28) for the blind cone Cx0(x, c). We can change the domain of integration in 
(2.2) to a new set, such that it has a lower bound for sin2 (θ(x − x0, ξ)) and |x − x0|−1 in terms 
of R and c, i.e., inside a ball of radius R in x and outside of blind cones in ξ :

sin2(c)
1

R

∞̂

0

ˆ

Bx(x0,R)

ˆ

Rn\Cx0 (x,c)

f (x, ξ, t)|ξ |2 dξdxdt

≤
∞̂

0

¨

R2n

f (x, ξ, t)
1

|x − x0| |ξ |2 sin2(θ(x − x0, ξ)) dξdxdt ≤ 2
√

2ME

Let Wx0(R, c) represent the domain of integration on the left hand side of the inequality above:

Wx0(R, c) = {(x, ξ) ∈ B(x0,R) ×Rn
∣∣ ξ ∈ (Rn \ Cx0(x, c))} (2.3)

We can re-write the previous estimate as:

∞̂

0

¨

Wx0 (R,c)

f (x, ξ, t)|ξ |2 dξdxdt ≤ 2R

sin2(c)

√
2ME (2.4)

Recall Lemma 1 and Fig. 4. Fix any 3 distinct points Oi ∈ ∂Bx(0, R) and continue with the 
following definitions for J1, J2 and J3:
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Ji =
∞̂

0

¨

WOi
(2R,c)

f (x, ξ, t)|ξ |2 dξdxdt ≤ 4R

sin2(c)

√
2ME (2.5)

Consider the following two observations. First, Lemma 1 implies we can choose c small enough 
such that for any x ∈ B(0, R) the 3 blind cones at x (relative to the 3 observers) intersect trivially:

CO1(x, c) ∩ CO2(x, c) ∩ CO3(x, c) = ∅ ∀x ∈ B(0,R)

The second observation is that:

B(0,R) ⊂ B(O1,2R) ∩ B(O2,2R) ∩ B(O3,2R)

These observations imply that for sufficiently small c, any subset of Bx(0, R) ×Rn is covered at 
least once in the domains of integration for J1, J2 and J3:

Bx(0,R) ×Rn ⊂ ∪3
i=1WOi

(2R,c)

Therefore, the positivity of integrands implies:

∞̂

0

ˆ

Bx(0,R)

ˆ

Rn

f (x, ξ, t)|ξ |2 dξdxdt ≤ J1 + J2 + J3 ≤ 12R

sin2(c)

√
2ME

Note that we can select three Oi in a way that maximizes the minimum central angle between 
any pair of them (dependent only on the dimension). Consequently, we can choose a small c that 
is independent of R. This completes the proof of (1.7).

We continue with a proof for (1.8). Let Z(t) be defined as:

Z(t) =
˘

R4n

f (x, ξ, t)f (x0, ξ0, t)
(x − x0) · (ξ − ξ0)

|x − x0| dxdξdx0dξ0

We have:

|Z(t)| ≤
˘

R4n

f (x, ξ, t)f (x0, ξ0, t)|ξ − ξ0| dxdξdx0dξ0

≤ (˘
R4n

f (x, ξ, t)f (x0, ξ0, t)|ξ − ξ0|2 dxdξdx0dξ0
)1/2

× (˘
R4n

f (x, ξ, t)f (x0, ξ0, t) dxdξdx0dξ0
)1/2

Consider that:
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˘

R4n

f (x, ξ, t)f (x0, ξ0, t) |ξ − ξ0|2 dxdξdx0dξ0 = 2(2ME − |P|2) (2.6)

Therefore the following bound holds true:

|Z(t)| ≤ M
√

2(2ME − |P|2) (2.7)

Continue with differentiating Z(t):

d

dt
Z(t) =

¨

R2n

f (x0, ξ0, t)

¨

R2n

∂tf (x, ξ, t)
(x − x0) · (ξ − ξ0)

|x − x0| dxdξ

︸ ︷︷ ︸
Z1

dx0dξ0

+
¨

R2n

f (x, ξ, t)

¨

R2n

∂tf (x0, ξ0, t)
(x − x0) · (ξ − ξ0)

|x − x0| dx0dξ0

︸ ︷︷ ︸
Z2

dxdξ

(2.8)

Using the equation (1.1) we get:

Z1 =
¨

R2n

I (f, x, ξ, t)
(x − x0) · (ξ − ξ0)

|x − x0| dxdξ −
¨

R2n

ξ · ∇xf (x, ξ, t)
(x − x0) · (ξ − ξ0)

|x − x0| dxdξ

From the conservation laws (1.2) we know that the first term on the right hand side of the equation 
above is zero, therefore:

Z1 = −
¨

R2n

ξ · ∇xf (x, ξ, t)
(x − x0) · (ξ − ξ0)

|x − x0| dxdξ

Similarly for Z2 we get:

Z2 = −
¨

R2n

ξ0 · ∇xf (x0, ξ0, t)
(x − x0) · (ξ − ξ0)

|x − x0| dx0dξ0

We will continue with an integration by parts with respect to x for Z1:

Z1 =
¨

R2n

f (x, ξ, t)
ξ · (ξ − ξ0)|x − x0|2 − ((x − x0) · ξ)((x − x0) · (ξ − ξ0))

|x − x0|3 dxdξ

Similarly for Z2 we get:

Z2 =
¨

2n

f (x0, ξ0, t)
−ξ0 · (ξ − ξ0)|x − x0|2 + ((x − x0) · ξ0)((x − x0) · (ξ − ξ0))

|x − x0|3 dx0dξ0
R
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Substitute the computations above for Z1 and Z2 in (2.8) to obtain:

d

dt
Z(t) =

˘

R4n

f (x, ξ, t)f (x0, ξ0, t)
1

|x − x0| |ξ − ξ0|2 sin2 (θ(x − x0, ξ − ξ0)) dξdxdξ0dx0

Since the time derivative of Z(t) is positive, from estimate (2.7) we get:

∞̂

0

˘

R4n

f (x, ξ, t)f (x0, ξ0, t)
1

|x − x0| |ξ − ξ0|2

× sin2 (θ(x − x0, ξ − ξ0)) dξdxdξ0dx0dt ≤ 2M
√

2(2ME − |P|2)

Recall the definition of a blind cone with respect to a moving observer from (1.33). By removing 
blind cones C(x0,ξ0)(x, c) from the space of velocities and integrating within Bx(x0, R), we can 
impose lower bounds for |x − x0|−1 and sin2 (θ(x − x0, ξ − ξ0)), hence the inequality above 
leads to:

∞̂

0

ˆ

Rn

ˆ

Rn

ˆ

Bx(x0,R)

ˆ

Rn\C(x0,ξ0)(x,c)

f (x, ξ, t)f (x0, ξ0, t)

× |ξ − ξ0|2 dξdxdξ0dx0dt ≤ 2R

sin2(c)
M

√
2(2ME − |P|2)

Obtain the following notation:

W(x0,ξ0)(R, c) = {(x, ξ) ∈ B(x0,R) ×Rn
∣∣ ξ ∈Rn \ C(x0,ξ0)(x, c)}

We can re-write the previous estimate as:

∞̂

0

ˆ
· · ·

ˆ

R2n×W(x0,ξ0)(R,c)

f (x, ξ, t)f (x0, ξ0, t)|ξ − ξ0|2 dξdxdξ0dx0dt ≤ 2R

sin2(c)
M

√
2(2ME − |P|2)

(2.9)

Recall Lemma 1 and (1.39). Choose 3 distinct points Oi ∈ ∂Bx(0, R) and define J1, J2 and J3
as below:

Ji =
∞̂

0

ˆ
· · ·

ˆ

R2n×W(x0+Oi ,ξ0)(2R,c)

f (x, ξ, t)f (x0, ξ0, t)|ξ − ξ0|2 dξdxdξ0dx0dt (2.10)

The following bounds are consequences of (2.9):
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Ji ≤ 4R

sin2(c)
M

√
2(2ME − |P|2) (2.11)

For convenience, obtain the notation below for the domain of integration of Ji in (2.10):

Yi = {(x0, ξ0, x, ξ) ∈R4n| (x, ξ) ∈ W(x0+Oi,ξ0)(2R,c)} (2.12)

Continue with the following two observations. First, from (1.39) we know that it is possible to 
choose the apex angle c small enough such that for any point x ∈ B(x0, R) the 3 blind cones 
C(x0+Oi,ξ0)(x, c) intersect trivially:

C(x0+O1,ξ0)(x, c) ∩ C(x0+O2,ξ0)(x, c) ∩ C(x0+O3,ξ0)(x, c) = ∅ ∀x ∈ B(x0,R)

And second observation is that:

B(x0,R) ⊂ B(x0 + O1,2R) ∩ B(x0 + O2,2R) ∩ B(x0 + O3,2R)

These two observations imply:

Y = {(x0, ξ0, x, ξ) ⊂ R4n| x ∈ B(x0,R)} ⊂ ∪3
i=1Yi (2.13)

In other words, any subset of Y is covered at least once in the domains of integration for J1, J2
and J3. Therefore, the positivity of integrands completes the proof:

∞̂

0

ˆ

Rn

ˆ

Rn

ˆ

Bx(x0,R)

ˆ

Rn

f (x, ξ, t)f (x0, ξ0, t)|ξ − ξ0|2 dξdxdξ0dx0dt ≤ J1 + J2 + J3

≤ 12R

sin2(c)
M

√
2(2ME − |P|2)

Note that small c can be chosen independent of R, similar as before. �
We continue with the proof of Theorem 2 for mild solutions using conservation laws. The new 

a-priori bounds (1.20) and (1.19) are the main results of this theorem.

Proof of Theorem 2. First, we will prove equations for A, AI , X and XI , and then we continue 
with proofs of the main results of the theorem for G and GI.

To prove (1.21), start with a change of variables:

A(t) =
¨

R2n

f (x, ξ, t)x · ξ dxdξ =
¨

R2n

f (x + tξ, ξ, t)(x + tξ ) · ξ dxdξ

=
¨

R2n

f (x + tξ, ξ, t)x · ξ dxdξ + t

¨

R2n

f (x + tξ, ξ, t)|ξ |2 dxdξ

Consequently from equation (1.3) we get:
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A(t) =
¨

R2n

f (x, ξ,0)x · ξ dxdξ +
tˆ

0

¨

R2n

I (x + sξ, ξ, s)x · ξ dxdξds

+ t

¨

R2n

f (x, ξ, t)|ξ |2 dxdξ

Hence using (1.2) leads to:

A(t) =
¨

R2n

f (x, ξ,0)x · ξ dxdξ +
tˆ

0

¨

R2n

I (x, ξ, s)(x − sξ) · ξ dxdξds

+ t

¨

R2n

f0(x, ξ)|ξ |2 dxdξ = A(0) + 2tE

To prove (1.22), start with a change of variables:

AI (t) =
˘

R4n

f (x, ξ, t)f (x0, ξ0, t) (x − x0) · (ξ − ξ0) dxdξdx0dξ0

=
˘

R4n

f (x + tξ, ξ, t)f (x0 + tξ0, ξ0, t) (x − x0) · (ξ − ξ0) dxdξdx0dξ0

+ t

˘

R4n

f (x, ξ, t)f (x0, ξ0, t) |ξ − ξ0|2 dxdξdx0dξ0

Using (2.6) we get:

AI (t) =
˘

R4n

f (x + tξ, ξ, t)f (x0 + tξ0, ξ0, t) (x − x0) · (ξ − ξ0) dxdξdx0dξ0

J

+ 2t (2ME − |P|2)

Substitute the equation below in J :

f (x + tξ, ξ, t)f (x0 + tξ0, ξ0, t)

= (f0(x, ξ) +
tˆ

0

I (x + sξ, ξ, s)ds)(f0(x0, ξ0) +
tˆ

0

I (x0 + zξ0, ξ0, z)dz)

After this substitution, from the symmetry between (x, ξ) and (x0, ξ0), and the conservation laws 
(1.2) we get:
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J = AI (0) + 2

tˆ

0

˘

R4n

I (x + sξ, ξ, t)f0(x0, ξ0)(x − x0) · (ξ − ξ0) dxdξdx0dξ0ds

+
tˆ

0

tˆ

0

˘

R4n

I (x + sξ, ξ, s)I (x0 + zξ0, ξ0, z)(x − x0) · (ξ − ξ0) dxdξdx0dξ0dsdz = AI (0)

Therefore:

AI (t) = AI (0) + 2t (2ME − |P|2)
We continue with a proof for (1.23):

X(t) =
¨

R2n

f (x, ξ, t)|x|2 dxdξ =
¨

R2n

f (x + tξ, ξ, t)|x + tξ |2 dxdξ

=
¨

R2n

f (x + tξ, ξ, t)(|x|2 + t2|ξ |2 + 2t (x · ξ)) dxdξ

Using the equation for A(t), conservation laws (1.2) and equation (1.25), we get:

X(t) = X(0) + 2t2E + 2t

¨

R2n

f (x, ξ, t)((x · ξ) − t |ξ |2) dxdξ = X(0) + 2tA(0) + 2t2E

To prove (1.24), start with the following observation:

XI (t) =
˘

R4n

f (x, ξ, t)f (x0, ξ0, t)

× (|x − x0 − t (ξ − ξ0)|2 − t2|ξ − ξ0|2 + 2t (x − x0) · (ξ − ξ0)
)
dxdξdx0dξ0

Using equation proved previously for AI(t) and equations (2.6) and (1.26), we can conclude:

XI (t) = XI (0) + 2tAI (0) + 2t2(2ME − |P|2)
Now we are ready to prove estimates (1.19) and (1.20). Start with the equation below:

U(t) − A(t) =
¨

R2n

f (x, ξ, t)|x||ξ | dxdξ −
¨

R2n

f (x, ξ, t)x · ξ dxdξ

=
¨

R2n

f (x + tξ, ξ, t)|x + tξ ||ξ | dxdξ − A(0) − 2tE

Continue with the triangle inequality and conservation of energy:
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U(t) − A(t) ≤
¨

R2n

f (x + tξ, ξ, t)(|x||ξ | + t |ξ |2) dxdξ − A(0) − 2tE

≤
¨

R2n

f (x + tξ, ξ, t)|x||ξ | dxdξ − A(0)

The Cauchy–Schwarz leads to:

U(t) − A(t) ≤ (

¨

R2n

f (x + tξ, ξ, t)|x|2 dxdξ)1/2(

¨

R2n

f (x + tξ, ξ, t)|ξ |2 dxdξ)1/2 − A(0)

Finally, using (1.25) and the conservation of energy we get:

U(t) − A(t) ≤ √
2X(0)E − A(0)

The right hand side of the inequality above is independent of time, therefore:

G = sup
t

(U(t) − A(t)) ≤ √
2X(0)E − A(0)

This concludes (1.19). To prove (1.20), implement the change of variables (x + tξ, x0 + tξ0)

followed by the triangle inequality to get:

UI (t)−AI (t) =
˘

R4n

f (x, ξ, t)f (x0, ξ0, t)
(
|x − x0||ξ − ξ0|− (x − x0) · (ξ − ξ0)

)
dξdxdξ0dx0

≤
˘

R4n

f (x + tξ, ξ, t)f (x0 + tξ0, ξ0, t)
(
|x − x0||ξ − ξ0| + t |ξ − ξ0|2

− (x − x0 + t (ξ − ξ0)) · (ξ − ξ0)
)

dξdxdξ0dx0

Therefore we have:

UI (t) − AI (t) ≤
˘

R4n

f (x + tξ, ξ, t)f (x0 + tξ0, ξ0, t)|x − x0||ξ − ξ0| dξdxdξ0dx0

Z1

−
˘

R4n

f (x + tξ, ξ, t)f (x0, ξ0 + tξ0, t)(x − x0) · (ξ − ξ0) dξdxdξ0dx0

Z2

We estimate Z1 using the Cauchy–Schwarz:
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Z1 ≤ (

˘

R4n

f (x + tξ, ξ, t)f (x0 + tξ0, ξ0, t)|x − x0|2 dξdxdξ0dx0)
1/2

× (

˘

R4n

f (x + tξ, ξ, t)f (x0 + tξ0, ξ0, t)|ξ − ξ0|2 dξdxdξ0dx0)
1/2

Therefore, (1.26) and (2.6) lead to:

Z1 ≤
√

2XI (0)(2ME − |P|2)

To estimate Z2 we will use (2.6) and (1.22) to get:

Z2 =
˘

R4n

f (x, ξ, t)f (x0, ξ0, t)
(
(x − x0) · (ξ − ξ0) − t |ξ − ξ0|2

)
dξdxdξ0dx0

= AI (t) − 2t (2ME − |P|2) = AI (0)

Therefore we get:

UI (t) − AI (t) ≤ Z1 − Z2 ≤
√

2XI (0)(2ME − |P|2) − AI (0)

This completes the proof of the theorem:

GI = sup
t

(UI (t) − AI (t)) ≤
√

2XI (0)(2ME − |P|2) − AI (0) �
We will use the previous results to prove Theorem 3 and Theorem 4. The following proofs 

demonstrate a new notion of dispersion using the blind cones.

Proof of Theorem 3. Recall definitions of �x0(c, v) and Kx0(x, c, v) from (1.29) and (1.30). 
Continue with the following two definitions for R > 0 and x0 ∈ Rn:

Nx0(R, c, v) = {(x, ξ) ∈R2n
∣∣ ξ ∈ (Rn \ Kx0(x, c, v)) and |x| > R}

Mx0(R, c, v) = {(x, ξ) ∈R2n
∣∣ ξ ∈ (Rn \ Kx0(x, c, v)) and |x| ≤ R}

Note the following observation due to the conservation of mass:

lim
T →∞

1

T

T̂

0

¨

R2n

f (x, ξ, t) dxdξdt = M

Consider Fig. 5, we will break the domain of integration above into three non overlapping sub-
sets, namely Nx (R, c, v), Mx (R, c, v) and �x (c, v):
0 0 0
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Fig. 5. We have R2n = Nx0 (R, c, v) ∪ Mx0 (R, c, v) ∪ �x0 (c, v).

lim
T →∞

1

T

T̂

0

( ¨

Nx0 (R,c,v)

f (x, ξ, t) dxdξ +
¨

Mx0 (R,c,v)

f (x, ξ, t) dxdξ +
¨

�x0 (c,v)

f (x, ξ, t) dxdξ
)
dt

= M (2.14)

We will obtain estimates for integrals over Mx0(R, c, v) and Nx0(R, c, v). As a consequence of 
Theorem 1 we have:

v2

∞̂

0

¨

Mx0 (R,c,v)

f (x, ξ, t) dxdξdt <

∞̂

0

ˆ

Rn

ˆ

Bx(x0,R)

f (x, ξ, t)|ξ |2 dxdξdt < ∞

From the previous estimate and (2.14) we get:

lim
T →∞

1

T

T̂

0

( ¨

Nx0 (R,c,v)

f (x, ξ, t) dxdξ +
¨

�x0 (c,v)

f (x, ξ, t) dxdξ
)
dt = M (2.15)

We continue with an estimation for the integral over Nx0(R, c, v). Theorem 2 allows us to control 
the total mass within Nx0(R, c, v):

¨

Nx0 (R,c,v)

f (x, ξ, t)(|x||ξ | − x · ξ) dxdξ ≤ G (2.16)

Note that:
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Rv(1 − cos(c))
¨

Nx0 (R,c,v)

f (x, ξ, t) dxdξ ≤
¨

Nx0 (R,c,v)

f (x, ξ, t)(|x||ξ | − x · ξ) dxdξ

Therefore (2.16) implies:

¨

Nx0 (R,c,v)

f (x, ξ, t) dxdξ ≤ G
Rv(1 − cos (c))

(2.17)

The equation above provides a bound for the total amount of mass within Nx0(R, c, v). Combine 
(2.17) with equation (2.15) to get:

M − G
Rv(1 − cos(c))

≤ lim inf
T →∞

1

T

T̂

0

(

¨

�x0(c,v)

f (x, ξ, t) dxdξ)dt ≤ M

Finally, because R can be arbitrary large and since Theorem 2 proved G is bounded, we conclude:

lim
T →∞

1

T

T̂

0

(

¨

�x0 (c,v)

f (x, ξ, t) dxdξ)dt = M �

The following proof extends Theorem 3 to the ensemble of interactions via Galilean invari-
ance.

Proof of Theorem 4. Recall definitions of K(x0,ξ0)(x, c, v) and �(c, v) from (1.34) and (1.35). 
Continue with the following two definitions for c > 0, v > 0 and R > 0:

N(R, c, v) = {(x0, ξ0, x, ξ) ∈ R4n
∣∣ ξ ∈ (Rn \ K(x0,ξ0)(x, c, v)) and |x − x0| > R}

M(R,c, v) = {(x0, ξ0, x, ξ) ∈R4n
∣∣ ξ ∈ (Rn \ K(x0,ξ0)(x, c, v)) and |x − x0| ≤ R}

Consider the equation below due to the conservation of mass:

lim
T →∞

1

T

T̂

0

˘

R4n

f (x, ξ, t)f (x0, ξ0, t)dξdxdξ0dξ0dt = M2

It is possible to divide R4n in the equation above into 3 mutuality exclusive sets:

R4n = N(R, c, v) ∪ M(R,c, v) ∪ �(c, v) (2.18)

Therefore we have:
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lim
T →∞

1

T

T̂

0

(˘
�(c,v)

f (x, ξ, t)f (x0, ξ0, t)dxdξdx0dξ0

+
˘

M(R,c,v)

f (x, ξ, t)f (x0, ξ0, t)dxdξdx0dξ0

+
˘

N(R,c,v)

f (x, ξ, t)f (x0, ξ0, t)dxdξdx0dξ0

)
dt = M2 (2.19)

The estimate (1.8) in Theorem 1 implies the bound below for the time integral of interactions 
within M(R, c, v):

v2

∞̂

0

˘

M(R,c,v)

f (x, ξ, t)f (x0, ξ0, t) dxdξdx0dξ0dt < ∞

Consequently from (2.19) we get:

lim
T →∞

1

T

T̂

0

(˘
�(c,v)

f (x, ξ, t)f (x0, ξ0, t) dxdξdx0dξ0

+
˘

N(R,c,v)

f (x, ξ, t)f (x0, ξ0, t) dxdξdx0dξ0

)
dt = M2 (2.20)

Now continue with Theorem 2 to estimate interactions within N(R, c, v):

Rv(1 − cos(c))
˘

N(R,c,v)

f (x, ξ, t)f (x0, ξ0, t) dxdξdx0dξ0

<

˘

N(R,c,v)

f (x, ξ, t)f (x0, ξ0, t)
(
|x − x0||ξ − ξ0| − (x − x0) · (ξ − ξ0)

)
dxdξdx0dξ0 ≤ GI

We get:

˘

N(R,c,v)

f (x, ξ, t)f (x0, ξ0, t) dxdξdx0dξ0 ≤ GI

Rv(1 − cos(c))

Use the inequality above in (2.20) to get:

M2 − GI

Rv(1 − cos(c))
≤ lim inf

T →∞
1

T

T̂

0

(

˘

�(c,v)

f (x, ξ, t)f (x0, ξ0, t) dxdξdx0dξ0)dt ≤ M2
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Since the estimate above is valid for an arbitrary R > 0 and because Theorem 2 proved GI is 
bounded, we conclude:

lim
T →∞

1

T

T̂

0

˘

�(c,v)

f (x, ξ, t)f (x0, ξ0, t) dxdξdx0dξ0dt = M2 �
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