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Abstract

Adaptation Based Approaches to Distribution Shift Problems

by

Marvin Mengxin Zhang

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Sergey Levine, Chair

Distribution shift in machine learning refers to the general problem where a model is evalu-
ated on test data drawn from a different distribution than the training data distribution. In
real world applications, distribution shift is oftentimes not the exception, but the norm: for
example, the data distribution may change over time, the model may be tested in new and
unforeseen circumstances, or distribution shift may even be a consequence of the problem
definition itself. In order to realize the full potential of machine learning, therefore, effective
solutions must be developed to deal with distribution shift problems.

In this thesis, we first review the many ways that distribution shift arises in machine learn-
ing settings, using several examples to ground the problem while demonstrating the ubiquity
with which the problem occurs. The first few of these examples come from control and re-
inforcement learning, and for these examples, distribution shift is baked in to the problem
formulation itself. As the shifts are easily characterized and peripheral to the main goal,
handcrafted techniques can be brought to bear to handle these cases. The subsequent ex-
amples illustrate ways in which shift creeps into real world supervised learning problems,
which motivates the study and development of general purpose learning paradigms that can
be used to tackle these and future examples.

The paradigms we focus on in this thesis revolve around the concept of adaptation: leveraging
the information available at test time in order to change the model to better handle the test
data. We ask an open-ended question: how can and should a model adapt when faced
with distribution shift? Our first proposal for answering this question is the paradigm of
adaptive risk minimization: when provided examples at training time of what different shifts
are likely to occur, the model should learn to adapt to these training shifts, thus better
preparing itself for similar instances of test shift. We formalize and instantiate methods
for this paradigm through the toolkit of meta-learning, demonstrating that these methods
are competitive with, and oftentimes superior to, prior approaches for handling distribution
shift. Our second proposal for answering the above question lies at the other end of the
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spectrum: even without access to the training procedure or multiple test points, the model
can still rely on inductive biases relayed by data augmentations in order to adapt. This leads
to the method of marginal entropy minimization with one test point, a broadly applicable
“slot-in replacement” for standard inference that proves to be effective for a wide range of
commonly used models on a number of challenging distribution shift benchmarks.
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Chapter 1

Introduction

Machine learning models are playing an ever increasing role in our daily lives. Smartphones
come with image and speech recognition built in, autonomous cars roam the streets with con-
stantly improving capabilities, and language models can generate remarkable emails, stories,
and even code. In other areas, machine learning models are also finding use, and success, in
a diverse set of applications spanning agriculture [132], medicine [49, 173], ecology [39], and
much more. Much of this progress has been driven by the advent of deep learning, thanks to
the ability of deep neural network models to process huge amounts of raw, high dimensional
data in order to learn highly performant prediction and decision rules [69]. However, despite
all of this progress, deep learning has not convincingly addressed, and has perhaps even
exasperated, one fundamental issue in machine learning: distribution shift.

Distribution shift refers to the problem in which the model encounters a test data dis-
tribution that is different from the distribution of data it was trained on. Though the vast
majority of machine learning research studies theoretical settings and empirical benchmarks
in which the training and test distribution are assumed to be the same [236], this assumption
is routinely violated in real world applications. Many such violations are benign, in that they
do not negatively affect the model’s overall accuracy. However, other shifts may represent
significant challenges for machine learning performance, fairness, and safety. For example,
näıvely trained deep models for autonomous driving applications can suffer at segmenting
nighttime driving scenes [46], recognizing traffic signs in adverse weather conditions [225],
and even detecting pedestrians with darker skin tones [248]. Other examples abound: im-
age classifiers perform poorly at recognizing common animals in atypical backgrounds [15],
speech recognition systems display higher error rates for Black speakers compared to white
speakers [111], and so on, and so forth. Without effective techniques for dealing with dis-
tribution shift, therefore, we cannot realize the full potential of machine learning in the real
world.

Because the distribution shift problem is so broad, it has been actively studied for decades
under many different frameworks and assumptions [172], including domain adaptation [204,
43], domain generalization [21, 151], distributionally robust optimization [18, 95], and more.
Many of these works have laid the foundation for formalizing and dealing with distribution
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shift, however, the advent of deep learning has also required rethinking prior techniques and
takeaways. For example, strong regularization is important for achieving good performance
on rare subgroups, due to the ability of deep networks to perfectly fit the training data [192].
Another interesting result is that standard empirical risk minimization techniques perform
on par with specialized methods for domain generalization when both are carefully tuned to
fit the data [74], bringing into question the necessity of such methods. Lastly, as models and
datasets continue to grow, there is increasing evidence that simply training larger models
on vast amounts of data can mitigate many commonly occurring instances of distribution
shift [163, 87]. Thus, there remain many open questions regarding when deep neural networks
are susceptible to shift and which techniques are most effective at addressing these scenarios.

This thesis tackles these questions in two distinct parts. In the first part, we review several
examples of distribution shift problems occurring in deep reinforcement learning (RL) and
supervised learning settings. The examples from RL serve to illustrate two key takeaways
related to distribution shift. First, it is often the case that the most effective way of dealing
with shift is to bring to bear human insights and domain knowledge within the specific
problem. Second, when the model’s accuracy under shift is not the primary goal, but rather
an obstacle to be overcome, techniques for mitigating and effectively reducing shift may
be the shortest path to achieving the desired goal. Though these takeaways are important
for both researchers and practitioners to keep in mind, they do not apply to all problems:
effective handcrafted techniques require expertise in both machine learning and the domain
of interest, which may be infeasible, and improving the model’s accuracy oftentimes is the
ultimate goal. We illustrate these points by pivoting to examples from supervised learning.
Supervised learning encompasses the majority of real world machine learning applications,
thus the examples we construct here are designed to faithfully represent important real
world problems. For these examples, handcrafted techniques for combating shift have had
mixed success and are not designed to generalize to other examples. Thus, those working on
these problems are still searching for more effective techniques, and those dealing with other
instances of shift have not benefited much from the progress made on these problems.

These examples motivate the second part of this thesis, in which we study and devise
general purpose methods for handling these, other, and future instances of distribution shift.
In particular, we focus on paradigms and methods centered around adaptation, in which the
model may change its parameters at test time after observing the available evidence. We
argue that adaptation is particularly well suited for the typical deep learning setup, in which
models are often overparameterized and capable of incorporating additional information be-
yond the training data. Through the toolkits of meta-learning and data augmentation, we
propose two different adaptation based approaches, under varying assumptions of access to
the training procedure and availability of test time data. The first approach is the adaptive
risk minimization framework, which aims to optimize models such that they learn how to
adapt to different shifts provided at training time, thus better equipping these models to
adapt to similar instances of test shift. The second approach is the method of marginal en-
tropy minimization with one test point, which operates directly on a wide range of pretrained
models. This method adapts the model via a novel combination of confidence maximization
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with data augmentations to try and maximally leverage the inductive biases afforded by
each technique. We evaluate these approaches on a number of supervised learning problems,
including the aforementioned examples, and demonstrate that adaptation based approaches
are worthy of further study alongside, and in conjunction with, the other tools for handling
shift.

1.1 Outline

In Chapter 2, we provide preliminaries and notation for RL and supervised learning that will
be used throughout this thesis. This exposition is supplemented by more in depth review of
relevant preliminaries and related work in specific sections.

Part I: distribution shift problems

Chapter 3 and Chapter 4 comprise Part I of this thesis. This part of the thesis focuses
on distribution shift problems, i.e., when and how does shift manifest in machine learning
applications? We answer this question by providing concrete examples of shift in different
domains, and we supplement this discussion with some results on prior attempts to handle
and mitigate these shifts. Concretizing the discussion through these examples allows us to
provide a frame of reference for an otherwise broad and unruly topic. In principle, distribu-
tion shift can refer to any scenario in which a machine learning model is trained on data from
a certain distribution and evaluated on examples from a different distribution. But consid-
ering the ubiquity with which this happens in the real world, we believe that many such
instances of shift are benign in that they do not significantly degrade model performance or
the achievement of the downstream goal. Therefore, identifying cases of distribution shift
that are both harmful and relevant to real applications should be considered alongside the
methodology for handling the shifts themselves.

Chapter 3. Chapter 3 may be skipped without consequence for readers not interested in
RL and related topics. In this chapter, we highlight several instances of distribution shift
problems arising within control and RL applications. First, we discuss our work on learning
locomotion strategies for a unique robot design known as a tensegrity robot. In this case, the
model is a policy, i.e., it uses observations gathered from the environment in order to predict
the action that the robot should take. The shift occurs when attempting to transfer learned
policies from simulation to the real robot, and this shift is caused by two main factors.
First, the observations may differ due to imperfections in the simulation and differences in
the robot and environment setup. Second, the dynamics of the robot and environment may
differ, i.e., taking the same action in simulation versus in the real world may lead to different
future observations. For this example, we find that a combination of several techniques,
mostly relying on domain knowledge and expert heuristics, is successful at combating this
simulation to real world shift and allowing for the successful direct transfer of policies. In
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particular, the techniques include reducing the observation space to use only the most reliable
sensors, constraining the action space of the robot to motor commands computed to be safe
for the hardware, and injecting significant noise into the training in simulation to improve
policy robustness. This work was presented at the International Conference on Robotics and
Automation, 2017 [269].

Second, we detail an instance of distribution shift in model-based RL arising from using
a trained dynamics model to predict state transitions under a new policy. Here, the model
is predicting the future state and reward from the current state and action, and it learns to
do so under the distribution of actions from the current and previous policies seen during
training. As the RL training step updates the policy to try and improve the rewards obtained
in the environment, the action distribution from the new policy is inevitably different and
may cause the model to be evaluated for states and actions that are not well covered by its
training distribution. Even more insidiously, the RL algorithm is optimizing the performance
of the policy within the learned model, thus the policy may even learn to exploit the model
by specifically choosing actions for which the model erroneously predicts high rewards. We
find in this work that there is a particularly simple fix when it comes to dealing with this
shift: reduce the shift by only asking the model to predict for one (or a small number of)
time step(s) into the future. Thanks to the empirical observation that dynamics models are
able to generalize to small changes in the state and action distribution when trained with
sufficient data, this fix enables an efficient and powerful model-based RL algorithm that
can successfully learn policies for a number of simulated robotic environments. This work
appeared in Advances in Neural Information Processing Systems, 2019 [103].

Finally, we describe our work in learning tasks from human video demonstrations, in
which the shift is a consequence of the mismatch in appearance and morphology between
human videos and robot videos. A number of approaches have been proposed for robotic RL
and imitation learning from high dimensional image observations which rely on the ability
to obtain images directly from the robot, e.g., via teleoperation. These approaches make
use of models which predict rewards or actions from images, thus they naturally suffer if
they are instead trained with human images and queried with robot images, or vice versa.
We attempt to resolve this shift via a separate learned model that translates images from
a human demonstration video into synthetic, but realistic, robot images, thus enabling the
use of similar models for reward and action prediction as in prior approaches. However,
we find that this translation cannot perfectly mitigate the human to robot video shift, thus
we incorporate this technique into a more sophisticated overall algorithm involving online
human feedback and fine tuning of the learned models. This algorithm is then capable of
learning complex multi-stage tasks, such as operating a coffee machine, on a real robotic
system directly from videos of humans demonstrating the task. This work appeared in
Robotics: Science and Systems, 2020 [208].

In each of these RL examples, the distribution shift comes as a result of the problem
formulation itself – that is, our desire to transfer policies from simulation to the real world,
use dynamics models to predict for updated policies, and learn from human demonstration
videos. In the first example, the goal is specifically to learn locomotion strategies for tenseg-
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rity robots that transfer from simulation to the real world, thus the techniques for dealing
with shift are similarly specific to the domain. In the second and third examples, the goal in
these works is not to devise techniques for directly improving model performance under shift,
but rather to achieve the downstream goal of learning good behavioral policies for solving
the specified task, by any means necessary. As such, as we dive into in Chapter 3, these
works take the path of mitigating and reducing shift through querying the models for only
short horizons or on images that have been translated into the robot domain. Overall, none
of these works attempt to devise general purpose solutions for dealing with shift, in terms of
actually improving model accuracy, as their goals and desiderata can be achieved through
more direct means.

Chapter 4. Motivated by these findings, we ask the question: are there examples of
common, frequently occurring distribution shifts that would benefit from general purpose
methods and solutions? This is the topic of Chapter 4, in which we shift our focus to
supervised learning. As discussed above, supervised learning comprises most real world ap-
plications of machine learning, and in contrast to RL, distribution shift in these problems
oftentimes directly impacts the ultimate metric of model predictive accuracy. We discuss
both our work and related work on this subject. Numerous test sets and benchmark suites
have been proposed which model a wide assortment of distribution shifts, and we first pro-
vide an overview of the pieces of this landscape that are relevant to the later parts of this
thesis. We then present our work in this area, which complements existing benchmarks by
introducing a suite of problems in domain generalization and subpopulation shift which are
designed to be tractable while faithfully representing real world applications of interest, in-
cluding applications in medicine, biology, ecology, and more. We named this benchmark the
Wilds benchmark, and this work was presented at the International Conference on Machine
Learning, 2021 [113]. We conclude this part of the thesis, and lead into the next part, by
highlighting distribution shift problems we have proposed that motivate, and are set up to
test, methods that adapt at test time to distribution shift.

Part II: adaptation based approaches

Chapter 5 and Chapter 6 comprise Part II of this thesis. This part of the thesis focuses on
approaches to tackling distribution shift, with particular emphasis on approaches based on
model adaptation at test time.

Chapter 5. In Chapter 5, we consider the problem setting in which training data are pro-
vided from multiple domains and the goal is to perform well at test time in the presence of
domain shift, i.e., the test data come from a new domain or a new distribution of domains.
These test scenarios correspond to the problems of domain generalization and subpopulation
shift, respectively. We further make the assumption that, at test time, the test data will be
available as either a batch or stream of unlabeled inputs, and the model is allowed to adapt
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using these inputs before making its final predictions on these data. The key question then
becomes: how should the model adapt? We approach this question from the perspective of
meta-learning: rather than devising a handcrafted adaptation procedure, we instantiate an
adaptation model that represents an adaptation procedure with learnable parameters. Since
we have access to multiple training domains, the model and adaptation model can be jointly
learned by simulating domain shifts within the training data and optimizing for the model’s
post adaptation performance, effectively learning how to adapt to these shifts. We highlight
relevant theory from prior work that provides strong theoretical justification for this frame-
work, which we refer to adaptive risk minimization. We then detail a general algorithm and
three specific methods, all inspired by meta-learning, for optimizing the objective specified
by this framework. We highlight the aforementioned set of problems for which adaptation
is beneficial for improved performance, and we empirically demonstrate that these methods
consistently perform better than prior methods commonly used to tackle shift, including
methods for distributional robustness, invariant feature learning, and test time adaptation.
Finally, we evaluate our best performing method on the Wilds benchmark, and our results
provide support for studying a wide range of methods, each of which may be best suited
to tackle specific types of shift. This work appeared in Advances in Neural Information
Processing Systems, 2021 [268].

Chapter 6. In Chapter 6, we jump to the opposite end of the spectrum in terms of training
and test time assumptions. Not only do we not assume any particular characteristics of the
training data, such as multiple domains, we do not even assume access to the training
procedure itself – that is, we only assume access to a pretrained model. We are given
only one test point which we must predict on, akin to the standard supervised learning
evaluation protocol. We refer to this problem setting as test time robustness, in which
the specific test point may be leveraged in order to improve the model’s predictions on
that point. Though the answer is now drastically different, the key question is the same
as before: how should the model adapt? We probe this question by investigating existing
approaches to test time robustness, including some methods that adapt certain parameters
of the model and other methods that rely on data augmentations. We devise a new test
time robustness method based on the synthesis of these ideas, and we refer to this method
as marginal entropy minimization with one test point. This method is applicable in any
test setting in which the model is adaptable and there exists a set of data augmentations
designed to be invariant to the label, e.g., image crops and flips which are assumed to not
change the underlying class of the image. The method works as a “slot-in” replacement
for standard model inference: rather than directly predicting on the test input, we produce
multiple copies of the input with different augmentations, compute the model’s average, or
marginal, predictive distribution across the copies, and then adapt the model by minimizing
the entropy of this marginal distribution. Intuitively, this adaptation encourages the model
to produce confident predictions while also making the same predictions across different
augmentations of the same input. We show empirically that this simple approach works well
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in practice, improving results for several neural network model architectures on a range of
challenging distribution shift test sets. At the time of writing, this work is under review and
has been made publicly available [267].

In Chapter 7, we conclude with some general remarks on tackling distribution shift, and
we highlight what we believe are important directions for future research.



8

Chapter 2

General Preliminaries and Notation

Broadly, this thesis studies both the reinforcement learning (RL) and supervised learning
settings. In this chapter, we provide general preliminaries and notation for both settings,
with more specific details deferred to sections in the appropriate later chapters.

2.1 Reinforcement Learning

In RL, we consider a Markov decision process (MDP), defined by the tuple (S,A, p, r, γ, ρ).
S and A are the state and action spaces, respectively, and γ ∈ [0, 1) is the discount factor.
The dynamics or transition distribution is denoted as p(s′|s, a), the initial state distribution
as ρ(s), and the reward function as r(s, a) ∈ [0, rmax]. The goal of RL is to learn a policy
π(a|s) that maximizes the expected sum of discounted rewards, denoted by η, under the
state and action distribution induced by π, p, and ρ,

π⋆ = argmax
π

η[π] = argmax
π

Eρ,π,p

[
∞∑
t=0

γtr(st, at)

]
.

The dynamics p(s′|s, a) and reward r(s, a) functions are assumed to be unknown. Thus,
RL algorithms must use samples collected from the MDP in order to try and find π⋆ [218].
An alternative finite horizon formulation of the MDP replaces the discount factor γ with an
episode length T , and in this setting the goal is to maximize the expected sum of rewards
for the entire episode,

π⋆ = argmax
π

η[π] = argmax
π

Eρ,π,p

[
T∑
t=0

r(st, at)

]
.

Denoting the entire sequence of states and actions as τ , we can also write the expected sum
of rewards as Eρ,π,p[r(τ)].

Numerous classes of RL algorithms have been proposed for optimizing η[π]. Broadly
speaking, model-based RL methods aim to construct a model of the transition distribution,
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pθ(s
′|s, a), using data collected from interaction with the MDP, typically using supervised

learning. The parameterization of pθ varies based on the method: two popular parameter-
izations are time varying linear Gaussian models pθ(st+1|st, at) = N (fstst + fatat,Ft) [121],
which allow for tractable optimization but lack the capacity to represent complex dynamics,
and neural network models [155], which are expressive but may require more data to fit.
Some methods also assume that the reward function has unknown form and predict r(s, a).

Oftentimes in RL and robotics, it is more natural to model the setting as a partially
observed Markov decision process (POMDP), rather than an MDP [106]. POMDPs are
defined by the tuple (S,A,O, p, p, r, γ, ρ), which differs from the MDP definition by the
addition of the observation space O and the emissions distribution p(o|s), and all other
elements of the tuple are the same as the MDP. A finite horizon characterization of the
POMDP can be described analogously. The policy π(a|o) is assumed to have access only to
the observation o (and potentially the previous observations) in order to select the action
a. This setup accurately describes many scenarios in robotics: the state s may contain
information that is difficult to obtain, such as object or joint positions provided by motion
capture systems, whereas the observation omay rely, e.g., on only the robot’s onboard sensors
such as cameras and inertial measurement units (IMUs). When deployed, it is desirable to
have the robot’s policy depend only on measurements that can be easily obtained.

If state information is available during training, such as via an instrumented setup or
through simulation, then model-based RL methods can essentially proceed as previously de-
scribed, with an additional piece to compensate for having to learn π(a|o) rather than π(a|s).
For example, the emissions distribution p(o|s) may also be modeled, or imitation learning
may be employed such that π(a|o) learns to match the actions of a learned π(a|s) [149].

2.2 Supervised Learning

In supervised learning, we are given a training data set {(xi, yi)}Ni=1, consisting of N input-
output pairs drawn from a training distribution pxy. In this thesis, we mainly focus on the
domain of image classification, in which x represents raw images and y takes on discrete val-
ues corresponding to different possible classes. The goal of supervised learning is commonly
stated as learning a model gθ : X → Y that minimizes the expected loss (e.g., 0-1 loss)
given new input-output pairs sampled from pxy and the model’s predicted outputs. This
goal assumes that the test distribution p⋆xy is the same as pxy and is typically referred to as
risk minimization. The risk minimization objective can be written as

θ⋆ = argmin
θ

Epxy [ℓ(gθ(x), y)] .

When training the model, a sensible training objective, modulo regularization, is thus to
minimize the empirical risk of the model on the training data [236]. That is,

θ̂⋆ = argmin
θ

1

N

N∑
i=1

ℓ(gθ(xi), yi) .
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When facing distribution shift, however, we may wish to change this goal, as learning a
model that performs well on the training distribution pxy does not guarantee that the model
will generalize well to other distributions at test time. Thus, there are various ways we
may imagine modifying the empirical risk minimization (ERM) objective, depending on the
problem formulation and assumptions. Chapter 4 and Chapter 5 provide detailed instantia-
tions of what these problem formulations and subsequent training modifications may be. In
Chapter 6, we turn our attention to test time methods which do not require modifying the
model training procedure, instead using various heuristics such as unsupervised adaptation
and data augmentation within the test time inference procedure.
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Part I

Characterizing Distribution Shift in
Reinforcement Learning and

Supervised Learning
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Chapter 3

Distribution Shift in Reinforcement
Learning

In this chapter, we present three examples of distribution shift in reinforcement learn-
ing (RL), illustrating the various ways that shift may arise when formulating and solving RL
problems. Readers who are not interested in RL may skip this chapter and move on directly
to Chapter 4. The examples in this chapter serve to illustrate two takeaways: that shift can
often be tackled effectively using expert knowledge, without the need for general purpose
techniques, and that shift can often be mitigated if it is not the ultimate goal.

In the first example below, the shift occurs as a result of taking a policy that was trained
in simulation and attempting to use it to control the corresponding real robotic system,
which the simulation does not perfectly emulate in terms of dynamics and actuation. In
the second example, the shift is a result of using dynamics models that were trained with
policies from previous iterations of the RL algorithm to predict for a new, updated policy.
In the last example, the shift is a direct consequence of the stated goal, in which videos of
human demonstrations are to be used as examples for a robot to perform the same task, and
the discrepancy between human and robot videos must be resolved.

3.1 Deep RL for Tensegrity Robot Locomotion

Tensegrity robots are a class of robots that are composed of rigid rods connected through a
network of elastic cables. These robots are lightweight, low cost, and capable of withstand-
ing significant impacts by distributing force across the entire structure. Their compliance
protects the robot and its payload during high speed landings and may also allow for greater
mobility and robustness during exploration of rugged and dangerous environments [29].

However, efficient locomotion for tensegrity robots is a challenging problem. Such robots
are typically controlled through actuation of motors that extend and contract their cables,
thereby changing their overall shape. Many such systems are underactuated because there
are usually more cables than motors. Furthermore, actuating one motor can change the entire
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Figure 3.1: Left: The SUPERball tensegrity robot. This robot is composed of six identical
rods and 24 cables, 12 of which can be actuated using the motors connected to the ends of
each rod. This work uses the onboard IMUs and motor encoders on each of the end caps.
Right: a rolling motion toward the camera performed by the SUPERball simulation (top)
and the physical SUPERball robot (bottom). The rolling gait is learned from scratch in
simulation with our proposed algorithm and, to mitigate shift arising from simulation to real
world transfer, uses only the onboard accelerometer sensors for feedback.

shape of the robot, leading to complex, highly coupled dynamics. As such, hand engineering
locomotion controllers is unintuitive and time consuming, and such controllers often do
not generalize well to different environments. This motivates using learning algorithms to
automatically discover successful and efficient behavior.

We present a method for automatically learning locomotion policies represented by gen-
eral purpose neural networks, which we demonstrate by learning a gait for the Spherical
Underactuated Planetary Exploration Robot ball (SUPERball), the tensegrity robot shown
in Figure 3.1. We run the learning procedure on a simulated version of SUPERball rather
than the real robot. Though this reduces the wear and tear on the prototype robot and
the possibility of commanding unsafe actions, training in simulation and testing on the real
robot introduces significant distribution shift from the policy’s perspective. To deal with
this shift, we find that using a reduced observation space, using a safe action space, and
training with noise are sufficient for enabling direct simulation to real world transfer.

Related work in simulation to real world transfer

Many methods have been proposed for the direct transfer of policies learned in simulation
to the real world, of which we highlight just a few. Cutler et al. used a transition from
simple to complex simulations, which are assumed to increase in both cost and fidelity to
the real world setting, to reduce the amount of training time needed in the real world [44].
Mordatch et al. optimized trajectories through an ensemble of models perturbed with noise
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to find trajectories that could be successfully transferred to the real world setting [150]. Our
approach also introduces noise into the simulation, and we found that this can help in training
policies that are successful in a wide range of simulated terrain and gravity settings as well
as the real world. A similar concept arose, subsequently to this work, in simulation to real
world transfer for visual tasks. Several papers found that introducing significant variability
in the visual appearance of simulations, such as textures and background colors, allowed for
direct transfer of object detectors and policies for visual flight and navigation [190, 229].

Learning locomotion policies for SUPERball in simulation

We encode the state of the system s as the position and velocity of each of the 12 bar
endpoints of SUPERball, and the position and velocity of each of the 12 motors, measured
in radians, for a total dimensionality of 96. This information is easily obtained in simula-
tion but requires complex, instrumented state estimation techniques on the real robot [36].
Therefore, in order to easily deploy the learned policies “in the wild”, we consider two dif-
ferent representations for the observation o which use only proprioceptive information from
the robot’s own sensors. The “full” 36 dimensional observation includes motor positions and
also uses elevation and rotation angles and angular velocities calculated from the robot’s
accelerometers and magnetometers. The “limited” observation is 12 dimensional and only
uses the acceleration measurement along the bar axis from each of the accelerometers. The
12 dimensional action a is the instantaneous desired position of each motor.

The specific RL algorithm used in this work is mirror descent GPS (MDGPS), which
uses supervised learning to train the “global policy” π(a|o), with supervision coming from
several “local policies” πi(a|s) that are optimized to succeed only from a specific initial state
of the task, using full state information. This local policy optimization is much simpler than
the goal of the global policy, which is to succeed under partial observability from any initial
condition sampled from the initial state distribution. These simplifications allow the use of
simple and efficient model-based RL methods for training the local policies [121]. The local
policies are optimized to minimize η[πi] subject to a bound on the KL divergence between
the local policy πi and a linearization of the global policy π̄i. Optimizing the global policy
is done using the samples collected in the current iteration, which are used in a supervised
fashion to approximately minimize the divergence between the global and local policies.

Due to the structure of tensegrity systems, unsafe actuation of the motors can place the
robot into configurations with unacceptable risk of cable or motor failure. The configurations
associated with such high tension conditions are difficult to encode analytically and even
more difficult to balance against primary task objectives in the cost function. We therefore
adopt a simple safety constraint approach to enable safe policy execution on the SUPERball
hardware. Specifically, we estimate the cable tensions for a particular set of actuator positions
using a simple forward kinematics model of SUPERball. We repeat this process for many
different randomly generated motor settings and store 100 million motor positions for which
all cable tensions of the robot are below the acceptable threshold. Then, when the policy
outputs an action, we compute and command the nearest (ℓ1 norm) safe action.
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Distribution shift in transferring policies to the real robot

In attempting the transfer of learned policies to the real robot, we find that several design
choices are crucial. First, introducing Gaussian noise and dropped sensor readings into
the simulation is important. This is likely because the real world sensors and actuators are
similarly noisy, and the imperfections in the hardware result in sensor and motor unreliability.

The choice of the observation representation, i.e., which sensor measurements to use as
input to the policy, also turns out to be very important. We found that interfering magnetic
fields near the testing grounds at NASA Ames cause the magnetometers to be unreliable
and difficult to calibrate, and this results in significant distribution shift when attempting
to transfer a policy using the full observation from simulation, which had no interfering
magnetic fields, to the real robot. Thus, we used the limited observation representation.

Lastly, utilizing the kinematic constraints (i.e., safe actions) is extremely helpful in trans-
ferring policies learned in simulation directly onto the real robot. In simulation, the physical
limits are less restrictive, and going beyond the safe limits does not have any adverse effects.
By enforcing stronger constraints on what actions the policy can output, it is more likely
that the policy trained with these constraints in simulation will not fail on the real robot.

The limited observation policy that was trained in simulation was successfully run di-
rectly on the real SUPERball with no tuning or changes. Over three trials of 100 s each,
using the learned policy, SUPERball rolled approximately 12m, 9m, and 8m measured as
the linear distance from the robot’s start to final position. 12m is around the maximum
distance allowed during each trial due to our limited network range. Despite the distribution
shift caused by differences between the simulated and physical robot, the policy was able
to successfully produce a gait on SUPERball that is more reliable, and less risky for the
hardware, than any previous locomotion controller for this robot.

Summary

We demonstrated that a learned locomotion policy for the SUPERball tensegrity robot can
be transferred directly from simulation to the real system. This distribution shift between the
simulated and real robot was overcome by expert heuristics: carefully choosing the policy
observation representation, restricting actions to known safe regions, and injecting noise
into the simulation during training. We showed that, using these techniques, our learned
locomotion policies are effective and generalize to the real robot.

3.2 When to Trust Your Dynamics Model

In this section, we study how to most effectively use a dynamics model for policy optimiza-
tion. Most commonly used model-based approaches lack the improvement guarantees that
underpin many model free methods [198]. While it is possible to apply analogous techniques
to the study of model-based methods to achieve similar guarantees, it is more difficult to use
such analysis to justify model usage in the first place due to pessimistic bounds on model
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error. In other words, the worst case distribution shift that may be induced by using the
model to predict for long horizons and for an updated policy is at odds with guaranteeing
monotonic improvement. However, we show that more realistic model error rates are often
available in practice, especially when querying the model only for short horizons.

We devise a practical algorithm built on these insights, which we call model-based policy
optimization (MBPO), that makes limited use of a predictive model to achieve pronounced
improvements in performance. More specifically, we disentangle the task horizon and model
horizon by querying the model only for short rollouts. We empirically demonstrate that
a large amount of these short model generated rollouts can allow a policy optimization
algorithm to learn substantially faster than recent model-based alternatives while retaining
the asymptotic performance of the most competitive model-free algorithms.

Related work in analyzing and accounting for model error

Learned models may be incorporated into otherwise model-free methods for improvements in
data efficiency. For example, model rollouts may be used to provide extra training examples
for a Q-function [217], to improve the target value estimates of existing data points [58], or
to provide additional context to a policy [53]. However, the performance of such approaches
rapidly degrades with increasing model error [73], motivating work that interpolates between
different rollout lengths [31], tunes the ratio of real to model generated data [108], or does
not rely on model predictions [82]. Our approach similarly tunes model usage during policy
optimization, but we show that justifying non negligible model usage during most points
in training requires consideration of the model’s ability to generalize outside of its training
distribution. Theoretical analysis of model-based RL algorithms has been considered by
bounding the discrepancy between returns under a model and those in the real environment of
interest [138, 215]. Their approaches enforce a trust region around a reference policy, whereas
we do not constrain the policy but instead consider rollout length based on estimated model
generalization capacity. More recent work has shown that meta-learning can be a powerful
tool for learning models that adapt quickly [154, 153], though no work has yet been directed
at adapting to new policies, which requires out of distribution generalization.

Model-based policy optimization with deep RL

We consider a simple model-based RL approach: (1) optimize a policy under a learned
model using RL, (2) collect data under the updated policy, and (3) use these data to train
a new model. While conceptually straightforward, step (1) may be problematic: many RL
algorithms involve iteratively updating the policy and then collecting additional data, in
this case from the model, which means that the model will be queried under a different
distribution of actions and future states. This distribution shift can result in a policy which,
after being optimized under the model, does not perform well in the environment of interest.

To determine how well we can expect our model to generalize to new policies in practice,
we empirically measure how the model error under new policies increases with policy change.
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Figure 3.2: We train a predictive model on the state distribution of πD and evaluate it on
policies π of varying KL divergence from πD without retraining. The color of each curve
denotes the amount of data from πD used to train the model corresponding to that curve.
Increasing training data leads to decreasing model error on the training distribution, as well
as a decreased influence of state distribution shift on model error.

We train a model on the state distribution of a data collecting policy πD and then continue
policy optimization while measuring the model’s loss on all intermediate policies π during
this optimization. Figure 3.2 shows that, in practice, models are able to generalize to policies
that are relatively similar to πD. We combine this insight with an additional technique for
mitigating the shift that arises from querying the dynamics model for long trajectories, in
which the shifted action distribution of the new policy may cause compounding changes in
the future state distributions. We introduce the notion of a branched rollout, in which we
begin a rollout from a state under the previous policy’s state distribution dπD

(s) and run k
steps according to π under the learned model pθ. This branched rollout structure resembles
the scheme proposed in the original Dyna algorithm [217], which can be viewed as a special
case of a length 1 branched rollouts. Using a small k and results in more accurate model
generated rollouts and, consequently, more successful policy optimization.

We devise a practical model-based RL algorithm, MBPO, based on these insights and
the general approach highlighted above. Instantiating MBPO amounts to specifying three
design decisions: (1) the parameterization of the model pθ, (2) how the policy π is optimized
given model samples, and (3) how to query the model for samples for policy optimization.
For (1), we use a bootstrap ensemble B of dynamics models [40]. For (2), we adopt soft
actor critic (SAC) [76] as our policy optimization algorithm. For (3), we use the branching
strategy described above, in which model rollouts begin from the state distribution of a
different policy under the true environment dynamics.

Experiments

We evaluate MBPO and state-of-the-art model-free and model-based baselines on a set of
MuJoCo continuous control tasks [230]. Figure 3.3 (left) shows the learning curves for all
methods. These results show that MBPO learns substantially faster than prior model-free
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Figure 3.3: Left: Training curves of MBPO (blue) and five baselines on continuous control
benchmarks. Solid curves depict the mean of five trials and shaded regions correspond to
standard deviation among trials. Right: A 450-step hopping sequence performed in the real
environment, with the trajectory of the body’s joints traced through space (top), and the
same action sequence rolled out under the model 1000 times, with shaded regions corre-
sponding to one standard deviation away from the mean prediction (bottom). The growing
uncertainty and deterioration underscore accumulation of model errors.

methods while attaining comparable final performance. This is likely due in part to the fact
that short rollouts are more likely to reflect the real dynamics (Figure 3.3 right), reducing
the sampling errors and distribution shift that may harm the the final learned performance.

Summary

We have investigated the role of model usage in policy optimization procedures. An empirical
study of model generalization shows that predictive models can indeed perform well outside of
their training distribution. We further query the model only for short, branched rollouts, thus
reducing the compounding shift of long horizon trajectories. The algorithm stemming from
these insights, MBPO, has asymptotic performance rivaling the best model-free algorithms,
learns substantially faster than prior model-free or model-based methods, and scales to long
horizon tasks that often cause model-based methods to fail.

3.3 Learning from Human Demonstration Videos

In this section, we study the setting of robotic learning from videos of human demonstrations.
This setting eases the burden associated with providing demonstrations directly on the robot,
as human demonstrations require comparatively minimal setup, hardware, and expertise,
while also opening up a much wider source of supervision for robots to learn skills. However,
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Figure 3.4: Left: Human instructions for each stage (top) are translated at the pixel level
into robot instructions (bottom) via CycleGAN. Right: The robot attempts the task using
a model-based RL method that extracts a reward signal from the translated images.

as we learn from visual inputs, the distribution shift caused by differences in appearance
between the human and robot must be reconciled.

To tackle this challenge, we propose a robotic learning method which we name automated
visual instruction-following with demonstrations (AVID). Starting from a human demonstra-
tion, our method translates this demonstration, at the pixel level, into images of the robot
performing the task (see Figure 3.4). This translation significantly lessens the shift be-
tween human and robot demonstrations. We learn this translation via CycleGAN [273], a
framework for learning unpaired image-to-image translation. In order to further mitigate
the distribution shift stemming from artifacts in the translated demonstration, we reduce
the demonstration to a few instruction images, which are then used to provide a reward for
model-based RL, enabling the robot to practice the skill to learn its physical execution.

Related work in learning from human demonstrations

Prior methods for robotic imitation learning have typically used demonstrations consisting
of observations and actions from the robot’s observation and action space (see, e.g., [79,
20, 7]). We instead study whether we can allow robots to learn from watching a human
demonstrator, relaxing standard assumptions that the expert data are given using the robot’s
own embodiment. Some works have studied this setting using explicit pose and object
detection [118, 262], essentially resolving the correspondence problem [156] by instrumenting
paired data collection or manually matching hand specified key points. Other approaches
have included predictive modeling [183, 233], context translation [260, 202], learning reward
representations [199, 200], and meta-learning [265]. In contrast to these works, we explicitly
account for the change in embodiment through learned pixel-level translation.
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Translating from human to robot demonstrations

We approach human to robot demonstration translation as an unsupervised image-to-image
translation problem, where the goal is to map images from a source domain (human images,
in our case) to a target domain (robot images) in the absence of paired training data. We
assume there exists a bijective mapping that can be uncovered in an unsupervised manner.
The approach we use to learn this translation is CycleGAN [273]. Although this approach
does not exploit the temporal information that is implicit in our demonstration videos, prior
work has shown that CycleGAN can nevertheless successfully translate videos frame by
frame, such as translating videos of horses into videos of zebras [273].

Though we could use an imitation learning method that directly learns from the entire
translated video demonstration, we find that this approach performs poorly, indicating that
the distribution shift is not fully resolved due to the imperfect image translation. We ad-
dress this issue by instead extracting and learning from key frames that correspond to the
completion of stages. Specifically, the instruction images for stage i are taken from the ti-th
frame of the translated videos, where each ti is manually specified by the user. This process
is easy for the human as we use a modest number of videos and the time steps intuitively
correspond to the completion of natural stages in the task (see Figure 3.4).

Model-based RL from instructions images

The RL procedure that we use is a latent space model predictive control (MPC) method [270].
To specify a reward function for each stage, we train success classifiers for each stage, where
the i-th classifier is provided the instruction images at time step ti as positive examples and
all other robot images as negative examples. The log probabilities from the classifiers can
then be used as a reward signal, similar to prior work [61, 207].

When the robot is attempting stage s, the planner uses the log probability of the s-th
classifier as the reward function and aims to surpass a classifier threshold α ∈ [0, 1], which
is a hyperparameter. Should the threshold be met during planning, the robot will query the
human user, at which point the user signals either success or failure through a key press.
This human feedback provides a corrective signal for classifier errors that may occur due to
imperfect translations resulting in lingering distribution shift. After the human feedback,
the current robot image is added to the dataset for training the s-th classifier as either a
positive or negative example. Further training the classifiers on these data improves accuracy
by combating the false positive problem and offsetting the artifacts in the translated images
that the classifiers are initially trained with.

Experiments

We evaluate our method on two temporally extended tasks (Figure 3.5) from vision: oper-
ating a personal coffee machine and retrieving a cup from a closed drawer. We compared
to a number of prior approaches in imitation learning and learning from human videos. We
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Figure 3.5: Sample sequence of instructions for each of the two tasks, coffee making (left)
and cup retrieval (right). The instruction images are segmented from a human demon-
stration (top), then translated into the robot’s domain (bottom) via CycleGAN. Note the
artifacts in the generated translations, e.g., the displaced robot gripper in the last instruction
image on the left and the deformed cup in the last image on the right.

Coffee making Cup retrieval

Supervision Method Stage 1 Stage 2 Stage 3 Stage 1 Stage 2 Stage 3 Stage 4 Stage 5

Human Demos

AVID (ours) 100% 80% 80% 100% 100% 100% 80% 70%
Full video ablation 70% 10% 0% 0% 0% 0% 0% 0%
Pixel space ablation 60% 20% 0% 50% 50% 30% 10% 0%
TCN [200] 10% 10% 0% 60% 20% 0% 0% 0%

Teleoperated Robot Demos
BCO [231] 80% 30% 0% 30% 10% 0% 0% 0%
Behavioral Cloning 90% 90% 90% 100% 100% 60% 60% 40%

Table 3.1: We report success rates up to and including each stage for both tasks, over
10 trials. The top rows are methods that learn from human demonstrations, and we bold
the best performance in this category. The bottom two rows are methods trained with
direct access to demonstrations given on the real robot itself. AVID outperforms all other
methods from human demonstrations, succeeding 8 times out of 10 on coffee making and 7
times out of 10 on cup retrieval, and even outperforms behavioral cloning from teleoperated
demonstrations on the later stages of cup retrieval.

also evaluated an ablation of our method that learns from the full translated demonstration
video, to better understand the effects of shift caused by imperfect translations.

We report success rates for both coffee making and cup retrieval in Table 3.1. Success
rates are evaluated using 10 trials per method per task, with no human feedback or manual
intervention. For both tasks, AVID achieves the best performance among the methods that
use human demonstrations, consistently learning the earlier stages perfectly and suffering
less from accumulating errors in the later stages. The full video ablation can learn to pick up
the cup 70% of the time for the coffee making task, but it fails on the later stages and also
fails entirely for cup retrieval. This indicates the difficulty of learning from full translated
demonstrations due to the artifacts in the translations causing additional distribution shift.
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Summary

We presented AVID, a method for learning visual robotic multi-stage tasks directly from
videos of human demonstrations. AVID uses image-to-image translation, via CycleGAN,
to generate robot instruction images that enable a stagewise model-based RL algorithm
to learn from raw image observations. By using only instruction images rather than the
full translated video, this translation step is able to handle most of the distribution shift
arising from learning from human demonstrations, and the resulting instruction images are
supplemented by the RL algorithm which uses sparse human feedback. We demonstrated
that AVID is capable of learning multi-stage coffee making and cup retrieval tasks, attaining
substantially better results than prior methods and ablations using human demonstrations.

3.4 Discussion

In this chapter, we illustrated three distinct examples of how distribution shift can impact
RL applications. In the first example, the goal was to mitigate shift from transferring a policy
for tensegrity robot locomotion trained in simulation to the real world. Combined with the
benefits of learning policies, rather than hand designing them, and the robot construction
itself, a number of domain specific techniques ended up proving successful in this case.
Specifically, using a limited observation representation with noise added during training,
along with constraining actions to known safe regions of the action space, allowed for direct
simulation to real world transfer. In this case, we had the specific goal of tensegrity robot
locomotion, thus the techniques for mitigating shift were also specific to task at hand.

The second and third examples were more general: the shift arose from using models to
predict for new policies and learning tasks from videos of human demonstrations. However,
in these examples, handling the shift was not the primary goal, but rather the shift presented
a potential obstacle to reaching the goal. Thus, success for these examples instead took the
route of mitigating the shifts. For example, rather than attempting to improve the model’s
predictive performance for new policies, the rollout length was instead truncated to reduce
shift. And, because the CycleGAN could not perfectly remove the shift from human to robot
videos, only specific instruction images were used, and these were further supplemented by
online data collection and human feedback. These techniques cleared the path for achieving
our actual desiderata of effective model-based RL and learning from humans.

In the next chapter, we turn our focus to supervised learning. The difference, compared to
these examples, is that we typically wish to handle a broad shift of potential shifts, and this
is our primary, rather than auxiliary, goal when learning models. The examples we provide
for supervised learning will therefore motivate Chapter 5 and Chapter 6, in which we present
general purpose paradigms and methods for combating shift in supervised learning settings.
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Chapter 4

Distribution Shift in Supervised
Learning

In this chapter, we characterize the landscape of distribution shift problems in supervised
learning, focusing on benchmarks and test sets widely used in deep learning to assess model
robustness and generalization. We highlight several problems that are subsequently used
for evaluation in Chapter 5 and Chapter 6. We also present our own work on devising
distribution shift benchmarks for supervised learning. These benchmarks aim to complement
existing work by providing natural examples of when shift occurs in important real world
applications, as well as examples of problems for which model adaptation is beneficial for
improved performance.

4.1 Prior Work on Benchmarks for Distribution Shift

In this section, we discuss existing distribution shift benchmarks in more detail, categorizing
them by how they induce their respective distribution shifts. We restrict our attention to
publicly available datasets. While others have studied some proprietary datasets with realis-
tic distribution shifts, such as the StreetView StoreFronts dataset [89] or diabetic retinopathy
datasets [45], these datasets are not publicly available due to privacy and other commercial
reasons.

Distribution shifts from synthetic transformations

Some of the most widely adopted benchmarks induce distribution shifts by synthetically
transforming the data. Examples include rotated and translated versions of the MNIST and
CIFAR datasets [251, 74]; surface variations such as color in colored MNIST [74] and texture
in stylized ImageNet [65], and datasets that crop out objects and replace their backgrounds,
as in the Backgrounds Challenge [255] and other similar datasets [192, 112].
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ImageNet-C [84] is a widely used benchmark that augments the ImageNet test set [189]
with 15 different types of image corruptions each at five different levels of severity. These
corruptions include the subcategories of blur corruptions, noise corruptions, digital corrup-
tions, and simulated weather corruptions. Other variants of image corruption benchmarks
also exist for ImageNet [64] as well as other datasets such as CIFAR [84].

Benchmarks for adversarial robustness also fall in this category of distribution shifts from
transformations [70, 42]. Recent work on temporal perturbations with the ImageNet-Vid-
Robust and YTBB-Robust datasets [201] represents a form of distribution shift that impacts
real world applications. Outside of visual object recognition, other work has used synthetic
datasets and transformations to explore compositional generalization, e.g., SCAN [119].

Distribution shifts from modified data collection

A number of recent works aim to measure out of distribution generalization to test sets that
are collected using a modified procedure compared to the training dataset. Examples include
the CIFAR-10.1 test set [176], and for ImageNet alone, several such test sets have also been
proposed. Recent examples include the ImageNetV2 dataset [177], which was constructed
to be similar to the original ImageNet dataset but can still result in lower model accuracy,
and ImageNet-Sketch [244], which was collected using Google image queries of sketches of
ImageNet classes.

ImageNet-R [89] tests generalization across different renditions by collecting data from
Flickr of images belonging to an ImageNet category plus a keyword such as “art”, “cartoon”,
“graffiti”, etc. Thus, the data are a mix of real and synthetic naturally occurring images,
with significantly different statistics compared to the standard ImageNet training and test
sets. ImageNet-A [86] is a collection of images belonging to ImageNet categories that are
selected from a larger pool based on which images are misclassified by a trained ResNet-50
model [80] while remaining visually clear to humans. These are real and naturally occuring
images that have passed through an “adversarial filtration” process, thus they comprise a
challenging testbed for many models trained on ImageNet.

Distribution shifts from synthetic to real transfers

Fully synthetic datasets such as SYNTHIA [187] and StreetHazards [88] have been adopted
for out of distribution detection as well as other problem settings such as domain adaptation
and generalization, e.g., by testing robustness to transformations in the seasons, weather,
time, or architectural style [92, 240]. While the data are synthetic, they can still look realistic
if a high fidelity simulator is used. In particular, synthetic benchmarks that study transfers
from synthetic to real data [62, 184, 168] can be important tools for tackling real world
problems: even though the data are synthesized, the synthetic to real distribution shift
can still be realistic in contexts where real data are much harder to acquire than synthetic
data [17].
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Distribution shifts from constrained splits

Other benchmarks do not rely on transformations but instead split the data in a way that
induces particular distribution shifts. These benchmarks have realistic data, e.g., the data
points are derived from real world photos, but they do not necessarily reflect distribution
shifts that would arise in the wild. For example, BREEDS [195] tests generalization to unseen
ImageNet subclasses by holding out subclasses specified by several controllable parameters;
similarly, NICO [81] considers subclasses that are defined by their context, such as dogs
at home versus dogs on the beach; DeepFashion-Remixed [89] constrains the training set to
include only photos from a single camera viewpoint and tests generalization to unseen camera
viewpoints; BDD-Anomaly [88] uses a driving dataset but with all motorcycles, trains, and
bicycles removed from the training set only; and ObjectNet [13] comprises images taken from
a few prespecified viewpoints, allowing for systematic evaluation for robustness to camera
angle changes but deviating from natural camera angles.

A well studied special case of this category is the class of distribution shifts obtained by
combining several disparate datasets [232], training on one or more of them, and then testing
on the remaining datasets. Unlike test sets such as ImageNetV2, many of these distribution
shifts were constructed to be more drastic than might arise in the wild. For example, stan-
dard benchmarks for the domain adaptation problem setting include training on MNIST but
testing on SVHN street signs [234, 92]. Standard benchmarks for the domain generalization
problem setting include transfers across datasets containing different renditions (e.g., photos,
clipart, sketches) in DomainNet [167], PACS [123], and Office-Home [237], and VLCS [57],
which tests generalization across similar visual object recognition datasets. Recently, Do-
mainBed collected many of these test sets together into a benchmark suite, and surprisingly,
their main result was that a well tuned implementation of empirical risk minimization (ERM)
was competitive with state of the art specialized methods across the suite of problems [74].
We discuss this result in greater detail in the later chapters.

4.2 WILDS: A Benchmark of in-the-Wild

Distribution Shifts

In this section, we consider two common types of distribution shifts: domain generalization
and subpopulation shift (Figure 4.1). Both of these shifts arise naturally in many real world
scenarios, and prior work has shown that they can substantially degrade model performance.
In domain generalization, the training and test distributions comprise data from related but
distinct domains, such as patients from different hospitals [266], images taken by different
cameras [15], bioassays from different cell types [125], or satellite images from different
countries and time periods [105]. In subpopulation shift, we consider test distributions that
are subpopulations of the training distribution, with the goal of doing well even on the
worst case subpopulation; e.g., we might seek models that perform well on all demographic
subpopulations, including minority individuals [32].
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Figure 4.1: In each Wilds dataset, each data point is associated with a domain. Each
domain corresponds to a distribution over data points which are similar in some way, e.g.,
molecules with the same scaffold, or satellite images from the same region. We study two
types of distribution shifts. Left: In domain generalization, we train and test on disjoint
sets of domains. The goal is to generalize to domains unseen during training. Right: In
subpopulation shift, the training and test domains overlap, but their relative proportions
differ. We typically assess models by their worst performance over test domains, each of
which correspond to a subpopulation of interest.

Despite their ubiquity in real world deployments, these types of distribution shifts are
underrepresented in the datasets widely used in the community today [66]. Most of these
datasets were designed for the standard i.i.d. setting, with training and test sets from the
same distribution, and prior work on retrofitting them with distribution shifts has focused on
shifts that are cleanly characterized but not always likely to arise in real world deployments.
For instance, many recent papers have studied datasets with shifts induced by synthetic
transformations, such as changing the color of MNIST digits [8], or by disparate data splits,
such as generalizing from cartoons to photos [123]. Datasets like these are important testbeds
for systematic studies; but to develop and evaluate methods for real world shifts, we need
to complement them with datasets that capture shifts in the wild.

Here, we present Wilds, a curated benchmark of 10 datasets with evaluation metrics and
train/test splits representing a broad array of shifts that models face in the wild (Figure 4.2).
Wilds datasets span many important applications: animal species categorization [14], tu-
mor identification [12], bioassay prediction [254, 96], genetic perturbation classification [222],
wheat head detection [48], text toxicity classification [25], land use classification [38], poverty
mapping [263], sentiment analysis [158], and code completion [175, 137]. These datasets re-
flect natural distribution shifts arising from different cameras, hospitals, molecular scaffolds,
experiments, demographics, countries, time periods, users, and codebases.

Wilds builds on extensive data collection efforts by domain experts, who are often forced
to grapple with distribution shifts to make progress in their applications, such as the ones
listed above. To design Wilds, we worked with them to identify, select, and adapt datasets
that fulfilled the following criteria:
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Figure 4.2: The Wilds benchmark contains 10 datasets across a diverse set of application
areas, data modalities, and dataset sizes. Each dataset comprises data from different do-
mains, and the benchmark is set up to systematically evaluate models on distribution shifts
across these domains.

1. Distribution shifts with performance drops. The train/test splits reflect shifts
that substantially degrade model performance, i.e., with a large gap between in distri-
bution and out of distribution performance.

2. Real world relevance. The training/test splits and evaluation metrics are motivated
by real world scenarios and chosen in conjunction with domain experts.

3. Potential leverage. Distribution shift benchmarks must be nontrivial but also pos-
sible to solve, as models cannot be expected to generalize to arbitrary distribution
shifts. We constructed each Wilds dataset to have training data from multiple do-
mains, with domain annotations and other metadata available at training time. We
hope that these can be used to learn robust models: e.g., for domain generalization,
one could use these annotations to learn models that are invariant to domain specific
features, while for subpopulation shift, one could learn models that perform uniformly
well across each subpopulation.

We chose theWilds datasets to collectively encompass a diverse set of tasks, data modalities,
dataset sizes, and numbers of domains, so as to enable evaluation across a broad range of real
world distribution shifts. To make theWilds datasets more accessible, we have substantially
modified most of them, e.g., to clarify the distribution shift, standardize the data splits, or
preprocess the data for use in standard frameworks.
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Datasets are significant catalysts for machine learning research. Likewise, benchmarks
that curate and standardize datasets – e.g., the GLUE and SuperGLUE benchmarks for
language understanding [241, 242] and the Open Graph Benchmark for graph machine learn-
ing [96] – can accelerate research by focusing community attention, easing development on
multiple datasets, and enabling systematic comparisons between approaches. In this spirit,
we hope that Wilds will facilitate the development of methods and models that are robust
to real world distribution shifts and can therefore be deployed reliably in the wild.

WILDS problem settings

Each Wilds dataset is associated with a type of domain shift: domain generalization, sub-
population shift, or a hybrid of both (Figure 4.2). In each setting, we can view the overall
data distribution as a mixture of D domains D = {1, . . . , D}. Each domain d ∈ D cor-

responds to a fixed data distribution p
(d)
xy over (x, y, d), where all points sampled from p

(d)
xy

have domain d. We encode the domain shift by assuming that the training distribution
pxy =

∑
d∈D qd p

(d)
xy has mixture weights qd for each domain d, while the test distribution

p⋆xy =
∑

d∈D q⋆d p
(d)
xy is a different mixture of domains with weights q⋆d. For convenience, we

define the set of training domains as D train = {d ∈ D | qd > 0} and, likewise, the set of test
domains as D test = {d ∈ D | q⋆d > 0}.

At training time, the learning algorithm gets to see the domain annotations d, i.e., the
training set comprises points (x, y, d) ∼ pxy. At test time, the model gets either x or (x, d)
drawn from p⋆xy, depending on the application.

Domain generalization (Figure 4.1-Top). In domain generalization, we aim to general-
ize to test domains D test that are disjoint from the training domains D train, i.e., D train∩D test =
∅. To make this problem tractable, the training and test domains are typically similar to
each other: e.g., in Camelyon17-wilds, we train on data from some hospitals and test
on a different hospital, and in iWildCam2020-wilds, we train on data from some camera
traps and test on different camera traps. We typically seek to minimize the average error on
the test distribution.

Subpopulation shift (Figure 4.1-Bottom). In subpopulation shift, we aim to perform
well across a wide range of domains seen during training time. Concretely, all test domains
are seen at training, with D test ⊆ D train, but the proportions of the domains can change,
with q⋆ ̸= q. We typically seek to minimize the maximum error over all test domains.
For example, in CivilComments-wilds, the domains d represent particular demographics,
some of which are a minority in the training set, and we seek high accuracy on each of these
subpopulations without observing their demographic identity d at test time.

Hybrid settings. It is not always possible to cleanly define a problem as domain general-
ization or subpopulation shift; for example, a test domain might be present in the training set
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but at a very low frequency. In Wilds, we also consider some hybrid settings that combine
both problem settings. For example, in FMoW-wilds, the inputs are satellite images and
the domains correspond to the year and geographical region in which they were taken. We
simultaneously consider domain generalization across time (the training/test sets comprise
images taken before/after a certain year) and subpopulation shift across regions (there are
images from the same regions in the training and test sets, and we seek high performance
across all regions).

WILDS datasets

We now briefly describe each Wilds dataset (Figure 4.2). For each dataset, we consider a
problem setting – domain generalization, subpopulation shift, or a hybrid – that we believe
best reflects the real world challenges in the corresponding application area. To avoid con-
fusion between our modified datasets and their original sources, we append -wilds to the
dataset names.

Domain generalization: iWildCam2020-wilds. Animal populations have declined 68%
on average since 1970 [72]. To better understand and monitor wildlife biodiversity loss, ecol-
ogists commonly deploy camera traps – heat or motion activated static cameras placed in
the wild [246] – and then learn models to process the data collected [247, 220, 16, 161, 2].
Typically, these models would be trained on photos from existing camera traps and then
used across new camera trap deployments. However, across different camera traps, there
is drastic variation in illumination, color, camera angle, background, vegetation, and rel-
ative animal frequencies, which results in models generalizing poorly to new camera trap
deployments [15].

We study this shift on a variant of the iWildCam 2020 dataset [14], where the input x
is a photo from a camera trap, the label y is one of 182 animal species, and the domain d
specifies the identity of the camera trap. The training and test sets comprise photos from
disjoint sets of camera traps. As leverage, we include over 200 camera traps in the training
set, capturing a wide range of variation. We evaluate models by their macro F1 scores,
which emphasizes performance on rare species, as rare and endangered species are the most
important to accurately monitor.

Domain generalization: Camelyon17-wilds. Models for medical applications are often
trained on data from a small number of hospitals, but with the goal of being deployed more
generally across other hospitals. However, variations in data collection and processing can
degrade model accuracy on data from new hospital deployments [266, 3]. In histopathology
applications – studying tissue slides under a microscope – this variation can arise from, e.g.,
differences in the patient population or in slide staining and image acquisition [238, 114,
224].
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We study this shift on a patch-based variant of the Camelyon17 dataset [12], where the
input x is a 96x96 patch of a whole slide image of a lymph node section from a patient
with potentially metastatic breast cancer, the label y is whether the patch contains tumor,
and the domain d specifies which of 5 hospitals the patch was from. The training and test
sets comprise class balanced patches from separate hospitals, and we evaluate models by
their average accuracy. Prior work suggests that staining differences are the main source of
variation between hospitals in similar datasets [224]. As we have training data from multiple
hospitals, a model could use that as leverage to learn to be robust to stain variation.

Domain generalization: RxRx1-wilds. High throughput screening techniques that can
generate large amounts of data are now common in many fields of biology, including transcrip-
tomics [78], genomics [54, 272], proteomics and metabolomics [223], and drug discovery [28,
140, 219, 26]. Such large volumes of data, however, need to be created in experimental
batches, or groups of experiments executed at similar times under similar conditions. De-
spite attempts to carefully control experimental variables such as temperature, humidity,
and reagent concentration, measurements from these screens are confounded by technical
artifacts that arise from differences in the execution of each batch. These batch effects make
it difficult to draw conclusions from data across experimental batches [120, 165, 210, 162,
34].

We study the shift induced by batch effects on a variant of the RxRx1 dataset [222],
where the input x is a 3-channel image of cells obtained by fluorescent microscopy [27], the
label y indicates which of the 1,139 genetic treatments (including no treatment) the cells
received, and the domain d specifies the batch in which the imaging experiment was run.
The training and test sets consist of disjoint experimental batches; as leverage, the training
set has images from 33 different batches, with each batch containing one sample for every
class. We assess a model’s ability to normalize batch effects while preserving biological signal
by evaluating accuracy on images of treated cells in the out of distribution test set.

Domain generalization: OGB-MolPCBA. Accurate prediction of the biochemical
properties of small molecules can significantly accelerate drug discovery by reducing the
need for expensive lab experiments [205, 99]. However, the experimental data available for
training such models is limited compared to the extremely diverse and combinatorially large
universe of candidate molecules that we would want to make predictions on [24, 211, 139,
145]. This means that models need to generalize to out of distribution molecules that are
structurally different from those seen in the training set.

We study this shift on the OGB-MolPCBA dataset, which is directly adopted from
the Open Graph Benchmark [96] and originally from MoleculeNet [254]. It is a multi label
classification dataset, where the input x is a molecular graph, the label y is a 128-dimensional
binary vector where each component corresponds to a biochemical assay result, and the
domain d specifies the scaffold (i.e., a cluster of molecules with similar structure). The
training and test sets comprise molecules with disjoint scaffolds; for leverage, the training
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set has molecules from over 40,000 scaffolds. We evaluate models by averaging the Average
Precision (AP) across each of the 128 assays.

Domain generalization: GlobalWheat-wilds. Models for automated, high through-
put plant phenotyping – measuring the physical characteristics of plants and crops, such
as wheat head density and counts – are important tools for crop breeding [226, 181] and
agricultural field management [203]. These models are typically trained on data collected
in a limited number of regions, even for crops grown worldwide such as wheat [142, 258,
235, 10]. However, there can be substantial variation between regions, due to differences
in crop varieties, growing conditions, and data collection protocols. Prior work on wheat
head detection has shown that this variation can significantly degrade model performance
on regions unseen during training [48].

We study this shift in an expanded version of the Global Wheat Head Dataset [48], a
large set of wheat images collected from 12 countries around the world. It is a detection
dataset, where the input x is a cropped overhead image of a wheat field, the label y is the set
of bounding boxes for each wheat head visible in the image, and the domain d specifies an
image acquisition session (i.e., a specific location, time, and sensor with which a set of images
was collected). The data split captures location shift, with training and test sets comprising
images from disjoint countries. As leverage, we include images from 18 acquisition sessions
over 5 countries in the training set. We evaluate model performance on unseen countries by
measuring accuracy at a fixed Intersection over Union (IoU) threshold, and averaging across
acquisition sessions to account for imbalances in the numbers of images in them.

Subpopulation shift: CivilComments-wilds. Automatic review of user generated text
is an important tool for moderating the sheer volume of text written on the Internet. We
focus here on the task of detecting toxic comments. Prior work has shown that toxicity
classifiers can pick up on biases in the training data and spuriously associate toxicity with
the mention of certain demographics [164, 50]. These types of spurious correlations can
significantly degrade model performance on particular subpopulations [192].

We study this problem on a variant of the CivilComments dataset [25], a large collection
of comments on online articles taken from the Civil Comments platform. The input x is a
text comment, the label y is whether the comment was rated as toxic, and the domain d is
a 8-dimensional binary vector where each component corresponds to whether the comment
mentions one of the 8 demographic identities male, female, LGBTQ, Christian, Muslim,
other religions, Black, and White. The training and test sets comprise comments on disjoint
articles, and we evaluate models by the lowest true positive/negative rate over each of these
8 demographic groups; these groups overlap with each other, deviating slightly from the
standard subpopulation shift framework detailed above. Models can use the provided domain
annotations as leverage to learn to perform well over each demographic group.
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Hybrid: FMoW-wilds. Models for satellite imagery can enable global scale monitoring
of sustainability and economic challenges, aiding policy and humanitarian efforts in appli-
cations such as deforestation tracking [77], population density mapping [228], crop yield
prediction [245], and other economic tracking applications. As satellite data constantly
change due to human activity and environmental processes, these models must be robust
to distribution shifts over time. Moreover, as there can be disparities in the data available
between regions, these models should ideally have uniformly high accuracies instead of only
doing well on data rich regions and countries.

We study this problem on a variant of the Functional Map of the World dataset [38],
where the input x is an RGB satellite image, the label y is one of 62 building or land use
categories, and the domain d represents the year the image was taken and its geographical
region (Africa, the Americas, Oceania, Asia, or Europe). The different regions have different
numbers of examples, e.g., there are far fewer images from Africa than the Americas. The
training set comprises data from before 2013, while the test set comprises data from 2016
and after; years 2013 to 2015 are reserved for the validation set. We evaluate models by their
test accuracy on the worst geographical region, which combines both a domain generalization
problem over time and a subpopulation shift problem over regions. As we provide both time
and region annotations, models can leverage the structure across both space and time to
improve robustness.

Hybrid: PovertyMap-wilds. Global scale poverty estimation is a specific remote sens-
ing application which is essential for targeted humanitarian efforts in poor regions [1, 56].
However, ground truth measurements of poverty are lacking for much of the developing
world, as field surveys for collecting the ground truth are expensive [23]. This motivates the
approach of training models on countries with ground truth labels and then deploying them
on different countries where we have satellite data but no labels [256, 105, 263].

We study this shift through a variant of the poverty mapping dataset [263], where the
input x is a multispectral satellite image, the output y is a real valued asset wealth index
from surveys, and the domain d represents the country the image was taken in and whether
the image is of an urban or rural area. The training and test set comprise data from disjoint
sets of countries, and we evaluate models by the correlation of their predictions with the
ground truth. Specifically, we take the lower of the correlations over the urban and rural
subpopulations, as prior work has shown that accurately predicting poverty within these
subpopulations is especially challenging. As poverty measures are highly correlated across
space [104, 186], methods can utilize the provided location coordinates, and the country and
urban/rural annotations, to improve robustness.

Hybrid: Amazon-wilds. In many consumer facing applications, models are trained on
data collected on one set of users and then deployed across a wide range of potentially new
users. These models can perform well on average but poorly on some users [221, 35, 127,
111]. These large performance disparities across users are practical concerns in consumer
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facing applications, and they can also indicate that models are exploiting biases or spurious
correlations in the data [11, 67].

We study a variant of the Amazon review dataset [158], where the input x is the review
text, the label y is the corresponding 1 to 5 star rating, and the domain d identifies the
user who wrote the review. The training and test sets comprise reviews from disjoint sets
of users; for leverage, the training set has reviews from 5,008 different users. As our goal is
to train models with consistently high performance across users, we evaluate models by the
10th percentile of per user accuracies.

Hybrid: Py150-wilds. Code completion models – autocomplete tools used by program-
mers to suggest subsequent source code tokens, such as the names of API calls – are com-
monly used to reduce the effort of software development [185, 30, 157, 170, 60]. These models
are typically trained on data collected from existing codebases but then deployed more gen-
erally across other codebases, which may have different distributions of API usages [160, 171,
5]. This shift across codebases can cause substantial performance drops in code completion
models. Moreover, prior studies of real world usage of code completion models have noted
that they can generalize poorly on some important subpopulations of tokens such as method
names [83].

We study a variant of the Py150 Dataset [175, 137], where the goal is to predict the next
token given the context of previous tokens. The input x is a sequence of source code tokens,
the label y is the next token, and the domain d specifies the repository that the source code
belongs to. The training and test sets comprise code from disjoint GitHub repositories. As
leverage, we include over 5,300 repositories in the training set, capturing a wide range of
source code variation. We evaluate models by their accuracy on the subpopulation of class
and method tokens.

WILDS experimental results

Many algorithms have been proposed for training models that are more robust to particular
distribution shifts than standard ERM models. Unlike ERM, these algorithms tend to utilize
domain annotations during training, with the goal of learning a model that can generalize
across domains. In this section, we evaluate several representative algorithms from prior
work and show that out of distribution (OOD) performance drops still remain.

Domain generalization baselines. Methods for domain generalization typically involve
adding a penalty to the ERM objective that encourages some form of invariance across
domains. We include two such methods as representatives:

• CORAL [213], which penalizes differences in the means and covariances of the feature
distributions (i.e., the distribution of last layer activations in a neural network) for each
domain. Conceptually, CORAL is similar to other methods that encourage feature
representations to have the same distribution across domains [234, 135, 62, 130, 126].
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Dataset Setting ERM CORAL IRM DRNN

iWildCam2020-wilds Domain gen. 31.0 (1.3) 32.8 (0.1) 15.1 (4.9) 23.9 (2.1)
Camelyon17-wilds Domain gen. 70.3 (6.4) 59.5 (7.7) 64.2 (8.1) 68.4 (7.3)
RxRx1-wilds Domain gen. 29.9 (0.4) 28.4 (0.3) 8.2 (1.1) 23.0 (0.3)
OGB-MolPCBA Domain gen. 27.2 (0.3) 17.9 (0.5) 15.6 (0.3) 22.4 (0.6)
GlobalWheat-wilds Domain gen. 49.2 (1.5) — — 46.1 (1.6)

CivilComments-wilds Subpop. shift 56.0 (3.6) 65.6 (1.3) 66.3 (2.1) 70.0 (2.0)

FMoW-wilds Hybrid 32.3 (1.3) 31.7 (1.2) 30.0 (1.4) 30.8 (0.8)
PovertyMap-wilds Hybrid 0.45 (0.06) 0.44 (0.06) 0.43 (0.07) 0.39 (0.06)
Amazon-wilds Hybrid 53.8 (0.8) 52.9 (0.8) 52.4 (0.8) 53.3 (0.0)
Py150-wilds Hybrid 67.9 (0.1) 65.9 (0.1) 64.3 (0.2) 65.9 (0.1)

Table 4.1: The out of distribution (OOD) test performance of models trained with differ-
ent baseline algorithms: CORAL, originally designed for unsupervised domain adaptation;
IRM, for domain generalization; and DRNN, for subpopulation shifts. Higher is better for
all evaluation metrics. Overall, these algorithms failed to improve over ERM, except on
CivilComments-wilds where they perform better but still do not close the in distribu-
tion gap. For GlobalWheat-wilds, we omit CORAL and IRM as those methods do not
port straightforwardly to detection settings. Parentheses show standard deviation across 3+
replicates.

• IRM [8], which penalizes feature distributions that have different optimal linear clas-
sifiers for each domain. This builds on earlier work on invariant predictors [169].

Subpopulation shift baselines. In subpopulation shift settings, our aim is to train mod-
els that perform well on all relevant subpopulations. We test the following approach:

• DRNN [95, 192], which uses distributionally robust optimization (DRO) to explic-
itly minimize the loss on the worst case domain during training. DRNN builds on a
maximin approach developed in earlier work [146].

Setup. We trained ERM, CORAL, IRM, and DRNN models on each dataset. While
DRNN was originally developed for subpopulation shifts, for completeness, we also experi-
ment with using it for domain generalization. In that setting, DRNN models aim to achieve
similar performance across domains: e.g., in Camelyon17-wilds, where the domains are
hospitals, DRNN optimizes for the training hospital with the highest loss. Similarly, we also
test CORAL and IRM on subpopulation shifts, where they encourage models to learn invari-
ant representations across subpopulations. We used an OOD validation set for early stopping
and to tune the penalty weights for the CORAL and IRM algorithms. More experimental
details are provided in Section A.1.
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Results. Table 4.1 shows that models trained with CORAL, IRM, and DRNN generally
fail to improve over models trained with ERM. The exception is the CivilComments-
wilds subpopulation shift dataset, where the worst performing subpopulation is a minority
domain. By upweighting the minority domain, DRNN obtains an OOD accuracy of 70.0%
on the worst performing subpopulation compared to 56.0% for ERM, though this is still
substantially below the ERM model’s average accuracy of 92.2% over the entire test set.
CORAL and IRM also perform well on CivilComments-wilds, though their gains stem
largely from how our implementation heuristically upsamples the minority domain. All other
datasets involve domain generalization; the failures here are consistent with other recent
findings on standard domain generalization datasets [74].

These results indicate that training models to be robust to distribution shifts in the wild
remains a significant open challenge. However, we are optimistic about future progress for
two reasons. First, current methods were mostly designed for other problem settings besides
domain generalization, e.g., CORAL for unsupervised domain adaptation and DRNN for
subpopulation shifts. Second, compared to existing distribution shift datasets, the Wilds
datasets generally contain diverse training data from many more domains as well as metadata
on these domains, which future algorithms might be able to leverage.

Summary

We presented Wilds, a benchmark of distribution shift problems designed with real world
applications in mind, spanning areas including ecology, economics, medicine, social issues,
and more. Wilds datasets are set up as domain generalization and subpopulation shift prob-
lems, and these formulations make assumptions about the presence of domain annotations
within the training data which is reasonable and realistic in many cases. We evaluated a
number of prior methods that were developed for these and related problem formulations and
found that ERM oftentimes performs better than these methods for the proposed datasets.
Nevertheless, we believe that introducing these datasets will encourage the development of
more powerful methods that better leverage the assumptions that fit real world applica-
tions, in order to improve past standard ERM. In Chapter 5, we will revisit some of these
datasets, and in the rest of this chapter, we will introduce another suite of problems focused
on adaptation that will also be used in Chapter 5.

4.3 Distribution Shift Problems for Adaptation

In this section, we propose a set of problems in which it is both feasible and helpful (and
perhaps even necessary) to assume access to a batch or stream of inputs at test time. As a
running example which we concretely instantiate later in this section, consider a handwriting
classification model that, after training on data from past users, is deployed to new end users.
Each new user represents a new test distribution that differs from the training distribution.
Thus, each test setting involves dealing with shift. In Figure 4.3, we visualize a batch of
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Figure 4.3: An example of ambiguous data points in handwriting classification, described
in detail later in this section.

50 examples from a test user, and we highlight an ambiguous example which may be either
a “2” (written with a loop) or an “a” (in the double-storey style) depending on the user’s
handwriting. Due to the biases in the training data, an ERM trained model incorrectly
classifies this example as “2”. However, we can see that the batch of images from this test
user contains other examples of “2” (written without loops) and “a” (also double-storey)
from this user. Can we somehow leverage this unlabeled data to better handle test shifts
caused by new users?

Leveraging this test assumption does not require labels for any test data and is feasible
in many practical setups. For handwriting classification, we do not access only single hand-
written characters from an end user, but rather collections of characters such as sentences or
paragraphs. Unlabeled adaptation has been shown empirically to be useful for distribution
shift problems [216, 197, 243], such as for dealing with image corruptions [84]. Taking inspi-
ration from these findings, we propose a number of problems which, similar to Wilds, can
be categorized as domain generalization and subpopulation shift problems. Thus, in addi-
tion to Wilds problems, we also evaluate on the problems in this section in Chapter 5, and
our empirical results indicate that adaptation is beneficial in dealing with these instances of
distribution shift.
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Description of distribution shift problems

We propose four image classification problems which we believe can supplement existing
benchmarks for domain generalization and subpopulation shift.

Rotated MNIST. We study a modified version of MNIST where images are rotated in
10 degree increments, from 0 to 130 degrees. We treat each rotation as a separate domain,
and all domains appear in the training and test data, which makes this a subpopulation
shift problem. We construct a training set of 32292 data points using 90% of the original
training set – separating out a validation set – by sampling and applying random rotations
to each image. The rotations are not dependent on the image or label, but certain rotations
are sampled much less frequently. Rotations of 0 through 20 degrees, inclusive, have 7560
data points each, 30 through 50 degrees have 2160 points each, 60 through 80 have 648, 90
through 110 have 324 each, and 120 to 130 have only 108 points each.

In this setting, we hypothesize that adaptation can specialize the model to specific do-
mains, in particular the rare domains in the training set. For each test evaluation, we
generate images from the MNIST test set with a certain rotation. We measure both worst
case and average accuracy across domains.

Federated Extended MNIST (FEMNIST). The extended MNIST (EMNIST) dataset
consists of images of handwritten uppercase and lowercase letters, in addition to digits [41].
FEMNIST is the same dataset, but it also provides the metadata of which user generated
each data point [35]. FEMNIST, and EMNIST in general, is a significantly more challenging
dataset compared to MNIST due to its larger label space (62 compared to 10 classes), label
imbalance (almost half of the data points are digits), and inherent ambiguities (e.g., low-
ercase versus uppercase “o”) [41]. In processing the dataset, we filter out users with fewer
than 100 examples, leaving 262, 50, and 35 unique users and a total of 62732, 8484, and
8439 data points in the training, validation, and test splits, respectively. The smallest users
contain 104, 119, and 140 data points, respectively.

We treat each user as a domain. We measure each method’s worst case and average
accuracy across 35 test users, which are held out and thus disjoint from the training users.
Thus, this problem is a domain generalization problem. As discussed above, adaptation may
help for this problem for specializing the model and resolving ambiguous data points.

Corrupted image datasets. CIFAR-10-C and Tiny ImageNet-C [84] augment the
CIFAR-10 [115] and Tiny ImageNet test sets with common image corruptions that vary
in type and severity. The original goal of these augmented test sets was to benchmark
how well methods could handle these corruptions without access to any corruptions during
training [84]. Thus, successful methods for these problems typically have relied on domain
knowledge and heuristics designed specifically for image classification. For example, prior
work has shown that carefully designed test time adaptation procedures are effective for these
problems [216, 197, 243]. One possible reason for this phenomenon is that convolutional
networks are biased toward texture [65], which is distorted by corruptions, thus adaptation
can help the model recover its performance for each corruption type.
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We study whether these test sets can be extended into domain generalization problems, to
test whether training on various corruptions can improve performance on novel corruptions at
test time. To do so, we modify the original dataset construction protocol [84]. We construct
training, validation, and test splits with 56, 17, and 22 domains, respectively, where we
define domains based on the type and severity of the corruption. We split domains such that
corruptions in the training, validation, and test sets are disjoint. Specifically, the training
set consists of Gaussian noise, shot noise, defocus blur, glass blur, zoom blur, snow, frost,
brightness, contrast, and pixelate corruptions of all severity levels. Similarly, the validation
set consists of speckle noise, Gaussian blur, and saturate corruptions, and the test set consists
of impulse noise, motion blur, fog, and elastic transform corruptions of all severity levels.
For two corruptions, spatter and JPEG compression, we include lower severities (1-3) in
the training set and higher severities (4-5) in the validation and test sets. In this way, we
are constructing a more challenging test setting, in which the test domains are not sampled
identically as the training domains, since the corruption types are largely different between
the two sets. For the training and validation sets, each domain consists of 1000 images for
CIFAR-10-C and 2000 images for Tiny ImageNet-C, giving training sets of size 56000 and
112000, respectively. We use the full test set of 10000 images for each domain, giving a total
of 220000 test images for both datasets.

In Chapter 5, we evaluate on these problems as well asWilds problems to study whether,
and when, adaptation at test time leads to improve model performance when faced with
distribution shift.
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Part II

Adapting to Distribution Shift via
Meta-Learning and Data

Augmentations
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Chapter 5

Adaptive Risk Minimization:
Learning to Adapt to Domain Shift

In Part I, we provided examples in RL and supervised learning for distribution shift problems
that are important to solve and representative of real world applications. In this chapter and
Chapter 5, we turn our focus to approaches for solving the supervised learning problems, with
an emphasis on paradigms and methods that use adaptation as the main tool for combating
shift. As discussed in the last section of Chapter 4, one way in which we can formulate
the problem setting for test time adaptation, similar to prior works [216, 197, 243], is to
assume access to a batch of stream of unlabeled test inputs. From the perspective of domain
generalization and subpopulation shift problems, we can imagine that observing multiple
inputs may provide greater information about the underlying data distribution, which may
aid in prediction. In this chapter, we expand on this intuition to develop the adaptive risk
minimization paradigm for tackling these problems through adaptation, and we evaluate on
the specific problems proposed in Chapter 4.

5.1 Introduction

Prior benchmarks for domain generalization and similar settings typically center around
invariances – i.e., in these benchmarks, there is a consistent input-output relationship across
all domains, and the goal is to learn this relationship while ignoring the spurious correlations
within the domains (see, e.g., [74]). Thus, prior methods aim for generalization to shifts by
discovering this relationship, through techniques such as robust optimization and learning
an invariant feature space [126, 8, 192]. These methods are appealing in that they make
minimal assumptions about the information provided at test time – in particular, they do
not require test labels, and the learned model can be immediately applied to predict on
a single point. Nevertheless, these methods also have limitations, such as in dealing with
problems where the input-output relationship varies across domains, e.g., the handwriting
classification example from Chapter 4.
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Our main contribution in this chapter is to introduce the framework of adaptive risk
minimization (ARM), which proposes the following objective: optimize the model such that
it can maximally leverage the unlabeled adaptation phase to handle domain shift. To do
so, we instantiate a set of methods that, given a set of training domains, meta-learns a
model that is adaptable to these domains. These methods are straightforward extensions of
existing meta-learning approaches, thereby demonstrating that tools from the meta-learning
toolkit can be readily adapted to tackle domain shift. Our experiments test on several
image classification problems, derived from benchmarks for federated learning [35] and image
classifier robustness [84], in which training and test domains share structure that can be
leveraged for improved performance. We also evaluate on the Wilds suite of distribution
shift problems [113], which have been curated to faithfully represent important real world
problems. Empirically, we demonstrate that the proposed ARM methods, by leveraging
meta-training and test time adaptation, are often able to outperform prior state-of-the-art
methods by 1-4% test accuracy.

5.2 Related Work

A number of prior works have studied distribution shift in various forms [172]. In this
section, we review prior work in domain generalization, group robustness, meta-learning,
and adaptation.

Invariance and robustness to domains. As discussed above, a number of frameworks
leverage training domains to address test time shift. The terminology in prior work is
scattered and, depending on the application, includes terms such as “groups”, “datasets”,
“subpopulations”, and “users”; in this chapter, we adopt the term “domains” which we
believe is an appropriate unifying term. A number of testbeds for this problem setting have
been proposed for image classification, including generalizing to new datasets [57], new image
types [123, 167], and underrepresented demographics [192].

Prior benchmarks typically assume the existence of a consistent input-output relation-
ship across domains that is learnable by the specified model, thus motivating methods such
as learning an invariant feature space [126, 129, 8] or optimizing for worst case group per-
formance [95, 192]. In particular, methods for domain generalization – sometimes referred
to as multi-source domain adaptation [214] or zero shot domain adaptation [261] – have
largely focused on learning invariant features [62, 213, 126, 129, 167]. DomainBed [74]
provides a comprehensive survey of domain generalization benchmarks and finds that, sur-
prisingly, ERM is competitive with the state of the art across all the benchmarks considered.
In Section B.1, we discuss this finding as well as the performance of an ARM method on
this benchmark suite. In contrast to these benchmarks, we identify different problems for
which adaptation is helpful, and we find that, on these problems, ARM methods consistently
outperform ERM and other non adaptive methods for robustness and invariance.
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Meta-learning. Meta-learning [196, 19, 227, 91] has been most extensively studied in
the context of few shot labeled adaptation [194, 239, 174, 59, 209]. Our aim is not to
address few-shot recognition problems, nor to propose a novel meta-learning algorithm, but
rather to extend meta-learning paradigms to problems requiring unlabeled adaptation, with
the primary goal of tackling distribution shift. This aim differs from previous work in
meta-learning for domain generalization [124, 52], which seek to meta-train models for non
adaptive generalization performance. We demonstrate how paradigms such as contextual
meta-learning [63, 180] can be readily extended using the ARM framework.

Some other meta-learning methods adapt using both labeled and unlabeled data, either in
the semi supervised learning setting [178, 271, 128] or the transductive learning setting [159,
134, 6, 94]. These works all assume access to labeled data for adaptation, whereas we
propose methods and problems for purely unlabeled adaptation. Prior methods in meta-
learning for unlabeled adaptation include DAML [265], which adapts a policy to imitate
human demonstrations in the context of robotic learning; meta-learning unsupervised update
rules [147], which meta-learns an update rule for unsupervised representation learning but
still requires labels to learn a predictive model; and Tailoring [4], which meta-learns adaptive
models based on task specific unsupervised objectives. Unlike these prior works, we propose
a general framework for tackling distribution shift problems by meta-learning unsupervised
adaptation strategies. This framework simplifies the extension of meta-learning paradigms
to these problems, encapsulates previous approaches such as DAML [265], and sheds light
on how to improve existing strategies such as adaptation via batch normalization [131].

Adaptation to shift. Unlabeled adaptation has primarily been studied separately from
meta-learning. Domain adaptation is a prominent framework that assumes access to test
examples at training time [43, 249], similar to transductive learning [236]. As such, most
domain adaptation methods consider the problem setting where there is a single test distri-
bution [204, 47, 68, 62, 234, 37], and some of these methods are difficult to apply to problems
where there are multiple test distributions. Certain domain adaptation methods have also
been applied in the domain generalization setting, such as methods for learning invariant
features [62, 213, 126], and we compare to these methods in our experiments.

Some prior works have also proposed adaptive methods for domain generalization [151,
117]. Other prior work has provided a theoretic study of domain generalization and estab-
lished favorable generalization bounds for models that can adapt to domain shift at test
time [21, 22]. We summarize some of these results in the next section. In comparison,
our work establishes a framework that makes explicit the connection between adaptation
to domain shift and meta-learning, allowing us to devise new methods in a straightforward
and principled manner. These methods are amenable to expressive models such as deep
neural networks, which enables us to propose and evaluate on problems with raw image
observations.

Test time adaptation has also been studied for dealing with label shift [188, 133, 212]
and crafting favorable inductive biases for the domain of interest. For image classification,
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techniques such as normalizing via the test inputs [131] and optimizing self-supervised sur-
rogate losses [216] have proven effective for adapting to image corruptions [84]. We compare
to these prior methods in our experiments and empirically demonstrate the advantage of
using training domains to learn how to adapt.

5.3 Preliminaries and Notation

Let x ∈ X and y ∈ Y represent the input and output, respectively. We can formalize the
domain generalization problem setting using the following data generation process [22]: first,

a joint data distribution p
(d)
xy is sampled from a set of distributions Pxy, and then some data

points are sampled from p
(d)
xy .1 Overloading terminology, we refer to each p

(d)
xy as a domain,

e.g., a particular dataset or user, thus Pxy represents the set of all possible domains. We
assume that the training dataset is composed of data from S runs of this generative process,
organized by domain. An equivalent characterization which we will use for clarity is that,
within the training set, there are S domains, and each data point (x(i), y(i)) is annotated with
a domain label d(i). Each d(i) is an integer that takes on a value between 1 and S, indicating
which p

(d)
xy generated the i-th training point (though, of course, we do not have access to,

or knowledge of, p
(d)
xy itself). At test time, there may be multiple evaluation settings, where

each setting is considered separately and contains only unlabeled data sampled via a new
run of the same generative process. This data may represent, e.g., a new dataset or user,
and the test domains are likely to be distinct from the training domains when |Pxy| is large
or infinite.

Our formal goal is to optimize for expected performance, e.g., classification accuracy, at
test time. To do so, let us first consider predictive models of the form f : X × Px → Y , where
the model f takes in not just an input x but also the marginal input distribution p

(d)
x ∈ Px

that x was sampled from. We refer to f as an adaptive model, as it has the opportunity
to use p

(d)
x to adapt its predictions on x. The underlying assumption is that p

(d)
x provides

information about p
(d)
y|x, i.e., p

(d)
x is used as a surrogate input in place of p

(d)
xy . In the worst

case, if p
(d)
x and p

(d)
y|x are sampled independently, then the model does not benefit at all from

knowing p
(d)
x . In many problems, however, we expect knowledge about p

(d)
x to be useful, e.g.,

for resolving ambiguity as in the handwriting classification example in Chapter 4.
Theoretically, when p

(d)
x provides information about p

(d)
y|x, and when training and test

domains are drawn from the same distribution over Pxy, we can establish favorable general-
ization bounds for the expected performance of f in adapting to domain shift at test time.
We can formalize this as follows. First, define a prediction model to be a non adaptive model
of the form g : X → Y , and define the risk for a prediction model g and loss function ℓ, under
a data distribution p

(d)
xy , as

R(g, p(d)xy ) ≜ E
p
(d)
xy

[ℓ(g(x), y)] .

1Formally, the number of points sampled is another random variable with support over the positive
integers.
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Further, define the Bayes optimal risk for ℓ under p
(d)
xy as

R⋆(p(d)xy ) ≜ min
g
R(g, p(d)xy ) .

Let µ denote the distribution on Pxy from which training and test domains p
(d)
xy are sampled.

To avoid overlapping terms, define the adaptive risk for an adaptive model f and ℓ, under
µ, to be

E(f, µ) ≜ Eµ

[
E

p
(d)
xy

[
ℓ(f(x, p(d)x ), y)

]]
. (5.1)

We state the following result from prior work [22], which details a condition on µ under
which E is a strongly principled objective for learning adaptive models.

Lemma 9 from [22]. Let f ⋆ denote a minimizer of E for the given µ. If µ is a distribution

on Pxy such that µ-almost surely it holds that p
(d)
y|x = M(p

(d)
x ) for some deterministic mapping

M , then for µ-almost all p
(d)
xy , we have

R(f ⋆(·, p(d)x ), p(d)xy ) = R⋆(p(d)xy ) =⇒ E(f ⋆, µ) = Eµ

[
R⋆(p(d)xy )

]
.

In other words, an adaptive model which minimizes the adaptive risk E coincides with a
Bayes optimal decision function for p

(d)
xy , for µ-almost all domains p

(d)
xy .

Remark. The required condition on µ – that p
(d)
y|x is determined by p

(d)
x – holds if, and

only if, an expert (or oracle) is able to correctly label inputs from a given domain provided
only information about the input distribution. This condition holds for all of the testbeds
detailed in Chapter 4. The condition does not hold for, e.g., standard few shot learning
testbeds, where it is possible for two domains with identical input distributions to shuffle
their label orderings differently [239]. Thus, these problems are outside the scope of this
chapter.

This result provides strong justification for learning adaptive models f by minimizing
the adaptive risk E . However, a practical instantiation of this approach requires some ap-
proximations. First, we do not know and cannot input p

(d)
x to f in most cases. Instead, we

instantiate f such that it takes in a batch of inputs x1, . . . ,xK , all from the same domain,
where K can vary. f makes predictions on the whole batch, which also serves as an em-
pirical approximation (i.e., a histogram) p̂

(d)
x of p

(d)
x [22]. In our exposition, we will assume

that a batch of unlabeled points is available at test time for adaptation. However, we also
experiment with the streaming setting where the test inputs are observed one at a time and
adaptation occurs incrementally.

Notice that, if we instead passed in an approximation p̂
(d)
xy of p

(d)
xy to the model, such as

a batch of labeled data (x1, y1), . . . , (xK , yK), then this setup would resemble the standard
few shot meta-learning problem [239]. Formally, a meta-learning model takes in both an

input x and p̂
(d)
xy , which approximates the distribution that x was sampled from and thus
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can be used to adapt the prediction on x. Compared to our problem setting, the meta-
learning formalism can tackle a wider range of problems but also requires more restrictive
assumptions, specifically, labels at test time via p̂

(d)
xy . Transductive meta-learning methods

further assume that, in addition to p̂
(d)
xy , a full batch of inputs x1, . . . ,xK is passed into the

model, which allows for better estimation of the input distribution p
(d)
x [159, 134, 94]. The

model then makes predictions on this entire batch. In meta-learning terminology, p̂
(d)
xy and

x1, . . . ,xK are often referred to as the support and query, respectively. Therefore, another
interpretation of the adaptive models that we study in this chapter is that they resemble
transductive meta-learning models, but they are given only the unlabeled query and not the
labeled support set.

In the next section, we expand on this connection to develop the ARM framework, which
then allows us to bring forward tools from meta-learning to tackle problems in domain
generalization and subpopulation shift, which we will collectively refer to as “domain shift”
problems.

5.4 Adaptive Risk Minimization

In this section, we formally describe the ARM framework, which defines an objective for
training adaptive models to tackle domain shift. Furthermore, we propose a general meta-
learning algorithm as well as specific methods for optimizing the ARM objective. In the
next section, we test these ARM methods on problems for which unlabeled adaptation can
potentially be leveraged for better test performance.

Devising the ARM objective

We wish to learn an adaptive model f : XK → YK to tackle domain shift. As noted, meta-
learning methods for labeled adaptation study a similar form of model, and a common
approach in many of these methods is to define f such that it is composed of two parts:
first, a learner which ingests the data and produces parameters, and second, a prediction
model which uses these parameters to make predictions [239, 59]. We will follow a similar
strategy which will allow us to easily extend and design meta-learning methods towards our
goal.

In particular, we will decompose the model f into two modules: a standard prediction
model g(· ; θ) : X → Y , that is parameterized by θ ∈ Θ and predicts y given x, and
an adaptation model h(· , · ;ϕ) : Θ × XK → Θ, which is parameterized by ϕ. h takes in
the prediction model parameters θ and K unlabeled data points and uses the K points to
produce adapted parameters θ′. This is analogous to the learner in meta-learning, however,
h adapts the model parameters using only unlabeled data.2

2For some meta-learning methods, the learner does not take as input the unadapted model parame-
ters [239], and we also devise some methods of this form. In the formalism above, these methods simply
ignore the input θ.



CHAPTER 5. ADAPTIVE RISK MINIMIZATION: LEARNING TO ADAPT TO
DOMAIN SHIFT 46

Algorithm 1 Meta-Learning for ARM

// Training procedure

Require: # training steps T , batch size K, learning rate η
1: Initialize: θ, ϕ
2: for t = 1, . . . , T do
3: Sample d uniformly from training domains
4: Sample (xk, yk) ∼ p̂

(d)
xy for k = 1, . . . , K

5: θ′ ← h(θ,x1, . . . ,xK ;ϕ)
6: (θ, ϕ)← (θ, ϕ)− η∇(θ,ϕ)

∑K
k=1 ℓ(g(xk; θ

′), yk)
7: end for

// Test time adaptation procedure

Require: θ, ϕ, test batch x1, . . . ,xK

7: θ′ ← h(θ,x1, . . . ,xK ;ϕ)
8: ŷk ← g(xk; θ

′) for k = 1, . . . , K

The ARM objective is to optimize ϕ and θ such that h can adapt g using unlabeled data
sampled according to a particular domain d. This can be expressed as the optimization
problem

min
θ,ϕ
Ê(θ, ϕ) = Epd

[
E

p̂
(d)
xy

[
1

K

K∑
k=1

ℓ(g(xk; θ
′), yk)

]]
, where θ′ = h(θ,x1, . . . ,xK ;ϕ) . (5.2)

Note that Ê is the empirical form of the adaptive risk in Equation 5.1 for the form of f we
have defined. Mimicking the generative process that we assume generated the training data,
pd is a categorical distribution over {1, . . . , S} which places uniform probability mass on

each training domain, and p̂
(d)
xy assigns uniform probability to only the training points within

a particular domain. As we have established theoretically, we expect the trained models
to perform well at test time if the test domains are sampled independently and identically
– i.e., from the same distribution over Pxy – as the training domains. In practice, similar
to how meta-learned few shot classification models are evaluated on new and unseen meta-
test classes [239, 59], we empirically show in our experiments that the trained models can
generalize to test domains that are not sampled identically to the training domains.

Optimizing the ARM objective

Algorithm 1 presents a general meta-learning approach for optimizing the ARM objective.
As described above, h outputs updated parameters θ′ using an unlabeled batch of data
(line 5). This mimics the adaptation procedure at test time, where we do not assume access
to labels (lines 7-8). However, the training update itself does rely on the labels (line 6).
We assume that h is differentiable with respect to its input θ and ϕ, thus we use gradient



CHAPTER 5. ADAPTIVE RISK MINIMIZATION: LEARNING TO ADAPT TO
DOMAIN SHIFT 47

updates on both θ and ϕ to optimize for post adaptation performance on a mini batch of
data sampled according to a particular domain d. In practice, we also sample mini batches
of domains, rather than just one domain (as written in line 3), to provide a better gradient
signal for optimizing ϕ and θ.

Together, Equation 5.2 and Algorithm 1 shed light on a number of ways to devise methods
for solving the ARM problem. First, we can extend meta-learning paradigms to the ARM
problem setting, and any paradigm in which the adaptation model h can be augmented
to operate on unlabeled data is readily applicable. As an example, we propose the ARM-
CML method, which is inspired by recent works in contextual meta-learning (CML) [63,
180]. Second, we can enhance prior unlabeled adaptation methods by incorporating a meta-
training phase that allows the model to better leverage the adaptation. To this end, we
propose the ARM-BN method, based on the general approach of adapting using batch nor-
malization (BN) statistics of the test inputs [131, 197, 107, 152]. Third, we can incorporate
existing methods for meta-learning unlabeled adaptation to solve domain shift problems. We
demonstrate this by proposing the ARM-LL method, which is based on the robotic imitation
learning method from prior work which adapts via a learned loss (LL) [265]. All of these
methods are straightforward extensions of existing meta-learning and adaptation methods,
and this is intentional – we aim to show how existing tools can be readily adapted to tackle
domain generalization problems.

ARM-CML. In ARM-CML, the parameters ϕ of h define the weights of a context net-
work fcont(· ;ϕ) : X → RD, parameterized by the adaptation model parameters ϕ. We also
instantiate the model with a prediction network fpred(· , · ; θ) : X × RD → Y , parameterized
by θ. When given a mini batch of inputs, fcont processes each example xk in the mini batch
separately and outputs ck ∈ RD for k = 1, . . . , K, which are averaged together into a context
c = 1

K

∑K
k=1 ck. D is a hyperparameter, and in our experiments, we choose D to be the

dimensionality of x, such that we can concatenate each image xk and the context c along
the channel dimension to produce the input to fpred. In other words, fpred processes each xk

separately to produce an estimate of the output ŷk, but it additionally receives c as input.
In this way, fcont can provide information about the entire batch of K unlabeled data points
to fpred for predicting the correct outputs.

Note that the difference between ARM-CML and prior contextual meta-learning ap-
proaches is that, in prior approaches, the context network processes both inputs and outputs
to produce each ck. ARM-CML is designed for the domain generalization setting in which
we do not assume access to labels at test time, thus we meta-train for unlabeled adaptation
performance at training time.

ARM-BN. ARM-BN is a particularly simple method that is applicable for any model g
that has BN layers [100]. Practically, training g via ARM-BN follows the same protocol as
standard BN [100] except for two key differences: first, the training batches are sampled
from a single domain, rather than from the entire dataset, and second, the normalization
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Figure 5.1: In the contextual approach (top), x1, . . . ,xK are summarized into a context
c, and we propose two methods for this summarization, either through a separate context
network or using batch normalization activations in the model itself. c can then be used by
the model to infer additional information about the input distribution. In the gradient based
approach (bottom), an unlabeled loss function L is used for gradient updates to the model
parameters, in order to produce parameters that are specialized to the test inputs and can
produce more accurate predictions.

statistics are recomputed at test time rather than using a training running average. As
noted, this second difference has been explored by several works as a method for test time
adaptation, but the first difference is novel to ARM-BN. Following Algorithm 1, ARM-BN
defines a meta-training procedure in which g learns to adapt – i.e., compute normalization
statistics – using batches of training points sampled from the same domain. We empirically
show in our experiments that, for problems where BN adaptation already has a favorable
inductive bias, such as for image classification, further introducing meta-training boosts its
performance. We believe that other test time adaptation methods, such as those based
on optimizing surrogate losses [216, 243], may similarly benefit from their corresponding
meta-training procedures.

At a high level, ARM-BN operates in a similar fashion to ARM-CML, thus we group these
methods together into the umbrella of contextual approaches, shown in Figure 5.1 (top).
The interpretation of ARM-BN through the contextual approach is that h replaces the
running statistics used by standard BN with statistics computed on the batch of inputs,
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which then serves as the context c. Thus, for ARM-BN, there is no context network, and h
has no parameters beyond the model parameters θ involved in computing BN statistics. The
model g is again specified via a prediction network fpred, which must have BN layers. BN
typically tracks a running average of the first and second moments of the activations in these
layers, which are then used at test time. ARM-BN defines h such that it swaps out these
moments for the moments computed via the activations on the test batch, thus giving us
adapted parameters θ′ if we view the moments as part of the model parameters. This method
is remarkably simple, and in deep learning libraries such as PyTorch [166], implementing
ARM-BN involves changing a single line of code. However, as shown by our experiments,
this method also performs very well empirically, and the adaptation effectiveness is further
boosted by meta-training.

ARM-LL. ARM-LL, depicted in Figure 5.1 (bottom), follows the gradient based meta-
learning paradigm [59] and learns parameters θ that are amenable to gradient updates on
a loss function in order to quickly adapt to a new problem. In other words, h produces
θ′ = θ − α∇θL(θ,x1, . . . ,xK ;ϕ), where α is a hyperparameter. Note that the loss function
L used in the gradient updates is different from the original supervised loss function ℓ, in
that it operates on only the inputs x, rather than the input output pairs that ℓ receives. We
follow the general implementation of this approach proposed in DAML [265]. We define g
to produce output features o ∈ R|Y| that are used as logits when making predictions. We
then define the unlabeled loss function L to be the composition of g and a loss network
floss(· ;ϕ) : R|Y| → R, which takes in the output features from g and produces a scalar. As we
desire that the loss is bounded below, we use the ℓ2-norm of these scalars across the batch
of inputs as the loss for updating θ. In other words,

h(θ,x1, . . . ,xK ;ϕ) = θ − α∇θ∥v∥2 , where v = [floss(g(x1; θ);ϕ), . . . , floss(g(xK ; θ);ϕ)] .

In our experiments, we used α = 0.1 and 1 gradient step for both meta-training and meta-
testing.

5.5 Experiments

Our experiments are designed to answer the following questions:

1. Do ARM methods learn models that can better adapt to tackle domain shift?

2. How do ARM methods compare to methods for robustness, invariance, and adaptation?

3. Can models trained via ARM methods adapt successfully in the streaming test setting?

We evaluate on the problems we proposed in Chapter 4. A key characteristic of these
problems is the potential for adaptation to improve test performance, and this differs from
prior benchmarks such as the problems compiled by DomainBed [74]. In Section B.1, we
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compare our testbeds to DomainBed and group robustness benchmarks, and we briefly dis-
cuss the results in DomainBed, which also evaluate ARM-CML.

Comparisons and ablations

We compare the ARM methods against several prior methods designed for robustness, in-
variance, and adaptation. We describe the comparisons here and provide additional details
in Section B.2.

Test time adaptation. We evaluate the general approach of using test batches to compute
BN statistics [131, 197, 107, 152], which we term BN adaptation. We also compare to test
time training (TTT) [216], which adapts the model at test time using a self-supervised
rotation prediction loss. These methods have previously achieved strong results for image
classification, likely because they constitute favorable inductive biases for improving on the
true classification task [216].

Ablations. We also include ablations of the ARM-CML and ARM-LL methods, which
sample training batches of unlabeled examples uniformly from the entire training set, rather
than sampling from a single domain.3 These “context ablation” and “learned loss ablation”
are similar to test time adaptation methods in that they do not require training domains,
thus they allow us to evaluate whether or not meta-training on domain shifts is important
for improved performance.

Group robustness and invariance. We compare to DRNN [192], as well as a strong up-
weighting (UW) baseline evaluated in this work that samples uniformly from each group, and
so we also evaluate this approach in our experiments. Additionally, we compare to domain
adversarial neural networks (DANN) [62] and maximum mean discrepancy (MMD) feature
learning [126], two state-of-the-art methods for adversarial learning of invariant predictive
features. For the Wilds datasets, we include the numbers reported in Chapter 4 for DRNN
and two other invariance methods, correlation alignment (CORAL) [213] and invariant risk
minimization (IRM) [8].

Robustness and invariance methods assume access to training domains but not test
batches, whereas adaptation methods assume the opposite. Thus, at a high level, we can view
the comparisons to these methods as evaluating the importance of each of these assumptions
for the specified problems.

Quantitative evaluation and comparisons

The results for the four proposed benchmarks for adaptation are presented in Table 5.1. The
best results, stratified by classes of methods, are bolded. Across all of these problems, ARM

3Note that the corresponding ablation of ARM-BN is simply the BN adaptation method.
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MNIST FEMNIST CIFAR-10-C Tiny ImageNet-C

Method WC Avg WC Avg WC Avg WC Avg

ERM 74.5± 1.4 93.6± 0.4 62.4± 0.4 79.1± 0.3 54.1± 0.3 70.4± 0.1 20.3± 0.5 41.9± 0.1

UW∗ 80.3± 1.2 95.1± 0.1 65.7± 0.7 80.3± 0.6 — — — —
DRNN 79.9± 0.7 94.9± 0.1 57.5± 1.7 76.5± 1.2 49.3± 0.9 65.7± 0.5 14.2± 0.2 31.6± 1.0
DANN 78.8± 0.8 94.9± 0.1 65.4± 1.0 81.7± 0.3 53.9± 2.2 69.8± 0.3 20.4± 0.7 40.9± 0.2
MMD 82.4± 0.9 95.3± 0.3 62.4± 0.7 79.8± 0.4 52.2± 0.3 69.5± 0.1 19.7± 0.2 40.1± 0.1

BN adaptation 78.0± 0.3 94.4± 0.1 65.7± 1.5 80.0± 0.5 60.6± 0.3 70.9± 0.1 26.5± 0.3 42.8± 0.0
TTT 81.1± 0.3 95.4± 0.1 68.6± 0.4 84.2± 0.1 61.5± 0.3 71.7± 0.5 27.6± 0.5 37.7± 0.3
CML ablation 63.5± 1.8 90.1± 0.2 61.8± 0.8 81.6± 0.5 58.8± 0.1 69.6± 0.2 26.3± 0.6 42.5± 0.1
LL ablation 79.9± 1.1 95.0± 0.3 64.1± 1.6 80.8± 0.2 60.9± 0.4 71.3± 0.0 21.6± 2.1 32.6± 3.2

ARM-CML 88.0± 0.8 96.3± 0.4 70.9± 1.4 86.4± 0.3 61.2± 0.4 70.3± 0.2 29.1± 0.4 43.3± 0.1
ARM-BN 83.3± 0.5 95.6± 0.1 64.5± 3.2 83.2± 0.5 61.7± 0.3 72.4± 0.3 28.3± 0.3 43.3± 0.1
ARM-LL 88.9± 0.8 96.9± 0.2 67.0± 0.9 84.3± 0.7 61.2± 0.7 72.5± 0.4 25.4± 0.1 35.7± 0.4

Table 5.1: Worst case (WC) and average (Avg) top 1 accuracy on all testbeds, where means
and standard errors are reported across three separate runs of each method. Horizontal lines
separate methods that make use of (from top to bottom): neither, training domains, test
batches, or both. ARM methods consistently achieve greater robustness, measured by WC,
and Avg performance compared to prior methods. ∗UW is identical to ERM for CIFAR-10-C
and Tiny ImageNet-C.

methods increase both worst case and average accuracy compared to all other methods.
ARM-CML performs well across all tasks, and despite its simplicity, ARM-BN achieves the
best performance overall on the corrupted image testbeds, demonstrating the effectiveness of
meta-training on top of an already strong adaptation procedure. BN adaptation and TTT are
the strongest prior methods, as these adaptation procedures constitute inductive biases that
are generally well suited for image classification. However, ARM methods are comparatively
less reliant on favorable inductive biases and consistently attain better results. In general,
we observe poor performance from robustness methods, varying performance from invariance
methods, strong performance from adaptation methods, and the strongest performance from
ARM methods.

When we cannot access a batch of test points all at once, and instead the points are
observed in a streaming fashion, we can augment the proposed ARM methods to perform
sequential model updates. For example, ARM-CML and ARM-BN can update their average
context and normalization statistics, respectively, after observing each new test point. In
Figure 5.2, we study this test setting for the Tiny ImageNet-C problem. We see that both
models trained with ARM-CML and ARM-BN are able to achieve near their original worst
case and average accuracy within observing 50 data points, well before the training batch
size of 100. This result demonstrates that ARM methods are applicable for problems where
test points must be observed one at a time, provided that the model is permitted to adapt
using each point. We provide streaming results on rotated MNIST in Section B.4.
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Figure 5.2: In the streaming setting, ARM methods reach strong performance on Tiny
ImageNet-C after fewer than 50 data points, despite using training batch sizes of 100. This
highlights that the trained models are able to adapt successfully in the standard streaming
evaluation setting.

iWildCam Camelyon17 RxRx1 FMoW PovertyMap

Method Acc Macro F1 Acc Acc WC Acc Avg Acc WC Pearson r Pearson r

ERM 71.6± 2.5 31.0± 1.3 70.3± 6.4 29.9± 0.4 32.3± 1.25 53.0± 0.55 0.45± 0.06 0.78± 0.04
DRNN 72.7± 2.0 23.9± 2.1 68.4± 7.3 23.0± 0.3 30.8± 0.81 52.1± 0.5 0.39± 0.06 0.75± 0.07
CORAL 73.3± 4.3 32.8± 0.1 59.5± 7.7 28.4± 0.3 31.7± 1.24 50.5± 0.36 0.44± 0.06 0.78± 0.05
IRM 59.8± 3.7 15.1± 4.9 64.2± 8.1 8.2± 1.1 30.0± 1.37 50.8± 0.13 0.43± 0.07 0.77± 0.05
BN adaptation 46.4± 1.0 13.8± 0.3 88.6± 1.4 20.0± 0.2 30.2± 0.26 51.6± 0.16 0.39± 0.17 0.82± 0.06
ARM-BN 70.3± 2.4 23.2± 2.7 87.2± 0.9 31.2± 0.1 24.6± 0.04 42.0± 0.21 0.49± 0.21 0.84± 0.05

Table 5.2: Results on the Wilds image testbeds. Different methods are best suited for
different problems, motivating the need for a wide range of methods. ARM-BN struggles on
FMoW but performs well on the other datasets, in particular RxRx1.

Wilds results

Finally, we present results on the Wilds benchmark [113] in Table 5.2. We evaluate BN
adaptation and ARM-BN on these testbeds. We see that, on these real world distribution
shift problems, different methods perform well for different problems. CORAL, a method for
invariance [213], performs best on the iWildCam animal classification problem [14], whereas
no methods outperform ERM by a significant margin on the FMoW [38] or PovertyMap [263]
satellite imagery problems. ARM-BN performs particularly poorly on the FMoW problem.
However, it performs well on PovertyMap and significantly improves performance on the
RxRx1 [222] problem of treatment classification from medical images. On the other medi-
cal imagery problem of Camelyon17 [12] tumor identification, adaptation in general boosts
performance dramatically. These results indicate the need to consider a wide range of tools,
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including meta-learning and adaptation, for combating distribution shift.

5.6 Discussion

We presented adaptive risk minimization (ARM), a framework and problem formulation for
learning models that can adapt in the face of domain shift at test time using only a batch
of unlabeled test examples. We devised an algorithm and instantiated a set of methods
for optimizing the ARM objective that meta-learns models that are adaptable to different
domains of training data. Empirically, we observed that ARM methods consistently improve
performance in terms of both average and worst case metrics, as compared to a number of
prior approaches for handling domain shift.

Though we provided contextual meta-learning as a concrete example, a number of other
meta-learning paradigms would also be interesting to extend to the ARM setting. For
example, few shot generative modeling objectives would be a natural fit for unlabeled adap-
tation [55, 90, 252]. Another exciting direction for future work is to explore the problem
setting where domains are not provided at training time. As discussed in Section B.4, in
this setting, we can instead construct domains via unsupervised learning techniques. One
promising approach is to generate a diverse set of domains in order to learn generally effec-
tive adaptation strategies [93]. Robustness and invariance methods cannot be used easily
with multiple different groupings, learned or otherwise, as techniques such as group weighted
loss functions [192] and domain classifiers [62] are not immediately extendable to this setup.
Thus, ARM methods may be uniquely suited to be paired with domain learning.
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Chapter 6

MEMO: Test Time Robustness via
Adaptation and Augmentation

At the end of Chapter 5, we discussed possible ways in which a model could learn to adapt to
distribution shift without access to training domains. In this chapter, we take the question
one step further: what can we do if we do not even have access to the model training
procedure itself? This is the case for the setting of test time robustness, in which a pretrained
model may leverage only the current test point that it must predict on in order to try and
improve its prediction. We will see in this chapter that methods based on adaptation via
entropy minimization, but modified to be more effective for single test inputs, and data
augmentations produce strong inductive biases for improving test time robustness.

As the methods we study in this chapter make virtually no assumptions about the model
training procedure, the information available at training time (e.g., domains), or the avail-
ability of multiple test points, we are free to choose from a much broader pool of test sets to
evaluate on. In order to provide a thorough analysis of the most commonly studied state-of-
the-art models, we will primarily focus on challenging test sets for ImageNet classification,
namely, ImageNet-C [84], ImageNet-R [89], and ImageNet-A [86].

6.1 Introduction

Deep neural network models have achieved excellent performance on many machine learning
problems, such as image classification, but are often brittle and susceptible to issues stem-
ming from distribution shift. For example, deep image classifiers may degrade precipitously
in accuracy when encountering input perturbations, such as noise or changes in lighting [84]
or domain shifts which occur naturally in real world applications [113]. Therefore, robusti-
fication of deep models against these test shifts is an important and active area of study.

Most prior works in this area have focused on techniques for training time robustifi-
cation, including utilizing larger models and datasets [163], various forms of adversarial
training [192, 250], and aggressive data augmentation [264, 85, 122, 89]. Employing these
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techniques requires modifying the training process, which may not be feasible if, e.g., it in-
volves heavy computation or non public data. Furthermore, these techniques do not rely on
any information about the test points that the model must predict on, even though these
test points may provide significant information for improving model robustness. Recently,
several works have proposed methods for improving accuracy via adaptation after seeing the
test data, typically by updating a subset of the model’s weights [216, 101], normalization
statistics [197], or both [243, 268]. Though effective at handling test shifts, these methods
sometimes still require specialized training procedures, and they typically rely on extracting
distributional information via batches or even entire sets of test inputs, thus introducing
additional assumptions.

We are interested in studying and devising methods for improving model robustness that
are “plug and play”, i.e., they can be readily used with a wide variety of pretrained models
and test settings. Such methods may simply constitute a different, more robust way to
perform inference with preexisting models, under virtually the same assumptions as standard
test time inference. In this work, we focus on methods for test time robustness, in which the
specific test input may be leveraged in order to improve the model’s prediction on that point.
Though broad applicability is our primary goal, we also want methods that synergize with
other robustification techniques, in order to achieve greater performance than using either
set of techniques in isolation. To satisfy both of these desiderata, we devise a novel test time
robustness method based on adaptation and augmentation. As illustrated in Figure 6.1,
when presented with a test point, we propose to adapt the model by augmenting the test
point in different ways and ensuring that the model makes the same predictions across these
augmentations, thus respecting the invariances encoded in the data augmentations. We
further encourage the model to make confident predictions, thus arriving at the proposed
method: minimize the marginal entropy of the model’s predictions across the augmented
versions of the test point.

We refer to the proposed method as marginal entropy minimization with one test
point (MEMO), and this is the primary contribution of our work. MEMO makes direct
use of pretrained models without any assumptions about their particular training procedure
or architecture, while requiring only a single test input for adaptation. In our experiments, we
demonstrate empirically that MEMO consistently improves the performance of ResNet [80]
and vision transformer [51] models on several challenging ImageNet distribution shift bench-
marks, achieving several new state-of-the-art results for these models in the setting in which
only one test point is available. In particular, MEMO consistently outperforms non adaptive
marginal distribution predictions (between 1-10% improvement) on corruption and rendition
shifts – tested by the ImageNet-C [84] and ImageNet-R [89] datasets, respectively – indicat-
ing that adaptation plays a crucial role in improving predictive accuracy. MEMO encourages
both invariance across augmentations and confident predictions, and an ablation study in
our experiments shows that both components are important for maximal performance gains.
Also, MEMO is, to the best of our knowledge, the first adaptation method to improve per-
formance (by 1-4% over standard model evaluation) on ImageNet-A [86], demonstrating that
MEMO is more broadly applicable on a wide range of distribution shifts.
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Figure 6.1: A schematic of our overall approach. Left: at test time, we have a trained model
that outputs a probabilistic predictive distribution and has adaptable parameters θ, a single
test input x, and a set of data augmentation functions {a1, . . . , aM}. Note that we do not
assume access to the model training procedure or multiple test inputs for adaptation. We
perform different augmentations to x and pass these augmented inputs to the model in or-
der to estimate the marginal output distribution averaged over augmentations. Right: rather
than using this distribution to make the final prediction, we instead perform a gradient up-
date on the model to minimize the entropy of this marginal distribution, thus encouraging
the model predictions to be invariant across different augmentations while maintaining con-
fident predictions. The final prediction is then made on the original data point, i.e., the
predictive distribution in the top right of the schematic.

6.2 Related Work

The general problem of distribution shift has been studied under a number of frameworks [172],
including domain adaptation [204, 43, 249], domain generalization [21, 151, 74], and distri-
butionally robust optimization [18, 95, 192], to name just a few. These frameworks typically
leverage additional training or test assumptions in order to make the distribution shift prob-
lem more tractable. Largely separate from these frameworks, various empirical methods
have also been proposed for dealing with shift, such as increasing the model and training
dataset size or using heavy training augmentations [163, 264, 89]. The focus of this work is
complementary to these efforts: the proposed MEMO method is applicable to a wide range of
pretrained models, including those trained via robustness methods, and can achieve further
performance gains via test time adaptation.

Prior test time adaptation methods generally either make significant training or test time
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assumptions. Some methods update the model using batches or even entire datasets of test
inputs, such as by computing batch normalization (BN) statistics on the test set [131, 107,
152, 197], or minimizing the (conditional) entropy of model predictions across a batch of test
data [243]. The latter approach is closely related to MEMO. The differences are that MEMO
minimizes marginal entropy using single test points and data augmentation and adapts all of
the model parameters rather than just those associated with normalization layers, thus not
requiring multiple test points or specific model architectures. Other test time adaptation
methods can be applied to single test points but require specific training procedures or
models [216, 98, 197]. Test time training (TTT) [216] requires a specialized model with a
rotation prediction head, as well as a different procedure for training this model. Prior work
has also shown that BN adaptation can be effective even with only one test point [197], and
we refer to this approach as “single point” BN adaptation. As we discuss in the next section,
MEMO synergizes well with single point BN adaptation.

A number of works have noted that varying forms of strong data augmentation on the
training set can improve the resulting model’s robustness [264, 85, 122, 89]. Data aug-
mentations are also sometimes used on the test data directly by averaging the model’s
outputs across augmented copies of the test point [116, 206], i.e., predicting according to
the model’s marginal output distribution. This technique, which we refer to as test time
augmentation (TTA), has been shown to be useful both for improving model accuracy and
calibration [9] as well as handling distribution shift [148]. We take this idea one step further
by explicitly adapting the model such that its marginal output distribution has low entropy.
This extracts an additional learning signal for improving the model, and furthermore, the
adapted model can then make its final prediction on the clean test point rather than the
augmented copies. We empirically show in our experiments that these differences lead to
improved performance over this non adaptive TTA baseline.

6.3 Robustness via Adaptation and Augmentation

Data augmentations are typically used to train the model to respect certain invariances – e.g.,
changes in lighting or viewpoint do not change the underlying class label – but, especially
when faced with distribution shift, the model is not guaranteed to obey the same invariances
at test time. In this section, we introduce MEMO, a method for test time robustness that
adapts the model such that it respects these invariances on the test input. We use “test time
robustness” specifically to refer to techniques that operate directly on pretrained models
and single test inputs – single point BN adaptation and TTA, as described in the previous
section, are examples of prior test time robustness methods.

In the test time robustness setting, we are given a trained model gθ : X → Y with
parameters θ ∈ Θ. We do not require any special training procedure and do not make any
assumptions about the model, except that θ is adaptable and that gθ produces a conditional
output distribution pθ(y|x) that is differentiable with respect to θ.1 All standard deep

1Single point BN adaptation also assumes that the model has batch normalization layers, and, as shown
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neural network models satisfy these assumptions. A single point x ∈ X is presented to gθ,
for which it must predict a label ŷ ∈ Y immediately. Note that this is precisely identical to
the standard test time inference procedure for regular supervised learning models – in effect,
we are simply modifying how inference is done, without any additional assumptions on the
training process or on test time data availability. This makes test time robustness methods
a simple “slot-in” replacement for the ubiquitous and standard test time inference process.
We assume sampling access to a set of augmentation functions A ≜ {a1, . . . , aM} that can
be applied to the test point x. We use these augmentations and the self-supervised objective
detailed below to adapt the model before it predicts on x. When given a set of test inputs,
the model adapts and predicts on each test point independently. We do not assume access
to any ground truth labels.

Marginal entropy minimization with one test point

Given a test point x and set of augmentation functions A, we sample B augmentations from
A and apply them to x in order to produce a batch of augmented data x̃1, . . . , x̃B. The
model’s average, or marginal, output distribution with respect to the augmented points is
given by

p̄θ(y|x) ≜ EU(A) [pθ(y|a(x))] ≈
1

B

B∑
i=1

pθ(y|x̃i) , (6.1)

where the expectation is with respect to uniformly sampled augmentations a ∼ U(A).
What properties do we desire from this marginal distribution? To answer this question,

consider the role that data augmentation typically serves during training. For each training
point (xtrain, ytrain), the model gθ is trained using multiple augmented forms of the input
x̃train
1 , . . . , x̃train

E . g is trained to obey the invariances between the augmentations and the
label – no matter the augmentation on xtrain, g should predict the same label ytrain, and it
should do so confidently. We seek to devise a similar learning signal during test time, when
no ground truth labels are available. That is, after adapting:

1. the model gθ predictions should be invariant across augmentations of the test point, and

2. the model gθ should be confident in its predictions, even for heavy augmentations of the
test point, due to the knowledge that augmentations do not change the underlying label.

Optimizing the model for more confident predictions can be justified from the assumption
that the true underlying decision boundaries between classes lie in low density regions of the
data space [71]. With these two goals in mind, we propose to adapt the model using the
entropy of its marginal output distribution over augmentations (Equation 6.1), i.e.,

ℓ(θ;x) ≜ H (p̄θ(·|x)) = −
∑
y∈Y

p̄θ(y|x) log p̄θ(y|x) . (6.2)

empirically in our experiments, this is an assumption that we do not require but can also benefit from.
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Algorithm 2 Test time robustness via MEMO

Require: trained model gθ, test point x, # augs B, learning rate η, update rule G

1: Sample a1, . . . , aB
i.i.d.∼ U(A) and get augmented points x̃i = ai(x) for i ∈ {1, . . . , B}

2: Compute Monte Carlo estimate p̃ = 1
B

∑B
i=1 pθ(y|x̃i) ≈ p̄θ(y|x) and ℓ̃ = H(p̃) ≈ ℓ(θ;x)

3: Adapt model parameters via update rule θ′ ← G(θ, η, ℓ̃)
4: Predict ŷ ≜ argmaxy pθ′(y|x)

Optimizing this objective encourages both confidence and invariance to augmentations, since
the entropy of p̄θ(·|x) is minimized when the model outputs the same (confident) prediction
regardless of the augmentation. We can directly use gradient based optimization to adapt θ
according to this objective. We use only one gradient step per test point, because empirically
we found this to be sufficient for improved performance while being more computationally
efficient. After this step, we can use the adapted model, which we denote gθ′ , to predict on
the original test input x.

Algorithm 2 presents the overall method MEMO for test time adaptation. Though prior
test time adaptation methods must carefully choose which parameters to adapt in order to
avoid degenerate solutions [243], our adaptation procedure simply adapts all of the model’s
parameters θ (line 3). As discussed above, the model gθ adapts using augmented data but
makes its final prediction on the original point (line 4), which may be easier to predict on.

Composing MEMO with prior methods

An additional benefit of MEMO is that it synergizes with other approaches for handling
distribution shift. In particular, MEMO can be composed with prior methods for training
robust models and adapting model statistics, thus leveraging the performance improvements
of each technique.

Pretrained robust models. Since MEMO makes no assumptions about, or modifications
to, the model training procedure, performing adaptation on top of pretrained robust mod-
els, such as those trained with heavy data augmentations, is as simple as using any other
pretrained model. Crucially, we find that, in practice, the set of augmentations that we use
at test time A does not have to match the augmentations that were used to train the model.
This is important as we require a few properties from the test time augmentations: that
they can be easily sampled and are applied directly to the model input x. These properties
do not hold for, e.g., data augmentation techniques based on image translation models, such
as DeepAugment [89], or feature mixing, such as moment exchange [122]. However, we can
still use models trained with these data augmentation techniques as our starting point for
adaptation, thus allowing us to improve upon their state-of-the-art results. As noted above,
using pretrained models is not as easily accomplished for adaptation methods which require
complicated or specialized training procedures and model architectures, such as TTT [216]
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Figure 6.2: We visualize augmentations of a randomly chosen data point from the “Gaussian
Noise level 3” ImageNet-C test set. Even for a robust model trained with heavy data aug-
mentations [89], both its predictive accuracy and confidence drop sharply when encountering
test shift. As shown in the bottom two rows, these drops can be remedied via MEMO.

or ARM [268]. In our experiments, we use AugMix as our set of augmentations [85], as it
satisfies the above properties and yields significant diversity as depicted in Figure 6.2.

Adapting BN statistics. Prior work has shown that, even when presented with just a
single test point, partially adapting the estimated mean and variance of the activations in
each batch normalization (BN) layer of the model can still be effective in some cases for
handling shift [197]. In this setting, to prevent overfitting to the test point, the channelwise
mean and variance [µtest,σ

2
test] estimated from this point are mixed with the the mean and

variance [µtrain,σ
2
train] computed during training according to a prior strength N , i.e.,

µ ≜
N

N + 1
µtrain +

1

N + 1
µtest ,σ

2 ≜
N

N + 1
σ2

train +
1

N + 1
σ2

test .

This technique is also straightforward to combine with MEMO: we simply use the adapted
BN statistics whenever computing the model’s output distribution. That is, we adapt the
BN statistics alongside all of the model parameters for MEMO. Following the suggestion in
prior work [197], we set N = 16 for all of our experiments in the next section.
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6.4 Experiments

Our experiments aim to answer the following questions:

1. How does MEMO compare to prior methods for test time adaptation, which make addi-
tional training and test assumptions, and test time robustness?

2. Can MEMO be successfully combined with a wide range of pretrained models?

3. Which aspects of MEMO are the most important for strong performance?

We conduct experiments on two distribution shift benchmarks for CIFAR-10 [115] and
three distribution shift benchmarks for ImageNet [189]. Specifically, for CIFAR-10, we eval-
uate on the CIFAR-10-C [84] and CIFAR-10.1 [176] test sets, and for ImageNet, we evaluate
on the ImageNet-C [84], ImageNet-R [89], and ImageNet-A [86] test sets.

To answer question (1), we compare to test time training (TTT) [216] in the CIFAR-10
experiments, for which we train ResNet-26 models following their protocol and specialized
architecture. We do not compare to TTT for the ImageNet experiments due to the com-
putational demands of training state-of-the-art models and because TTT does not report
competitive ImageNet results. For the ImageNet experiments, we compare to Tent [243] and
BN adaptation, which can be used with pretrained models but require multiple test inputs
(or even the entire test set) for adaptation. We provide BN adaptation with 256 test inputs
at a time and, again following prior work [197], set the prior strength N = 256 accordingly.

For Tent, we use test batch sizes of 64 and, for ResNet-50 models, test both “online” adap-
tation – where the model adapts continually through the entire evaluation – and “episodic”
adaptation – where the model is reset after each test batch [243]. Note that the evaluation
protocols are different for these two methods: whereas MEMO is tasked with predicting on
each test point immediately after adaptation, BN adaptation predicts on a batch of 256 test
points after computing BN statistics on the batch, and Tent predicts on a batch of 64 inputs
after adaptation but also, in the online setting, continually adapts throughout evaluation.
In all experiments, we further compare to single point BN adaptation [197] and the TTA
baseline that simply predicts according to the model’s marginal output distribution over
augmentations p̄θ(y|x) (Equation 6.1) [116, 9]. Full details on our experimental protocol are
provided in Section C.1.

To answer question (2), we apply MEMO on top of multiple pretrained models with differ-
ent architectures, trained via several different procedures. For CIFAR-10, we train our own
ResNet-26 [80] models. For ImageNet, we use the best performing ResNet-50 robust models
from prior work, which includes those trained with DeepAugment and AugMix augmenta-
tions [89] as well as those trained with moment exchange and CutMix [122]. To evaluate
the generality of prior test time robustness methods and MEMO, we also evaluate the small
robust vision transformer (RVT∗-small), which provides superior performance on all three
ImageNet distribution shift benchmarks compared to the robust ResNet-50 models [144].

Finally, to answer (3), we conduct ablative studies: first to determine the relative im-
portance of maximizing confidence (via entropy minimization) versus enforcing invariant
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CIFAR-10 CIFAR-10.1 CIFAR-10-C
Error (%) Error (%) Average Error (%)

ResNet-26 [80] 9.2 18.4 22.5
+ TTA 7.3 (−1.9) 14.8 (−3.6) 19.9 (−2.6)

+ MEMO (ours) 7.3 (−1.9) 14.7 (−3.7) 19.6 (−2.9)

+ Joint training⋆ [216] 8.1 16.7 22.8
+ TTT⋆ [216] 7.9 (−0.2) 15.9 (−0.8) 21.5 (−1.3)

Table 6.1: Results for the original CIFAR-10 test set, CIFAR-10.1, and CIFAR-10-C.
MEMO outperforms TTT despite not making any training assumptions. ⋆Results from
prior work [216].

predictions across augmented copies of each test point, and second to determine the impor-
tance of the particular augmentation functions used. The comparison to the non adaptive
TTA baseline also helps determine whether simply augmenting the test point is sufficient or
if adaptation is additionally helpful.

Main results

We summarize results for CIFAR-10, CIFAR-10.1, and CIFAR-10-C in Table 6.1, with full
CIFAR-10-C results in Section C.3. We use indentations to indicate composition, e.g., TTT
is performed at test time on top of their specialized joint training procedure. Across all
corruption types in CIFAR-10-C, MEMO consistently improves test error compared to the
baselines, non adaptive TTA, and TTT. MEMO also provides a larger performance gain on
CIFAR-10.1 compared to TTT. We find that the non adaptive TTA baseline is competitive
for these relatively simple test sets, though it is worse than MEMO for CIFAR-10-C. Of these
three test sets, CIFAR-10-C is the only benchmark that explicitly introduces distribution
shift, which suggests that adaptation is useful when the test shifts are more prominent. Both
TTA and MEMO are also effective at improving performance for the original CIFAR-10 test
set where there is no distribution shift, providing further support for the widespread use of
augmentations in standard evaluation protocols [116, 9].

We summarize results for ImageNet-C, ImageNet-R, and ImageNet-A in Table 6.2, with
complete ImageNet-C results in Section C.3. We again use indentations to indicate composi-
tion, e.g., the best results on ImageNet-C for our setting are attained through a combination
of starting from a model trained with DeepAugment and AugMix [89] and using MEMO on
top. For both ImageNet-C and ImageNet-R, and for both the ResNet-50 and RVT∗-small
models, combining MEMO with robust training techniques leads to new state-of-the-art per-
formance among methods that observe only one test point at a time. We highlight in gray the
methods that require multiple test points for adaptation, and we list in bold the best results
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ImageNet-C ImageNet-R ImageNet-A
mCE ↓ Error (%) Error (%)

Baseline ResNet-50 [80] 76.7 63.9 100.0
+ TTA 77.9 (+1.2) 61.3 (−2.6) 98.4 (−1.6)

+ Single point BN 71.4 (−5.3) 61.1 (−2.8) 99.4 (−0.6)

+ MEMO (ours) 69.9 (−6.8) 58.8 (−5.1) 99.1 (−0.9)

+ BN (N = 256, n = 256) 61.6 (−15.1) 59.7 (−4.2) 99.8 (−0.2)

+ Tent (online) [243] 54.4 (−22.3) 57.7 (−6.2) 99.8 (−0.2)

+ Tent (episodic) 64.7 (−12.0) 61.0 (−2.9) 99.7 (−0.3)

+ DeepAugment+AugMix [89] 53.6 53.2 96.1
+ TTA 55.2 (+1.6) 51.0 (−2.2) 93.5 (−2.6)

+ Single point BN 51.3 (−2.3) 51.2 (−2.0) 95.4 (−0.7)

+ MEMO (ours) 49.8 (−3.8) 49.2 (−4.0) 94.8 (−1.3)

+ BN (N = 256, n = 256) 45.4 (−8.2) 48.8 (−4.4) 96.8 (+0.7)

+ Tent (online) 43.5 (−10.1) 46.9 (−6.3) 96.7 (+0.6)

+ Tent (episodic) 47.1 (−6.5) 50.1 (−3.1) 96.6 (+0.5)

+ MoEx+CutMix [122] 74.8 64.5 91.9
+ TTA 75.7 (+0.9) 62.7 (−1.8) 89.5 (−2.4)

+ Single point BN 71.0 (−3.8) 62.6 (−1.9) 91.1 (−0.8)

+ MEMO (ours) 69.1 (−5.7) 59.4 (−3.3) 89.0 (−2.9)

+ BN (N = 256, n = 256) 60.9 (−13.9) 61.6 (−2.9) 93.9 (+2.0)

+ Tent (online) 54.0 (−20.8) 58.7 (−5.8) 94.4 (+2.5)

+ Tent (episodic) 66.2 (−8.6) 63.9 (−0.6) 94.7 (+2.8)

RVT∗-small [144] 49.4 52.3 73.9
+ TTA 53.0 (+3.6) 49.0 (−3.3) 68.9 (−5.0)

+ Single point BN 48.0 (−1.4) 51.1 (−1.2) 74.4 (+0.5)

+ MEMO (ours) 40.6 (−8.8) 43.8 (−8.5) 69.8 (−4.1)

+ BN (N = 256, n = 256) 44.3 (−5.1) 51.0 (−1.3) 78.3 (+4.4)

+ Tent (online) 46.8 (−2.6) 50.7 (−1.6) 82.1 (+8.2)

+ Tent (adapt all) 44.7 (−4.7) 74.1 (+21.8) 81.1 (+7.2)

Table 6.2: Test results for ImageNet-C, ImageNet-R, and ImageNet-A. MEMO achieves
new state-of-the-art performance on each benchmark for ResNet-50 models for the single
test point setting. For RVT∗-small, MEMO substantially improves performance across all
benchmarks and reaches a new state of the art for ImageNet-C and ImageNet-R.

from these methods which outperform the test time robustness methods. As Table 6.2 and
prior work both show [197, 243], accessing multiple test points can be powerful for bench-
marks such as ImageNet-C and ImageNet-R, in which inferred statistics from the test input
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distribution may aid in prediction. In the case of Tent, which adapts online, the model has
adapted using the entire test set by the end of evaluation. However, these methods do not
help, and oftentimes even hurt, for ImageNet-A. Furthermore, we find that these methods
are less effective with the RVT∗-small model, which may indicate their sensitivity to model
architecture choices. Therefore, for this model, we also test a modification of Tent which
adapts all parameters, and we find that this version of Tent works better for ImageNet-C
but is significantly worse for ImageNet-R.

MEMO results in substantial improvement for ImageNet-A and is competitive with TTA
on this problem. No prior test time adaptation methods have reported improvements on
ImageNet-A, and some have reported explicit negative results [197]. As discussed, it is
reasonable for adaptation methods that rely on multiple test points to achieve greater success
on other benchmarks such as ImageNet-C, in which a batch of inputs provides significant
information about the specific corruption that must be dealt with. In contrast, ImageNet-
A does not have such obvious characteristics associated with the input distribution, as it
is simply a collection of images that are difficult to classify. As MEMO instead extracts
a learning signal from single test points, it is, to the best of our knowledge, the first test
time adaptation method to report successful results on this testbed. When used on top of
a model trained with moment exchange and CutMix [122], MEMO achieves state-of-the-art
performance among ResNet-50 models and single test point methods. TTA generally offers
larger performance gains on ImageNet-A and also results in the highest overall accuracy
when combined with the RVT∗-small model; however, TTA performs worse than MEMO
on ImageNet-R and consistently decreases accuracy on ImageNet-C compared to standard
evaluation. We view the consistency with which MEMO outperforms the best prior methods,
which change across different test sets, to be a major advantage of the proposed method.

Ablative study

MEMO increases model robustness at test time via adaptation and augmentation. In this
section, we ablate the adaptation procedure, and in Section C.2 we ablate the use and choice
of augmentations.

From the results above, we conclude that adaptation generally provides additional ben-
efits beyond simply using TTA to predict via the marginal output distribution p̄θ(y|x).
However, we can disentangle two distinct self-supervised learning signals that may be ef-
fective for adaptation: encouraging invariant predictions across different augmentations of
the test point, and encouraging confidence via entropy minimization. The marginal entropy
objective in Equation 6.2 encapsulates both of these learning signals, but it cannot easily be
decomposed into these pieces. Thus, we instead use two ablative adaptation methods that
each only make use of one of these learning signals.

First, we consider optimizing the pairwise cross entropy between each pair of augmented
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CIFAR-10 CIFAR-10.1 CIFAR-10-C
Error (%) Error (%) Average Error (%)

ResNet-26 [80] 9.2 18.4 22.5
+ MEMO (ours) 7.3 (−1.9) 14.7 (−3.7) 19.6 (−2.9)

− ℓ (Equation 6.2) + ℓPCE 7.6 (−1.6) 15.3 (−3.1) 20.0 (−2.5)

− ℓ (Equation 6.2) + ℓCE 7.6 (−1.6) 14.7 (−3.7) 20.0 (−2.5)

ImageNet-C ImageNet-R ImageNet-A
mCE ↓ Error (%) Error (%)

RVT∗-small [144] 49.4 52.3 73.9
+ MEMO (ours) 40.6 (−8.8) 43.8 (−8.5) 69.8 (−4.1)

− ℓ (Equation 6.2) + ℓCE 41.2 (−8.2) 44.2 (−8.1) 69.7 (−4.2)

Table 6.3: Ablating the adaptation objective to test pairwise cross entropy and conditional
entropy (CE) based adaptation. MEMO generally performs the best, indicating that both
encouraging invariance across augmentations and confidence are helpful in adapting the
model.

points, i.e.,

ℓPCE(θ;x) ≜
1

B × (B − 1)

B∑
i=1

∑
j ̸=i

∑
y∈Y

pθ(y|x̃i) log pθ(y|x̃j) ,

Where x̃i again refers to the i-th sampled augmentation applied to x. Intuitively, this loss
function encourages the model to adapt such that it produces the same predictive distribu-
tion for all augmentations of the test point, but it does not encourage the model to produce
confident predictions. Conversely, as an objective that encourages confidence but not in-
variance, we also consider optimizing conditional entropy on the batch of augmented points,
i.e.,

ℓCE(θ;x) ≜
1

B

B∑
i=1

H(pθ(·|x̃i)) .

This ablation is effectively a version of the episodic variant of Tent [243] that produces
augmented copies of a single test point rather than assuming access to a test batch. We first
evaluate these ablations on the CIFAR-10 test sets. We use the same adaptation procedure
outlined in Algorithm 2, with ℓ replaced with the above objectives, and we keep the same
hyperparameter values.

The results are presented in Table 6.3. We see that MEMO, i.e., marginal entropy mini-
mization, generally performs better than adaptation with either of the alternative objectives.
This supports the hypothesis that both invariance across augmentations and confidence are
important learning signals for self-supervised adaptation. When faced with CIFAR-10.1,
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we see poor performance from the pairwise cross entropy based adaptation method. On
the original CIFAR-10 test set and CIFAR-10-C, the ablations perform nearly identically
and uniformly worse than MEMO. To further test the ℓCE ablation, we also evaluate it
on the ImageNet test sets for the RVT∗-small model. We find that, similarly, minimizing
conditional entropy generally improves performance compared to the baseline evaluation.
MEMO is more performant for ImageNet-C and ImageNet-R, again indicating the benefits
of encouraging invariance to augmentations. Adaptation via ℓCE performs slightly better for
ImageNet-A, though for this problem, TTA is still the best method.

6.5 Discussion

We presented MEMO, a method for test time robustification again distribution shift via
adaptation and augmentation. MEMO does not require access or changes to the model
training procedure and is thus broadly applicable for a wide range of pretrained models.
Furthermore, MEMO adapts at test time using single test inputs, thus it does not assume
access to multiple test points as in several recent methods for test time adaptation [197,
243, 268]. On a range of distribution shift benchmarks for CIFAR-10 and ImageNet classi-
fication, and for both ResNet and vision transformer models, MEMO consistently improves
performance at test time and achieves several new state-of-the-art results for these models
in the single test point setting.

Inference via MEMO is more computationally expensive than standard model inference,
primarily because adaptation is performed per test point and thus inference cannot be
batched. When deployed in the real world, it is natural to expect that test points will arrive
one at a time and batched inference will not be possible. However, MEMO is also more com-
putationally expensive due to its augmentation and adaptation procedure. In Section C.2
we further study the tradeoff between efficient and model accuracy, and we find that smaller
values of B can lead to favorable tradeoffs in terms of significantly speeding up inference
without sacrificing much in terms of accuracy. One interesting direction for future work to
further improve efficiency is to develop techniques for selectively determining when to adapt
the model. For example, with well calibrated models [75], we may run simple “feedforward”
inference when the prediction confidence is over a certain threshold, thus achieving better
efficiency. Additionally, it would be interesting to explore MEMO in the test setting where
the model is allowed to continually adapt as more test data is observed. In our preliminary
experiments in this setting, MEMO tended to lead to degenerate solutions, e.g., the model
predicting a constant label with maximal confidence, and this may potentially be rectified
by carefully choosing which parameters to adapt [243] or regularizing the model such that it
does not change too drastically from the pretrained model.
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Chapter 7

Conclusion

Distribution shift in machine learning is a broad topic, and in this thesis, we have discussed
it broadly.

In Part I, we covered numerous examples of how shift occurs in machine learning prob-
lems, for both RL and supervised learning settings. This part of the thesis focused on the
distribution shift problems themselves, in order to illustrate how shift arises in machine learn-
ing applications and motivate the need for addressing these shifts. Chapter 3 presented three
examples from RL: distribution shift arising from the simulation to real world transfer of a
policy for tensegrity robot locomotion, from using dynamics models to predict for updated
policies, and from attempting to learn tasks directly from human demonstration videos. In
the first example of simulation to real world transfer, improving model (in this case, policy)
performance under shift was the goal itself – however, for this specific platform, we could
rely on domain knowledge and handcrafted techniques to achieve this goal. In the second
and third examples, the shift instead represented an obstacle to the actual goal of learning
to solve the task at hand. For these cases, techniques were instead devised to effectively
mitigate the shift rather than tackling it head on – specifically, using truncated horizons for
model predictions, and supplementing translated instruction images with human feedback.

Chapter 4 shifted focus to supervised learning problems. In this setting, there is a clear
need for general purpose frameworks and methods for dealing with distribution shift, and the
abundance of challenging problems demonstrates this point. We reviewed a number of prior
works which have proposed various benchmarks for domain adaptation, domain generaliza-
tion, general robustness, and more. We then presented our work aiming to complement this
growing landscape in two ways. First, we proposed Wilds, a benchmark of domain general-
ization and subpopulation shift problems carefully curated to faithfully represent important
real world applications. Second, we introduced additional problems in the same settings
geared toward studying methods for adaptation, as there is strong intuition that adaptation
is beneficial, perhaps even crucial, for achieving strong results for these problems.

Chapter 5, the first of two chapters in Part II, helped confirm this intuition with strong
empirical evidence. We proposed the ARM framework, in which models are meta-trained
such that they learn how to adapt to domain shift at test time. We provided strong theo-



CHAPTER 7. CONCLUSION 68

retical justification for the ARM objective based on prior work, and we proposed a general
algorithm and three specific methods for instantiating and optimizing the ARM objective
inspired by meta-learning and test time adaptation. On the aforementioned problems for
adaptation, as well as Wilds problems, ARM methods outperformed prior robustness, in-
variance, and adaptation methods in terms of both worst case and average accuracy.

Chapter 6 continued Part II by introducing another approach for adaptation to distri-
bution shift, however from very different assumptions. Specifically, almost all assumptions
were stripped away: access to training domains or other types of training information, ac-
cess to even the model training procedure itself, and access to multiple unlabeled inputs at
test time. In this sparse setup, we demonstrated that various techniques such as adaptation
and data augmentation still incorporated favorable inductive biases for model improvement
– inspired by these insights, we proposed the MEMO test time robustness method which
utilizes both adaptation and augmentation. Here, we showed on several different challeng-
ing ImageNet test sets, on a range of model architectures and models trained with different
procedures, that MEMO resulted in significant accuracy gains compared to the baseline test
time inference procedure as well as prior methods for test time robustness. To summarize,
Part II presented adaptation based approaches to distribution shift problems from Part I,
specifically the supervised learning problems from Chapter 4.

From this thesis, there can be a number of takeaways. The first takeaway from Chapter 3
is perhaps obvious: distribution shift problems do not always have to be solved in the most
general way, or even solved at all. Oftentimes, incorporating domain expertise or finding ways
to sidestep the shift are the most direct and effective paths toward the end goal, and this is
the path that many practitioners should take when encountering shift. The second takeaway
from Chapter 4 and Chapter 5 is that there may not even exist a “one size fits all” approach
to solving distribution shift problems anyway, simply due to the enormity and diversity of the
set of problems. This motivates both the first takeaway as well as the study and development
of additional general purpose methods that can better address important real world instances
of shift. The third takeaway from Chapter 5 and Chapter 6 is that, though it may not solve all
distribution shift problems, approaches based on adaptation appear to be a strong candidate
for further study, in particular in the era of deep learning. As mentioned in Chapter 1, deep
neural network models typically have the capacity to absorb additional information even
after training on large datasets. Whether this information comes from inferring statistics of
the test distribution, harnessing useful inductive biases for the test input, or something else,
it is likely that these techniques will beat out methods that use a static model at test time.
Indeed, we found that MEMO could further improve the performance of a large ResNext-
101 model trained on billions of images from social media [257, 143] (Section C.2), lending
further support to the potential of adaptation to already robust models.

Another interesting avenue for future work, that was not considered in depth in this
thesis, is to study the adaptation setting in which some amount of labeled data is available
at test time. Though this assumption is more demanding, it greatly expands the scope of
shifts that can be handled in principle. For example, shifts that cause drastic changes in
the domain, such as new classes or even a completely different set of classes, may be tackled
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from the perspective of labeled adaptation. Paradigms such as unsupervised or weakly
supervised learning, massive scale pretraining, and meta-learning may all play key roles in
the development of performant methods for this setting.
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Appendix A

Appendices for Distribution Shift in
Supervised Learning

A.1 Additional Experimental Details for WILDS

Model architectures

We used standard model architectures for each dataset: ResNet and DenseNet for images [80,
97], DistilBERT for text [193], a Graph Isomorphism Network (GIN) for graphs [259], and
Faster-RCNN [179] for detection.

Model hyperparameters

As our goal is high out of distribution (OOD) performance, we use a separate OOD validation
set for early stopping and hyperparameter selection. Relative to the training set, this OOD
validation set reflects a distribution shift similar to, but distinct from, the test set. For
example, in iWildCam2020-wilds, the training, validation, and test sets each comprise
photos from distinct sets of camera traps.

For each hyperparameter setting, we used early stopping to pick the epoch with the
best OOD validation performance (as measured by the specified metrics for each dataset),
and then we picked the model hyperparameters with the best early stopped validation per-
formance. We found that this gave similar or slightly better OOD test performance than
selecting hyperparameters using the in distribution (ID) validation set.

Using the OOD validation set for early stopping means that even if the training procedure
does not explicitly use additional metadata, as in ERM, the metadata might still be implicitly
(but mildly) used for model selection in one of two related ways. First, the metric might use
the metadata directly (e.g., by computing the accuracy over different subpopulations defined
in the metadata). Second, the OOD validation set is generally selected according to this
metadata (e.g., comprising data from a disjoint set of domains as the training set). We expect
that implicitly using the metadata in these ways should increase the OOD performance of
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each model. Nevertheless, as the results show, there are still large gaps between OOD and
ID performance.

In general, we selected model hyperparameters with ERM and used the same hyperpa-
rameters for the other algorithm baselines (e.g., CORAL, IRM, or DRNN). For CORAL and
IRM, we did a subsequent grid search over the weight of the penalty term, using the defaults
from DomainBed [74]. Specifically, we tried penalty weights of {0.1, 1, 10} for CORAL and
penalty weights of {1, 10, 100, 1000} for IRM. We fixed the step size hyperparameter for
DRNN to its default value of 0.01 [192].

Replicates

We typically use a fixed train/validation/test split and report results averaged across 3
replicates (random seeds for model initialization and minibatch order), as well as the un-
biased standard deviation over those replicates. There are three exceptions to this. For
PovertyMap-wilds, we report results averaged over 5-fold cross validation, as model
training is relatively fast on this dataset. For Camelyon17-wilds, results vary substan-
tially between replicates, so we report results averaged over 10 replicates instead. Similarly,
for CivilComments-wilds, we report results averaged over 5 replicates.

Baseline algorithms

For all classification datasets, we train models against the cross entropy loss. For the
PovertyMap-wilds regression dataset, we use the mean squared error loss.

We adapted the implementations of CORAL from DomainBed [74]; IRM from the original
authors [8]; and DRNN from the original authors [192]. We note that CORAL was originally
proposed in the context of domain adaptation [213], where it was shown to substantially
improve performance on standard domain adaptation benchmarks, and it was subsequently
adapted for domain generalization [74].

Following these implementations, we use minibatch stochastic optimizers to train models
under each algorithm, and we sample uniformly from each domain regardless of the number
of training examples in it. This means that the CORAL and IRM algorithms optimize for
their respective penalty terms plus a reweighted ERM objective that weights each domain
equally (i.e., effectively upweighting minority domains). The DRNN objective is unchanged,
as it still optimizes for the domain with the worst loss, but the uniform sampling improves
optimization stability.

Both CORAL and IRM are designed for models with featurizers, i.e., models that first
map each input to a feature representation and then predict based on the representation.
To estimate the feature distribution for a domain, these algorithms need to see a sufficient
number of examples from that domain in a minibatch. However, some of our datasets have
large numbers of domains, making it infeasible for each minibatch to contain examples from
all domains. For these algorithms, our data loaders form a minibatch by first sampling
a few domains, and then sampling examples from those domains. For consistency in our
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experiments, we used the same total batch size for these algorithms and for ERM and
DRNN, with a default of 8 examples per domain in each minibatch (e.g., if the batch size
was 32, then in each minibatch we would have 8 examples × 4 domains).

For DRNN, each example in the minibatch is sampled independently with uniform proba-
bilities across domains, and therefore each minibatch does not need to only comprise a small
number of domains. We note that reweighting methods like DRNN are effective only when
the training loss is non vanishing, which we achieve through early stopping [33, 192, 191].
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Appendix B

Appendices for Adaptive Risk
Minimization

B.1 Contrasting the Benchmarks Evaluated in ARM

with Prior Benchmarks

For ARM, we primarily evaluated on problems for which unlabeled adaptation is feasible,
helpful, and potentially crucial, inspired by important real world problem settings such as
federated learning. Thus, the problems we focused on differ from prior work in domain shift,
which have different implicit and explicit goals when designing and choosing benchmarks.
In particular, many prior benchmarks assume the existence of a consistent input-output
relationship across domains, for which various methods can be designed to try and better
uncover this relationship. Compared to problems where adaptation is important, we can
roughly characterize these benchmarks as having a conditional distribution p

(d)
y|x that is more

stable across domains and thus does not depend as much on the marginal p
(d)
x . As discussed,

the less information the marginal provides about the conditional, the less we expect domain
generalization strategies to improve over ERM [22]. And, indeed, DomainBed provides a
comprehensive survey of domain generalization benchmarks and find that, though ERM is
sometimes outperformed by certain methods on certain benchmarks, ERM is competitive
with the state of the art on average across the benchmarks [74].

DomainBed also evaluated ARM-CML across the whole suite and found middling perfor-
mance across most of the testbeds in the benchmark. This negative result provides further
evidence that adaptation may not be well suited to these problems, at least in their stan-
dard formulations, and that different approaches are suited for different problems. Similarly,
adaptation and ARM methods also do not improve performance on some of the WILDS
domain generalization problems [113], potentially due to the marginal p

(d)
x not providing

much information about p
(d)
y|x, or other factors such as the lack of training domains or shared

structure between domains. One potentially interesting result found was that ARM-CML
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did outperform ERM and all prior methods on one toy problem in DomainBed: the colored
MNIST benchmark [8]. For a non adaptive model, the goal as originally proposed is to disre-
gard color and learn the invariant relationship between digits and labels [8]. Irrespective of
the original motivations, though, an adaptive model is in theory capable of learning a more
flexible classification strategy for this problem, in that it may leverage information about
the current domain in order to produce better predictions. Viewed this way, it becomes clear
why ARM-CML can learn a more performant solution for the colored MNIST problem. This
result on a toy problem provides further motivation for identifying and studying real world
problems for which adaptation can be beneficial, alongside other benchmarks geared toward
discovering invariances.

Specifically when viewing learning adaptation as a meta-learning problem, as in ARM,
we may pose additional hypotheses about a problem’s desired properties. For example, in
meta-learning, each task is viewed as a “higher level” data point, and this generally motivates
constructing many different tasks so as to prevent the learner from overfitting to the tasks.
We extend this intuition to our work in that our problems have tens to hundreds of domains,
whereas the benchmarks in DomainBed have between 3 to 6 domains [74]. Note that the
overall dataset sizes are still comparable, so previous benchmarks typically also have orders
of magnitude more data per domain. Depending on the scenario, it may be difficult to either
collect data from many domains, or conversely it may be difficult to collect many data points
from any single domain. For example, the FEMNIST dataset naturally contains hundreds
of users each contributing at most hundreds of examples, but it would be difficult to collect
orders of magnitude more data from any given user. These practical considerations should
also factor into the choice of algorithm for solving any particular problem.

Prior testbeds used in group distributionally robust optimization (DRO) typically also
contain a small number of groups [192], and these testbeds also have a couple of other
important differences. First, group DRO testbeds typically use the same training and test
groups and measure worst case performance, which differs from domain generalization, meta-
learning, and most problems considered in this work, which construct or hold out disjoint
sets of domains for testing. Second, prior group DRO testbeds use label information to
construct groups, in that data within each group will all have the same label. This is not
an issue for non adaptive models, however, classification in this setup becomes much easier
for adaptive models and particularly if training with an ARM method, as the model simply
needs to learn to adapt to output a constant label. Thus, we were motivated to identify and
set up problems which are distinct from both prior work in domain generalization and group
DRO, in order to properly evaluate ARM and prior methods in settings for which adaptation
is beneficial.
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B.2 Additional Dataset and Experimental Setup

Details

B.3 Additional Experimental Details

Code for Table 5.1 results is available from https://github.com/henrikmarklund/arm.
In our experiments, we use several different computing clusters with either NVIDIA Titan

X Pascal, RTX 2080 Ti, or V100 GPUs, and all experiments use 1 GPU. When reporting
our results, we run each method across three seeds and reported the mean and standard
error across seeds. Standard error is calculated as the sample standard deviation divided
by
√
3. We checkpoint models after every epoch of training, and at test time, we evaluate

the checkpoint with the best worst case validation accuracy. Training hyperparameters and
details for how we evaluate validation and test accuracy are provided for each experimental
domain below. All hyperparameter settings were selected in preliminary experiments using
validation accuracy only.

Rotated MNIST details

We trained all models for 200 epochs with mini batch sizes of 300. We use Adam updates
with learning rate 0.0001. We construct an additional level of mini batching for our method
such that the batch dimensions of the data mini batches are 6×50 rather than just 300, and
each of the inner mini batches contain examples from the same rotation. We refer to the
outer batch dimension as the meta batch size and the inner dimension as the batch size. All
methods are still trained for the same number of epochs and see the same amount of data.
DRNN uses an additional learning rate hyperparameter for their robust loss, which we set
to 0.01 across all experiments [192].

We compute validation accuracy every 10 epochs. We estimate validation accuracy on
each rotation by randomly sampling 300 of the held out 6000 original training points and
applying the specific rotation, resampling for each validation evaluation. This is effectively
the same procedure as the test evaluation, which randomly samples 3000 of the 10000 test
points and applies a specific rotation.

We retain the original 28 × 28 × 1 image dimensionality, and we divide inputs by 256.
We use convolutional neural networks for all methods with varying depths to account for
parameter fairness. For all methods that do not use a context network, the network has four
convolution layers with 128 5×5 filters, followed by 4×4 average pooling, one fully connected
layer of size 200, and a linear output layer. Rectified linear unit (ReLU) nonlinearities are
used throughout, and BN [100] is used for the convolution layers. The first two convolution
layers use padding, and the last two convolution layers use 2 × 2 max pooling. For ARM-
CML and the context ablation, we remove the first two convolution layers for the prediction
network, but we incorporate a context network. The context network uses two convolution
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layers with 64 filters of size 5× 5, with ReLU nonlinearities, BN, and padding, followed by
a final convolution layer with 12 5× 5 filters with padding.

FEMNIST details

We keep all hyperparameters the same as for rotated MNIST, except we set the meta batch
size for ARM methods to be 2, and we use stochastic gradient updates with learning rate
0.0001, momentum 0.9, and weight decay 0.0001. For DANN, we use Adam updates with
learning rate 0.0001 as stochastic gradient updates were unsuccessful for this method. We
compute validation accuracy every epoch by iterating through the data of each validation
user once, and this procedure is the same as test evaluation. Note that all methods will
sometimes receive small batch sizes as each user’s data size may not be a multiple of 50.
Though this may affect ARM methods, we demonstrate in the streaming experiments that
ARM-CML and ARM-BN can adapt using small batch sizes. The network architectures are
the same as the architectures used for rotated MNIST, except that, when applicable, the
last layer of the context network has only 1 filter of size 5× 5.

CIFAR-10-C and Tiny ImageNet-C details

In these experiments, we use a support size of 100 and meta batch size of 3. For CIFAR-10-C,
we use the same convolutional network architecture as for rotated MNIST and FEMNIST,
except for the first layer which needs to be modified to handle RGB images. For Tiny
ImageNet-C, we fine tune ResNet-50 [80] models pretrained on ImageNet. The context
ablation and ARM-CML additionally use small convolutional context networks, and the
learned loss ablation and ARM-LL use small fully connected loss networks. For this domain,
we further incorporate BN adaptation into the context ablation and ARM-CML, as we found
this technique to generally be very helpful when dealing with image corruptions. The images
are first normalized by the ImageNet mean and standard deviation. For CIFAR-10-C, we
train models from scratch for 100 epochs, and for Tiny ImageNet-C we fine tune for 50
epochs. We use stochastic gradient updates with learning rate 0.01, momentum 0.9, and
weight decay 0.0001. We evaluate validation accuracy after every epoch and perform model
selection based on the worst case accuracy over domains. We perform test evaluation by
randomly sampling 3000 images from each domain and computing worst case and average
accuracy across domains.

B.4 Additional Experiments

Additional comparison to unsupervised domain adaptation

In Table B.1, we provide an additional comparison to unsupervised domain adaptation (UDA).
A number of methods have been proposed for UDA, and for simplicity, we compare to
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Rotated MNIST

Method WC Avg

DANN (DG) 78.8± 0.8 94.9± 0.1
DANN (UDA) 82.4± 1.6 94.9± 0.2
ARM-CML 88.0± 0.8 96.3± 0.4

Table B.1: Comparing to DANN [62] as an unsupervised domain adaptation (UDA) method,
in which the particular test domain is known at training time. Note that this involves retrain-
ing models for each test evaluation, and ARM-CML is still more performant by leveraging
meta-training and adaptation.

Figure B.1: On rotated MNIST, ARM methods reach strong performance in the streaming
setting after fewer than 10 data points, again despite meta-training with batch sizes of 50.

DANN [62], which we evaluated as a domain generalization algorithm but was originally
proposed for UDA. When faced with multiple test shifts, UDA methods run training sepa-
rately for each shift, as they assume access to unlabeled samples from the test distribution
at training time. For rotated MNIST, where there are 14 test groups, evaluating DANN
as a UDA method involved 42 separate training runs, as we still used 3 training seeds per
test evaluation. We see Table B.1 that DANN in this setting performs better in terms of
worst case accuracy, which is not surprising given each model’s ability to specialize to a
particular test domain. However, by leveraging meta-training and adaptation, ARM-CML
still performs the best on this problem.

Additional results with loosened assumptions

In Figure B.1, we include results for the rotated MNIST problem in the test streaming
setting. We can see the same general trend as for Tiny ImageNet-C, where the models
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Figure B.2: VAE samples conditioned on different values of y (x axis) and z (y axis). The
VAE learns to use z to represent rotations.

Method WC Avg

ERM 74.5± 1.4 93.6± 0.4
TTT 81.1± 0.3 95.4± 0.1
ARM-CML 81.7± 0.3 95.2± 0.3

Table B.2: Using learned domains, ARM-CML outperforms ERM and matches the perfor-
mance of TTT on rotated MNIST. This result may be improved by techniques for learning
more diverse domains.

trained via ARM methods are able to adapt successfully, and in this easier domain these
models require fewer than 10 test inputs to reach their performances in the batch setting,
where adaptation is performed with batches of 50 points.

In the case of unknown domains, one option is to use unsupervised learning techniques
to discover domain structure in the training data. To test this option, we focus on rotated
MNIST and ARM-CML, which performs the best on this dataset, and train a variational
autoencoder (VAE) [110, 182] with discrete latent variables [102, 141] using the training
images and labels. We define the latent variable z to be Categorical with 12 possible discrete
values, which we purposefully choose to be smaller than the number of rotations. The VAE
is not given any information about the ground truth d; however, we weakly encode the
notion that z is independent of y by conditioning the decoder on the label. We use the
VAE inference network to assign domains to the training data, and we run ARM-CML using
these learned domains. In Table B.2, we see that ARM-CML in this setting outperforms
ERM and is competitive with TTT, which as discussed earlier encodes a strong inductive
bias, via rotation prediction, for solving this task. Figure B.2 visualizes samples from the
VAE for different values of y and z, which shows that the VAE learns to encode rotation
information using z. This result suggests that, when domain information is not provided, a
viable approach may be to learn domains which then enables the use of ARM methods.
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Appendix C

Appendices for Marginal Entropy
Minimization with One Test Point

C.1 Experimental Setup and Protocol

We select hyperparameters using the four disjoint validation corruptions provided with
CIFAR-10-C and ImageNet-C [84]. As the other benchmarks are only test sets and do
not provide validation sets, we use the same hyperparameters found using the corruption
validation sets and do not perform any additional tuning. For the ResNet models that we
evaluate, we use stochastic gradients as the update rule G; for ResNet-26 models, we set the
number of augmentations B = 32 and the learning rate η = 0.005; and for ResNet-50 models,
we set B = 64 and η = 0.00025. For the robust vision transformer, we use AdamW [136] as
the update rule G, with learning rate η = 0.00001 and weight decay 0.01, and B = 64.

In the CIFAR evaluation, we compare to TTT, which, as noted, can also be applied to
single test inputs but requires a specialized training procedure [216]. Thus, the ResNet-26
model we use for our method closely follows the modifications that TTT propose, in order to
provide a fair point of comparison. In particular, TTT elect to use group normalization [253]
rather than BN, thus single point BN adaptation is not applicable for this model architecture.
As noted before, TTT also requires the joint training of a separate rotation prediction head,
thus further changing the model architecture, while MEMO directly adapts the standard
pretrained model.

The TTA results are obtained using the same AugMix augmentations as for MEMO.
The single point BN adaptation results use N = 16, as suggested by prior work [197]. As
noted, the BN adaptation results (using multiple test points) are obtained using N = 256
as the prior strength and batches of 256 test inputs for adaptation. For Tent, we use the
hyperparameters suggested in prior work [243]: we use stochastic gradients with learning
rate 0.00025 and momentum 0.9, the adaptation is performed with test batches of 64 inputs,
and the method is run online, i.e., prediction and adaptation occur simultaneously and the
model is allowed to continuously adapt through the entire test epoch. Since Tent did not
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experiment with transformer models, we also attempted to run Tent with Adam [109] and
AdamW [136] and various hyperparameters for the RVT∗-small model; however, we found
that this generally resulted in worse performance than using stochastic gradient updates
with the aforementioned hyperparameters.

We obtain the baseline ResNet-50 parameters directly from the torchvision library. The
parameters for the ResNet-50 trained with DeepAugment and AugMix are obtained from
https://drive.google.com/file/d/1QKmc p6-qDkh51WvsaS9HKFv8bX5jLnP. The param-
eters for the ResNet-50 trained with moment exchange and CutMix are obtained from
https://drive.google.com/file/d/1cCvhQKV93pY-jj8f5jITywkB9EabiQDA. The param-
eters for the small robust vision transformer (RVT∗-small) model are obtained from
https://drive.google.com/file/d/1g40huqDVthjS2H5sQV3ppcfcWEzn9ekv.

C.2 Additional Experiments

In this section, we analyze the importance of using augmentations during adaptation, study
the tradeoffs between efficiency and accuracy for MEMO, and present results with ResNext101
models [257, 143, 163] on ImageNet-A.

Analysis on augmentations

One may first wonder: are augmentations needed in the first place? In the test time robust-
ness setting when only one test point is available, how would simple entropy minimization
fare? We answer this question in Table C.1 by evaluating the episodic variant of Tent (i.e.,
with model resetting after each batch) with a test batch size of 1. This approach is also anal-
ogous to a variant of MEMO that does not use augmentations, since for one test point and
no augmented copies, conditional and marginal entropy are the same. Similar to MEMO,
we also incorporate single point BN adaptation with N = 16, in place of the standard BN
adaptation that Tent typically employs using batches of test inputs. The results in Table C.1
indicate that entropy minimization on a single test point generally provides marginal per-
formance gains beyond just single point BN adaptation. This empirically shows that using
augmentations is important for achieving the reported results.

We also wish to understand the importance of the choice of augmentation functions A.
As mentioned, we used AugMix [85] in the previous experiments as it best fit our criteria:
AugMix requires only the input x, and randomly sampled augmentations lead to diverse
augmented data points. A simple alternative is to instead use the “standard” set of aug-
mentations commonly used in ImageNet training, i.e., random resized cropping and random
horizontal flipping. We evaluate this ablation of using MEMO with standard augmentations
also on the CIFAR-10 test sets, again with the same hyperparameter values. From the results
in Table C.2, we can see that MEMO is still effective with simpler augmentation functions.
This is true particularly for the cases where there is no test shift, as in the original CIFAR-
10 test set, or subtle shifts as in CIFAR-10.1; however, for the more severe and systematic



APPENDIX C. APPENDICES FOR MARGINAL ENTROPY MINIMIZATION WITH
ONE TEST POINT 98

ImageNet-C ImageNet-R ImageNet-A
mCE ↓ Error (%) Error (%)

Baseline ResNet-50 [80] 76.7 63.9 100.0
+ Single point BN 71.4 (−5.3) 61.1 (−2.8) 99.4 (−0.6)

+ MEMO (ours) 69.9 (−6.8) 58.8 (−5.1) 99.1 (−0.9)

+ Tent (episodic, batch size 1) [243] 70.4 (−6.3) 60.0 (−3.9) 99.3 (−0.7)

+ DeepAugment+AugMix [89] 53.6 53.2 96.1
+ Single point BN 51.3 (−2.3) 51.2 (−2.0) 95.4 (−0.7)

+ MEMO (ours) 49.8 (−3.8) 49.2 (−4.0) 94.8 (−1.3)

+ Tent (episodic, batch size 1) 50.7 (−2.9) 50.7 (−2.5) 95.2 (−0.9)

+ MoEx+CutMix [122] 74.8 64.5 91.9
+ Single point BN 71.0 (−3.8) 62.6 (−1.9) 91.1 (−0.8)

+ MEMO (ours) 69.1 (−5.7) 59.4 (−3.3) 89.0 (−2.9)

+ Tent (episodic, batch size 1) 69.9 (−4.9) 61.7 (−2.8) 90.6 (−1.3)

RVT∗-small [144] 49.4 52.3 73.9
+ Single point BN 48.0 (−1.4) 51.1 (−1.2) 74.4 (+0.5)

+ MEMO (ours) 40.6 (−8.8) 43.8 (−8.5) 69.8 (−4.1)

+ Tent (episodic, batch size 1) 47.9 (−1.5) 50.9 (−1.4) 74.4 (+0.5)

Table C.1: Evaluating the episodic version of Tent with a batch size of 1, which corre-
sponds to a simple entropy minimization approach for the test time robustness setting. This
approach also uses single point BN adaptation, and entropy minimization does not provide
much additional gain.

CIFAR-10-C shifts, using heavier AugMix data augmentations leads to greater performance
gains over the standard augmentations. Furthermore, this ablation was conducted using
the ResNet-26 model, which was trained with standard augmentations – for robust models,
AugMix may offer greater advantages at test time since these models were exposed to heavy
augmentations during training.

Analyzing the tradeoff between efficiency and accuracy

In Figure C.1, we analyze the % test error of MEMO adaptation on ImageNet-R as a function
of the efficiency of adaptation, measured in seconds per evaluation. We achieve various
tradeoffs by varying the number of augmented copies B = {1, 2, 4, 8, 16, 32, 64, 128}. We note
that small values of B such as 4 and 8 can already provide significant performance gains,
indicating that a practical tradeoff between efficiency and accuracy is possible. For large B,
the wall clock time is dominated by computing the augmentations – in our implementation,
we do not compute augmentations in parallel, though in principle this is possible for AugMix
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CIFAR-10 CIFAR-10.1 CIFAR-10-C
Error (%) Error (%) Average Error (%)

ResNet-26 [80] 9.2 18.4 22.5
+ MEMO (ours) 7.3 (−1.9) 14.7 (−3.7) 19.6 (−2.9)

− AugMix [85] + standard augs 7.2 (−2.0) 14.6 (−3.8) 20.2 (−2.3)

Table C.2: Ablating the augmentation functions to test standard augmentations (random
resized cropping and horizontal flips). When changing the augmentations used, the post
adaptation performance generally does not change much.

Figure C.1: Plotting MEMO efficiency as seconds per evaluation (x axis) and % test error
on ImageNet-R (y axis) for the ResNet-50 models (left) and RVT∗-small (right) while varying
B = {1, 2, 4, 8, 16, 32, 64, 128}. Note the log scale on the x axis.

and should improve efficiency overall. These experiments used four Intel Xeon Skylake 6130
CPUs and one NVIDIA TITAN RTX GPU.

Evaluating ResNext101 models on ImageNet-A

ResNext-101 models [257] have been found to achieve higher accuracies on ImageNet-A [86],
particularly when trained with massive scale weakly supervised pretraining [143, 89]. In
this section, we evaluate whether MEMO can successfully adapt these models and further
improve performance on this challenging test set. We use the same hyperparameters as for
the robust vision transformer with no additional tuning: AdamW [136] as the update rule
G, learning rate η = 0.00001, weight decay 0.01, and B = 32 due to memory limits. We
obtain the baseline ResNext-101 (32x8d) parameters, pretrained on ImageNet, directly from
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ImageNet-A Error (%)

Baseline ResNext-101 (32x8d) [257] 90.0
+ TTA 83.2 (−6.8)

+ Single point BN 88.8 (−1.2)

+ MEMO (ours) 84.3 (−5.7)

+ WSL on billions of images [143] 54.9
+ TTA 49.1 (−5.8)

+ Single point BN 58.9 (+4.0)

+ MEMO (ours) 43.2 (−11.7)

Table C.3: ImageNet-A results for the ResNext-101 models.

the torchvision library. We also evaluate a ResNext-101 (32x8d) pretrained with weakly
supervised learning (WSL) on billions of Instagram images [143], and we obtained the param-
eters from https://download.pytorch.org/models/ig resnext101 32x8-c38310e5.pth.
For the WSL model, we did not use single point BN adaptation for MEMO as we found
this technique to be actually harmful to performance, and this corroborates previous find-
ings [197].

Table C.3 summarizes the results. We can see that, similar to Table 6.2, Both TTA and
MEMO significantly improve upon the baseline model evaluation. TTA performs best for
the baseline ResNext-101 model. However, MEMO ultimately achieves the best accuracy by
a significant margin, as it is more successful at adapting the WSL model, which has a much
higher accuracy. This suggests that combining MEMO with other large pretrained models
may be an interesting direction for future work.

C.3 Full CIFAR-10-C and ImageNet-C results

In the following tables, we present test results broken down by corruption and level for
CIFAR-10-C. We omit joint training and TTT because these results are available in prior
work [216]. Our test results for ImageNet-C can be obtained from
https://docs.google.com/spreadsheets/d/1U5hUIJ1sRoMGwZY2WI8vH0VJTXvdX5vHMy6nej4PHE4.

gauss shot impul defoc glass motn zoom snow frost fog brit contr elast pixel jpeg

ResNet-26 48.4 44.8 50.3 24.1 47.7 24.5 24.1 24.1 33.1 28.0 14.1 29.7 25.6 43.7 28.3
+ TTA 43.4 39.6 42.9 28.3 44.7 26.3 26.3 21.4 28.5 23.3 12.1 32.9 21.7 43.2 21.7
+ MEMO (ours) 43.5 39.8 43.3 26.4 44.4 25.1 25.0 20.9 28.3 22.8 11.9 28.3 21.1 42.8 21.7

Table C.4: Test error (%) on CIFAR-10-C level 5 corruptions.
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gauss shot impul defoc glass motn zoom snow frost fog brit contr elast pixel jpeg

ResNet-26 43.8 37.2 39.3 14.8 48.0 19.9 18.7 22.0 24.9 15.1 11.4 16.8 19.1 27.9 24.9
+ TTA 39.5 32.0 31.8 15.4 45.0 20.9 20.2 18.9 21.7 12.9 9.3 16.8 17.7 25.7 18.9
+ MEMO (ours) 39.7 32.3 32.2 14.7 45.0 20.0 19.2 18.7 21.1 12.5 9.3 15.2 16.9 25.2 18.9

Table C.5: Test error (%) on CIFAR-10-C level 4 corruptions.

gauss shot impul defoc glass motn zoom snow frost fog brit contr elast pixel jpeg

ResNet-26 40.0 33.8 26.4 11.5 37.3 20.0 16.6 20.0 24.7 12.2 10.5 13.6 15.0 18.4 22.7
+ TTA 34.3 27.7 20.3 11.3 32.9 20.7 16.7 16.3 21.1 9.8 8.5 12.5 13.7 14.5 17.2
+ MEMO (ours) 34.4 27.9 20.5 10.8 32.8 19.8 16.1 16.1 20.9 9.6 8.6 11.7 13.2 14.5 17.2

Table C.6: Test error (%) on CIFAR-10-C level 3 corruptions.

gauss shot impul defoc glass motn zoom snow frost fog brit contr elast pixel jpeg

ResNet-26 30.1 21.8 21.1 9.7 38.3 15.3 13.8 21.2 17.6 10.5 9.7 11.6 12.9 15.4 21.3
+ TTA 25.3 16.9 15.8 8.5 33.8 15.3 13.7 17.8 14.5 8.7 7.8 10.0 11.0 12.0 16.1
+ MEMO (ours) 25.3 16.9 15.9 8.4 33.5 14.6 13.0 17.7 14.4 8.5 7.7 9.6 10.7 11.9 16.2

Table C.7: Test error (%) on CIFAR-10-C level 2 corruptions.

gauss shot impul defoc glass motn zoom snow frost fog brit contr elast pixel jpeg

ResNet-26 20.8 16.5 15.8 9.2 38.9 11.8 12.8 13.9 13.4 9.7 9.4 9.6 13.1 12.0 16.4
+ TTA 15.8 12.8 11.8 7.3 35.1 10.8 12.5 11.0 10.8 7.4 7.4 7.7 11.4 9.2 12.5
+ MEMO (ours) 16.1 12.9 11.9 7.4 34.7 10.4 12.1 11.0 10.7 7.4 7.3 7.5 10.9 9.2 12.5

Table C.8: Test error (%) on CIFAR-10-C level 1 corruptions.
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