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I. Introduction

In this study the response in a transversely isotropic,semi—
infinite, elastic rod is found to an input on its end that is
time dependent, The material of the rod is arranged so that axes of
isotropy are parallel to the axis of the rod,

In developing the response, the method developed by Skélak (1]
for isotropic rods is followed closely., Like Skalak, the exact
three-dimensional theory of elasticity is used to solve the‘field
equations,using the Laplace transform for the time variable and the
sine and cosine transforms for thé space variable along the rod,
whichever is suitable. As the solutions, ;n the form‘of inverse
integral transforms are complicated, asymptotic expansions are used
which are for "1arge" values of the space coordinate and for the head
of the pulse,.

The asymptotic solution found in this paper is not new; it was
obtained by Hensel and Curtis [2] for a single-crystal bar. However,
because an approximate theory was used throughoﬁt, the solution of
Hensel and Curtis cannot in the future be refined or improved. Be-
cause the solution in transform space developed here was obtained
using the three-dimensional theory, the asymptotic solution obtained
is open to improvement, aibeit with difficulty, by éxtending the
length of the fundamental spectral line used or even by taking into
account higher modes.

The problem differs from that of Skalak, (apart from material
properties), in the conditions that are imposed at the end of the rod.
The choice here is to impose mixed-mixed conditions on the end:

uniform normal stress together with zero radial displacement, The



rationale behind this choice is that even though these conditions are
unlikely to be imposed realistically, the influence of an additional
condition needed to make the end condition realistic, (that is, a set
of natural radial displacements on the end),'would have little effect
on the response at a distant station. This assumption is shared by
Kaul and McCoy [3] in a study they made of the same problem for
isotropic rods. The normal Stress on the end of the rod has a step
dependency on time. The response to this input is fundamental in
that other solutions can be found from the solution contained here
using the Duhamel integral.

With the end conditions described, the problem is one of finding
the response in the rod. The choice here is to represent the response
in terms of two strains: axial strain and tangential or "hoop"
strain, both of which can be measured on the surface. Both are es-
tablished at a station on arbitrarily "long" distance from the end
of the rod at z = z¥*, At such a distant station and for times close
fo tﬁe arrival of the first disturbance, both strains are given in
terms of the Airy function,

The responses are shown in Fig. 1, and in the last section these

responses are discussed in some detail,

II. Formulation of the Problem

Our study is of semi-infinite, cylindrical rod, of circular

cross section made of a transversely isotropic elastic material whose



axes of material symmetry are parallel to the axis of the rod.

We refer the rod to a cylindrical coordinate system (r, 6, 2)
within which the center of the end of the rod is located at the
origin and positive z is measured along the axis of the rod. 1In the
formulation of the problem, we employ the three dimensional
theory of elasticity and choose mixed-mixed end boundary conditions;
namely, uniform step pressure and zero radial dispiacement because
they are mathematically simple to handle,

We now proceed to formulate the problem mathematically. The con-

stitutive relation is
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so that the strain—displacément relations in cylindrical coordinates

become
= =0
©rr ur,r e
Uy
= ) =l 5
T r re 2(uz,r * ur,z) (5)
= =0
ezz uz,z eez !
o( )
where ( ),rv= =7 etc,
From Eqs, (1-4) we see that Tr@ = Tez = 0 and that all of the

other stresses are functions of r, z and t. Thus, the stress equa-
tions of motion without body forces become
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where ( ) = oSt - The third equation is satisfied identically.

Equation (6) can be expressed in terms of displacements and,when we

make use of stress-strain and strain-displacement relations, they are

1 .
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(7)
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We seek the solution of Egs.. (7) subject to the end boundary condi-

tions

(8)

where PO is a constant, and the boundary conditions on the lateral

surface



Trr(a, z, t) =0
(9
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The initial conditions are
ur(r, z, 0) = ﬁr(r, z, o) =0
(10)
uz(r, z, 0) = uz(r, z, o) =0,

Using the constitutive relations, Egs, (1), and the
strain-displacement relations, Eqs. (5), the boundary conditions,

Eqs. (8, 9),can be expressed in terms of displacements as
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ITII. Solutions in Transform Space

For finding the solution for the transient response of the rod,
we make use of a double transform technique; namely, sine or cosine
transform for axial distance and Laplace transform for time. First for
the time variable t we apply Laplace transform to the governing
equations, Eqs., (7), and end boundary conditions, Eqs, (11); thus we

have respectively
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We note that in deriving Eqs, (13) we used the initial'conditions,
Eqs, (10),
For the”z"dependency, We apply sine and cosine transforms to

the first and second of Egs. (13), respectively, which gives
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where sine and cosine transforms and their inverses are defined by
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In derivation of Egs. (16) use is made of the end boundary conditions,

Eqs. (14). The general solution of Eqs. (16) can be written as

*g *g *g
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where ( )h and ( )p denotes homogeneous and particular solutions

respectively.
For the particular solution we assume the trial solution
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The constants introduced in Eqs. (21) can be determined from the con-
dition that the assumed form of the particular solution must satisfy
Egs. (16); thus we obtain
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For the homogeneous solution we choose the trial solution
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where I1 and I0 are modified Bessel functions of the first kind, and
h is a constant to be determined. We note that the modified Bessel
functions of second kind K1 and KO are unacceptable on physical grounds
because their values at r = 0 are infinite,
Substitution of Egs. (23) into the homogeneous part of Egs. (16)
gives
2 2

= . (24)
qh - h -n B 0

For a non trivial solution, the determinant of the coefficient matrix
of Eq. (24) must vanish, This determines the values of h., We also

note that the coefficients A and B are related through the eigen-

vectors of Eq. (24). Thus, the homogeneous solution becomes
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Combining homogeneous and particular solutions, we obtain the gen-

eral solution
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The constants A and B in Egs. (27) will be determined from the
lateral boundary conditions, Eq. (12). TUpon applying Laplace and
sine transforms to the first of Egs. (12), and Laplace and cosine
transforms to the second of Egqs. (12), the lateral boundary condi-

tions take the forms:
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Substituting Eq. (27) into (28) and solving for A and B we find
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We note that if p is replaced by (iw), then A = 0 will be the
same as the frequency equation for transversely isotropic rods,

Finally, substituting Eqs. (29) into Egqs. (27) we find
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In anticipation of possible,comparison with experimental results,

ezz and eee are chosen as a measure of the response, In transform space
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Finally, using inversion formulas we find
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IV. An Asymptotic Solution

It is not possible in general to integrate Eqs. (33)., 1In this
section we obtain an asymptotic solution which is valid for large
distances from the end of the rod and for the head of the pulse,

Detailed solutions will be displaved only for €

bee.
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First, we note that in Egs. (30) we have
L(-,p) = - A(w,p). (39)

Then, from the first of Eqs. (32) and the first of Egs, (31) it

follows that

* *
€e;(a,-d,p) = - eeg(a,d,p), (35)

We have therefore,
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Because we are seeking an asymptotic solution which is valid for large
distances from the end of the rod and for the head of pulse we assume
that ¢ << 1, p << 1, Then, from Eqs. (26) it follows that f << I,

b << 1, Hepce, if we use the approximate formulas of I1 and IO for

small arguments, namely:

XZ
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We substitute Eq. (38) into (36) and carry out integration with
respect to @, We choose the semi-circle of radius R on the ﬁpper half
of the « complex plane as the path of integration. It can be shown
that the value of the integral along the seﬁi—circle approaches zero

as R tends to infinity. Then, using the residue theorem we obtain

P
* o _° o iaz
eee = 2 013 5 — e ( (40)
34 a:al(p)
A
where

R
]
~~
T
S
]
<‘-
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h—e

c, . (c + c..) - 2c
_ { 33711 12 : 3} , (41)

We also note that o = dl(p) is the simple pole of the integrand of
Eq. (36) located on the upper half of the complex & plane for o << 1,

p << 1. After some manipulation, Egs. (40) can be written as

2.2
.z, ,al 3
Po Ve 4v3
*
€ = c — e e . 42
68 13 3p (42)

Using the inversion formula for Laplace transform, the second of

Eqs. (15), we obtain
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e dp T (43)

When integration with respect to p is carried out, we find

1
¢13 P ; ‘

e0 ) i

o
where
3 1/3
N e N
- (-2 (=) 49)
e 3za™M

In Eq. (44), Ai(x) denotes the Airy function [47] defined as

b 3
1 y
Ai(X) = = cos (xy + 3 ) dy. (46)
o]
Similarly, it can be shown that
(c..+c. ) Bl
) S —lltr—Lg P (1/3 + j A, (-B)dB) . 47)
Y4 a O 1 ,
]

We note that the solutions found above, Egs. (44) and (47), take into
.account only the contribution coming from the fundamental mode in the

neighborhood of o = 0 and also note that this neighborhood accommodates

some dispersion,

V. Comments

With the.choiée of asymptotic solution, the major part of the res-
ponse Will come at a time corresponding to disturbances propagating
with the bar velocity v, The "short' interval of time following this
arrival, that is the interval of time not affected by the higher modes,

is large enough to accommodate the time at which the maximum strains occur,



14

With the use of Airy function tables [47], the quantities

e 2 3P ezz and <-——§§—> eee, which are proportional to the
0

117 %1275 €13

axial and hoop strains respectively, are calculated and shoWn in Fig, 1,
For a fixed station, say z = z*, and at the time t = éi , (the time of
arrival gf'the méjor disturbance),the strains are equai to one third

of their static values. The strains increase with increasing time
until they reéach a maximum value (approximately 1,27 times their

static value) and then the magnitudes start to oscillate about their

static values, We note that their maximum values will occur at

approximately
, 1/3
{?_.5_\»<_ﬁ__\ ,‘\, = 2.3
\ S J 2) e T
e 3EM
(48)
(5 _EN 2.3 <§_2\1/3 £1/3 ‘
Y% a / ’
€ e
where
£ (dimensionless distance) = §
tG
— . . . ns
t (dimensionless time) =
a
CaaN\E
G o = \~E—> , propagation velocity of shear waves
v
< - £
Ve TG )
ns

~
Given material constants CaR’ ve and T} are known. They of course,
affect the responses, What is more important to note from the second
of Egs. (48) is that the time at which the maximum strains occur is
1/3

proportional to z . We therefore conclude that as the distance of

the station from the end of rod decreases, the wave front becomes steeper.
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Captions for Figures

Fig. 1 Variations of Axial and Tangential Strains in Time,
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