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Role of pattern recognition receptors and the microbiota in 
neurological disorders

Ciara E. Keogh, Kavi M. Rude, Mélanie G. Gareau
Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of 
California, Davis, CA 95616, USA

Abstract

In recent years, the gut microbiota has been increasingly implicated in the development of many 

extraintestinal disorders, including neurodevelopmental and neurodegenerative disorders. Despite 

this growing connection, our understanding of the precise mechanisms behind these effects is 

currently lacking. Pattern recognition receptors (PRRs) are important innate immune proteins 

expressed on the surface and within the cytoplasm of a multitude of cells, both immune and 

otherwise, including epithelial, endothelial and neuronal. PRRs comprise four major subfamilies: 

the Toll-like receptors (TLRs), the nucleotide-binding oligomerization domain leucine rich 

repeats-containing receptors (NLRs), the retinoic acid inducible gene 1-like receptors and the C-

type lectin receptors. Recognition of commensal bacteria by PRRs is critical for maintaining host–

microbe interactions and homeostasis, including behaviour. The expression of PRRs on multiple 

cell types makes them a highly interesting and novel target for regulation of host–microbe 

signalling, which may lead to gut–brain signalling. Emerging evidence indicates that two of the 

four known families of PRRs (the NLRs and the TLRs) are involved in the pathogenesis of 

neurodevelopmental and neurodegenerative disorders via the gut–brain axis. Taken together, 

increasing evidence supports a role for these PRRs in the development of neurological disorders, 

including Alzheimer’s disease, Parkinson’s disease and multiple sclerosis, via the microbiota–gut–

brain axis.
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The microbiota-gut-brain (MGB) axis is involved in the pathogenesis of diseases both in the brain, 

including neurodevelopmental and neurodegenerative disorders, and diseases of the gut, including 

inflammatory bowel diseases. Pattern recognition receptors (PRRs) such as TLRs and NLRs are 

implicated in the development of these complex gut-brain disorders, in part via dysbiosis of the 

gut microbiota and alterations in the immune response.
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Introduction

The understanding of the importance of the gut microbiota and its role in regulation of the 

physiology of the brain has grown exponentially in recent years. Humans are home to 

millions of microorganisms that reside both on the body (on the surface of the skin) and 
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inside the body (gastrointestinal (GI) tract, nose and lungs). In fact, given this complex role, 

the gut microbiota is now considered to be a virtual organ in and of itself (Baquero & 

Nombela, 2012). Colonization of the microbiota begins at birth (Davis, 2016), with the early 

neonatal microbiome being dynamic and continuously modified as the child develops 

(Zhuang et al. 2019b). For example, breast-fed infants are host to species involved in the 

metabolism of colostrum present in breast milk, most notably Bifidobacteria infantis (Jiang 

et al. 2018). Upon the introduction of solid food, the infant microbiome shifts towards a 

more adult-like composition, increasing in its diversity and complexity (Ku et al. 2020). 

Additionally, studies have found that the gut microbiota is essential for the correct 

development of both the brain (Braniste et al. 2014; Lu et al. 2018) and the immune system 

(Schwarzer et al. 2019) beginning in early life. Therefore, recognition of commensal 

bacteria by the innate immune system is critical for maintaining host–microbe interactions 

and homeostasis, including behaviour.

Pattern recognition receptors

Pattern recognition receptors (PRRs) are part of the first line of innate immune defence 

following a pathological insult. They are expressed on multiple immune (leukocytes, 

macrophages, etc.) and non-immune cells (epithelial cells, endothelial cells and neurons) 

and respond to a variety of bacterial and viral ligands, including peptidoglycan (PGN), 

lipopolysaccharide (LPS), double stranded RNA, and CpG DNA, for example. PRRs 

comprise four major subfamilies: the Toll-like receptors (TLRs), the nucleotide-binding 

oligomerization domain leucin rich repeats-containing receptors (NLRs), the retinoic acid 

inducible gene 1-like receptors (RLRs), and the C-type lectin receptors (Walsh et al. 2013). 

In response to a pathological insult, the innate immune response is initiated by PRRs 

through binding of pathogen-associated molecular patterns (PAMPs), in turn triggering 

multiple intracellular signalling pathways, such as nuclear factor-κB (NF-κB), interferon 

regulatory factors and mitogen-activated protein kinase, resulting in production of cytokines 

and chemokines (Fawkner-Corbett et al. 2017). For the purposes of this review, we will 

focus on the TLR and the NLR families.

Despite continuous exposure to PAMPs in the lumen of the GI tract, intestinal epithelial cells 

(IECs) do not typically respond to commensal bacteria (Round & Mazmanian, 2009). This is 

due in part to PRR expression restricted to intracellular compartments, or basolateral 

expression in IECs, limiting their exposure to luminal PAMPs. In fact, commensal bacteria 

have been shown to be beneficial to the host (LeBlanc et al. 2017; Hiippala et al. 2018; 

Balakrishnan et al. 2019) by helping maintain immune surveillance. PRRs are crucial in 

maintaining these homeostatic interactions between the gut and the commensal microbiota, 

able to distinguish between pathogenic and commensal organisms. For example, distinct 

molecular signatures of the bacterial cell wall component PGN can elicit a variety of host 

immune gene patterns (Bersch et al. 2020). Commensal bacteria can drive myeloid 

differentiation primary response protein 88 (MyD88) signalling through TLR stimulation, 

inducing anti-microbial peptide production by Paneth cells that restrict bacterial colonization 

on the surface of the intestine, thereby limiting pro-inflammatory immune responses 

(Vaishnava et al. 2011). While other innate immune receptors also help maintain the balance 
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between the host and the microbiota, these studies highlight a critical role for PRRs in this 

function.

Dysbiosis, or the disruption of the composition of the gut microbiota, has been implicated in 

numerous diseases not only those that impact the GI tract (e.g. inflammatory bowel diseases 

(IBD); Lupp et al. 2007; Kang et al. 2010) but also in diseases of the brain (e.g. 

neurodevelopmental and neurodegenerative diseases; Sampson et al. 2016; Hughes et al. 
2018; Sun & Shen, 2018), lung (e.g. asthma; Liu et al. 2019; Zhuang et al. 2019a) and 

immune system (e.g. rheumatoid arthritis (Liu et al. 2013) and multiple sclerosis (MS; 

Cantarel et al. 2015)). While it remains unclear whether dysbiosis is causative or correlative 

in many cases, its impact on GI mucosal barrier function and host–microbe interactions can 

disrupt immune homeostasis in the rest of the body. Consequently, altered host–microbe 

interactions and subsequent GI pathophysiology could allow the commensal microbiota to 

gain access to the surrounding tissue, potentially leading to inflammation and damage 

(Garrett et al. 2010). Here we discuss the role of two PRR families, NLRs and TLRs, that 

are implicated in the development of neurological disorders and the intersection of the 

microbiota and the innate immune system (Fig. 1).

Nod-like receptors

The NLR receptor family can be divided into three different sub-groups: (1) inflammasome-

forming NLRs (i.e. NLRP1, NLRP3), (2) positive regulatory NLRs (i.e. Nod1, Nod2) and 

(3) negative regulatory NLRs (i.e. NLRx1, NLRC3), each with a separate and distinct 

signalling pathway and downstream effect (Coutermarsh-Ott et al. 2016) (Fig. 2). The 

inflammasome forming group of NLRs consists of NLRP1, NLRP3, NLRP6, NLRP4 and 

NLRC5, which form multiprotein complexes. These NLR proteins multiplex with, for 

example, apoptosis-associated speck like protein and procaspase-1, to initiate 

proinflammatory cytokine expression.

Inflammasome complexes, including NLRP1 and NLRP3, have been implicated in the 

development of many neurological disorders, for example, several single nucleotide 

polymorphisms of NLRP1 have been associated with Alzheimer’s disease (AD). 

Additionally, NLRP1 mRNA is upregulated in neurons of AD patients (Pontillo et al. 2012). 

Furthermore, amyloid-β plaques have been shown to stimulate purinergic receptors initiating 

activation of the inflammasome, in turn contributing to late-stage AD (Tan et al. 2014). In a 

mouse model of chronic constriction injury-induced neuropathic pain, the NLRP1 

inflammasome was significantly activated in the hippocampus. Inhibition of the downstream 

product of NLRP1 attenuated the observed depression-like behaviour in these mice (Li et al. 
2019). Dysbiosis has been observed in AD patients, suggesting a possible avenue of further 

research in order to fully elucidate the mechanisms and interconnectivity of NLRP1 in the 

brain with the host microbiota. In line with these findings, NLRP3 signalling has also been 

implicated in the development of major depressive disorder via the hypothalamic–pituitary–

adrenal axis (Inserra et al. 2018). In Parkinson’s disease (PD) patients, NLRP3 levels were 

found to be upregulated in the serum, correlating with α-synuclein levels, a hallmark of 

disease severity (Chatterjee et al. 2020). Additionally, in mice it was found that α-synuclein 

activates NLRP3 via microglial endocytosis (Zhou et al. 2016). Deficiency in caspase-1, a 
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member of the NLRP3 inflammasome complex, significantly reduced microglial activation 

indicating a possible role for the NLRP3 inflammasome in PD pathogenesis (Zhou et al. 
2016; Gordon et al. 2018). Taken together, this suggests that intestinal dysbiosis may trigger 

altered NLRP signalling both in the gut and in the brain, leading to neurodegeneration in the 

brain.

The nucleotide-binding oligomerization domain (NOD) proteins are a family of positive 

regulatory NLRs that detect fragments within the cell wall of many bacteria, activating 

signalling pathways driving pro-inflammatory and anti-microbial responses. The two best 

characterized members of the NLR family are Nod1 and Nod2. They are unique in their 

function in that they sense bacterial PGN in the host cytosol as opposed to microbial ligands 

at the cell surface or within endosomes. Nod1 and Nod2 regulate activation of NF-κB 

transcription via a receptor-interacting serine/threonine-protein kinase 2-dependent 

mechanism in response to unique PGN fragments leading to the expression of pro-

inflammatory cytokines (Caruso et al. 2014). Nod1 is ubiquitously expressed in many cell 

types, primarily in immune cells (Uhlen et al. 2015), neurons, endothelial cells and epithelial 

cells of many organs (Caruso et al. 2014). While Nod2 expression is slightly more restricted, 

it has been identified in lymphocytes, Paneth cells and IECs (Franchi et al. 2009). 

Importantly, studies have shown that both Nod1 and Nod2 receptors are also expressed in 

the brain, including within the hippocampus on multiple cell types such as neurons, 

astrocytes and microglia (Ogura et al. 2003; Arentsen et al. 2017) suggesting that they play 

an important role within the central nervous system.

Nod1 and Nod2 serve a critical role in responding to specific bacterial pathogens. For 

example, the enteric mouse pathogen Citrobacter rodentium induces an IL-17 response via a 

Nod1- and Nod2-dependent pathway (Rubino et al. 2013). Mice deficient in Nod1 and Nod2 

are highly susceptible to infection with Listeria when they are first exposed to LPS or E. 
coli. The results of this study implicate that cells consistently exposed to microbial stimuli, 

such as in the GI tract, are characterized by low TLR expression and can become re-

sensitized to commensal bacteria in the absence of Nod1 and Nod2 (Kim et al. 2008). 

Several studies have indicated that the recognition of pathogenic bacteria in intestinal cells 

lacking TLRs relies on Nod1 (Girardin et al. 2001; Zilbauer et al. 2007).

As Nod1 and Nod2 are activated by PGN, they are also important in maintaining gut 

homeostasis by priming the immune system in the absence of infection, employing the gut 

microbiota as its stimulus (Clarke et al. 2010; Claes et al. 2015). Mice deficient in both 

Nod1 and Nod2 (NodDKO) display stress-induced anxiety-like behaviour, cognitive 

impairment and depression (Pusceddu et al. 2019). In the hippocampus, NodDKO mice 

displayed decreased 5-HT at baseline and following acute stress. In particular, Nod1 

expression on IECs was identified as a specific factor in regulating the stress response and 

serotonergic signalling, but the precise signalling mechanisms behind this effect have yet to 

be fully elucidated (Pusceddu et al. 2019). Numerous studies have implicated the NLR 

family as important PRRs in the development of neurological diseases mediated by the gut 

microbiota. However, much is still unclear about the mechanism of action of these effects. 

Given these findings, the NLR family, in particular Nod1 and Nod2, remain attractive targets 
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for the development of therapeutics for treatment of many of the aforementioned 

neurological disorders.

PGN derived from commensal gut bacteria can cross the blood–brain barrier into the central 

nervous system (CNS), with levels of PGN within the brain increasing with age (Arentsen et 
al. 2017). Several PGN-sensing molecules, such as the peptidoglycan recognition protein 

(PGRP) PRRs and NLRs, are highly expressed in the neonatal brain during early 

development and are highly susceptible to changes in the gut microbiota (Arentsen et al. 
2017). Knockout of PGN recognition molecule 2 (Pglyrp2) induces behavioural changes and 

alterations in the autism spectrum disorder risk gene c-Met in a sex-specific manner 

(Arentsen et al. 2017). Taken together, these findings highlight a novel role for PRRs in 

maintaining behaviour and CNS function.

Toll-like receptors

TLRs are a highly expressed family of transmembrane PRRs responsible for initiating 

downstream signal transduction in response to PAMPs and tissue damage. Localization of 

each TLR allows classification into two groups, those expressed on the plasma membrane 

(TLR1, TLR2, TLR4, TLR5, TLR6, TLR11) and those expressed within the cytoplasm and 

organelles (TLR3, TLR7, TLR8, TLR9) (Fig. 3). To date, 11 human and 13 mouse TLRs 

have been characterized (Akira & Takeda, 2004). Activation of each TLR, following specific 

PAMP recognition, causes a conformational change in the receptor allowing recruitment of 

the appropriate downstream signalling adaptor, in turn activating specific transcription 

factors, and subsequent innate immune responses (Takeuchi & Akira, 2001). Four adaptor 

proteins have been identified, each one responsible for a specific immune response. For 

example, the universal adaptor protein MyD88 is known to induce activation of NF-κB and 

activator protein 1 (AP-1) triggering the expression of inflammatory cytokines such as 

tumour necrosis factor-α (TNFα). Alternatively, TLR3 and TLR4 can signal through the 

adaptor protein Toll/IL-1 receptor domain-containing adapter inducing interferon-β (TRIF) 

in order to activate type-I interferon (IFN) (Fitzgerald et al. 2003). The regulation of these 

responses is tightly controlled via post-translational modifications such as glycosylation 

(Weber et al. 2004; Sun et al. 2006; Abdulkhalek et al. 2011; Iavarone et al. 2011) and 

ubiquitination (Boone et al. 2004; Chuang & Ulevitch, 2004; Shembade et al. 2010; Guedes 

et al. 2014; Kinsella et al. 2018) and through negative feedback (Scott et al. 1993; Renner & 

Schmitz, 2009). Disruption of TLR activation or maturation can lead to dysregulation of the 

immune response (Barrat et al. 2005; Reynolds et al. 2010; Ziegler et al. 2011; Suarez-

Farinas et al. 2013; Cavalcante et al. 2018). Despite continuous exposure to TLR ligands in 

the gut lumen, IECs express low levels of TLRs. Introduction of pathogenic bacteria causes 

upregulation of some TLRs, namely TLR2, TLR4, TLR5 and TLR9 (Muzio et al. 2000; 

Gewirtz et al. 2001; Ewaschuk et al. 2007), while others are differentially expressed in 

response to pathogenic bacteria. TLRs play an important role in maintaining host–microbe 

interactions and mucosal immunity in the GI tract.

Studies are emerging highlighting a novel connection between TLRs and neurodegenerative 

diseases, including AD, PD and MS. A link between gut microbiota-associated 

inflammation and brain amyloidosis in AD has been shown, with bacterial amyloids able to 
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initiate expression of inflammatory cytokines (Nishimori et al. 2012). In AD brains, a higher 

bacterial LPS load was observed (Zhan et al. 2016) and administration of LPS in mice led to 

prolonged elevation of amyloid-β and cognitive deficits (Kahn et al. 2012). Further studies 

have observed increases in amyloid-β in mouse brains alongside alterations in the gut 

microbiota (Kaji et al. 2010). LPS-dependent TLR4 signalling is reduced in AD mice, 

suggesting TLR4 may play a role in disease manifestation (Go et al. 2016). In PD patients, 

misfolded α-synuclein protein activates microglia via TLR2, activating MyD88-dependent 

NF-κB signalling, in turn increasing the expression of TLRs. TLR4 also has an observable 

interaction with α-synuclein and a genetic knockout of TLR4 protected mice from 

neurodegeneration (Stefanova et al. 2011). Increased gut permeability and bacterial 

translocation leading to TLR4 activation in the pre-frontal cortex has been observed in mice 

with depressive behaviour (Martin-Hernandez et al. 2016). Finally, TLR2 expression is 

upregulated in both MS patients and, in the mouse model, experimental autoimmune 

encephalomyelitis (EAE) (Fujiwara et al. 2018). While the signalling pathways involved are 

not well understood, TLR2 knock-out mice develop attenuated EAE, suggesting a role for 

TLR2 (Fujiwara et al. 2018). Studies have found that the microbiota in MS patients is 

directly responsible for the dysregulation of TLR2 and its subsequent role in pathology 

(Wasko et al. 2020). Taken together, these studies indicate the importance of TLR signalling 

in development of multiple neurological disorders and present novel therapeutic strategies 

with which to treat them.

Our understanding of neurological disorders and the importance of the gut microbiota in 

their development is continually expanding, with new targets for treatment being identified. 

PRRs in particular can make attractive targets due to their function as the first line of 

defence against pathogens and their dysregulation in many disease pathologies (Mullen et al. 
2015). Targeting of TLR2 signalling by increased TLR2 tolerance in a mouse model of MS 

significantly enhanced CNS remyelination (Wasko et al. 2019). A loss-of-function mutation 

in the TLR4 gene was shown to suppress the activation of microglia and monocytes by 

Alzheimer’s amyloid peptides in in vitro studies (Walter et al. 2007). Melatonin treatment 

was beneficial in attenuating NLRP3 inflammasome activation following LPS-induced 

depressive-like behaviours, in part via reduced microglia activation (Arioz et al. 2019). 

Further studies of the mechanisms these PRRs regulate are needed to identify more targets in 

the treatment and prevention of many neurodegenerative and neurodevelopmental disorders.

PRRs in other diseases

As well as their role in neurological disorders, PRRs have been implicated in the 

development of other disorders, including autoimmune diseases. Polymorphisms of both 

Nod1 and Nod2 have been associated with an increased susceptibility to Guillain–Barre 

syndrome, an autoimmune disorder that attacks the peripheral nervous system (Kharwar et 
al. 2016). Furthermore, increased expression of Nod1 and Nod2 has been noted in the 

pathogenesis of Vogt–Koyanagi–Harada syndrome, a rare autoimmune disorder (Deng et al. 
2016). Additionally, polymorphisms in the NLR family increase the risk of developing IBD, 

with Nod1 and Nod2 deficient mice displaying an increase in DSS-induced colitis severity 

(Natividad et al. 2012) and Nod2 mutations correlating with dysbiosis in IBD patients 

(Aschard et al. 2019). A single nucleotide polymorphism (SNP) located on chromosome 
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1q44 downstream of NLRP3 has previously been implicated in increased susceptibility to 

Crohn’s disease (CD) (Villani et al. 2009), but more recent studies in a Chinese Han patient 

population (Zhang et al. 2014) and a panel of patients in the UK (Lewis et al. 2011) indicate 

that SNPs in the NLRP3 gene are more closely associated with ulcerative colitis (UC) than 

with CD. Despite this, loss-of-function CARD8 mutation in CD patients leads to increased 

NLRP3 activation, indicating that there may be a role for NRLP3 in CD pathogenesis 

(Schoultz et al. 2009; Mao et al. 2018). NLRP3−/− mice displayed higher sensitivity to 

oxazolone-induced colitis, indicating a protective role for the inflammasome in UC (Itani et 
al. 2016).

In the case of the TLRs, receptor activation and subsequent NF-κB signalling in the gut is 

important for the survival of enteric neurons responsible for gut motility. Knockout mouse 

models indicate that TLR4 is important for gut motility, with delayed GI motility associated 

with decreased numbers of nitrergic neurons (Anitha et al. 2012). Preliminary studies 

suggest a role for TLR4 in the development of multiple system atrophy (MSA), where, 

similar to PD, MSA patients were found to have disrupted tight junction proteins and a 

higher expression of TLR4 in their colonic sigmoid mucosa when compared to healthy 

controls (Engen et al. 2017). Taken together, these findings demonstrate the critical role 

NLRs play in multiple disease pathways, highlighting their potential in maintaining normal 

physiology.

Conclusions

PRRs, in particular the NLR and TLR families, have been implicated as novel signalling 

mechanisms in the development of many complex neurological disorders, likely acting in 

concert with numerous other signalling pathways. Their high levels of expression in many 

tissues, in particular the GI tract, make them an attractive target for further study of the gut 

microbiota and its impact on human health and development of gut–brain function.
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Figure 1. The role of NLRs and TLRs in gut–brain signaling
Under physiological conditions, host–microbe interactions maintain intestinal physiology 

via pattern recognition receptors (PRRs), including Nod-like receptors (NLRs) and Toll-like 

receptors (TLRs). In the brain, the PRRs regulate multiple cell types, including neurons, 

microglia and astrocytes. Dysbiosis, GI inflammation and neuroinflammation all contribute 

to diseases within the GI tract as well as in the brain. Understanding these pathways will 

provide new insight into disease pathogenesis and novel targets for restoration of physiology.
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Figure 2. The NLR signalling pathway
NLRs are predominantly present in the cytosol of cells, including immune, epithelial, 

endothelial and neuronal cells. Both Nod1 and Nod2 respond to bacterial peptidoglycan, 

with Nod1 initiating NF-κB-dependent pro-inflammatory gene expression and Nod2 

initiating AP1 inflammatory genes via extracellular signal-regulated kinase (ERK)/c-Jun N-

terminal kinase (JNK)/p38. NLRP1 activates caspase1 signalling in response to toxins and 

NLRP3 activates caspase1 in response to lysosomal damage and reactive oxygen species. 

AP-1, activator protein 1; ASC, apoptosis-associated speck-like protein containing a CARD; 

IκBα, inhibitor of nuclear factor-κB α; ROS, reactive oxygen species.
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Figure 3. The TLR signalling pathway
TLRs are membrane bound or endosomally bound. Membrane bound TLRs (TLR1, 2, 6, 4 

and 5) signal through MyD88 in response to a variety of stimuli, such as lipopeptides from 

gram-negative or gram-positive bacteria, flagellin or lipopolysaccharide, and activate NF-

κB-dependent pro-inflammatory genes. TLR4 can also signal through a MyD88 independent 

pathway and activate interferon (IFN) signalling. Endosomally bound TLRs (TLR3, 9, 7 and 

8) are activated by dsRNA, ssRNA and dsDNA and activate IFN signalling in response to 

these stimuli. IRF, interferon regulatory factor; TRIF, Toll/IL-1 receptor domain-containing 

adaptor-inducing IFN-β.
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