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Abstract

Development of A Bayesian Geostatistical Data Assimilation Method and Application to
the Hanford 300 Area

by

Haruko Murakami
Doctor of Philosophy in Engineering-Nuclear Engineering

University of California at Berkeley

Professor Yoram Rubin, Co-Chair
Professor William E. Kastenberg, Co-Chair

Probabilistic risk assessment of groundwater contamination requires us to incorporate
large and diverse datasets at the site into the stochastic modeling of flow and transport for predic-
tion. In quantifying the uncertainty in our predictions, we must not only combine the best esti-
mates of the parameters based on each dataset, but also integrate the uncertainty associated with
each dataset caused by measurement errors and limited number of measurements. This dissertation
presents a Bayesian geostatistical data assimilation method that integrates various types of field data
for characterizing heterogeneous hydrological properties. It quantifies the parameter uncertainty as
a posterior distribution conditioned on all the datasets, which can be directly used in stochastic sim-
ulations to compute possible outcomes of flow and transport processes. The goal of this framework
is to remove the discontinuity between data analysis and prediction. Such a direct connection be-
tween data and prediction also makes it possible to evaluate the worth of each dataset or combined
worth of multiple datasets. The synthetic studies described here confirm that the data assimilation
method introduced in this dissertation successfully captures the true parameter values and predicted
values within the posterior distribution. The shape of the inferred posterior distributions from the
method indicates the importance of estimating the entire distribution in fully accounting for parame-
ter uncertainty. The method is then applied to integrate multiple types of datasets at the Hanford 300
Area for characterizing a three-dimensional heterogeneous hydraulic conductivity field. Comparing
the results based on the different numbers or combinations of datasets shows that increasing data do
not always contribute in a straightforward way to improving the posterior distribution: increasing
numbers of the same data type would not necessarily be beneficial above a certain number, and also
the combined effect of multiple datasets could be very different from the individual effects. This
research thus shows that any site characterization should consider not only the worth of individ-
ual datasets, but also the combined effects of multiple datasets and the sequence in which they are
assimilated.
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Chapter 1

Introduction

1.1 Motivation

Groundwater contamination has been one of the environmental concerns central to the nu-
clear industry since the early 1950s. During the years of the Cold War, effluent from nuclear weapon
production contaminated groundwater at various production sites in the United States. Accidental
tritium release has also been reported at U.S. nuclear power plants. Although the nuclear industry
is currently one of the most highly regulated fields, there still remain many contaminated sites, and
the potential contamination from the nuclear waste repositories is a major public concern.

Currently, according to the regulations set by the U.S. Nuclear Regulatory Commission
(NRC) (http://www.nrc.gov/), any construction of a nuclear power plant or waste repository requires
a rigorous assessment of potential groundwater contamination. Sites contaminated by nuclear ma-
terial also require assessments to evaluate remediation strategies [USEPA, 2001]. The critical com-
ponent in these assessments is predicting groundwater flow and contaminant (e.g., radionuclide)
transport to determine any future consequences in human health or the regional ecological system.
To account for uncertainty, probabilistic risk assessments–originally developed for nuclear power
plants–have become a preferred choice for assessing groundwater contamination [USEPA, 2001].
However, in contrast to nuclear power plants, in which all the components are known and a fail-
ure rate of the components is determined from repeated experiments, groundwater contamination
assessment is subject to much larger uncertainty, since the heterogeneity of the natural subsurface
environment makes it impossible to create a complete map of hydrologic properties over the domain.

Stochastic hydrologeology has been developed in the past three decades [Dagan, 1989;
Rubin, 2003] to address uncertainty caused by spatially variable properties in flow and transport
modeling. Since stochastic modeling yields the consequences of flow and transport in a proba-
bilistic manner (e.g., probability of concentration at a certain location being higher than a certain
value given available information), the modeling results can be seamlessly incorporated within the
framework of probabilistic risk assessment [Andricevic and Cvetkovic, 1996; Maxwell and Kasten-
berg,1999; Maxwell et al., 1999]. From data to prediction, the stochastic hydrogeology framework
consists of two parts: forward modeling and inverse modeling.

The goal of forward modeling is to describe flow and transport processes based on known
physical models and known parameter distributions that account for parameter uncertainty. In
stochastic hydrologeology, based on geostatistics originally developed for mining operations [Ki-
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tanidis, 1997], a spatially variable hydrogeologic property is modeled as a random variable, or more
generally as a random field (i.e., a collection of jointly dependent random variables, indexed by
spatial position). The random field is described by a probabilistic model based on various control
parameters, called structural parameters, such as trend, variance, and scale of the field, using a two-
point correlation structure called a covariance model. Although forward models sometimes have a
closed-form analytical solution, often modelers use numerical simulations for complex processes.
In stochastic simulations, we first generate a set of parameters from the distributions of the param-
eters, then generate multiple random fields for a given set of parameters, and finally calculate flow
and transport for each field to determine possible consequences [Maxwell et al., 1999; Rubin, 2003].
The computed ensemble of possible consequences yields a probability distribution of the possible
consequences or probability of the possible consequence exceeding the regulatory standard, which
is used for assessing risks and making decisions.

The goal of inverse modeling is to estimate the parameters or parameter distributions used
for the forward simulations, based on field observations. Traditionally, in geostatistics, the vari-
ogram approach was used for estimating the structural parameters from point-scale direct measure-
ments. Recently, a Bayesian model-based geostatistics was developed to infer a joint distribution
of structural parameters [Diggle and Ribeiro, 2003]. A substantial effort has been invested in using
large-scale data–observations affected by a large area of a field such as, for example, pumping-test
or tracer-test data. With large-scale data, each observation is a function of the entire field, so that it
is difficult to characterize local features of the field from such data. Although inverting large-scale
data to map a heterogeneous field is the same concept employed in medical imaging, the data den-
sity in hydrogeology is much lower, thus making it impossible to obtain a deterministic picture of
the entire field. In hydrogeology, therefore there have been many different methods proposed for
inverting large-scale data in the stochastic modeling framework [Kitanidis, 1986,1995; Carrera and
Neuman, 1986a, 1986b; Rubin and Dagan, 1987a, 1987b; Rama Rao et al., 1995; Rubin, 2003;
Bellin and Rubin, 2004; Hernandez et al., 2006].

In previous work, these two modeling schemes, i.e., forward and inverse modeling, have
often been considered and developed separately, which frequently has led to discontinuties between
them. For example, most inverse modeling methods yield only a (so called) best estimate and
asymptotic confidence bounds of the parameters, without considering connection to the forward
simulations. It is known that the best estimate of the field is too smooth and unrealistic to represent
a real process [Rubin et al., 2010]. Moreover, the distributions of parameters are often assumed
or made up. With such discontinuity, the information contained in the data, especially uncertainty
associated with the data, cannot be fully transferred to predictive simulations. This discontinuity
becomes even more apparent when we try to integrate (or assimilate) datasets of different types.
A typical field characterization project includes two or more different complementary sources of
information, such as core analyses, pumping tests, tracer tests, lithology information, or flowmeter
tests. They have different accuracy, scale, and relationship to the target variable. Each data type
is often analyzed separately and differently using a data-specific inverse modeling method, which
makes integrating all the datasets difficult.

Following upon the previous work and current research needs, the research questions
addressed in this dissertation are the following:

1. How can we transfer uncertainty associated with the data to prediction in the stochastic hy-
drology framework?
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2. How can we integrate different types of data consistently?

3. Given that we integrate different types of data consistently, can we determine which data type
or which combination of data types are more beneficial for characterization?

Answering these questions requires an inverse modeling method that can integrate var-
ious types of data in a consistent manner and transfer uncertainty associated with the data into
predictions. The method must be tested and validated not only in synthetic studies but also in real
subsurface characterizations.

1.2 Scope of the Dissertation

Following the motivation discussed in the previous section, this dissertation presents a
Bayesian geostatistical data assimilation method and its application to real data taken from sub-
surface characterization. The following chapters include an individual introduction, methodology,
results, and summary, organized as follows.

Chapter 2 introduces the Bayesian geostatistical data assimilation method, called the
method of anchored distributions, which is a general inverse modeling method that integrates var-
ious types of data for characterizing a spatially variable hydrological property directly within the
stochastic modeling framework. The central element of this method is a new concept called an
anchor, which is a device for localizing large-scale data. Anchors are used to convert large-scale,
indirect data into local distributions of the target variables. The goal of the inversion is to determine
a joint distribution of the anchors and structural parameters, conditioned on all of the field data.
The structural parameters describe global trends of the field, whereas the anchors capture local het-
erogeneities. Following the inversion, the joint distribution of anchors and structural parameters
can be directly used to generate random fields of hydrogeological properties and compute possible
outcomes of flow and transport processes. This method enables us to remove the discontinuity be-
tween data analysis and transport predictions. The method is tested through a synthetic study to
characterize a two-dimensional transmissivity field based on direct measurements of transmissivity
and hydraulic head measurements from natural gradient flow.

Chapter 3 describes an application of this method to aquifer tests at the Integrated Field
Research Challenge (IFRC) site at the Hanford 300 Area, Washington. The interdisciplinary Han-
ford IFRC project explores the complex behavior of subsurface uranium transport, involving hydro-
geology, geochemistry, and microbiology. By having several hypotheses to explain the persistence
of uranium plume at the site based on geochemical and microbial reactions, the project intends to
enhance basic understanding of the subsurface transport mechanism of uranium. Three-dimensional
hydrogeological characterization is crucial for understanding uranium transport in a heterogeneous
subsurface environment. The main goal in Chapter 3 is to assimilate large-scale depth-averaged data
from constant-rate injection tests with small-scale depth-discrete data from electromagnetic bore-
hole flowmeter (EBF) tests for characterizing the three-dimensional hydraulic conductivity field.
The method is first applied to determine a joint posterior distribution of two-dimensional geosta-
tistical parameters and local log-transmissivities at multiple locations. After combining the distri-
bution of transmissivities with depth-discrete relative-conductivity profiles from the EBF data, the
three-dimensional structural parameters of the log-conductivity field are inferred.
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In Chapter 4, the data assimilation is expanded to include two more datasets at the IFRC
site: lithology profiles and tracer tests. Sequential data assimilation is explored to integrate different
types of datasets in a consistent manner and to reduce the computational cost required in assimila-
tion. After assimilating different combination of the datasets, the inversion results are compared,
particularly focusing on the impact of lithology profiles and tracer tests. This comparison utilizes
different metrics based on breakthrough curves observed during the tracer test not used in the inver-
sion, such as mean arrival time, peak concentration, and peak time. The purpose of this comparison
is to evaluate several possible assimilation strategies, and investigate how and how much differ-
ent datasets contribute to improving the characterization, which will be useful in guiding further
characterization efforts at the site and also in future characterization projects at other sites.

Finally, Chapter 5 summarizes the main findings and conclusions in the previous chapters,
and provides the overall conclusion, including answering the research questions raised in this chap-
ter section. Appendices at the end of this dissertation include detailed derivations and discussions
of the algorithms used in this dissertation.
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Chapter 2

A Bayesian Approach for Inverse
Modeling; Application of the
Markov-Chain Monte-Carlo Sampling
Method

2.1 Introduction

This chapter presents a new approach for inverse modeling called Method of Anchored
Distributions (MAD). MAD is a geostatistical inversion method for estimating the joint distribu-
tion of parameters that control spatially variable properties. MAD addresses several of the main
challenges inherent to inverse modeling. These challenges fall into two broad categories: data as-
similation and modularity.

Data assimilation in inverse modeling involves using multiple and complementary types
of data as sources of information for the target variable, which is a spatially variable property. In
hydrogeological applications, for example, one may be interested in mapping a three-dimensional
heterogeneous hydraulic conductivity field [Kitanidis, 1986, 1995, 1997; Carrera and Neuman,
1986a, 1986b; Hernandez et al., 2006], using measurements of hydraulic head, measurements of
concentrations and travel times in solute transport experiments [Bellin and Rubin, 2004], and mea-
surements of geophysical attributes from geophysical surveys. Since each type of measurement is
related to the target variable, i.e., the conductivity field, through different numerical or analytical
models, the challenge is to combine the multiple sources of data into a coherent map of the target
variable. Given that a stochastic approach has become more popular for flow and transport simula-
tions, it is especially important to take into account the uncertainties associated with different types
of measurements.

Modularity requires an inverse modeling approach that is not tied to any particular model
or data type, which results in the needed flexibility to accommodate a wide range of models and

1This chapter is based on a published article in Water Resources Research, 2010 (Rubin, Y., Chen, X., Murakami,
H., and Hahn, M. S.: A Bayesian approach for inverse modeling, data assimilation and conditional simulation of spatial
random fields, Water Resour. Res, 46, W10523, doi:10.1029/2009WR008799, 2010.)
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data types. Inverse methodologies and numerical simulations of physical processes have over the
past few decades become highly intertwined in a way that limits their application. This is largely
attributed to the increasing complexity of the processes being analyzed and of the computational
techniques needed for their analysis. For example, inverse modeling in hydrogeology evolved from
Theis type-curve matching [Theis, 1935] into modern studies that include complex and specialized
elements, such as (1) adaptive and parallel computing techniques, (2) linearization or other approx-
imation approaches, and (3) complex optimization, sampling or search algorithms. The range of
skills needed for implementing these elements led researchers to build an inversion procedure based
on their own preferred numerical schemes. This resulted in limiting the potential for expanding the
range of applications and data types beyond the original application. Modularity is a strategy for
alleviating this difficulty, by pursuing a model-independent inverse modeling framework.

This chapter, through presentation of the MAD concept, explores these issues using a
Bayesian framework. A theoretical approach is developed, and this approach is demonstrated with
a synthetic case study.

2.2 Data Classification and Definition of Anchors

This section summarizes and then expands upon a few developments included in an un-
published manuscript by Zhang and Rubin [2008] and in a conference presentation by Zhang and
Rubin [2007].

The MAD approach to inverse modeling is built upon two elements: (1) data classification
and (2) a strategy for localizing nonlocal data. The localization strategy serves to create a unified
approach for dealing with any type of data. These two elements are integrated into a Bayesian
formulation for data assimilation. Integration of these two elements is done modularly, accommo-
dating a wide variety of data types and physical processes that connect data to the target variables
of interest. The rationale for formulating the inverse problem using a statistical formalism has been
sufficiently discussed in the literature [Kitanidis, 1986; Rubin, 2003] and is not repeated here for
the sake of brevity.

We consider a target variable as a spatial random process denoted by Y (x), where x
represents a single space coordinate. The entire field of Y is denoted by Ỹ. A realization of Ỹ is
denoted by ỹ. The data vector z contains multiple observations of multiple data types. Given data z,
the goal is to determine a conditional distribution of the field, p(ỹ | z), from which we can generate
random samples of the field Ỹ for stochastic simulations of prediction.

The field Ỹ is defined through a vector of model parameters {θ,ϑ}. The θ part of this
vector includes a set of parameters designed to capture the global trends of Ỹ, such as the mean
of the field and correlation structures. The ϑ component of this vector consists of the anchored
distributions. Anchored distributions, or anchors, in short, are devices used to capture the local
effects that cannot be captured using the global parameters represented by θ. The anchors are given
in the form of statistical distributions of Y at known or chosen locations.

The overall strategy for determining p(ỹ | z) is to determine a joint conditional distribu-
tion of the model parameters p(θ,ϑ | z), which in turn allows us to generate multiple realizations
of the field Ỹ from p(ỹ | θ,ϑ). The way to determine the distribution p(θ,ϑ | z) should be both
general and flexible enough to accommodate a wide range of formulations of {θ,ϑ}, as well as a
wide range of data types included in z.
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2.2.1 Data Classification

MAD classifies data into two types, i.e. Type-A data and Type-B data, based on the data’s
relationship to the target variable Y and support volume. We denote all available data by z, Type-A
data by za, and Type-B data by zb. Type-A and Type-B data refer to on-site data. Information in the
form of expert opinion or from geologically similar sites is treated differently and falls under the
category of prior information.

Type-A data is small-scale local data such that the support volume of Type-A data is the
same as the one of Y. Each of Type-A data is a function of each of the point values Y. When we
have na measurements of Type-A data at locations xa, we can write a equation to connect Y(xa)
and za as,

za = y(xa) + �a, (2.1)

where �a is a na-vector of zero-mean errors. �a represents uncertainty associated with measurement
errors, errors in regression or petrophysical relationships [Ezzedine et al., 1999]. In Equation (2.1),
we assume that the support volume of Type-A measurements is the same as the one of the point-scale
target variable Y . When Y is permeability, for example, Type-A data may include measurements of
permeability obtained using permeameters, or predicted permeability from soil texture and grain-
size distributions using petrophysical models [Ezzedine et al., 1999; Mavko et al., 1998].

Type-B data is large-scale nonlocal data, defined as a function of the field Ỹ, which is
described by the following equation:

zb = M(ỹ) + �b (2.2)

where M is a known numerical or analytical model of the spatial field, and �b is a nb-vector of
zero-mean errors. In hydrogeological applications, zb may include data obtained from large-scale
pumping tests, solute transport experiments, continuous observations of hydraulic heads, and geo-
physical surveys. The model M then includes mathematical models that seek to reproduce experi-
ments corresponding to the data. When zb includes data from multiple sources, M in Equation (2.2)
should be viewed as a collective name for all the models that relate zb to ỹ.

2.2.2 Concept of Anchors

Anchors ϑ are given in the form of statistical distributions of Y at known or chosen
locations, which establishes a connection between the unknown Ỹ field and the data along with
the structural parameters θ. Using anchors and structural parameters, we will be able to generate
multiple fields Ỹ that are conditioned on Type-A and Type-B data. MAD defines two types of
anchors corresponding to its data classification, i.e., Type-A anchors ϑa and Type-B anchors ϑb.
We denote the entire set of anchors by ϑ = {ϑa,ϑb}.

Type-A anchors ϑa are co-located with Type-A data such that we have one anchor per
one Type-A measurement at the same location. A set of Type-A anchors is equivalent to y(xa)
in Equation (2.1). Given ϑa, za follows the distribution of �a through regression or petrophysical
models.

Type-B anchors ϑb capture information from Type-B data. Since a set of Type-B anchors
has influence on Type-B data through the field Ỹ and the physical models denoted by M in Equation
(2.2), there may not be a one-to-one correspondence between Type-B anchors and Type-B data,
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which is different from Type-A data. We plant Type-B anchors at multiple locations xb to capture
the information contained in the Type-B data relevant to the field Ỹ. In other words, we transform the
large-scale nonlocal Type-B data into a distribution of the local Y values, i.e. the Type-B anchors.
MAD determine the distribution of ϑb though the inversion described in Section 2.3.

Anchor placement is an important element of MAD: we would want to place the anchors
such that they capture all the relevant information contained in the data, but at the same time we
want to minimize the number of anchors, since the number of anchors is directly related to the
computational burden. This is trivial for Type-A anchors, since Type-A anchors are co-located with
Type-A data. However, this is a complex issue for Type-B anchors, since there is often a complex
relationship between zb and Ỹ.

2.3 Inversion in MAD Framework

As a starting point, let us consider p(θ,ϑ | za, zb), the joint distribution of the model
parameters, including structural parameters and anchors, conditioned on Type-A and Type-B data.
Applying Bayes rule, we rewrite the posterior distribution:

p(θ,ϑ | za, zb) ∝ p(zb | za,θ,ϑ)p(θ,ϑ | za),
= p(zb | θ,ϑ)p(θ,ϑ | za), (2.3)

where ∝ represents that the left-hand side of the equation is proportional to the right-hand side.
p(zb | θ,ϑ) denotes the likelihood of the Type-B data, which is the key for relating the model
parameters and Type-B data. p(θ,ϑ | za) has a dual role of being the posterior probability given
Type-A data, and the prior probability with respect to Type-B data. We drop za from conditioning
whenever it is coupled with Type-A anchors ϑa, considering that Type-A anchors carry the infor-
mation provided by za. This also assumes that Type-A and Type-B are conditionally independent
given {θ,ϑ}.

We can further factorize the second term in Equation (2.3):

p(θ,ϑ | za) = p(θ,ϑa,θb | za),
= p(ϑb | θ,ϑa)p(θ,ϑa | za),
∝ p(ϑb | θ,ϑa)p(ϑa | θ)p(θ)p(ϑa | za), (2.4)

where p(θ) is the prior distribution of θ before having any data at the site. The distribution p(ϑb |
θ,ϑa) is the prior distribution of Type-B anchors with respect to Type-B data. The distribution
p(ϑa | θ) is the likelihood of Type-A anchors given the structural parameters. In Equation (2.3) and
(2.4), the critical components for inversions are the following: prior distribution p(θ), Type-A data
inversion p(θ,ϑa | za) and likelihood of Type-B data p(zb | θ,ϑ). In the following subsections, we
discuss these elements individually.

2.3.1 Prior Distribution

The prior p(θ) summarizes the information that is available prior to including any mea-
surements at the site. We may rely on literature or previous studies conducted at the geologically
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similar sites. There are a number of approaches for determining p(θ). Broad statistical perspective
is provided by Kass and Wasserman [1996], Woodbury and Ulrych, [1993], Woodbury and Rubin
[2000], Hou and Rubin [2005] and Diggle and Ribeiro [2006]. MAD can take any prior distribution,
depending on the modelers discretion.

2.3.2 Type-A data Inversion

In this section, we determine the posterior distribution given Type-A data denoted by
p(θ,ϑa | za). This constitutes our entire process when we have only Type-A data za. The ap-
plication of MAD in this case includes a sequence of two steps. First, we determine p(ϑa | za)
according to Equation (2.1). Second, we infer the structural parameters as p(θa | ϑa) on every
possible ϑa from p(ϑa | za). Since ϑa represents the point Y values, we can use an analytical form
for p(ϑa | za), often assuming that Y and ϑa follow a multivariate normal distribution [Hoeksema
and Kitandis, 1984; Kitanidis, 1986, Diggle and Ribeiro, 2006]. Diggle and Ribeiro [2006] used
Box-Cox transform or a generalized linear model to deal with non-normal distributions.

2.3.3 Prior Distribution of Type-B Anchors

Prior to the Type-B data inversion, we need to place Type-B anchors and determine the
prior distribution of Type-B anchors p(ϑb | θ,ϑa). Unlike Type-A anchors, Type-B anchors do not
have a one-to-one match to Type-B data. Instead, modelers are required to place anchors at selected
locations. We discuss anchor placement in Section 2.3.5. Here we assume that we have already
selected Type-B anchor locations xb.

After determining the locations xb, we determine the distribution of Type-B anchors.
Since the anchors are a subset of the field Ỹ, Type-B anchors follow the same geostatistical model
and covariance structure as Ỹ. For example, when the field is modeled as a multivariate Gaussian
field, for given structural parameters and Type-A anchors {θ,ϑa}, Type-B anchors follow the mul-
tivariate Gaussian distribution with the covariance structure specified by θ and xb, and conditioning
points of ϑa.

2.3.4 Likelihood Estimation

The likelihood p(zb | θ,ϑ) in Equation (2.3) connects the various Type-B data to {θ,ϑ}.
The likelihood can be determined either analytically under certain assumptions [Hoeksema and
Kitanidis, 1984; Dagan, 1985; Rubin and Dagan, 1987a, 1987b] or by numerical simulations. MAD
can implement both approaches.

An extensive body of literature is devoted to multidimensional density estimation, which
is equivalent to likelihood estimation [Scott and Sain, 2005]. These strategies fall into two cat-
egories, parametric and nonparametric. The parametric approach assumes a certain distribution,
leaving only the need to estimate a few parameters. In many cases, a multivariate normal distribu-
tion is adopted for the likelihood [Dagan, 1985; Carrera and Neuman, 1986a, 1986b; Hoeksema and
Kitanidis, 1984; Kitanidis, 1986; Rubin and Dagan, 1987a, 1987b].

The nonparametric approach does not assume any distributions. The appeal of nonpara-
metric methods lies in their ability to reveal structure in the data that might be missed by parametric
methods. However, this advantage is associated with a heavy price tag: nonparametric methods are
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much more computationally demanding than their parametric counterparts. The MAD algorithm is
flexible in its ability to employ both parametric and nonparametric methods. Scott and Sain [2005]
and Newton and Raftery [1994] summarized several alternatives for nonparametric likelihood esti-
mation. Many algorithms are publicly available, such as the algorithms described by Hayfield and
Racine [2008], which are part of the R-Package [R Development Core Team, 2007].

For either parametric or nonparametric methods, MAD requires the modelers to select the
most appropriate representation of the likelihood depending on the data. For example, when zb is
comprised of pressure-head measurements taken from a uniform-in-the-average flow in an aquifer
domain characterized by a small variance in log conductivity, a multivariate normal likelihood func-
tion is reasonable, because the head can be expressed as a linear function of the log conductivity
[Dagan, 1985].

MAD estimates the likelihood p(zb | θ,ϑ) using numerical simulations, as follows. For
any given {θ,ϑ} sampled from the prior distribution p(θ,ϑ | za), we generate multiple conditional
realizations of fields Ỹ. With each realization, a forward simulation of the physical process, fol-
lowing Equation (2.2), provides a prediction of zb in the form of z̃b . In other words, zb is viewed
as a measured outcome from random process, while z̃b is one of many possible realizations given
{θ,ϑ}. After simulating for all the generated fields, we obtain the ensemble of z̃b given {θ,ϑ}.
MAD uses this ensemble of z̃b to estimate the density distribution p(z̃b | θ,ϑ) and determine the
density at zb, which is equivalent to the likelihood p(zb | θ,ϑ).

2.3.5 Type-B Anchor Placement

Anchor placement, i.e., the number and location of Type-B anchors, depends on various
factors. When we generate fields for prediction, we assume that p(ỹ | z) = p(ỹ | θ,ϑ), which
means that conditioning on the data z is equivalent to conditioning on the anchors and structural
parameters {θ,ϑ}. Consider, for example, a local decline observed in water-table elevation. This
decline could be controlled by the presence of local features such as high- and/or low-conductivity
areas. We would want to capture these features by anchors. At the same time, we need to minimize
the number of anchors; since the anchors are model parameters, and increasing the number of
anchors leads to an increasing computational burden. We need to have a strategy that guides us to
place the anchors such that a small number of anchors capture most of the important information in
the data.

We propose a two-step approach for anchor placement. In the first step, the anchors are
placed based on geological conditions, characterization goals, and data locations. The second step
is a test to check whether the number of anchors is sufficient The first step requires modelers to
consider physical principles and/or to rely on experience, while the second step is more mechanistic
in nature.

For the first step, we may refer to relevant previous studies. Bellin et al. [1992] inves-
tigated solute transport in heterogeneous media numerically, and found that the spatial resolution
of numerical models needs to be on the order of one quarter of the integral scale of the log con-
ductivity for capturing the effect of spatial heterogeneity on solute transport. Castagna and Bellin
[2009] suggested the same value, i.e., one quarter of the integral scale (i.e. characteristic length of
heterogeneity determined by an integral of the two-point correlation over the distance [0, ∞]), in
relation to crosshole tomography. Although the true integral scale is usually not known a priori,
we may find reliable prior information from field studies conducted in similar formations [Scheibe
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and Freyberg, 1995; Hubbard et al., 1999; Rubin, 2003, Ch. 2; Sun et al., 2008; Ritzi et al., 2004;
Ramanthan et al., 2008; Rubin et al., 2006].

Placing anchors at every quarter of the integral scale, however, can lead to too many
anchors in a practical domain. When the number of Type-B data is small, there is not enough
information to support such a large number of anchors. It would also be obvious that the anchors far
from the observation locations may not contribute to estimation. To localize Type-B information,
we need to identify the locales that are the most sensitive to Type-B data.

An effective strategy for identifying such locations is sensitivity analysis. Castagna and
Bellin [2009] used sensitivity analysis for such a purpose in the context of hydraulic tomography.
Vasco et al. [2000] used sensitivity analysis in the context of tracer tomography. Both studies
indicated that certain locations, e.g., near the injection wells and observation wells in pumping and
tracer tests, are much more sensitive to Type-B data than others. Such locations are prime targets
for placing anchors.

We may note that Type-B anchors are useful only when Type-B data includes information
regarding local heterogeneity. Some types of data do not have such local information. For example,
the spatial moments of small solute plumes depend very much on local effects, whereas the spatial
moments of large solute plumes depend only on the global parameters of spatial variability [Rubin
et al., 1999; Rubin et al., 2003]. In another example, Sanchez-Vila et al. [1999] showed that the
large-time drawdown response in a pumping test led to the global mean of log transmissivity in
the field, regardless of the observation well locations. When Type-B data does not contain local
information, the inverse modeling should be limited to identifying structural parameters [Copty et
al., 2008].

Locations far from the observation wells would not require many anchors, since there
appears little useful information to be gleaned from those locations. In this case, a dense grid of
anchors could be placed where prediction accuracy is critical, while a low-density grid could be used
for the rest of the domain. The high-density portion of the grid would be effective for capturing local
features, whereas the low-density grid would be useful for estimating the global-trend parameters.
In another example, anchors could be placed in the locations that are most beneficial for predictions.
This is the idea of network design pursued by Janssen et al. [2008] and Tiedeman et al. [2003, 2004].

In the second step, we place additional anchors to test whether the number of anchors
is sufficient. We repeat the inversion using this expanded anchor set, including a few additional
anchors placed at potentially valuable locations. When the marginal distributions of the original
anchors do not change with the additional anchors, we might conclude that the anchors capture all
the information contained in zb, and that the additional anchors are redundant in terms of informa-
tion. We may also compare the distribution of predicted variables before and after including the
additional anchors.

2.3.6 Multiple Type-B Data and Sequential Updating

Since increasing the dimension of zb increases the computational burden of the likeli-
hood estimation significantly, we might want to divide the vector zb into L segments as zb =
{zb(1), zb(2), . . ., zb(L)}, where zb(i)(i = 1, 2, . . ., L) can be a single data value or a vector of multiple
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data values. We can decompose the likelihood into each segment as,

p(zb | θ,ϑ) = p(zb(1), zb(2), . . ., zb(L) | θ,ϑ),

=
L�

i=1

p(zb(i) | θ,ϑ). (2.5)

In Equation (2.5), we assume that the data segments z1, z2,. . . , zL are conditionally independent for a
given {θ,ϑ}, since we assume that {θ,ϑ} contains information equivalent to the data. This equality
strictly holds when the data segments are completely independent of each other for example, when
the data locations are beyond the zone of influence in the flow or transport process. It approximately
holds when the data segments are only weakly correlated, such as with different types of data at the
same site. As Hou and Rubin [2005] pointed out, assuming independence leads to higher entropy
and makes the estimation less informative.

Using the same assumption, i.e. independence among the data segments, we can also
sequentially assimilate Type-B data as,

p(θ,ϑ | za, zb) ∝ p(zb(L) | ϑ,θ)p(ϑ,θ | za, zb(1), zb(2), . . ., zb(L−1)), (2.6)

where p(ϑ,θ | za, zb(1), zb(2), . . ., zb(L−1)) is the posterior distribution with respect to 1 to L − 1
datasets as well as the prior distribution with respect to zb(L), and p(zb(L) | ϑ,θ) is the likelihood of
zb(L). This suggests that we can update the posterior distribution every time a new dataset arrives.

These two approaches, Equation (2.5) and (2.6), which yield the same result, since they
are based on the same assumptions, give us great flexibility. For example, Equation (2.5), is suitable
when all the segments of datasets are collected or simulated at the same time, whereas Equation
(2.6) is useful when the characterization projects involve multiple experiments or tests separately
over a long time frame.

2.3.7 A Flow Chart for MAD

Figure 2.1 shows a diagram of MAD with the same notation provided in Equations (2.3)
and (2.4), particularly emphasizing the modular structure of the MAD approach. There are three
blocks in MAD, labeled Blocks I, II and III, respectively, with two auxiliary blocks, labeled Auxil-
iary Blocks A and B.

Block I is the Type-A data module, which includes the steps described in Section 2.3.2.
There is no particular approach to modeling the prior or Type-A data that is hard-wired into MAD.
The output of Block I is the conditional distribution p(θ,ϑ | za), which is the posterior distribution
of {θ,ϑ} with respect to za. This provides the prior distribution for assimilating Type-B data in
Block II.

Block II is the Type-B data module. It incorporates Type-B data through the likeli-
hood function p(zb | θ,ϑ), as described in Section 2.3.4. When combined with Block I product
p(θ,ϑ | za), it yields the posterior p(θ,ϑ | za, zb). The model parameters {θ,ϑ} are linked to the
observations zb through the Ỹ field and the forward model M, according to Equation (2.2). MAD
may use several forward models simultaneously or sequentially for various types of Type-B data, as
indicated by the vertical bars linked to forward simulations.

Block III is the prediction block. It covers the post-inversion analyses needed for predict-
ing a future process of interest. It can connect directly to Block I in the absence of Type-B data.
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Figure 2.1: Graphical Representation of the MAD approach. The data at the site and prior in-
formation are integrated into MAD for prediction (from left to right). Parameter uncertainty is
characterized by the posterior distributions at different stages. Anchors here refer to both Type-A
and Type-B anchors (with variations depending on the application). Forward simulations in Block
II refer to simulations needed for estimating the likelihood.

The forward simulation step in Block III can guide the selection of anchor locations in Block II
by evaluating alternative anchor placement schemes. As with the other blocks, Block III could be
linked with a wide range of forward simulation codes and computational techniques.

The prediction block includes multiple realizations of the random fields conditioned on
every possible set of the parameters {θ,ϑ} sampled from the joint distribution of {θ,ϑ}. This leads
to a complete characterization of parameter uncertainties associated with the model. It creates a
stark contrast to commonly used optimization-based approaches such as maximum-likelihood (ML)
or maximum a-posteriori (MAP) approaches [Kitanidis, 1995; Ramarao et al., 1995;McLaughlin
and Townley, 1996], both of which yield only the best estimates and asymptotic bounds of the
parameters under the normality assumption.

The auxiliary blocks include Block A, dedicated to anchor placement analysis, and Block
B, dedicated to validating and testing the sufficiency of the number of anchors. They are not con-
sidered as core blocks, because they contain elective procedures that are not absolutely necessary
for a complete application of MAD.

2.4 Markov-Chain Monte-Carlo Sampling

Practical application of MAD requires implementing a proper sampling algorithm for the
parameter vector {θ,ϑ}. Since the posterior distribution p(θ,ϑ | z) may not be a standard analytical
distribution and the parameter dimension is usually quite high, it is impossible to determine the
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posterior distribution directly. Instead, we need a sampling algorithm to sample parameter vectors
based on the prior and likelihood, such that the generated samples mimic samples drawn from
the posterior distribution. The posterior distribution is constructed by taking the histogram of the
generated samples.

Originally Zhang and Rubin [2009] used the weighted resampling algorithm [Section
3.5.2 in Gamerman and Lopes, 2006]. The algorithm proceeds the following:
(1) Generates independent and identically-distributed samples of the parameter vector from the prior
distribution (we call these samples ”prior samples”)
(2) Calculates the likelihood of each prior sample generated in (1), using the ensemble of z̃
(3) Resamples the original samples considering the likelihood to be a probability of each sample
(we call these samples ”posterior samples”)
Since the resampled parameter sets follow the posterior distribution, we may create the posterior
distribution by estimating density of the posterior samples or make predictions using the posterior
samples as inputs.

This approach, however, cannot easily cover the higher-dimensional parameter spaces, as
we increase the number of anchors and the dimension of the parameter vector. In practice, we may
see the following problems. The first problem is that we have prior samples that do not contribute to
the posterior at all. Although MAD intends to capture the lower probability event, some of the prior
samples generated from the prior have extremely low likelihood relative to others (e.g., less than
10−30). Since they would never appear in resampling, it is waste of computational resources to have
many samples in such a low-likelihood region. The second problem is that we may not have enough
samples to resolve the high-likelihood region. As the posterior distribution becomes narrower with
more information, only a few samples are left with reasonable probability to be resampled, which
makes it impossible to quantify the uncertainty.

In this section, we consider implementing the Markov-Chain Monte-Carlo (MCMC) sam-
pling method as a possible solution for these problems. MCMC is one of the most popular sampling
method in Bayesian inference for high-dimensional parameter vectors. In fact, for high-dimensional
parameter problems, the MCMC method is the only known general method to provide a solution
within a reasonable time and computation [Andrieu et all, 2003].

To mitigate the problems mentioned above, we want to sample less in the low-likelihood
region and more in the high-likelihood region. MCMC is iterative and adaptive, so that the chain
can spend more time in the most important region. In addition, while the weighted resampling
algorithm resamples the prior samples of the entire parameter vector at once, MCMC can update
each element or each block of the parameter vector separately at each time, enabling us to investigate
the high-likelihood region effectively [Andrieu et all, 2003].

However, MCMC also has some disadvantages compared to the weighted resampling
algorithm. First, MCMC is more difficult to implement, especially in a parallel computing envi-
ronment, because the adaptive nature of MCMC requires us to implement all the procedures (e.g.,
sampling, numerical simulations, and likelihood estimations) simultaneously on one computer plat-
form. On the other hand, the weighted resampling method allows us to separate the numerical for-
ward simulations completely from the inference part, simplifying parallelization significantly and
giving us more flexibility to test different likelihood estimation strategies in post-processing without
repeating the numerical simulations. Second, in MCMC, scaling of parallelization is strictly limited
to the number of simulations at each iteration step, since the next sample is generated according to
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the likelihood estimation at the current sample. In the weighted resampling algorithm, we can use
as many processors as available on the platform, since we can perform the numerical simulations
all at once.

The above discussion suggests that we must select a sampling algorithm based on avail-
able computational platforms as well as on progress of the research project. For earlier stages of
the project, e.g., while testing different likelihood estimation strategies, the weighted resampling
algorithm appears more appropriate. This is also the case when the available computational plat-
form has a large number of processors (e.g., on the order of 10,000). When we have a computer
with several to1,000 processors, and a properly fixed likelihood estimation strategy, MCMC is more
advantageous. MAD is modular and flexible, so that it can accommodate either method.

2.4.1 Block Metropolis-Hastings Algorithm

Among several variations of the MCMC algorithms, we use the block Metropolis-Hastings
(MH) algorithm [Andreiu et al., 2003]. This algorithm, one of the most flexible among many varia-
tions of MCMC, allows us to use a nonanalytical form of the likelihood function.

Here we state the general algorithm for data z and a parameter vector α, which is parti-
tioned into J blocks as α = {α1,α2, . . . ,αJ}. The goal is to sample from the posterior distribution
p(α | z). One block may represent one parameter or may contain several parameters. We denote
the parameter vector at i-th iteration by α(i). We define the parameter vector without j-th block and
with the first (j − 1) blocks already updated as α(i)

−j = {α(i)
1 , ..,α(i)

j−1,α
(i−1)
j+1 , ..,α(i−1)

J }.
The algorithm for generating N samples (i = 0, 1, . . . , N − 1) is the following:

1. Initialize α(0)

2. For i = 1 to N − 1,
For j = 1 to J ,

In order to draw j-th block in i-th iteration, denoted by α(i)
j ,

(1) Draw a potential value or potential values for αj , denoted by α∗
j from the

proposal distribution, q(αj | α(i)
−j , z): α∗

j ∼ q(αj | α(i)
−j , z)

(2) Calculate the acceptance ratio r as,

r =
p(α(i)

j | α(i)
−j , z)

p(α∗
j | α

(i)
−j , z)

q(α∗
j | α

(i)
−j , z)

q(α(i)
j | α(i)

−j , z)
(2.7)

(3) Draw u ∼ Unif [0, 1].
(4) Determine α(i)

j such that:
if u > min[1, r]

α(i)
j = α(i)

j , (2.8)

else
α(i)

j = α∗
j . (2.9)

In other words, MH algorithm samples each parameter block α(i)
j based on the conditional distri-

bution of α(i)
j given the data and the other parameters in the current iteration, denoted by p(αj |
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α(i)
−j , z), and the proposal distribution, denoted by q(α∗

j | α(i), z). As a result, we obtain N sets of
parameter vectors {α(0),α(1), . . .,α(N−1)} that follow the joint posterior distribution p(α | z).

The convergence, i.e. when to stop sampling or whether N is large enough, is always
an issue for MCMC. The common practice is to generate multiple chains and compare them; we
stop sampling when the difference among the chains becomes insignificant [Gamerman and Lopes,
2006].

2.4.2 MH Algorithm for MAD

In MAD, the goal is to determine the posterior joint distribution p(θ,ϑ | z). In applying
the MH algorithm, we first need to consider how to separate the parameter vector into multiple
blocks. According to Andrieu et al. [2003], it is better to group the most strongly correlated param-
eters together, and smaller blocks are better for faster convergence. In MAD, this suggests that we
should group adjacent anchors together, since they are strongly correlated due to the geostatistical
covariance structure. To evaluate the acceptance ratio at every iteration, we apply Bayes rule in the
same manner as Equation (2.3) to modify the acceptance ratio in Equation (2.7):

r =
p(zb | α∗

j ,α
(i)
−j)p(α

(i)
j | α(i)

−j , za)

p(zb | α
(i)
j ,α(i)

−j)p(α
∗
j | α

(i)
−j , za)

q(α∗
j | α

(i)
−j , za)

q(α(i)
j | α(i)

−j , za)
(2.10)

In Equation (2.10), we may have some analytical form for the distribution of structural parameters
and anchors conditioned on Type-A data, denoted by p(αj | α(i)

−j , za), as is discussed in Sec-

tion 2.3.2. We can consider p(αj | α(i)
−j , za) as the prior distribution with respect to Type-B data.

To assimilate Type-B data zb, every iteration requires two likelihood estimations, i.e. one for the
numerator p(zb | α∗

j ,α
(i)
−j) and one for the denominator p(zb | α

(i)
j ,α(i)

−j) in Equation (2.10).
There are a variety of approaches for determining the proposal distribution [Andrieu et

al.,2003]. The simplest form is independent sampling, which has a proposal distribution inde-
pendent of the current parameter vector. The prior distribution is commonly used as the proposal
distribution. When we sample from the prior distribution for Type-B data p(αj | α(i)

−j , za), the
acceptance ratio can be simplified as:

r =
p(zb | α

(i)
j ,α(i)

−j)

p(zb | α∗
j ,α

(i)
−j)

. (2.11)

This means that the acceptance ratio is the ratio of two likelihoods conditioned either on the current
parameter vector α(i)

j or on the parameter vector including the proposed block α∗
j .

2.5 Case Study

The goal of this case study was to characterize a two-dimensional transmissivity field
using a sparse network of Type-A and Type-B data. We used one set of the randomly generated
transmissivity fields and computed the hydraulic head field as our baseline case. We selected trans-
missivities and hydraulic heads at selected locations as Type-A and Type-B data, respectively.
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2.5.1 Methods

The target variable is the natural log-transform of the transmissivity (T ) denoted by
Y = lnT . Let Y (x) be a natural-log transmissivity at a single location x = (x1, x2) in the two-
dimensional domain. We assume that a vector Y, containing Y at multiple locations x, follows a
multivariate Gaussian distribution with isotropic exponentially-decaying correlation. We define a
structural parameter vector as θ = {µ,σ2,φ}, including uniform mean µ, variance σ2, and integral
scale φ. This means that when we have two points with distance ξ, the two-point correlation follows
an exponential function of distance, defined by exp(−ξ/φ).

Information available for inversion includes Type-A data in the form of direct Y mea-
surements, and Type-B data in the form of head measurements. The data vector for inversion is
z = {za, zb} , where za(xa) includes na measurements of Y taken at the vector of locations xa of
length na, whereas zb(xb) includes nb head measurements taken at xb. In this case study, we assume
that the Type-A data is error-free, so that Type-A anchors ϑa is identical to za, and can be given by
p(ϑa | za) = δ(ϑa − za) with δ being Dirac’s delta function.

The flow field is assumed at steady state and uniform on average, resulting from the
constant head difference across two opposing boundaries and no-flow boundary conditions at the
other two boundaries. The flow equation, given in Appendix A, connects the transmissivity field
and the head field, which constitutes the forward model M in Equation (2.2).

We define the vector ϑ as representing a set of anchors. The vector ϑ is a vector of order
n1 + n2, defined by ϑ = {ϑa,ϑb} , where ϑa is a vector of order n1 = na, corresponding to na

measurements of Y . Since the anchors are a subset of the field, p(ϑ | θ) is a multivariate Gaussian
distribution with mean µ and covariance σ2R(xϑ, xϑ), where R(xϑ, xϑ) is an auto-correlation ma-
trix as a function of φ and the locations of ϑ, xϑ. The multivariate Gaussian distribution allows us to
partition ϑ into ϑa and ϑb. Since ϑa is fixed and known as ϑa = za, p(ϑb | θ,ϑa) is a multivariate
Gaussian distribution with conditional mean µϑb|ϑa

and conditional covariance σ2Rϑb|ϑa
, where

the mean and covariance conditioned on the anchors are defined as:

µϑb|ϑa
= µ+R(xϑb

, xϑa)R(xϑa , xϑa)
−1(ϑa − µ),

Rϑb|ϑa
= R(xϑb

, xϑb
)−R(xϑb

, xϑa)R(xϑa , xϑa)
−1R(xϑa , xϑb

), (2.12)

where R(xϑa , xϑa) and R(xϑb
, xϑb

) are the auto-correlation matrices for ϑa and ϑb, respectively.
R(xϑa , xϑb

) is a cross-correlation matrix between ϑa and ϑb. R(xϑa , xϑa) is a positive semidefinite
matrix so that inverse of the matrix always exists.

With all the anchors ϑ, the distribution of Y conditioned on the structural parameters
and anchors p(y | θ,ϑ) is a multivariate Gaussian distribution with conditional mean µY|ϑ and
conditional covariance σ2RY|ϑ, where the mean and covariance conditioned on the anchors are
defined as

µY|ϑ = µ+R(x, xϑ)R(xϑ, xϑ)−1(ϑ− µ),

RY|ϑ = R(x, x)−R(x, xϑ)R(xϑ, xϑ)−1R(xϑ, x), (2.13)

where R(x, x) is the auto-correlation matrix for Y, and R(x, xϑ) is the cross-correlation matrix
between Y and ϑ. Note that when we generate random fields Ỹ, each field follows the same distri-
bution as Y such that p(ỹ | θ,ϑ) is a multivariate gaussian distribution with conditional mean and
covariance defined at all the grid locations.
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For the inversion, we modify Equation (2.3) as:

p(θ,ϑb | za, zb) ∝ p(θ | za)p(ϑb | ϑa,θ)p(zb | θ,ϑ), (2.14)

where p(θ | ϑa) = p(θ | za), since ϑa = za. We determine p(θ | ϑa), using the model-based
Bayesian geostatistics [Diggle and Ribeiro, 2006] (Appendix B). The prior and likelihood are spec-
ified in the following subsections.

Prior Distribution

For the prior distribution of the parameter vector, we follow Jeffreys’ multi-parameter rule
[1946] and Pericchi [1981]:

p(θ) = p(µ,σ2 | φ) ∝ σ−(d+1)p(φ), (2.15)

where d is the dimension parameter, which is d = 1 for a stationary field in this case study.
The conditional prior for σ2 and µ, p(µ,σ2 | φ), is noninformative with regard to σ2 and

µ, i.e., the prior densities of µ and log(σ2) are both flat on (−∞,∞). The unspecified component
p(φ) is flexible. We used a uniform distribution in this case study. Diggle and Ribeiro [2006]
adopted the same prior, and noted that although it is an improper prior because its integral over
the parameter space is infinite, the substitution of this prior into Equation (2.4) leads to a proper
distribution.

Specification of Likelihood

As mentioned in Section 2.3.4, Dagan [1985] showed through mathematical derivation
that the hydraulic head values follow a multivariate Gaussian distribution in a uniform-on-average
flow field when the variability of T is small. Although nonparametric density estimation is available
as is discussed in Section 2.3.4 , the multivariate Gaussian likelihood estimation is computationally
advantageous, as the dimension of the data increases. In this synthetic study, we estimated the
likelihood assuming a multivariate Gaussian distribution. We checked using numerical simulations
that this assumption reasonably holds, which is shown in Section 2.5.2.

For a given parameter set {θ,ϑ}, we generated multiple random fields ỹ, on each of which
we simulated the hydraulic head field. It yielded an ensemble of possible head observations z̃ for the
given {θ,ϑ}. Since we employed a parametric approach, we estimated the mean and covariance of
this ensemble to estimate the density and compute the likelihood of each p(z | θ,ϑ).

2.5.2 Results

Figure 2.2(a) shows the base field, i.e., the (assumed) true aquifer in this synthetic study,
along with the locations of the Type-A and Type-B data. The base field was generated using a
structural parameters parameter set {µ,σ2,φ} = {8.7, 1.5, 15.0}. We obtained maximum likeli-
hood estimates of the true parameters as {8.64, 1.49, 15.1} by near-exhaustive sampling (one out of
every five points) [GeoR package by Ribeiro and Diggle, 2001]. Figure 2.2(b) is the contour plot
of the hydraulic head field simulated on the base field. The mean flow direction is parallel to the
y-axis.
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Figure 2.3 shows a number of different anchor configurations. We applied MAD to each
of these different layouts to compare the different numbers and locations of the anchors. In or-
der to investigate the impact of anchor locations, we created three layouts with eleven anchors;
Figure 2.3(b) has a dense network of anchors in part of the domain (dense), Figure 2.3 (c) has a
sparse network of anchors over the entire domain (sparse), and Figure 2.3(d) has a dense network
of anchors in part of the domain and a few anchors outside (dense+sparse).

Figure 2.2: (a) The base transmissivity field for the synthetic study, (b) The hydraulic conductivity
field.

We first checked our assumption on the likelihood, i.e., a multivariate Gaussian distri-
bution. We generated 300 fields with 36 anchors (Figure 2.3f) and a geostatistical parameter set
{µ,σ2,φ} = {9.11, 3.2, 33.3}, which has a relatively high variance among the generated parame-
ter sets conditioned on Type-A data. On each field, we simulated the hydraulic head at five of the
Type-B data observation wells. We also estimated the density assuming the multivariate Gaussian
distribution, using the mean and covariance of the 300 simulated heads at all the Type-B data lo-
cations. In Figure 2.4, the histogram of the hydraulic head at each of the five wells was compared
to the marginal distribution of the estimated multivariate Gaussian density. Even though some of
the wells are close to the domain boundaries, the estimated distributions have a reasonable fit to the
simulated ones. The normality of the distribution at each well was also checked by the quantile-
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Figure 2.3: Various layouts showing the locations of Type A data, Type B data, and anchors. The
number of anchors used in each configuration is as follows: (a) no anchors used; (b) 11 anchors; (c)
11 anchors; (d) 11 anchors; (e) 19 anchors; (f) 36 anchors.
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quantile plot shown in Figure 2.5, where we can see that majority of the points are distributed on the
straight lines. These results suggest that it is reasonable to use the parametric multivariate Gaussian
density estimation for inversion in this case study.

Figure 2.4: Marginal distributions of the head observation at five observation wells. The blue lines
are histgrams of simulated heads on the randomly generated fields. The read lines are estimated
distribution with the procedure described above:(a) locations of five wells; (b) Well 1; (c) Well 2;
(d) Well 3; (e) Well 4; (f) Well 5.

For sampling the parameter vector {θ,ϑ}, we used the MCMC sampling method. The
algorithm is shown in Appendix C. We found that 2,000 samples are enough to attain the conver-
gence after discarding the first 200 samples as a common practice of MCMC, since increasing the
number of samples further did not change any of the results shown in this chapter. We found that
300 realizations of random fields conditional to anchors were sufficient to estimate the likelihood
for each parameter set, since the likelihood values did not change any further with increasing num-
bers of realizations. Each case consumed around 47 hours on a single core of an Intel Core 2 Quad
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Figure 2.5: Quantile-quantile plots of the head observation at five observation wells: (a) locations
of five wells; (b) Well 1; (c) Well 2; (d) Well 3; (e) Well 4; (f) Well 5.
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Q6600 3.0 GHz processor.
Figure 2.6 shows the marginal posterior distributions of the scale parameter φ obtained

using the various layouts of data anchors shown in Figure 2.3. The boundaries of each plot corre-
spond to the minimum and maximum values of the prior distribution. Although the result became
worse when we included Type-A data without anchors, the posterior distribution improves as we
added more anchors, in the sense that the posterior distribution becomes distributed around the true
value. Figure 2.6(f) (36 anchors) depicts the mode of the distribution close to the actual value of the
scale. Among the layout with 11 anchors, the layout in Figure 2.3(d) (sparse+dense) has the best
result, as shown in Figure 2.6(d). It suggests that the anchor placement for the structural parame-
ters might be related to the optimal design of direct (Type-A) measurements, since previous studies
[Zimmerman, 2006; Diggle and Ribeiro, 2007] found that a dense measurement network with a few
sparse points outside is the best configuration to estimate the scale. Figure 2.7 shows the marginal
distributions for the variance σ2 . Here, we notice that the contribution of the Type-B data appears
more significant compared to the scale in Figure 2.6, even when no use is made of anchors.

Figure 2.6: Marginal posterior distributions of the scale obtained for the corresponding anchor
layouts shown in Figure 2.3. The distributions were estimated by kernel-smoothing of the posterior
samples.

Figure 2.8 evaluates the combined impact of measurements and anchors on two transects
along the aquifer. The transect on the left is surrounded by measurements and anchors. The transect
on the right is outside of the measurement network, and relies mostly on anchors as sources of
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Figure 2.7: Marginal posterior distributions of the variance obtained for the corresponding anchor
layouts shown in Figure 2.3. The distributions were estimated by kernel-smoothing of the posterior
samples.
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local information. Both transects show tighter bounds as the database is augmented with Type-B
data (Figure 2.8b) and with the addition of anchors (Figure 2.8c). Besides the observation that the
36-anchor case has tighter bounds than the 0-anchor case, the 36-anchor case also captures the true
field within the 90% confidence interval (CI) (Figure 2.8c), while the true field is out of the CI in the
0-anchor case (Figure 2.8b). We may note that none of the CIs in the transect on the right captured
the local low-T zone near y=0, since there is no measurement around that zone.

Another way to check the quality of the inversion results is to evaluate their predictive
capability. This was done through application of Block III (see Figure 2.1). We selected several
test points throughout the domain and compared the baseline hydraulic head with distributions of
the predicted head. Figure 2.9 shows the head distribution at the test point shown in Figure 2.9 (i).
Comparing between Figures 2.9 (a) and 2.9 (b), we find that Type-B data is effective in improving
the predictive capability, since the distribution in (b) is more tightly distributed around the true
value than (a). This improvement is much more significant compared to the parameters inference
(Figures 2.6 and 2.7). Anchors also play a significant role in improving predictions such that, with
more anchors, the distributions are more tightly distributed around the baseline (i.e., true) head
value. Since the improvement from 19 to 36 anchors is minor, we may consider that 19 anchors are
sufficient for this case, when we are interested in the prediction.

Comparing the three layouts with 11 anchors, we found that the sparse network over the
domain (Figure 2.3c) gave the best result, even though there are fewer anchors in the vicinity of that
test point. As a rationale for this, we consider that anchors covering a large area are advantageous
for predicting hydraulic head, because the hydraulic head is nonlocal, and (as such) it has a influence
over much larger distances compared to Y .

2.6 Summary

We presented a Bayesian approach for inverse modeling of a spatially variable field, called
the Method of Anchored Distributions (MAD). MAD is general and flexible, in the sense that it is not
limited to particular data types or to any particular models. MAD is built around two new elements:
(1) the concept of anchored distributions and (2) a data classification scheme. These two elements
enable us to assimilate various types of data systematically into an improved characterization of the
field.

MAD is based on stochastic modeling of a spatially variable field, employing the geosta-
tistical concept that enables the field to be modeled as a random field, controlled by a combination of
structural parameters and anchors. The structural parameters are meant to capture the global trends
and statistical characteristics of the fields, whereas the anchors capture the local features. The an-
chors are statistical devices that attempt to extract information from data that is directly or indirectly
(and locally or nonlocally) related to the field. The information is captured as a joint distribution of
the structural parameters and anchors.

MAD classifies the data depending on its relationship to the field. Each of Type-A data is
small-scale local data given as a function of a point value of the field, whereas each of Type-B data
is large-scale nonlocal data given as a function of the field. We place Type-A and Type-B anchors,
corresponding to these two data types. Type-A anchors are co-located with Type-A data, the distri-
bution of which is obtained through direct measurements or regression. We place Type-B anchors
at chosen locations to capture the information from Type-B data. Bayes rule combined with a likeli-
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Figure 2.8: Profiles of the log-transmissivity along the two vertical lines shown in the central figure
for three cases. The figures on the right show the mean actual values, the expected values and the
confidence intervals for right transect whereas the figures on the left show the actual values, the
expected values and the confidence intervals for left transect. The transects are shown for 3 cases:
(a) only Type-A data used; (b) Type-A and Type-B data used and no anchors used; (c) Type-A data
and Type-B data used, anchors used as shown in Figure 2.3 (f) (36 anchors)
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Figure 2.9: The probability density (distribution) of the pressure at the location marked by the X in
Figure 2.9(i). The various figures refer to different configurations of data points and anchors as fol-
lows: (a) Type-A data only with no anchors; (b) Type-A and Type-B data with no anchors; (c) Type-
A, Type-B data and 11 anchors (Figure 2.3b); (d) Type-A, Type-B data and 11 anchors(Figure 2.3c);
(e) Type-A, Type-B data and 11 anchors (Figure 2.3d); (f) Type-A, Type-B data and 19 anchors
(Figure 2.3e); (g) Type-A, Type-B data and 36 anchors (Figure 2.3f).
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hood estimation transfers the information from Type-B data into the distribution of Type-B anchors.
This approach provides three benefits: (1) assimilating the different types of data (with different
support volumes) in a consistent manner, (2) connecting the data directly to stochastic simulations
of the field and flow/transport processes and (3) fully characterizing the parameter uncertainties
under certain assumptions.

MAD has a modular structure, which consists of three distinct blocks: a block for analyz-
ing Type-A data, a block for analyzing Type-B data and a block for stochastic simulations to predict
the future event of interest. The blocks are defined by their tasks in the total inversion scheme and
not by the computational tools employed. The modular structure is advantageous, because it is not
limited to any specific type of data or model, and opens the door for applications with a wide variety
of data types and modeling tools.

For implementing MAD, we discussed the choice of sampling algorithms, depending on
available computational platforms and maturity of the inverse modeling development. A weighted
resampling algorithm appears suitable for large-scale parallel computing environments and/or the
early stages of a development in which we need to test all the components in MAD. The Markov-
chain Monte-Carlo approach seems more advantageous for single core or small-scale parallel com-
puting environments and/or the later stage of the development in which all the components are tested
and properly implemented.

We tested MAD with MCMC on a simple two-dimensional flow problem for characteriz-
ing the transmissivity field. As synthetic data, we used direct transmissivity measurements (small-
scale Type-A data) and hydraulic head measurements (large-scale Type-B data). The results showed
that the method successfully captured the true parameter values and predicted values within the pos-
terior distribution. It also showed the power of anchors, in sense that introducing anchors led to a
significant improvement by reducing uncertainty and capturing true values in the field prediction
and flow measurements. We investigated different anchor location settings and found that a dense
network with sparse locations is more advantageous for inferring the parameters, but the sparse
network is for predicting the hydraulic heads, and also found that more anchors are necessary for
inferring the scale parameter than predicting the hydraulic heads.
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Chapter 3

Bayesian approach for
three-dimensional aquifer
characterization at the Hanford 300 area

3.1 Introduction

Hydrogeological characterization plays a key role in various projects involving ground-
water flow and contaminant transport. A detailed three-dimensional (3-D) description of spatial
variability in subsurface hydraulic properties is imperative for predicting water and solute move-
ment in the subsurface [Rubin, 2003]. Recent focus on geochemical and microbiological reactions
in field studies, for example, requires flow parameters to be fully characterized a priori for testing
their research hypotheses [Scheibe et al., 2001; Scheibe and Chien, 2003; Fienen et al., 2004].

One of the main challenges in hydrogeological characterization is to integrate datasets
of different types and scales. Typical field studies usually include two or more different comple-
mentary sources of information, which may include depth-discrete small-scale data such as core
analysis, slug tests and electromagnetic borehole flowmeter (EBF) tests and large-scale data such as
pumping tests and tracer tests. With stochastic modeling of flow and transport becoming increas-
ingly common, it is important not only to combine best-fitted values from each dataset, but also to
correctly quantify and weigh errors and uncertainty associated with different datasets, and to trans-
fer the uncertainty to the final prediction [Maxwell et al., 1999; Hou and Rubin, 2005; De Barros et
al., 2009].

To tackle this challenge, various researchers have applied Bayesian approaches to the
problem of subsurface characterization [Copty et al., 1993; Woodbury and Rubin, 2000; Chen et
al., 2001]. Within a Bayesian framework, the probability density function of a parameter vector can
be updated sequentially to include more datasets in a consistent manner. In addition, the resulting
predictive distribution can properly account for the parameter uncertainty inherent in estimating the
parameter values from the data [Diggle and Ribeiro, 2002]. Two recent developments in particular

2This chapter is based on a published article in Hydrology and Earth System Sciences, 2010 (Murakami, H., Chen,
X., Hahn, M. S., Liu, Y., Rockhold, M. L., Vermeul, V. R., Zachara, J. M., and Rubin, Y.: Bayesian approach for three-
dimensional aquifer characterization at the Hanford 300 Area, Hydrol. Earth Syst. Sci., 14, 1989-2001, doi:10.5194/hess-
14-1989-2010, 2010.)
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have increased the potential of the Bayesian approach for subsurface characterization: (1) Bayesian
model-based geostatistics, and (2) the method of anchored distributions (MAD).

Bayesian model-based geostatistics, introduced by Kitanidis [1986] and Handcock and
Stein [1993], assumes a parametric model for a spatial stochastic process and infers geostatistical
structural parameters based on small-scale datasets or point measurements [Diggle and Ribeiro,
2006]. While the traditional variogram approach determines best-fitted estimates of geostatistical
structural parameters and their asymptotic confidence interval, the Bayesian model-based approach
yields a posterior distribution of the parameters. Diggle and Ribeiro [2006] showed that correla-
tion parameters such as variance and scale follow non-Gaussian and skewed distributions, which
suggests that the first two moments are not enough to characterize the distribution.

The method of anchored distributions (MAD) is a general Bayesian method for inverse
modeling of spatial random fields that addresses complex patterns of spatial variability, multiple
sources and scales of data available for characterizing the fields, and the complex relationships
between observed and target variables [Zhang and Rubin, 2008a, b; Rubin et al., 2010]. The central
element of MAD is a new concept called “anchors.” Anchors are devices for localizing large-
scale data: they are used to convert large-scale, indirect data into local distributions of the target
variables. The goal of the inversion is to determine the joint distribution of the anchors and structural
parameters, conditioned on all of the measurements. The structural parameters describe large-scale
trends of the target variable fields, whereas the anchors capture local heterogeneities. Following the
inversion, the joint distribution of anchors and structural parameters can be directly used to generate
random fields of the target variable(s). Different from most of the other inversion methods that
determine a single best estimate of the field and asymptotic uncertainty bounds [Kitanidis, 1995;
Ramarao et al., 1995; McLaughlin and Townley, 1996], MAD yields a posterior distribution of the
parameters.

In this chapter, we assimilate EBF tests and constant-rate injection tests for characterizing
a 3-D hydraulic conductivity K field at the Integrated Field Research Challenge (IFRC) site in the
Hanford 300 Area (http://ifchanford.pnl.gov). Since the EBF tests yield only relative K values
along each of the EBF test wells, we need a local transmissivity T value at each of the EBF test
wells to convert the relative values to absolute K values [Javandel and Witherspoon, 1969; Molz et
al., 1994; Young et al., 1998; Fienen et al., 2004]. The local T values can be determined by inverting
the large-scale constant-rate injection tests. This assimilation requires us to quantify the uncertainty
in T values based on the injection tests and to combine that uncertainty with the one from the EBF
data.

The particular difficulty in inverting injection-test or pumping-test data is the computa-
tional effort associated with a long time series. Li et al. [2005] and Zhu and Yeh [2006] have applied
temporal moments of drawdowns to estimate T and storativity S fields. The sandbox experiment by
Liu et al. [2007] has shown that the moment approach can successfully characterize a T field. The
advantage of employing temporal moments is that we can compute them using steady-state flow
equations, which can reduce the computational burden significantly. In addition, when the interest
is limited to T , the zeroth-order temporal moment can eliminate the effects of the uncertainty in S,
since it does not depend on S [Zhu and Yeh, 2006].

In the following sections, we first describe the site and the experimental procedure. We
then present our approach, including the geostatistical inversion method and the inference of the 3-D
geostatistical parameters. After presenting the inversion results in a synthetic study to demonstrate
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and verify our approach, we discuss the results using the actual data at the site.

3.2 Site and Experiment Description

The Hanford 300 Area is located at the southern part of the Hanford Nuclear Reservation
one mile north of Richland, Washington, USA. The IFRC site is located within the footprint of
a former disposal facility for uranium-bearing liquid wastes known as the South Process Pond,
approximately 250 m west from the Columbia River. As is shown in Figure 3.1, the triangular well
field consists of 25 wells fully screened through the saturated portion of the Hanford formation,
ten wells partially screened at different depths, and one deep characterization well [Bjornstad et al.,
2009].

In this study, we focus on the saturated portion of the highly permeable and coarse-grained
Hanford formation, which is a shallow unconfined aquifer. The main lithology is a poorly sorted
mixture, dominated by gravel up to boulder size, with lesser amounts of sand and silt [Bjornstad
et al., 2009]. It overlies the Ringold formation, the upper portion of which is a continuous low-
permeability layer consisting of cohesive and compact, well-sorted fine sand to silty sand. The
saturated thickness is variable over the site, ranging from about 5 m to 8 m, with daily and seasonal
fluctuations of the water table in response to changes in the river stage. The prior estimates of
hydraulic conductivity are 1000–100 000 m/day for the Hanford formation and 0.01–3.00 m/day for
the Ringold formation [Meyer et al., 2007].

The aquifer in the Hanford formation has been very difficult to characterize, since typ-
ical methods, such as permeameter tests and slug tests, do not provide reliable results due to the
coarse-grained and highly permeable nature of the aquifer [Meyer et al., 2007; Newcomer, 2008;
Vermeul et al., 2009]. In addition, traditional analysis of pumping and injection tests yields only the
averaged property over a large domain, since the zone-of-influence expands very rapidly. Combin-
ing EBF tests and injection tests through inverse modeling is one of the few feasible alternatives to
characterize the 3-D heterogeneous structure of the aquifer.

Fourteen constant-rate injection tests were conducted, each of which had one injection
well and 7 to 10 observation wells. All the wells used in the tests are fully screened over the
saturated portion of the Hanford formation. The distance between the injection and observation
wells ranges between 8 and 60 m. The injection duration and rate are approximately 20 minutes and
315–318 gpm (1.19–1.20 m3 min−1), respectively. The preliminary analysis of the late-time curve
data, using the Cooper-Jacob straight-line method, has shown that most of the observation wells
yield similar estimates for the T values in each test, which is considered to be the geometric mean
of T , TG, over the entire well field, as is mathematically proved by Sanchez-Villa et al. [1999]. It
suggests that the zone-of-influence expands very rapidly and the conventional pumping test analysis
yields only an effective property, smoothing out the local heterogeneity at the well field.

The EBF test data were obtained at 19 fully screened wells, which yielded 283 depth-
discrete relative hydraulic conductivities with 0.3–0.6 m depth intervals. The pumping rate was
1.04–1.55 gpm (3.94×10−3–3.94×10−3 m3 min−1), and kept constant during the test at each well.
The vertical profiles indicated that the hydraulic conductivity over the central third of the Hanford
formation was lower than its top and bottom thirds at many of the wells. Although the thickness
and contact depths for this lower permeability material vary across the site, this general pattern was
observed to some extent at most of the monitoring well locations.
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Figure 3.1: Site map of the IFRC site (The coordinate system follows the convention used at the
Hanford site).

The more detailed description of the site and data is available in Bjornstad et al. [2009]
and Rockhold et al. [2010].

3.3 Integration Strategy of EBF and Injection Tests

For the 3-D characterization, we employ a two-step approach. First, we invert the large-
scale injection tests to characterize the 2-D T field. We apply MAD to invert the zeroth-order
moments of pressure-buildup curves at multiple observation wells. As a result, we obtain a joint
posterior distribution of T at the EBF test wells. Second, we combine this distribution with the EBF
data for determining the absolute K values. Instead of a single K value at each of the EBF data
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point, we obtain the distribution of K at each point. Based on the distribution of the absolute K, we
infer the 3-D geostatistical parameters, using the Bayesian model-based geostatistics.

Compared to direct coupling of the EBF and pumping tests used in Li et al. [2008], this
two-step approach has a significant computational advantage. This approach is possible because we
can model the flow process during the injection tests as 2-D planar flow in the horizontal plane, due
to the particular site conditions as the following. The coarse-grained and highly permeable nature
of the aquifer caused the elastic response and drainage effect to occur very rapidly (less than 30 s
after the injection started), so that the radial flow regime dominated the pressure buildup responses
[Neuman, 1975]. In addition, despite the large injection rate, the maximum pressure buildup at
the nearest observation wells was less than several centimeters, which is much smaller than the
aquifer thickness (5–8 m). Although the EBF tests suggested vertical heterogeneity in the saturated
zone, Dagan et al. [2009] recently showed that Dupuit’s assumption is still valid – when the aquifer
thickness is not large compared to the vertical integral scale, and the ratio between the vertical and
horizontal integral scale is large, which is the case at this site.

3.4 Geostatistical Inversion for Transmissivity Field

3.4.1 MAD for large-scale data

In this section, we summarize the Bayesian geostatistical inversion method, MAD, which
was introduced in Chapter 2. Since we use it to invert the injection-test data without direct measure-
ments of transmissivity, we modify the explanation focusing only on the large-scale data.

We denote a spatial random process by Y (x), where x is the space coordinate. We further
denote an entire field of Y by a random vector Ỹ, and denote a realization of the field by ỹ. The
dimension of Ỹ and ỹ is equal to the number of elements in the discretized field. The field Ỹ
is defined through the vector of model parameters {θ,ϑ}. The θ part of this vector, called the
structural parameter vector, includes a set of parameters designed to capture the global features of
Ỹ, such as the mean of the field and correlation structures. The ϑ component of this vector consists
of the anchored distributions, or anchors in short. Anchors are devices used to capture local features
of Ỹ that cannot be captured by the global parameters θ. In their simplest form, an anchor would
be error free measurements of Y . Other forms of anchors include measurements coupled with error
distributions and/or anchors that are obtained by inversion.

The data z is a vector of multiple observations of a physical process. The data can be
described by the following equation:

z = M (ỹ) + �, (3.1)

where M is a known function, or a set of functions, numerical or analytical, of the spatial field, and
� is a vector of zero-mean errors. The goal of the inversion is, first, to derive a posterior distribution
of the model parameters conditioned on the data z, p(θ,ϑ|z). This distribution then allows us to
generate multiple realizations of the field Ỹ for prediction.

Using Bayes’ rule, we can define the posterior distribution of parameters as:

p(θ,ϑ | z) ∝ p(z | θ,ϑ)p(ϑ | θ)p(θ). (3.2)

where p(θ) is the prior distribution, p(ϑ|θ) is the anchor distribution given a structural parameter
vector θ, and p(z|θ,ϑ) is the likelihood of data z given a parameter set {θ,ϑ}.
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We estimate the likelihood p(z|θ,ϑ) using the Monte Carlo simulations. Since the model
parameters {θ,ϑ} and the data z are connected through the field, we generate multiple conditional
realizations of the field Ỹ for any given {θ,ϑ}; with each realization, the forward model provides
a prediction of z in the form of z̃, according to Equation (3.1). In other words, z is viewed as a
measured outcome from a random process, whereas z̃ is one of many possible realizations, given a
particular parameter set of {θ,ϑ}. By generating random fields for a given parameter set p(z|θ,ϑ)
and simulating the physical process on each field, we obtain multiple realizations of z̃, i.e., an
ensemble of z̃. The ensemble of z̃ is then used for estimating the probability density function (pdf)
of z̃. After determining the pdf, it is straightforward to calculate the density at a point z, p(z|θ,ϑ),
which is the likelihood.

As the dimension of z increases, a larger number of realizations of z̃ are necessary to
estimate the pdf accurately, which increases the computational burden. To accommodate the large-
dimensional data, we may divide the vector z into L segments as z={z1, z2, . . ., zL}. We can decom-
pose the likelihood into each segment as,

p(z | θ,ϑ) = p(z1, ..., zL | θ,ϑ)
= p(zL | z1, ..., zL−1,θ,ϑ)p(zL−1 | z1, ..., zL−2,θ,ϑ), ..., p(z2 | z1,θ,ϑ)p(z1 | θ,ϑ)

≈
L�

l=1

p(zl | θ,ϑ). (3.3)

In Equation (3.3), we assume that the data segments z1, z2,. . . , zL are conditionally independent
for a given {θ,ϑ}, since we consider that {θ,ϑ} contains information equivalent to the data. This
equality strictly holds when the data segments are independent of each other – for example, when
the data locations are beyond the zone-of-influence or zone-of-correlation. It approximately holds
when the data segments are only weakly correlated, such as with different types of data at the same
site. As Hou and Rubin [2005] pointed out, assuming independence leads to higher entropy and
makes the estimation less informative.

3.4.2 Specification of a 2-D Geostatistical Model

Here we specify the geostatistical model for the 2-D T field. Let Y (x) be natural-log
transmissivity, lnT (x), at the location x = (x1, x2) in the 2-D domain. We assume that a vector Y,
containing Y at multiple locations x, follows a multivariate Gaussian distribution with exponential
covariance. We define a structural parameter vector as θ = {µ,σ2,φ}, including uniform mean µ,
variance σ2, and integral scale φ, which are used at a geologically similar site (i.e. unconsolidated
glacial materials) [Rubin, 2003; McLaughlin et al., 1993].

We define a vector ϑ(xϑ) to represent a set of anchors. Since the anchors are a subset of
the field, p(ϑ|θ) is a multivariate Gaussian distribution with mean µ and covariance σ2R(2−D)(xϑ, xϑ),
where R(2−D)(xϑ, xϑ) is an auto-correlation matrix as a function of φ and the locations of ϑ, xϑ.
The distribution of Y conditioned on the structural parameters and anchors p(y|θ,ϑ) is a multivari-
ate Gaussian distribution with conditional mean µY |ϑ and conditional covariance σ2R(2−D)

Y |ϑ , where
the mean and covariance conditioned on the anchors are defined as

µY |ϑ = µ+ R(2−D)(x, xϑ)R(2−D)(xϑ, xϑ)−1(ϑ− µ),

R(2−D)
Y |ϑ = R(2−D)(x, x)− R(2−D)(x, xϑ)R(2−D)(xϑ, xϑ)−1R(2−D)(xϑ, x) (3.4)
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where R(2−D)(x, x) is the auto-correlation matrix for Y, and R(2−D)(x, xϑ) is the cross-correlation
matrix between Y and ϑ.

3.4.3 Specification of Likelihood

We consider the data z consisting of L injection tests (l = 1, 2, . . ., L). We divide z into
L segments as z = {z1, z2, . . ., zL}, where zl is the vector containing the zeroth-order moments
at multiple observation wells in the l-th injection test. The governing equation and the temporal
moment formulation are shown in Appendix D.

In order to determine the likelihood p(z|θ,ϑ), we first compute the likelihood in each in-
jection test p(zl|θ,ϑ). Since, during the forward modeling analysis, we have found that the zeroth-
order moments are approximately Gaussian, we use a multivariate Gaussian distribution for the like-
lihood estimation. Although nonparametric density estimation is available, the Gaussian-likelihood
estimation is computationally advantageous as the dimension of the data increases.

Using the ensemble of z̃l simulated on the multiple fields conditioned on each parameter
set {θ,ϑ}, we calculate the mean and covariance to determine p(zl|θ,ϑ) (Robert and Casella,
2005). When we include the multiple injection tests in the inversion, we multiply the likelihoods
of multiple tests, according to Equation (3.3), to obtain the likelihood for the entire data p(z|θ,ϑ).
We have observed that the zeroth-order moments from the different injection tests are not strongly
correlated, so that we may use Equation (3.3).

3.4.4 Placement of Anchors

The success of MAD depends on placement of the anchors from two reasons. First, careful
placement of anchors will maximize their ability to extract information from observations. Second,
the computational burden is linked to the number of anchors, and a smaller number would improve
computational efficiency. Hence, we need to place anchors (1) at sensitive locations to the data,
(2) to capture local features of the field, and (3) according to the goal of the inversion. A detailed
discussion is available in Rubin et al. [2010]. Here we discuss the issues relevant to our inversion.

First, to find sensitive locations, we refer to the sensitivity analysis. Li et al. [2005] has
formulated the sensitivity of zeroth-order moments to a lnT value at a specific location, using the
adjoint-state method [Sun, 1994]. For the current estimate of T field required in the sensitivity
analysis, we may use a uniform T field, since our priors are only for the global parameters (i.e.,
mean, variance, and scale) and we do not have any local information before the injection test. In
this case, sensitivity is high around observation well locations, which is consistent with findings by
Castagna and Bellin [2009] and Vasco et al. [2000].

Second, to capture heterogeneity, we would ideally have more than one anchor per integral
scale. Although the real integral scale is not known in advance, we may consider the minimum
possible integral scale at the site. Anchors outside the well plot, far from any of the observation
wells, are not effective in resolving spatial heterogeneity, so that we need fewer anchors outside the
well plot.

Third, to achieve our goal, which is to obtain the lnT values at the EBF well locations,
we need anchors at all EBF well locations. All the EBF wells are used as observation wells during
the injection tests, so that we do not need additional anchors for this purpose.
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3.5 3-D Geostatistical Model for Hydraulic Conductivity Field

The 2-D inversion of the injection tests yielded a joint distribution of lnT at the EBF well
locations. Since we placed anchors at all those locations, we can use the anchor distribution directly.
Let us denote the lnT values at the EBF well location by a vector ϑEBF, which is a subset of ϑ.
Marginalizing the other parameters leads to the posterior distribution of ϑEBF conditioned on the
injection test data z as p(ϑEBF|z).

Let K(x1, x2, x3) and k(x1, x2, x3) be the absolute and relative K values at the location
x = (x1, x2, x3) in the 3-D domain, respectively. Based on Javandel and Witherspoon [1969], we
have the correlation between the absolute and relative K values [Moltz et al., 1994; Fienen et al.,
2004] as:

K(x1, x2, x3) = T (x1, x2)k(x1, x2, x3)/b(x1, x2), (3.5)

where b(x1, x2) is the aquifer thickness at the horizontal location (x1, x2). We can determine the
natural log-conductivity u = lnK at (x1, x2, x3) by

u(x1, x2, x3) = ϑEBF(x1, x2)− ln b(x1, x2) + ln k(x1, x2, x3). (3.6)

We use a N -vector k containing all the relative conductivity values from the EBF data at N locations
x, and a N -vector u containing all the lnK values at the same locations as k. Equation (3.6) allows
us to combine k and p(ϑEBF|z) into p(u|k, z), which is the distribution of u conditioned on both the
injection test data and the EBF data.

We construct a 3-D geostatistical model, assuming that u(x) follows a multivariate Gaus-
sian distribution with mean β and covariance (η2R(3−D)(x, x) + ν2I), where η2 is the variance of
variability in lnK, R(3−D)(x, x) is the auto-correlation matrix for u(x) as a function of the loca-
tions x, the horizontal integral scale λh and the vertical integral scale λv, I is the identity matrix
of order N , and ν2 is the nugget, which represents the EBF measurement errors. The structural
parameter vector of the 3-D geostatistical model is {β, η2,λh,λv, ν2}. Our goal here is to obtain a
joint posterior distribution of the parameters conditioned on both data {k, z} through u:

p
�
β, η2,λh,λv, ν

2| k, z
�
=

�
p
�
β, η2,λh,λv, ν

2| u
�
p (u|k, z) du. (3.7)

For the prior distribution of the parameters, we assume the Jeffreys prior for the mean and
variance [Jeffreys, 1946], which is the least informative prior for those two parameters. The prior
distribution of all the structural parameters is defined as

p
�
β, η2,λh,λv, ν

2
�
∝ 1

η2
π
�
λh,λv, ν

2
�
. (3.8)

For the rest of the prior distribution π(λh,λv, ν2), we use an independent uniform dis-
tribution for each of {λh,λv, ν2} bounded by each set of the minimum and maximum possible
values. Following Diggle and Ribeiro [Chapter 6, 2006], we obtain an analytical expression for
p(β, η2,λh,λv, ν2|u) (Appendix E). In addition, based on the joint distribution of the structural
parameters and u, determined by p(β, η2,λh,λv, ν2, u| k, z) = p(β, η2,λh,λv, ν2| u)p(u|k, z) we
can sample multiple parameter sets {β, η2,λh,λv, ν2, u}, and generate multiple random fields con-
ditioned on each of the parameter sets.
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3.6 Implementation

3.6.1 Organization of Constant-rate Injection Test Data

To demonstrate our approach, we used seven out of the fourteen constant-rate injection
tests at the site for the synthetic study, and four for the real data analysis (injection at Well 2-09,
2-18, 2-24, and 3-24), the locations of which are well balanced within the IFRC site. Figure 3.2
shows the configuration of the injection and observation wells for each of the four tests.

Figure 3.2: Configuration of injection and observation wells in each test used in this chapter. The
reference point of local coordinates is at (594 164 m, 115 976 m) in the Hanford coordinates.
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Table 3.1: The lower and upper bounds of the prior distribution for the structural parameters of the
2-D transmissivity field.

Minimum Maximum Reference
Mean µ, m2 s−1 (lnT ) −4.82* 2.17* Meyer et al. (2007) (Inverse model estimates)
Variance, σ2 0.5 3.0 Rubin (2003), Table 2.1 and Table 2.2
Scale, φ, m 8 30 Rubin (2003), Table 2.1 and Table 2.2

* The upper bound and lower bounds of K multiplied by the average aquifer thickness 7.62 m.

For each test, we calculated the zeroth-order moments at multiple observation wells by
integrating the pressure-buildup curves. Since the well field is located near the Columbia River,
the water table changes according to the river stage fluctuation. Since the change was mostly lin-
ear within 20 min after the injection started, we removed the ambient head contribution by linear
interpolation. For quantifying the measurement errors, we followed Nowak et al. [2006] and Li et
al. [2008], who determined the errors based on fluctuation or noise in the pressure measurements.
Since the noise in our case is contained within the range of the instrument resolution, we deter-
mined the standard deviation of measurement error based on the resolution of the instrument, 0.003
ft (0.09 cm) by integrating it over the injection duration.

3.6.2 Prior Distribution for MAD Inversion

For the prior distribution of the 2-D structural parameters θ, we used three independent
uniform distributions bounded by the minimum and maximum values, as are shown in Table 3.1.
The prior distributions of each parameter sufficiently cover possible values from the historical data
at the site [Meyer et al., 2007] or literature values for similar geological formations [Rubin, 2003].
The uniform distributions are considered to be less informative than Gaussian distributions, which
have been commonly used in the Bayesian geostatistical inversion [Li et al., 2005]. Three thousand
sets of θ are generated from p(θ) using a quasi Monte-Carlo sampling method [Krommer and
Ueberhuber, 1998].

As is shown in Figure 3.3, we placed 44 anchors at all the well locations inside the well
plot and at sparse locations outside the well plot, following the discussion in Section 3.4.4. For each
set of θ, we generated 12 sets of anchors ϑ from p(ϑ|θ), so that the number of prior parameter
sets {θ,ϑ} is 36 000. We gradually added more parameter sets until we observed the posterior
distribution remaining the same – not changing along with increasing numbers of sets.

3.6.3 Forward Simulation in MAD

Figure 3.3 shows the 2-D computational domain used for the forward simulations. For
simulating the zeroth-order temporal moments on multiple random fields, we followed the approach
by Firmani et al. [2006], since the mathematical expression for the zeroth-order moments is the same
as the one for steady-state flow toward a well.

Firmani et al. [2006] determined the grid and domain sizes according to the integral scale.
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Figure 3.3: Anchor locations in the domain for the constant-rate injection test inversion. The refer-
ence point of local coordinates is at (594 164 m, 115 976 m) in the Hanford coordinates.



40

Table 3.2: The lower and upper bounds of the prior distribution for the horizontal scale, vertical
scale and nugget variance of the 3-D hydraulic conductivity field.

Minimum Maximum Reference/Justification
Horizontal scale, λh, m 8 50 Rubin (2003), Table 2.1 and Table 2.2
Vertical scale, λv, m 0.5 10 Saturated thickness <10 m
Nugget variance, ν2 10−3 0.25 Less than 50 % of standard deviation

Although the integral scale is unknown in our framework, we have the minimum or maximum
possible integral scale (φmin and φmax), which are the upper and lower bounds of the uniform prior
distribution. We used these two values so that any possible integral scale can satisfy the requirement
for the domain and grid sizes.

The computational grid size is uniform equal to 0.2φmin in both x1 and x2 directions
during the field generation. During the flow simulations, the grid blocks near the injection well are
divided into non-uniform grid from 0.04φmin at the injection well location to 0.2φmin at a distance
of 0.8φmin, satisfying the condition that the ratio between the neighboring block size should not
exceed 1.5 [Firmani et al., 2006]. We determined the domain size such that the observation wells
were 2φmax away from the boundaries to reduce the boundary effect. During the flow simulation,
we added another buffer zone with width φmax and uniform T equal to TG between the field and
the boundaries for further reducing the boundary effect. We intended to satisfy 3φmax between any
observation wells and the boundaries, based on the theory developed by Rubin and Dagan [1988].

We used the SGSIM program from GSLIB [Deutsch and Journel, 1998] to generate spa-
tially correlated Gaussian random fields conditioned on each set of {θ,ϑ}. We then simulated
zeroth-order moments on each field, using a finite-element method with linear elements. We used
250 realizations of random fields and moments for each {θ,ϑ} to calculate the likelihood p(z|θ,ϑ).
We gradually added more realizations, and found that the likelihood values converged with 250 real-
izations. The 9 000 000 forward simulations took 60 000 computational hours in total. It was divided
into several batches, and used up to 9000 cores on the Franklin supercomputer at the National En-
ergy Research Scientific Computing Center (Berkeley, USA), each core of which is a 2.3 GHz single
AMD Opteron processor.

3.6.4 3-D Geostatistical Model

After calculating p(u|k, z) from the relative K values and lnT values at the EBF well
locations, we generated a thousand sets of u from p(u|k, z). For each set of u, we computed a
posterior distribution p(β, η2,λh,λv, ν2|u), based on the uniform prior distribution of λh, λv and
ν2 bounded by the values shown in Table 3.2. We then integrate the distribution numerically to
determine p(β, η2,λh,λv, ν2|k, z).

3.7 Results and Discussion

We first tested the MAD and numerical setting in a synthetic study for inverting the injec-
tion test data, and then we applied it to the actual data at the Hanford site.



41

3.7.1 Synthetic Study for 2-D Transmissivity Field

We generated a synthetic reference 2-D lnT field with a 2-D geostatistical parameter set
{µ,σ2,φ}={−1.8, 1.5, 20}, shown in Figure 3.4. We obtained maximum likelihood estimates of
the true parameters as {−1.76, 1.46, 20.0}, with near-exhaustive sampling (one out of every five
points) [GeoR package by Ribeiro and Diggle, 2001]. We then calculated the zeroth-order moments
on the reference field and superposed a zero-mean independent Gaussian measurement error, which
has the same variance as the actual data from the study site.

Figure 3.4: Reference field for the synthetic study. Line A-B is used for the transect.

Our inversion process is based on the same sets of injection and observation wells as the
actual experiments conducted at the IFRC site (Figure 3.2). We also combined the different number
of injection tests in the inversion: one injection test (injection at Well 2-18), two tests (injection at
Well 2-09 and 2-24), three tests (injection at Well 2-09, 2-24, and 3-24), four tests (injection at Well
2-09, 2-18, 2-24, and 3-24), five tests(Well 2-09, 2-11, 2-18, 2-24 and 3-24), six tests (Well 2-09,
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2-11, 2-16, 2-18, 2-24 and 3-24) and seven tests (Well 2-09, 2-11, 2-16, 2-18, 2-19, 2-24 and 3-24).
They are compared to show the effect of additional information from the multiple tests.

Figure 3.5 shows the marginal posterior distributions of the 2-D geostatistical structural
parameters {µ,σ2,φ} based on the various number of tests, with their corresponding true values.
While the mean has a symmetric Gaussian-like distribution, the variance and scale has broad and
skewed distributions. The results are improved with increasing number of tests up to three tests,
i.e. the posterior distributions become narrower and biases are reduced. The improvement by ad-
ditional tests is more significant for the variance and scale, which suggests that the estimation of
variance and scale requires more observations. The improvement, however, is not significant for
more than three tests, and the distributions based on four to seven tests are very close to each other,
which would suggest that the effect of increasing number of tests could be saturated due to the
measurement errors and redundancy of information in the data. Although we may expect tighter
distributions with more information, some of the uncertainty cannot be eliminated due to measure-
ment errors and the limited number of observation wells. In addition, the same observation wells
were used repeatedly for several tests. Yeh and Li [2000] and Zhu and Yeh [2005] also reported
that increasing the number of pumping tests did not improve the estimation above a certain number
(three to four tests in their cases).

To examine the effect of anchors and evaluate the random fields generated based on the
posterior distributions, we generated 200 000 fields from the posterior distribution of parameters
(5000 posterior sample parameter sets with 40 fields per parameter set), and compared the ensemble
with the true field. Two cases are studied: one based on a single test (injection at Well 2-18) and the
other based on three tests (injection at Well 2-09, 2-24, 3-24).

Figure 3.6 shows the mean and 98% confidence interval of the predicted lnT fields along
the centerline of the well field as shown in Figure 3.4 (Line A–B). The centerline also corresponds
to the line passing through large variability, from high near the top to low in the middle of the well
plot. The figure also includes five realizations that depict the level of heterogeneity in the randomly-
generated fields to be used for stochastic simulations. The mean field and random fields along the
line follows a general trend of the true field, especially so with more tests assimilated. If there were
no anchors, the mean field would be a flat line at the global mean, and the random fields would
be distributed around the flat line. Therefore the deviation from such a straight line is attributed to
anchors that capture local heterogeneity. The uncertainty bounds are found to be tighter near the
center, where there are more observation wells and more anchors. Increasing the number of tests
not only reduces the uncertainty, but also reduces the bias by moving the mean field closer to the
true field.

3.7.2 IFRC Data Analysis

After we gained confidence from the synthetic study, we applied the same scheme to the
data from the IFRC site. Since the synthetic study indicated that four tests would be enough, we
used up to four tests (the same sets): one injection test (injection at Well 2-18), two tests (injection
at Well 2-09 and 2-24), three tests (injection at Well 2-09, 2-24, and 3-24) and four tests (injection
at Well 2-09, 2-18, 2-24, and 3-24). Since the true values are unknown in this case, we validated
the posterior distribution by predicting a subset of the data and comparing it to the actual data. The
data used for validation was not used for inversion.

Figure 3.7 shows the marginal posterior distributions of the three 2-D structural parame-
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Figure 3.5: Marginal posterior distributions of the structural parameters (mean, variance and scale)
in the synthetic study, with their corresponding true values. The ones based on the different number
of tests are compared.
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Figure 3.6: Comparison among the reference field, the mean field and the 98% confidence interval
of the generated fields, along the center line of the IFRC well field (Line A-B in Figure 3.4), for the
inversion based on (a) one test (injection at Well 2-18) and (b) three tests (injection at Wells 2-09,
2-24 and 3-24).
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ters for the 2-D lnT field at the IFRC site. These three plots show a similar feature to the synthetic
study in Figure 3.5 such as a Gaussian-like distribution for the mean, broad and skewed distributions
for the variance and scale, and the effect of increasing the number of injection tests in the inversion.

Figure 3.7: Marginal posterior distributions of the structural parameters (mean, variance and scale)
for the Hanford IFRC site data.

For the first validation of the 2-D lnT inversion, we generated 200 000 fields (5000 pos-
terior sample parameter sets with 40 fields per parameter set) based on one test (injection at Well
2-09), two tests (injection at Well 2-09 and 3-24) and three tests (injection at Well 2-09, 2-24 and
3-24). We then predicted the zeroth-order temporal moments in the injection test at Well 2-18,
which was not the part of the estimation. Figure 3.8 shows the marginal predictive distributions
of the observed moments at two observation wells, based on one, two and three tests, compared
with the actual data. The true value is contained within the range of values defining the predic-
tive distributions, and the combination of the three tests improves the prediction by narrowing the
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distributions.

Figure 3.8: Comparison between the zeroth-order moments observed at Well 2-09 and 3-24 in the
injection test at Well 2-18, and predictive posterior distributions from the inversion, including the
different number of injection test.

As another validation, we obtained the maximum a posteriori (MAP) estimate of TG =
exp(µ) in Figure 3.7, which is 0.52 m2 s−1. We compared this value with TG estimated from the
Cooper-Jacob analysis (Sanchez-Villa et al., 1999), in which we fitted the late-time pressure-buildup
curves at multiple observation wells in the injection test at Well 2-18. The 95% confidence bound of
TG was 0.38–0.57 m2 s−1. As we expected, our estimate of TG corresponded to the estimates based
on conventional analysis for a large-scale injection test.

Figure 3.9 shows the marginal distribution for the 3-D geostatistical structural parameters
conditioned on the EBF data and injection test data. For the horizontal scale, vertical scale, and
nugget, the upper and lower bounds of the x-axis correspond to the bounds of the prior distributions.
We can see that the marginal posterior distributions of the structural parameters are skewed except
for the mean, which suggests that the entire distribution is necessary to quantify the parameter
uncertainty.

The horizontal scale has a particularly broad distribution, which is not zero at the bounds.
This is because available data is insufficient for narrowing down the distribution [Diggle and Ribeiro,
2002; Hou and Rubin, 2005]. For the horizontal scale, spacing between the wells restricts varia-
tion in horizontal lags, although we have many different lags for the vertical scale. It suggests the
importance of setting reasonable bounds for the prior distribution based on the information from
geologically similar sites.

We also compared the distributions based on the different number of tests included in the
injection test inversion. As it turned out, increasing the number of injection tests did not reduce
the parameter uncertainty in the 3-D structural parameters as significantly as in the 2-D parameters.
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Figure 3.9: Marginal posterior distributions of 3-D geostatistical structural parameters of lnK values
at the Hanford IFRC site, based on the different number of injection test.
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This is because the uncertainty and sparseness of the EBF data obscures additional information of
the increasing number of injection tests in the 3-D spatial inference. These findings are consistent
with Li et al. [2008], who also found that the 3-D characterization of the aquifer was limited by the
EBF data density.

Figure 3.10 shows the 3-D mean field, based on the 5 000 parameter sets generated from
the distribution p(β, η2,λh,λv, ν2|k, z). We can see the high-low-high layers in lnK along the
centerline of the field, which is consistent with the observations in the tracer tests later conducted at
the site [Rockhold et.al., 2010; Zachara, 2010].

Figure 3.10: 3-D mean lnK field in the saturated portion of the Hanford formation. The black dots
and lines represent the well locations. The reference point of local coordinates is at (594 164 m,
115 976 m) in the Hanford coordinates.

3.8 Summary

In this chapter, we presented a Bayesian approach for characterizing a 3-D K field by
assimilating the EBF and constant-rate injection tests. We employed a two-step approach – first in-
verting the constant-rate injection test data for obtaining the joint distribution of local T values at the
EBF well locations, and then converting the EBF data to local K values for the 3-D characterization.
For the injection test inversion, we used MAD, which is a newly developed Bayesian geostatistical
inversion framework. We inverted zeroth-order moments of pressure buildups at multiple observa-
tion wells, which can eliminate uncertainty in a storage coefficient, as well as significantly reduce
computational cost.
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In a synthetic study, we first showed that MAD could successfully infer the geostatistical
parameters and predict the 2-D lnT field. As we included more tests, we could further reduce the
uncertainty, and better capture the local heterogeneity. The improvement, however, was saturated at
three to four tests due to the measurement errors and redundancy of information in the data, which
is consistent with the previous studies [Yeh and Li, 2000; Zhu and Yeh, 2005].

By applying the method to the actual data, we obtained the posterior distribution of geo-
statistical structural parameters and the anchor values of the 2-D lnT field for the Hanford 300
Area IFRC site. We validated the result using the predictive distribution of the zeroth-moments in
the injection test that were not part of the inversion. In addition, the MAP estimate of the mean
lnT coincided with the lnTG value obtained from the Cooper-Jacob analysis, which confirmed our
methods consistency with conventional pumping test analysis.

We then combined the relative K values from the EBF data with the distribution of lnT
at EBF wells so that we obtain the distribution of the depth-discrete absolute K in the 3-D domain.
The uncertainty in T (2-D) is consistently carried on into the lnK values (3-D) as a probability
distribution. We thus constructed a 3-D geostatistical model for the lnK field using the model-
based Bayesian geostatistical approach.

We demonstrated the advantages of MAD such that MAD was directly connected to the
stochastic forward simulations, and it directly inferred the joint distribution of the parameters to be
used as an input of the simulations. Compared to the other inverse modeling methods that yield only
best-estimates and confidence bounds, MAD fully quantifies the parametric uncertainty as statistical
distributions, which is necessary to capture skewed distributions found for the variance and scale
parameters.

For the field application, we showed that combining EBF and injection tests is promising
for characterizing a heterogeneous lnK field in a coarse-grained and highly permeable aquifer,
where the other conventional techniques fail to provide information of local heterogeneity. We
found that the 3-D characterization is restricted by the EBF measurement density, in the sense that
increasing the amount of depth-averaged information from the injection tests did not contribute
significantly to narrowing down the posterior distribution of the 3-D geostatistical parameters.
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Chapter 4

Sequential Bayesian Geostatistical
Inversion and Evaluation of Combined
Data Worth for Aquifer
Characterization at the Hanford 300
Area

4.1 Introduction

Subsurface characterization plays a central role in various projects involving groundwater
flow and contaminant transport. A detailed three-dimensional (3-D) map of subsurface hydroge-
ological properties is critical for predicting water and solute movement in the subsurface [Rubin,
2003]. In addition, an accurate map of hydrogeological properties is the basis for understanding
more complex physical processes, such as geochemical and microbiological reactions. [Scheibe et
al., 2001].

Such characterization projects typically include various types of data and experiments as
complementary sources of information. To determine a hydraulic conductivity field, for example,
we typically have small-scale datasets such as permeameter tests, grain-size analysis and flowmeter
tests, and large-scale datasets such as pumping tests and tracer tests. For characterizing a hetero-
geneous field of target properties, we need to integrate all the types of data in a consistent manner
with uncertainty properly quantified. In addition, in order to distribute limited resources to multiple
types of data, we need to know how effective each dataset is in reducing uncertainty and mismatch
in predictions.

As Rubin et al. [2010] noted, it is a challenge to integrate data and evaluate its data
worth, due to the variety of data and complexity of groundwater modeling. In addition to different
accuracy and scales, each type of data is connected to the target properties by a different physical-
process model, which sometimes requires complex numerical simulations. In addition, some data
types become usable only in the presence of other type of data. For example, lithology data is
useful only when the hydraulic conductivity values are known in each sedimental class using the



51

site-specific correlation.
The gap between forward and inverse modeling of flow and transport within a stochastic

framework presents another challenge. In the stochastic forward simulations, we generate multiple
possible realizations of a 3-D heterogeneous field of target properties, and simulate flow and trans-
port for each field. Such stochastic simulations start from a known forward model and probability
distribution that quantifies the uncertainty of the model parameters [Maxwell et al., 1999; Rubin,
2003]. Most of the inverse modeling methods, however, focus primarily on determining the best
estimates and asymptotic uncertainty bounds of the parameters, and do not provide the distribution
[Kitanidis, 1995; Ramarao et al., 1995]. This gap hinders not only taking uncertainty into account
properly in predictions, but also evaluating the data worth, since the information cannot be fully
transferred from data to prediction.

Recently, the method of anchored distribution (MAD) has been developed for integrating
different types of data in a consistent manner, including uncertainty associated with each dataset
[Zhang and Rubin, 2008a, 2008b; Rubin et. al., 2010]. MAD is a general Bayesian method for
inverse modeling of spatial random fields that addresses multiple sources and scales of datasets
available in characterization, as well as the complex relationships between the data and target prop-
erties. In MAD, in addition to typical structural parameters, the parameter vector includes point
values of the heterogeneous field, called anchors, which capture local trends and reduce uncertainty
in prediction. Different from most of the other inversion methods, MAD yields a posterior distribu-
tion of the parameters, which can be directly used in the forward simulations.

Much work within the framework of stochastic hydrogeology has been devoted to eval-
uating the worth of data. Following Rubin and Dagan [1992], many investigators have examined
the impact of conditioning data on groundwater model predictions [McKenna and Poeter, 1995;
Maxwell et al., 1999; Scheibe and Chien, 2003; Fu and Gomez-Hernandez, 2007]. Several studies
also pursued an optimal design of measurements [Freeze et al., 1992; Nowak et al., 2010]. Most
of these studies, however, considered only one or two types of data, and many of them dealt with
only synthetic data. Although Scheibe and Chien [2003] evaluated the different types of data at the
Oyster Site, it did not include large-scale data, which required inverse modeling.

In this chapter, we investigate the data assimilation strategy with respect to the hydraulic
conductivity field at the Integrated Field Research Challenge (IFRC) site in DOEs Hanford 300 Area
(http://ifchanford.pnl.gov). The Hanford IFRC project, initiated in 2007, is an interdisciplinary pro-
jectinvolving the fields of hydrogeology, geochemistry, and microbiologythat seeks to understand
the complex behavior of subsurface uranium transport. Characterizing the hydraulic conductivity
field prior to uranium transport experiments is critical for understanding the chemical behavior of
uranium in the natural environments. To characterize the three-dimensional hydraulic conductiv-
ity field, we conducted a nonreactive tracer experiment in addition to aquifer tests such as electric
borehole flowmeter (EBF) and constant-injection tests. All the wells have the lithology data avail-
able, which is less informative and often ignored in characterizing a conductivity field [Scheibe and
Chien, 2003; Li et al., 2008]. In this analysis, we are particularly interested in examining the impact
of lithology data and tracer-test data.

In evaluating the worth of real field data, it is common to compare the predicted and ob-
served breakthrough curves during a tracer test at observation wells not used for inversion [Rubin,
2003; Scheibe and Chien, 2003]. Based on the breakthrough curves, we can determine several per-
formance metricssuch as early arrival time, mean arrival time, and peak concentrationand several
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performance measures to represent mismatch and uncertainty in prediction, such as bias and vari-
ance. Previous work comparing the performance of inverse modeling or worth of data found that
inverse-modeling performance depends on the performance metrics and measures [Zimmerman et
al., 1998; Scheibe and Chien, 2003; Franssen et al., 2009; Nowak et al., 2010]. It would be most
beneficial to evaluate to which metric and measure each type of data can contribute, rather than just
determining which data is the best.

This chapter proceeds as follows: first, in Section 4.2, we present the general data as-
similation method. After we describe the site and data collection in Section 4.3, we present the
assimilation procedure for each dataset in Section 4.4. In Section 4.6, we organize the comparison
metrics and comparison measures to evaluate multiple data combinations. In the last section, after
we present all the results, we discuss the results and their implications for field characterization
strategy.

4.2 A Bayesian sequential data assimilation method

In this section, we briefly describe our Bayesian data assimilation method, the method
of anchored distributions (MAD), introduced in Chapter 2. We further generalize the method to
accommodate sequential assimilation.

In MAD, we consider a spatial random process denoted by Y (x), where Y is a random
variable and x represents a single space coordinate. We further denote an entire field of Y by Ỹ,
and denote a realization of the field by ỹ. The field is defined through a vector of model parameters
{θ,ϑ}. The θ part of this vector, called the structural parameter vector, includes a set of parameters
designed to capture the global features of Ỹ, such as the mean of the field and correlation structures.
The ϑ component of this vector consists of the anchored distributions, or (in short) anchors. Anchors
are devices used to capture the local features of the field that cannot be captured using the global
parameters represented by θ. The anchors are given in the form of statistical distributions of Y at
known or chosen locations.

MAD classifies data into two data types, Type-A and Type-B data. Type-A data have a
small support volume, each of which is a function of a point value of Y , while Type-B data are a
function of the entire field. We denote all available data by z–Type-A data by za, and Type-B data
by zb. MAD defines two types of anchors corresponding to its data classification. Type-A anchors
ϑa are co-located with Type-A data, and correlated with Type-A data though a point-scale model
such as a petrophysical model or small-scale flow model. Type-B anchors ϑb are placed at selected
locations to capture information from Type-B data through inversion. There may not be a one-to-
one correspondence between Type-B anchors and Type-B data, since Type-B data is a function of
the field. As is discussed in Rubin et al. [2010], we need to place Type-B anchors at the locations
sensitive to Type-B data and locations that can capture a local trend of the field. We denote the
entire anchor set by ϑ = {ϑa,ϑb}. In the MAD method, the goal of the inversion is to determine
a posterior distribution of model parameters conditioned on the data, i.e., p(θ,ϑ | z). Once this
distribution is determined, we can generate random fields given any random sample of {θ,ϑ} from
this distribution.

For multiple types of datasets, we consider all the available data divided into subsets as
{z1, z2, . . . , zN}, each of which can be either Type-A or Type-B data. Within the data assimilation
scheme, it is more efficient to include each subset, i.e., each dataset, sequentially so that we do not
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have to re-do the entire assimilation from scratch when new data arrive. We expand the original
scheme [Rubin et al., 2010] such that we can assimilate either type of data in any order as long as a
certain condition is satisfied.

For the first data z1, we determine the posterior distribution using Bayes rule:

p(θ,ϑ | z1) ∝ p(z1 | θ,ϑ)p(θ,ϑ), (4.1)

where p(z1 | θ,ϑ) is the likelihood of z1 and p(θ,ϑ) is the prior distribution for the
parameter vector before taking any data into account. When the prior pertains only to the structural
parameters, we determine the distribution of parameter sets by p(θ,ϑ) = p(ϑ | θ)p(θ). To include
i-th dataset zi, (i = 2, . . . , N), we update the posterior distribution as follows:

p(θ,ϑ | z1, z2, . . . , zi) ∝ p(zi | θ,ϑ, z1, z2, . . . , zi−1)p(θ,ϑ | z1, z2, . . . , zi−1),

= p(zi | θ,ϑ)p(θ,ϑ | z1, z2, . . . , zi−1), (4.2)

where p(zi | θ,ϑ) is the likelihood of zi and p(θ,ϑ | z1, z2, . . . , zi−1) is the prior dis-
tribution with respect to zi as well as the posterior distribution with the data {z1, z2, . . . , zi−1} as-
similated. For equality in the second line, we assume the conditional independence between zi and
{z1, z2, . . . , zi−1} given parameter set {θ,ϑ}, since the parameter vector {θ,ϑ} contains the spa-
tial information relevant to {z1, z2, . . . , zi−1}. At any stage of the sequential assimilation, we can
generate random fields for prediction. In the stochastic simulations, we sample multiple parameter
sets of {θ,ϑ} from the posterior distribution p(θ,ϑ | z), and generate multiple random fields given
set of {θ,ϑ}.

The likelihood p(zi | θ,ϑ) (i = 1, 2, , N) is the key to update the posterior distribution
for every dataset to be assimilated. For Type-A data, we typically have an analytical form for the
likelihood p(zi | θ,ϑ), using a model-based geostatistical approach [Diggle and Ribeiro 2006]. For
Type-B data, we usually need to estimate the likelihood numerically, using numerical simulations of
a flow/ transport model, except for some special cases where an analytical form is available [Rubin,
2003].

When the analytical form is not available, we estimate the likelihood of p(zi | θ,ϑ) using
Monte Carlo simulations. Since the model parameters {θ,ϑ} and data z are connected through the
field Ỹ, we generate multiple conditional realizations of the field ỹ conditioned on a set of {θ,ϑ}
sampled from the prior distribution; with each realization, a forward model provides a prediction
of z in the form of z̃. As a result of the forward simulations, we obtain the ensemble z̃ for each
sample of {θ,ϑ}. After estimating the distribution of z̃ parametrically or nonparametrically, we can
determine the density at z, which is equivalent to the likelihood p(zi | θ,ϑ).

It is possible to place additional anchors during the sequential assimilation if necessary,
depending on the locations or types of newly arrived data. When we assimilate i-th data zi, we may
want to add anchors ϑi to the previous anchors ϑi−1 for {z1, z2, . . . , zi−1}, as ϑ = {ϑi−1,ϑi}. The
assimilation of zi requires modifying Equation (4.2) as follows:

p(θ,ϑ | z1, z2, . . . , zi) ∝ p(zi | θ,ϑ, z1, z2, . . . , zi−1)p(θ,ϑi,ϑi−1 | z1, z2, . . . , zi−1),

= p(zi | θ,ϑ)p(ϑi | θ,ϑi−1)p(θ,ϑi−1 | z1, z2, . . . , zi−1). (4.3)
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The joint distribution p(ϑi | θ,ϑi−1) is the prior distribution of ϑi. The equality in
the second line of Equation (4.3) assumes that both zi and ϑi are conditionally independent of
{z1, z2, . . . , zi−1} given {θ,ϑi−1}. When zi is Type-A data, ϑi represents Type-A anchors, which
have the same locations as zi. From the definition, zi is a function of ϑi so that:

p(θ,ϑ | z1, z2, . . . , zi) ∝ p(zi | ϑi)p(ϑi | θ,ϑi−1)p(θ,ϑi−1 | z1, z2, . . . , zi−1). (4.4)

The assumptions in Equations (4.2) and (4.3) restrict the sequence of adding more datasets
and anchors. The newly introduced dataset zi and anchors ϑi should not be strongly correlated
to the datasets previously assimilated {z1, z2, . . . , zi−1} given {θ,ϑi−1}. As Rubin et al. [2010]
formulated, the independence strictly holds when we add Type-B data and Type-B anchors after
all Type-A anchors, since Type-A data depends on the point values and the Type-A anchors ϑi−1

carry all the information from Type-A data. When we have enough anchors, it is also valid, since
{θ,ϑi−1} can capture all the features from {z1, z2, . . . , zi−1}. In the sequential assimilation, we
may need to evaluate this condition every time we introduce additional data and anchors.

4.3 Site and Data Description

4.3.1 Hanford 300Area IFRC Site

The Hanford 300 Area is located at the southern part of the Hanford Nuclear Reservation,
one mile north of Richland, Washington, USA. The IFRC site is located within the footprint of a
former disposal facility for uranium-bearing liquid waste known as the South Process Pond, 250 m
west from the Columbia River. As is shown in Figure 4.1, the triangular well field consists of 25
wells fully screened through the saturated portion of the Hanford formation, and ten wells partially
screened at a different depth [Bjornstad et al., 2009].

In this study, we limit ourselves to characterizing the saturated portion of the highly per-
meable and coarse-grained Hanford formation, which is a shallow unconfined aquifer. The main
lithology is a poorly sorted mixture, dominated by gravel up to boulder size, with lesser amounts of
sand and silt [Bjornstad et al., 2009]. It overlies the Ringold formation, the upper portion of which
is a continuous low-permeability layer consisting of cohesive and compact, well-sorted fine to silty
sand. The saturated thickness is variable over the site, ranging from about 5 m to 8 m, with daily and
seasonal fluctuations of the water table in response to changes in river stage. The prior estimates of
hydraulic conductivity are 1,000–100,000 m/day for the Hanford formation and 0.01–3.00 m/day
for the Ringold formation [Meyer et al., 2007].

4.3.2 Hydrogeological Data at the IFRC Site

Constant-rate Injection Test

Fourteen constant-rate injection tests were conducted, each of which used one injection
well and 7 to 10 observation wells, as is shown in Figure 4.2(a). All the wells used in the tests
were fully screened over the saturated portion of the Hanford formation. The distance between the
injection and observation wells ranged between 8 and 60 m, and the injection duration and rate are
20 minutes and 315–318 gpm (1.19–1.20 m3/min), respectively. A preliminary analysis of the late
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Figure 4.1: Site map of the IFRC site (The coordinate system follows the convention used at the
Hanford site).

time-curve data, using the Cooper-Jacob straight-line method, showed that most of the observation
wells yielded similar estimates for the transmissivity values in each test. As is shown by Sánchez-
Villa et al. [1999], this estimate is the geometric mean transmissivity over the entire well field,
which suggests that the zone-of-influence expands very rapidly and the conventional pumping test
analysis yields only an effective property, smoothing out the local heterogeneity at the well field.

EBF

The EBF tests at the site were conducted at nineteen fully screened wells, which yielded
283 depth-discrete relative hydraulic conductivities with 0.3–0.6 m depth intervals (Figure 4.2b).
The pumping rate, 1.04–1.55 gpm (3.94× 10− 3− 3.94× 10−3 m3/min), was kept constant during
the test at each well. Vertical profiles indicated that the hydraulic conductivity over the central
third of the Hanford formation was lower than at the top and bottom thirds of many of the wells.
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Figure 4.2: Data locations in the well plot: (a) injection-test data, (b) EBF data, (c) lithology data
and (d) tracer-test data. In (a), the black circles are the wells used for observation, and the white
squares are the wells used for injection and observation. The subset of the observation wells are
used for each injection test. In (d), the black circles are the training-set wells at which M1 was used,
the white squares are the training-set wells at which both M1 and M1/M0 were used, and the white
triangles are the testing-set wells.

Although the thickness and contact depths for this lower permeability material varied across the
site, this general distribution was observed to some extent at many of the monitoring well locations.
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Lithology Data

The lithology profile along each well, the so-called geologist log, was recorded when the
well was constructed. Historically, at the Hanford site, the lithology profile has been recorded at
nearly every well construction. There has been a significant effort to evaluate and standardize the
lithology information by cross-calibrating it to the grain-size analysis [Last et al., 2007].

The dominant lithology at the site is gravelly sand and sandy gravel, in which large vari-
ations in hydraulic conductivity (K) were observed during the EBF tests. The EBF tests also indi-
cated higher K in the gravel zone typically found just above the Ringold formation, and lower K
in or around the silt zone, which is part of the rip-up clasts of the semiconsolidated, fine-grained
Ringold Formation [Bjornstad et al., 2009].

Tracer Test

A nonreactive bromide tracer (average concentration 95 mg/L) was injected into Well 2-
09 at a constant rate (71.7 gpm) for 10 hours, which resulted in a total injected volume of 40,600
gallons. The plume was left under natural gradient conditions after the injection stopped. A net-
work of observation wells, including nine depth-discrete wells, monitored tracer concentrations for
the next 12 days. Downhole Ion Selective Electrodes (ISE) determined the concentration in situ,
calibrated by measuring concentrations of several collected samples with ion chromatography.

Although the March 2009 test was conducted during a relatively stable Columbia River
stage, the calculated head gradient and flow direction still showed variations during the monitoring
period. The selected wells within the IFRC well field were monitored continuously to measure
water levels, with hourly or subhourly measurement frequency, and these measurements were used
for setting the boundary conditions in the flow and transport simulations.

4.4 Data Assimilation at the Hanford IFRC Site

In this section, we describe the procedure for assimilating each type of datasets. Although
except for the lithology data, all the datasets have been analyzed separately in previous studies,
[Murakami et al. 2010; Chen et al., 2010], we briefly repeat the assimilation procedure here for
completeness.

4.4.1 Constant-Rate Injection Test

As described in Murakami et al. [2010], we modeled the flow process during the injec-
tion tests as a two-dimensional (2-D) planar flow in the horizontal plane to characterize the two-
dimensional (2-D) transmissivity (T ) field. Such modeling was possible since we observed that the
radial flow regime dominated the pressure-buildup responses [Neuman, 1975], and that the max-
imum pressure buildup at the nearest observation wells was on the order of several centimeters,
much smaller than the aquifer thickness (58 m). We transformed the pressure-buildup curves to
the zeroth-order moment at each of the multiple observation wells, which allowed us to remove the
alias effect from the storage coefficient, as well as reduce computational cost [Li et al., 2004; Zhu
and Yeh, 2005].
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We constructed a 2-D geostatistical model, assuming that the natural logarithm of T (lnT )
was multivariate Gaussian, and applied MAD to invert the zeroth-order moments. Since the pump-
ing tests are regarded as large-scale Type-B data, we planted Type-B anchors at selected locations,
which represented the local lnT values. We selected four tests to use for inversion, since we ob-
served in the synthetic study that increasing numbers of tests more than four did not change the
posterior distribution. As a result, we obtained a joint posterior distribution of 2-D structural pa-
rameters and anchors. The distribution of lnT at the EBF-test wells were used to determine the
distribution of the absolute K values at the EBF data locations, as described in the next subsection.
In addition, we determined the depth-averaged log-conductivity at the wells that did not have EBF
data but had the saturation thickness exactly known during the injection tests. The depth-averaged
loc-conductivity values, denoted by ϑDA, were jointly distributed with lnT . We used ϑDA as Type-
A anchors using the point-to-volume covariance [Beherens et al.,1998;Chen et al., 2010].

4.4.2 EBF

As described in Murakami et al. [2010], we assimilated the EBF data after the injection-
test data. In the MAD method, the EBF data is Type-A data, owing to its small support volume
[Scheibe and Chien, 2003]. We placed Type-A anchors at all the EBF data locations (283 data
points), denoted by ϑEBF . The anchors ϑEBF represented the natural logarithm of hydraulic con-
ductivity (lnK) at the EBF data locations.

Since the EBF tests yield only relative K values along each of the EBF test wells, local
transmissivity T at each of the EBF wells is necessary to convert the relative values to absolute
K (Javandel and Witherspoon, 1969; Molz et al., 1994; Young et al., 1998; Fienen et al., 2004).
We used the joint distribution of lnT values from the constant-rate injection tests to determine the
joint distribution of the absolute K values, i.e., the distribution of Type-A anchors at the EBF data
locations [Murakami et al., 2010]. We denote the distribution of ϑEBF given the injection-test and
EBF data, jointly distributed with ϑDA, by p(ϑEBF ,ϑDA | zINJ , zEBF ).

As is shown in Figure 4.3(a), we observed that the overall distribution of lnK from the
injection and EBF tests is approximately Gaussian, so that they we inferred the distribution of a
three-dimensional (3-D) structural parameter vector θ, assuming that lnK follows a multivariate
Gaussian distribution. The 3-D structural parameter vector θ includes mean, variance, horizontal
scale, vertical scale, and nugget variance with an exponential covariance model. We determined the
joint distribution by p(ϑEBF ,ϑDA | zINJ , zEBF ) = p(θ | ϑEBF )p(ϑEBF ,ϑDA | zINJ , zEBF ),
following Equation (4.2). The distribution for the structural parameters of the anchors p(θ | ϑEBF )
was determined analytically using model-based geostatistics [Chapter 6, Diggle and Ribeiro, 2006].
We did not use ϑDA for inferring θ, since the depth-average conductivity does not have significant
information about the structural parameters.

4.4.3 Lithology Data

We generated the lnK values from the distribution at the EBF locations p(ϑEBF | zINJ , zEBF )
and analyzed the values in each facies. As is shown in Figure 4.3(b)-(d), the gravel and silt zones
have narrow high-lnK and low-lnK distributions, respectively. Others in Figure 4.3(d) includes
other sediment classes such as gravelly sand, sandy gravel, and sand, among which we did not ob-
serve any significant difference. Last et al. [2007] noted that the geologists distinction among those
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Figure 4.3: Overall distribution of lnK and distributions of lnK in each lithology conditioned on
the injection-test and EBF data. Others include sandy gravel, gravelly sand and sand.

classes is sometimes not accurate, which would be another reason to leave those classes together as
Others.

Although the lithology information is categorical and contains substantial uncertainty,
this information can be useful for the wells that do not have EBF data, especially near the injection
well of the tracer test, since Nowak et al. [2010] have shown the importance of characterizing
the hydraulic conductivity field near the source. In addition, the lithology information would be
helpful in capturing the fast flow path along the centerline of the well plot near the Hanford-Ringold
interface. As Chen et al. [2010] noted, this fast flow path was not captured by the EBF and injection
tests. Since the sediment class at the bottom of Well 2-26 is gravel, which is the high-K zone, we
expect that the lithology data would be helpful in capturing this fast flow path.

To use the lithology data, modelers typically apply an indicator simulation or a transition
probability approach, which generates facies over the domain [Carle and Fogg, 1996; Deutsch and
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Journel, 1998]. In this study, however, we assumed the Gaussian field for lnK, as stated above,
since the overall distribution of the lnK values is unimodal and approximately Gaussian, as shown
in Figure 4.3(a). In addition, several laboratory-scale experiments have confirmed that the Gaussian
lnK field approach still works even for the domain with distinct facies [Nowak et al. 2006; Liu et
al., 2007].

MAD allows us to assimilate the lithology data in a consistent manner. Following its
data classification scheme, the lithology data (zL) is Type-A data, which requires additional Type-A
anchors (ϑL) at the same locations. From the continuous lithology profile, we took data points at
every 2 ft in the saturated region along seventeen wells (173 data points), except for several intervals
missing in the geologists log. Based on observations in Figure 4.3(b)-(d), we defined three classes
{Gravel, Silt, Others} for zL. To determine the posterior distribution of {θ,ϑEBF ,ϑL}, conditioned
on the three data sets {zINJ , zEBF , zL}, we followed Equation (4.4):

p(θ,ϑEBF ,ϑL | zINJ , zEBF , zL)

∝ p(zL | ϑL)p(ϑL | θ,ϑEBF ,ϑDA)p(θ,ϑEBF ,ϑDA | zINJ , zEBF ). (4.5)

Note that in the posterior distribution, we removed the depth-averaged log-conductivity
ϑDA, because the lithology data locations overlap the depth-averaged log-conductivity locations. In
addition, following a common practice [Maxwell et al., 1999], we updated only ϑL without updating
the structural parameters θ, since the lithology data contains substantial uncertainty, which would
have an adverse effect on inferring the structural parameters θ.

For determining p(zL | ϑL), we require a model or function to describe the lithology
given lnK. In our case, this function is site-specific and determined by the lnK distribution in each
sedimental class based on the EBF and injection test. In other words, each value of Type-A data
zL is a function of Type-A anchor at the same location, whereas this function, i.e., the shape of the
distribution, is determined by the co-located lithology data and lnK values at the EBF locations.
We determine this distribution p(zL,j | ϑL,j), i.e., the probability of lithology class given lnK value
at j-th lithology data point, by using the generated lnK values based on the EBF and injection tests
and applying the nonparameteric kernel density classification algorithm [Section 6.6.2, Hastie et al.,
2001].

4.4.4 Tracer Test

As reported in Chen et al. [2010], we placed additional Type-B anchors ϑTRS to capture
the plume movement for the tracer-test assimilation, as shown in Figure 4.4(a). As the tracer-test
data zTRC , we used the first-order temporal moments of the breakthrough curves (M1) at ten obser-
vation wells, and the first-order moments divided by the zeroth-order temporal moments (M1/M0)
at two wells, as indicated in Figure 4.2(d), following Cirpka and Kitanidis [2003], who analyzed
the physical meaning of temporal moments of breakthrough curves. The tracer-test data zTRC is
assimilated according to Equation (4.3) as:

p(θ,ϑEBF ,ϑDA,ϑTRC | zINJ , zEBF , zTRC)

∝ p(zTRC | θ,ϑEBF ,ϑDA,ϑTRC)p(ϑTRC | θ,ϑEBF ,ϑDA)p(θ,ϑEBF ,ϑDA | zINJ , zEBF ).
(4.6)
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We estimated the likelihood p(zTRC | θ,ϑEBF ,ϑDA,ϑTRS) using nonparametric den-
sity estimation, based on the ensemble of z̃TRC from the forward simulations of flow and transport.
A parallel 3-D flow-and-transport code, PFLOTRAN, facilitated the large number of forward simu-
lations on multicores, including the complex site conditions such as water-table fluctuation included
in the boundary conditions [Hammond et al., 2010].

As a modification of the original tracer-test inversion reported by Chen et al. [2010],
in this chapter, we assimilated the tracer-test data again after the lithology data. Since the lnK
values at the lithology data locations, represented by ϑL, affect the outcome of the tracer test, the
lithology data needs to be assimilated before the tracer-test data in order to satisfy the assumptions
in Equations (4.2). Following Equation (4.2), we determine the posterior distribution after the four
datasets:

p(θ,ϑEBF ,ϑL,ϑTRC | zINJ , zEBF , zL, zTRC)

∝ p(zTRC | θ,ϑEBF ,ϑL)p(ϑTRC | θ,ϑEBF ,ϑL)p(θ,ϑEBF ,ϑL | zINJ , zEBF , zL). (4.7)

For implementation, we use the same procedure and the same observation wells as in the
original case reported by Chen et al. [2010] (to be consistent). The anchor location is indicated in
Figure 4.4(b). This modification can be considered such that adding the lithology data improved the
prior distribution with respect to the tracer test.

4.5 Comparison Metrics and Measures

In this chapter, we evaluate the improvement in characterization of the lnK field as we
include more datasets–particularly focusing on the impact of lithology data and tracer-test data.
Since the real lnK field is unknown, we evaluate the performance of the inversion results based
on breakthrough curves (BTCs) during a tracer test not used in the inversion [Scheibe and Chien,
2003]. Using BTCs matches the IFRC project goal as well, since the project will test hypotheses
regarding the uranium transport behavior, using the uranium injection experiments with the same
observation wells. We may note that although the improvement might depend also on different
conceptual models for geostatistical and transport models or different inverse modeling methods, it
is beyond the scope of the current study.

Following a common practice in statistics, we divide the tracer data into training-set wells
(i.e., observation wells used in inversion) and testing-set wells (i.e., wells used for testing or vali-
dating the inversion result). We chose eight wells that have BTCs with significant magnitude as the
testing-set wells (Well 2-08, 2-10, 2-14, 2-15, 2-21, 3-25, 2-23, and 3-28), which are indicated in
Figure 4.2(d). Among them, we can identify three pairs that have the same distance from the source
and are located symmetric to the centerline of the well field (Wells 2-14 and 2-15, Wells 2-21 and
3-25, and Wells 2-23 and 2-28). Since the centerline of the well field is aligned to the mean flow
direction averaged over time, an analytical solution of transport based on the structural parameters
[Gelhar and Collins, 1971; Datta-Gupta et al., 2002; Bellin and Rubin, 2004] yields identical BTCs
for each of those pairs. The difference within each pair is therefore attributed to the local features
within the well plot. Comparing within each pair therefore would indicate whether our assimilation
method is capturing the local features.
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Figure 4.4: Type-A anchor locations (black circles) and Type-B anchor locations (squares) for (a)
tracer-test inversion without lithology and (b) tracer-test inversion with lithology. The vertical views
are along the centerlines in the horizontal views.

4.5.1 Comparison Cases

We consider the following cases for comparison, with particular interest in the impact of
lithology data and tracer-test data.
- Case 1 (ie) : Injection tests and EBF
- Case 2 (ieL): Injection tests, EBF and lithology
- Case 3 (ieT): Injection tests, EBF and tracer test
- Case 4 (ieLT): Injection tests, EBF, lithology and tracer test
In addition to case number, we added the first letters of the data names to make it easier to identify
the datasets in each case. We may note that adding the lithology data includes not only the lithology
data itself, but also the effect from the EBF and injection test, since these two datasets are used to
calibrate lnK in each facies. Adding the lithology data therefore is not equal to the worth of the
lithology data itself, but rather represents a combined effect.
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4.5.2 Comparison Metrics

In addition to evaluating the entire predicted BTCs, we calculate the single-valued metrics
from each BTC to evaluate the improvement. We chose four metrics highly weighted in Scheibe
and Chien [2003].
(1) Area under the BTC curve (zeroth-order moment of BTC)
(2) Time to arrival of center of mass (mean arrival time)
(3) Peak arrival time
(4) Peak concentration
We calculate these four metrics for each of the testing-set wells. Among the metrics, area under the
BTC is the zeroth-order temporal moment of BTC, denoted by M0. The time to arrival for center of
mass is equivalent to mean arrival time in our case, according to Cirpka and Kitanidis [2000], since
the tracer injection time is much shorter than the observation time frame. The mean arrival time is
calculated by dividing the first-order temporal moment of BTC by the zeroth-order moment.

4.5.3 Comparison Measures

The stochastic forward simulations yield the ensemble of possible outcomes z̃test at the
testing-set wells conditioned on all the data integrated in each case, denoted by p(z̃test | ztest). We
compare this distribution with the measured outcome ztest at the same wells. For comparing the
four cases, we calculate the following measures to combine the errors at all the testing-set wells:
(1) Sum of mean squared error (SMSE):

n�

j=1

E[(z̃test,j − ztest,j)2] (4.8)

where n is the number of testing-set wells (n = 8), and E[•] represents the expected value
of the quantity inside the bracket. SMSE corresponds to the trace of the error covariance matrix
defined by Cov[̃ztest,j−ztest,j ]. It is one of the most common single-valued statistics for representing
the overall error in testing multivariate data [Davision, 2003]. Since MSE is the sum of bias square
and variance, it can honor both mismatch and uncertainty. We may note that although MSE is
one of the common error quantifications in hydrogeological applications [Scheibe and Chien, 2003;
Franssen et al., 2009], the definition is often different from Equation (4.8). Here, we define the MSE
according to the statistical principle [Davision, 2003].
(2) Sum of absolute errors (SAE):

n�

j=1

| E[̃ztest,j ]− ztest,j | (4.9)

This is the sum of bias, which measures the mismatch between the mean of the predictive
distribution and the true value. SAE is equivalent to mean absolute error used in Franssen et al.
[2009], since n does not change in each case.
(3) Sum of variance (SV):

n�

j=1

E[(z̃test,j − E[̃ztest,j ])2] (4.10)
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The sum of variance (SV) represents the magnitude of uncertainty in the prediction. As
is noted in Franssen et al. [2009], the smaller SV does not mean good performance, since the
distribution may not capture the true value. SV is still useful, however, in evaluating the magnitude
of uncertainty in the predictive distributions.

4.6 Results

Based on our four cases, we generated 210,000 realizations of lnK fields and tracer-test
predictions (100 realizations for 2,100 parameter sets from the posterior distribution). We have
confirmed that the number of realizations and parameter sets is enough to obtain convergence, by
gradually adding parameter sets until the distribution stops changing along with the increase in
simulations.

4.6.1 Breakthrough curves

Each plot in Figure 4.5 shows the mean and 95-percentile confidence interval (CI) of the
predicted BTCs along with the true BTC at each of the four testing-set wells in each of the four
cases. We may evaluate the performance based on tightness of the CI around the true BTC, and
closeness of the mean BTC to the true one. The mean BTC itself is the averaged value of all the
predicted BTCs, so that it does not represent one best-predicted BTC. However, closeness between
the mean and the true BTC is a good indication that the predicted BTCs are distributed around the
true BTC.

As indicated in Figure 4.5, at Well 2-08, Case 1 (ie) does not capture the true BTC in the
CI. Although adding the lithology data in Case 2 (ieL) makes the CI tighter, it has an adverse effect
in terms of CI capturing the true BTC. When only the tracer test is added, Case 3 (ieT) has a mean
BTC close to the true one, but the CI still does not include the true one. When both datasets are
included, however, the CI captures the true BTC.

The lithology data has a greater impact at Well 2-10, such that the CIs become tighter
around the true value with the lithology data added. With both datasets, Case 4 (ieLT) has a tight
CI and a mean BTC close to the true one. Co-location with the lithology data would be one of
the reasons for such a large impact, since the vertical profile of lnK at the well influences the
flux-averaged concentration. The lithology data also leads to the improvement at Well 2-23 when
combined with the tracer-test data such that with both datasets included, the mean BTC is very close
to the true one, even though Well 2-23 is far from the source and not co-located with the lithology
data.

At Well 2-15, the CI misses the true curve, even after including the tracer-test data; al-
though the breakthrough time is roughly captured, the predicted magnitude of BTC is lower than
the true one. Including the tracer-test data raises the CI slightly, but not enough to capture the true
BTC. This might be caused by a very local preferential flow path that was not captured by any of the
point-scale datasets. It is known that large-scale data has difficulty capturing highly local features
due to the averaging effect in the data. As Scheibe and Chien [2003] pointed out, this also suggests
the difficulty of predicting BTCs in the natural environment.
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Figure 4.5: Breakthrough curves (BTCs) at Well 2-08, Well 2-10, Well 2-15 and Well 2-23, based
on four different combinations of datasets; (ie) injection tests and EBF, (ieL) injection tests, EBF
and lithology, (ieT) injection tests, EBF and tracer tests and (ieLT) injection tests, EBF, lithology
and tracer tests. In each plot, the black line is the mean BTC, the dash lines are 95% CI and the read
line is the observed BTC.

4.6.2 Distribution of Comparison Metrics

We converted each BTC to four comparison metrics, as is described in the previous sec-
tion. As a result, we obtained the ensemble and predictive distribution for four metrics in four cases.
Since we have only eight testing-set wells, we can visualize the CI and mean of each metric at each
of the testing-set wells.
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Figure 4.6: 95% CI and mean of M0 at the eight testing-set wells, based on four different combina-
tions of datasets; (ie) injection tests and EBF, (ieL) injection tests, EBF and lithology, (ieT) injection
tests, EBF and tracer tests and (ieLT) injection tests, EBF, lithology and tracer tests. In each plot,
the black lines are 95% CI, the black circles are the mean, and the red line is the observed value.

Area under the BTC curve

Figure 4.6 shows the change in the mean and CI of the predicted M0 compared to the true
M0 at eight wells. Each plot includes four cases with different combinations of datasets. We can
see that including the tracer-test data, i.e., Case 3 (ieT) and Case 4 (ieTL), increases the width of
the CIs at all the wells, which is the direct opposite of our original expectation. However, we may
consider this as an improvement, since with tracer-test data added, all the CIs include the true M0,
which are missed in Case 1 (ie) and Case 2 (ieL) at Well 2-08 and Well 2-15. In addition, including
the tracer-test data leads to the mean values approaching the true values.

With only the lithology data added in Case 2 (ieL), the CIs become narrower than Case 1 (ie)
near the source (Well 2-08, 2-10, 2-14 and 2-15), which implies that the lithology data reduces un-
certainty. At some wells, however, the mean values and CIs move away from the true values, com-
pared to the Case 1 (ie), which implies that the lithology data increases mismatch or bias. There is
little difference between with-lithology and without-lithology cases at the wells far from the source.
With both the lithology and tracer-test data in Case 4 (ieLT), while the CIs are the largest among
the four cases at some wells (Well 2-08 and Well 2-14), the mean values are the closest to the true
values at most of the wells.
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Figure 4.7: 95% CI and mean of mean arrival time at the eight testing-set wells, based on four
different combinations of datasets; (ie) injection tests and EBF, (ieL) injection tests, EBF and lithol-
ogy, (ieT) injection tests, EBF and tracer tests and (ieLT) injection tests, EBF, lithology and tracer
tests. In each plot, the black lines are 95% CI, the black circles are the mean, and the red line is the
observed value.

Mean Arrival Time

In Figure 4.7, we can see similar features to M0, such that the tracer-test data moves the
mean closer to the true values, and the lithology data reduces uncertainty but increases bias at some
wells. Compared to M0, the CIs do not become wider when the tracer-test data is included except
for Well 2-14, at which the without-lithology cases (ie, ieL) do not capture the true values. At Well
2-14, although Case 4 (ieLT) has the largest CI, the mean value is significantly closer to the true
one, and the CI contains the true value better than Case 3 (ieT) without the lithology data. We can
also see that the CIs capture the difference within each of the equal-distance pairs. For example,
Well 2-14 has a much larger observed mean arrival time than Well 2-15; the predicted CIs at Well
2-14 are also located higher than the ones at Well 2-15, even without including the tracer-test data.
The other two pairs indicate the same feature. This implies that our assimilation scheme is able
to capture the local features of the field to some extent, since it captured the difference in a short
distance (i.e., in the 10 m interval between Well 2-14 and 2-15).

Overall, the performance in the mean arrival time is better than M0, in the sense that
the CIs did not become wider when the tracer-test data was added, and the CIs and mean moved
towards the true values with increasing data. It would be because mean arrival time is not only less
susceptible to errors in other properties, but is also (according to Cirpka and Kitanidis, [2000]) more
closely related to lnK.



68

Figure 4.8: 95% CI and average of peak arrival time at the eight testing-set wells, based on four
different combinations of datasets; (ie) injection tests and EBF, (ieL) injection tests, EBF and lithol-
ogy, (ieT) injection tests, EBF and tracer tests and (ieLT) injection tests, EBF, lithology and tracer
tests. In each plot, the black lines are 95% CI, the black circles are the mean, and the red line is the
observed value.

Peak Arrival Time

In Figure 4.8, the general features are similar to M0 and the mean arrival time, although
the CIs become much larger when the tracer-test test is included, compared to the mean arrival time.
Compared to the mean arrival time, the CIs of peak arrival time are smaller at the wells near the
source and larger at the wells far from the source. One of the reasons is that the BTCs were truncated
at 250 hrs in the simulations, and the peak did not appear in some of the realizations at the wells
far from the source. In addition, the mean arrival time includes the effect of BTC over the entire
observation time, whereas the peak arrival time does not account for later-time BTCs. The peak
time therefore has less uncertainty near the source, whereas the mean arrival time has the similar
magnitude of uncertainty at all the wells.

At Well 2-14, the true value is far from the mean values without the tracer-test data in
Case 1 (ie) and Case 2 (ieL). When all the datasets are included in Case 4 (ieLT), the CI and
mean values move closer to the true values, although there is no difference between Case 1 (ie)
and Case 3 (ieT), where the tracer test is included without lithology data. This suggests that the
lithology data was not beneficial by itself, but contributed in conjunction with the tracer test.
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Figure 4.9: 95% CI and average of peak concentration at the eight testing-set wells, based on
four different combinations of datasets; (ie) injection tests and EBF, (ieL) injection tests, EBF and
lithology, (ieT) injection tests, EBF and tracer tests and (ieLT) injection tests, EBF, lithology and
tracer tests. In each plot, the black lines are 95% CI, the black circles are the mean, and the red line
is the observed value.

Peak Concentration

In Figure 4.9, the CIs and mean show little difference among all the cases at most of
the wells. Including the lithology and tracer-test data does not improve the CIs and the mean val-
ues, except that the lithology data slightly reduces the CIs at Well 2-10. At Well 2-21, there is a
slight improvement with addition of the tracer-test data, such that the CIs include the true values in
Case 3 (ieT) and Case 4 (ieLT). At Well 2-15, the CIs do not capture the true values even with all
the datasets included, and the CIs do not change with additional datasets.

Bellin and Rubin [2004], noting that peak concentration was informative for a lnK field,
used peak concentration at multiple wells for inferring the structural parameters of the lnK field.
However, their framework was limited to the situation where the analytical solution was applicable.
In our case, as is mentioned in Chen et al. [2010], local features likely governed peak concentra-
tions. We may see such local features by comparing the peak concentration at Well 2-14 and 2-15.
Although they are only 10 m away from each other and at the same distance from the source, Well
2-15 has a peak twice as high as the one at Well 2-14.

4.6.3 Comparison Measures

To compare our four cases with all the testing-set wells combined, Figure 4.10 shows the
three comparison measures for each metric that we introduced in the previous section. To evaluate
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Figure 4.10: Change in the comparison measures with lithology and tracer-test data added: (a) Root
sum of MSE, (b) Root sum of AE and (c) Root sum of variance. Each plot has the different com-
binations of datasets in the same manner as Figure6-9: (ie) injection tests and EBF, (ieL) injection
tests, EBF and lithology, (ieT) injection tests, EBF and tracer tests and (ieLT) injection tests, EBF,
lithology and tracer tests. The values are normalized to Case 1(ie) in each metric.

the effect of lithology data and tracer-test data, all the values are normalized to Case 1 (ie).
In Figure 4.9(a), the SMSE stays almost the same for all four cases. We can see a slight

improvement in mean arrival time, which is consistent with Scheibe and Chien [2003]. The SAE in
Figure 4.9(b) shows improvement with the tracer-test data and increased mismatch with the lithol-
ogy data in all the metrics. With all the data combined, Case 4 (ieLT) has the biggest improvement,
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except for the peak concentration. The improvement is the most significant for mean arrival time.
In Figure 10(c), the SV increases when the tracer-test data are included, and decreases when the
lithology data are included. The opposite trend between the SAE and SV leads to a near-constant
SMSE, since MSE represents the combined impact of mismatch and uncertainty.

These three measures identified features similar to what we found in the mean values and
CIs, since the absolute error is the distance between the mean and true values, and the variance can
be interpreted as the width of interval. Since CIs are more informative but cumbersome to analyze,
this would imply that these measures are effective for comparing the performance of assimilation.

4.7 Discussion and Conclusion

In this study, we assimilated the constant-rate injection tests, EBF, lithology data, and
tracer test at the Hanford IFRC site within a Bayesian assimilation method, the method of anchored
distributions (MAD), a recently developed modular-based inversion method. MAD allowed us to di-
rectly infer the joint distribution of parameters required for stochastic simulations, and to assimilate
multiple types of datasets sequentially by updating the posterior distribution. After we assimilated
all the datasets, we evaluated the combined data worth, particularly focusing on the lithology data
and tracer-test data. Different from other studies, which focus on the data worth of each data point
or each data type, our study focused on the combination of the datasets, since each dataset cannot
be separately assimilated. This study provided useful insights into subsurface characterizations,
specifically regarding (1) the impact of including lithology data, (2) the impact of including tracer-
test data, (3) the differences among performance metrics and (4) the importance of the sequence of
assimilating different data types. Each point is discussed further below.

In terms of the lithology data, we observed that including the lithology data made the
CIs and the distributions tighter, both in the performance metrics and BTCs. Since the lithology
data is point-scale data, adding the lithology data increased the special coverage of point-scale lnK
values, which increased constraints on the randomly generated fields and reduced uncertainty. The
lithology data by itself, however, sometimes had an adverse effect on prediction, such that the mean
values or CIs diverged from the true values.

Including both the lithology and tracer-test data yielded significant improvement. Perhaps
paradoxically, lithology data had an adverse effect on prediction without tracer-test data, but a fa-
vorable effect when combined with tracer-test data. This is attributed to our anchor concept: each
Type-A anchor is not a single value, but rather a distribution. When we have only lithology data,
the prediction honors anchor values close to the mean of the distribution, which might be distant
from the true values. When we assimilate tracer-test data, the likelihood can honor the values closer
to the true value from the underrepresented region of the distribution. In inverse modeling, having
more point-scale information, i.e., Type-A data and anchors, not only reduces uncertainty but also
avoids or reduces nonuniqueness.

As we discussed in the introduction, the lithology data is often ignored in characterization
due to its large uncertainty [Scheibe and Chien, 2003]. We showed that it is useful as long as it is
integrated in a consistent manner, with the uncertainty property quantified. In our case, the lithology
data is especially effective, since we have sedimental classes with distinct differences in lnK. This
finding is consistent with Fu and Gomez-Hernandez [2007], who found that the point-scale data
reduced uncertainty and led to further improvement when combined with other types of data.
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Regarding the tracer-test data, we observed that adding the tracer-test data moved predic-
tive distributions and mean values closer to true values, except for the peak concentration. Although
we had expected that the tracer-test data would reduce uncertainty, i.e., reduce the width of CIs and
SV, we did not see such an effect at most of the wells. One of the possible reasons for this is that
the depth-averaged information at most of the training-set wells did not contribute to reducing the
uncertainty in depth-discrete lnK values. Another reason would be that EBF data and lithology data
could not capture some local features, which created bias in the prior distribution. The tracer-test
data contributed to fixing that bias, but the uncertainty stayed the same or larger (this is known
as bias-variance tradeoff). Hou and Rubin (2005) discussed the impact of the prior distribution as
well. From the perspective of stochastic modeling, however, we may consider that the tracer-test
data contributed significantly, since the 95% CIs captured all the true values, which were missed
without the tracer-test data.

Among the four metrics, the mean arrival time showed the best performance, in the sense
that additional datasets led to the consistent improvement such as reducing both the SAE and SMSE.
This would be because the mean arrival time is related more closely to the lnK field, and is less
affected by the errors in the other properties [Cirpka and Kitanidis, 2000]. The peak concentration
had the worst performance: the CIs did not change with lithology and tracer-test data, and failed
to capture the true values at some wells even with the additional datasets. This finding contrasts
with Bellin and Rubin [2004], who used the peak values for inference. In our case, as we can see
from the differences between nearby wells, strong local heterogeneity might have affected the peak
concentration. In addition, the peak concentration might be more prone to errors in other properties.

Within a sequential data assimilation method, these results would suggest that we must
consider the data assimilation procedure with respect not to the worth of each separate set of data,
but to their combined effect. The lithology data had an adverse effect by itself, but it contributed
significantly when the tracer-test data was included afterwards. In addition, we learned that bias
is hard to overcome once it is created, since the posterior distribution from one data type becomes
the prior distribution for the next data. In a characterization campaign, therefore, it is important to
plan the sequence of assimilation carefully and avoid potential bias. In our particular case, as is
discussed in Chen et al. [2010], the problem seems to be that the local preferential flow path was
not captured sufficiently by the wells. Introducing geophysical measurements would be beneficial
in such a situation, since they could possibly capture local features between the wells before large-
scale data are introduced [Scheibe and Chien, 2003; Rubin and Hubbard, 2005].
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Chapter 5

Summary

This dissertation describes the development of a Bayesian data assimilation method to in-
tegrate multiple data types for probabilistic prediction of groundwater flow and contaminant trans-
port, and application of the method to the real data at the Hanford 300 Area. The method particularly
focuses on characterizing a heterogeneous field of hydrogeological properties such as a hydraulic
conductivity field, which significantly affects flow and transport processes. The previous three chap-
ters investigated different aspects of the development and application, and presented a number of
associated findings.

Chapter 2 introduced a newly developed Bayesian geostatistical data assimilation method,
the method of anchor distribution (MAD), for characterizing a heterogeneous field of hydrogeolog-
ical properties based on various types of datasets. MAD starts by classifying the available data
depending on its scale, using two types of anchors (corresponding to two data types), with Type-A
data as the small-scale local data defined by a function of a point value of the field, and Type-B
data as the large-scale nonlocal data defined by a function of the field. Geostatistical structural
parameters describe global features of the field, whereas the anchors capture local trends of the
field. The goal for inversion of these data is to obtain a joint posterior distribution of anchor values
and structural parameters. The major advantages of MAD are that (1) it is directly connected to
stochastic modeling of groundwater flow and transport, since it can infer the joint distribution of
the parameters to be directly used as an input for stochastic simulations; (2) it fully quantifies the
parametric uncertainty as a statistical distribution; (3) it does not incur overfitting problems, since it
uses neither fitting nor optimization procedures, and (4) it has a modular structure, such that it is not
limited to any type of data or model, which enables it to be applied to a wide variety of data types
and modeling tools.

As indicated in Chapter 2, implementing MAD involves a choice of parameter sampling
algorithms–between the weighted resampling method and the Markov-chain Monte-Carlo (MCMC)
method. The method itself is sufficiently flexible to accommodate either method, depending on
available computational platforms and maturity of each component such as setting a likelihood es-
timation strategy. The weighted resampling method is suitable for a large-scale parallel computing
platform and/or the early stages of developing each component, since we can run as many forward
simulations as possible and we can test various likelihood strategies without redoing forward simu-
lations. Methods based on MCMC are more advantageous for a single-core or a small-scale parallel
computing platform and the later stages of component development, in which all components are
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properly fixed.
A synthetic study was conducted to test MAD with MCMC on a simple two-dimensional

flow problem. The results showed that the method successfully captured the true parameter values
and predicted values within the posterior distribution. It also showed the power of anchors, in that
introducing anchors led to a significant improvement by reducing uncertainty and capturing true
values in predicting the field and hydraulic head. Comparing the different anchor location settings
suggested that the number or location of anchors would depend not only on the physical process but
also on the goal of the inverse modeling such as inference of parameters and predictions.

In Chapter 3, the method is applied to a three-dimensional characterization of a heteroge-
neous hydraulic conductivity field within the Hanford 300 Area, by assimilating large-scale depth-
averaged data from constant-rate injection tests with small-scale depth-discrete data from electro-
magnetic borehole flowmeter (EBF) tests. The method was used first to invert zeroth-order temporal
moments of pressure-buildup curves during the injection tests for determining a joint posterior distri-
bution of two-dimensional geostatistical parameters and local log-transmissivities at multiple loca-
tions. After combining the distribution of transmissivities with a depth-discrete relative-conductivity
profile from the EBF data, the three-dimensional geostatistical parameters of the log-conductivity
field were inferred.

The results in Chapter 3 showed that the combination of EBF and injection tests is promis-
ing for characterizing a heterogeneous conductivity field in a coarse-grained and highly permeable
aquifer, which has been very difficult to characterize by other, conventional techniques. The results
showed broader and skewed distributions of geostatistical parameters except for the mean, which
suggested the importance of inferring the entire distribution to quantify the parameter uncertainty.
One particularly interesting finding was that increasing the number of injection tests led to an im-
provement up to three or four tests, but improvement beyond that was limited because of measure-
ment errors, and the repeated use and limited number of observation wells. The 3-D characterization
was restricted also by the EBF measurement density.

Chapter 4 described expanding data assimilation to include two more data sets: lithology
profile tests and tracer tests. The original method was further generalized for assimilating multiple
datasets sequentially in any order as long as the new data were conditionally independent of the
previously integrated datasets given parameters. The four datasets were assimilated in four different
combinations, and then the inversion results were compared among four cases, particularly focusing
on the impact of lithology and tracer-test data. In inversion, integrating the lithology data involved
the kernel density classification method, and the tracer-test data assimilation used the breakthrough-
curve temporal moments for reducing the data dimension. For comparison, four metrics were com-
puted based on the tracer-test breakthrough curves that were not used in the inversion, including
zeroth-order temporal moments of breakthrough curves, mean arrival time, peak concentration, and
peak time.

In the results described in Chapter 4, the two added datasets each had a different impact:
the lithology data reduced uncertainty but sometimes increased bias in the prediction, and the tracer
test data did not reduce uncertainty but was beneficial in reducing bias. In addition, the results
suggested that it would be necessary to consider the data assimilation procedure with respect not
to the worth of each set of data, but to the combined effect, since the combined effect of both data
types led to significant improvement in the prediction. Among the comparison metrics, the best and
most consistent improvement was found in mean arrival time, and the least improvement was found
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in peak concentration. One persistent difficulty was that bias is hard to overcome once it is created,
since the posterior distribution from one dataset becomes the prior distribution for the next dataset.
In any characterization campaign, therefore it is important to avoid potential bias and carefully plan
the order of assimilation.

Overall, the method removes the gap between data integration and prediction with respect
to parameter uncertainty; more specifically, it allows for directly inferring a joint distribution of
parameters to be used as input in stochastic simulations. It can integrate multiple types of datasets
in a consistent manner, such that the predictive distribution can reflect the uncertainty associated
with each type of dataset, including measurement errors and limited number of measurements. Such
a direct connection between data and prediction makes it possible to investigate the worth of each
dataset or the combined effect of multiple datasets.

This research revealed some interesting insights for subsurface characterization. First, it
is important to characterize the entire distribution of parameters for taking full account of parame-
ter uncertainty in stochastic simulations. Second, we should keep in mind that additional datasets
may not always yield what we would usually expect, i.e., smaller uncertainty with the true values
captured. Instead, we should consider that (1) repeated experiments of the same kind using sub-
sets of the same observation wells might cause redundancy in information, so that improvement
would saturate (severely diminish) above a certain number of tests; (2) configuration of data points
or observation wells restricts the available lags and spatial coverage for inferring geostatistical pa-
rameters; (3) not only different data types have different effects individually, but also the combined
effects could be very different from those individual effects, and (4) in the sequential assimilation,
we need to plan the order or sequence carefully, since if one dataset causes a significant bias, it is
difficult for additional datasets to correct the bias.

Finally, although the method is applicable for any site and data, the data assimilation
procedure is site-specific, in the sense that available data are always different, which requires us to
carefully examine the different assumptions and conditions in the flow and transport model. The
modular structure of the method, however, very effectively and consistently integrates multiple
datasets.
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Appendix A

Forward Model in Chapter 2

The forward model M used in the case study is the flow equation [Castagna and Bellin,
2009]:

∇ · (T (x)∇h(x)) = 0, (A.1)

where ∇ is the vector differential operator (the first ∇ represents divergence and the second ∇
represents gradient). T is the heterogeneous transmissivity and h is the hydraulic head. This equa-
tion is augmented by Dirichlet-type boundary conditions of constant (but different) heads along
the boundaries at y = 0 and y = 120 with the head difference of 1m/120m (see Figure 2.2),
and a Neuman-type no flow boundary conditions at x = 0 and x = 90, leading to a uniform-
in-the-average pressure gradients parallel to the y-axis. The numerical solution is based on the
finite-element method reported in Chapra and Canale (2002).
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Appendix B

Bayesian Model-based Geostatistics for
2-D Structural Parameters in Chapter 2

According to Diggle and Ribeiro [Chapter 6, 2006], we calculate the posterior distribu-
tions of the 2-D geostatistical structural parameters conditioned on za(xa). First, the scale φ depends
only on za(xa) and the prior distribution p(φ)as

p(φ | za(xa)) ∝ p(φ) | Vµ̂ |
1
2 | R |−

1
2
�
S2

�−N−1
2 , (B.1)

where each term is defined as the follows:

Vµ̂ =
�
1T R−11

�−1
,

µ̂ = Vµ̂1
T R−1za,

S2 =
1

na − 1
(zTa R−1za − µ̂TV −1

µ̂ µ̂), (B.2)

where R = R(xa, xa) is the auto-correlation matrix for za(xa), and 1 is the na-vector with all the
elements equal to one. The variance σ2 follows an inverse-scaled χ2 distribution χ2

Scl with (na−1)
degrees of freedom and a scale parameter equal to S2:

p(σ2 | φ, za(xa)) ∼ χ2
Scl(na − 1, S2). (B.3)

The mean follows a normal distribution with mean µ̂ and variance σ2Vµ̂:

p(µ | σ2,φ, za(xa)) ∼ N(µ̂,σ2Vµ̂). (B.4)

We multiply Equation (B.1), (B.3), (B.4), and the prior distribution to determine p(µ,σ2,φ | za).
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Appendix C

MCMC Implementation in MAD in
Chapter 2

We partitions the parameter vector into blocks as {µ,σ2,φ,ϑ1, ...,ϑJ−3}. We divide n2

anchors into J − 3 blocks. We sample each block as is described in the following sections.

C.1 Sampling of Structural Parameters

C.1.1 Scale φ

Bayes’s rule is applied to the conditional distribution for the scale as,

p(φ | µ(i),σ2(i),ϑ(i), z) =
p(zb | φ, µ(i),σ2(i),ϑ(i), za)p(φ | ϑ(i), za)

p(zb | µ(i),σ2(i),ϑ(i), za)
, (C.1)

where p(φ | µ(i),σ2(i),ϑ(i)) = p(φ | ϑ(i), za) from Equation (B.1). The acceptance ratio is obtained
as:

r =
p(φ∗ | µ(i),σ2(i),ϑ(i), z)
p(φ(i) | µ(i),σ2(i),ϑ(i), z)

q(φ(i) | φ∗, µ(i),σ2(i),ϑ(i), z)
q(φ∗ | φ(i), µ(i),σ2(i),ϑ(i), z)

(C.2)

=
p(zb | φ∗, µ(i),σ2(i),ϑ(i), za)
p(zb | φ(i), µ(i),σ2(i),ϑ(i), za)

p(φ∗ | ϑ(i), za)
p(φ(i) | ϑ(i), za)

q(φ(i) | φ∗, µ(i),σ2(i),ϑ(i), z)
q(φ∗ | φ(i), µ(i),σ2(i),ϑ(i), z)

.

For the proposal distribution, we apply the independent sampling [page 17 in Andreiu et.
al. 2003] and sample from the prior distribution, which is assumed to be a uniform distribution as
φ∗ ∼ Unif [φmin,φmax].

Then, we have the acceptance ratio as:

r =
p(zb | φ∗, µ(i),σ2(i),ϑ(i), za)
p(zb | φ(i), µ(i),σ2(i),ϑ(i), za)

p(φ∗ | ϑ(i), za)
p(φ(i) | ϑ(i), za)

. (C.3)

p(φ∗ | ϑ(i), za) and p(φ(i) | ϑ(i), za) are analytically determined according to Equation (B.1),
since the anchors and Type-A data {ϑ(i), za} are the point-scale conditioning points, i.e., error-free
measurements. The likelihood of zb is determined through numerical simulations.
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C.1.2 Variance σ2

In the same manner as the scale, Bayes’ rule is applied to the invariant distribution as,

p(σ2 | φ(i+1), µ(i),ϑ(i), z) =
p(zb | σ2,φ(i+1), µ(i),ϑ(i), za)p(σ2 | φ(i+1),ϑ(i), za)

p(zb | φ(i+1), µ(i),ϑ(i), za)
. (C.4)

We use the independent sampling to draw the proposal value as,

σ2∗ ∼ q(σ2 | φ(i+1), µ(i),ϑ(i), z). (C.5)

Since we had an analytical form in Equation (B.2), we sampled the variance from the conditional
pdf on the direct measurements and anchors p(σ2 | φ(i+1),ϑ(i), za) The acceptance ratio is

r =
p(zb | σ2∗,φ(i+1), µ(i),ϑ(i), za)
p(zb | σ2(i),φ(i+1), µ(i),ϑ(i), za)

. (C.6)

It means that we draw the proposed variance from the pdf conditioned on all but the non-local data,
and decide to jump depending on the non-local data zb.

C.1.3 Mean µ

In the same manner as the variance and scale, we apply Bayes’s rule as:

p(µ | φ(i+1),σ2(i+1),ϑ(i), z) =
p(zb | µ,φ(i+1),σ2(i+1),ϑ(i), za)p(µ | φ(i+1),σ2(i+1),ϑ(i), za)

p(zb | φ(i+1),σ2(i+1),ϑ(i), za)
.

(C.7)
We use the independent sampling again to draw the proposal value from the analytical form, in the
same manner as the variance as µ∗ ∼ p(µ | φ(i+1),σ2(i+1),ϑ(i), za) .

The acceptance ratio is

r =
p(zb | µ∗,φ(i+1),σ2(i+1), µ(i),ϑ(i), za)
p(zb | µ(i),φ(i+1),σ2(i+1), µ(i),ϑ(i), za)

. (C.8)

C.2 Anchor block ϑj

In the same manner above, the Bayes rule is applied.

p(ϑj | φ(i+1),σ2(i+1), µ(i+1),ϑ(i)
−j , z)

=
p(zb | ϑj ,φ(i+1),σ2(i+1), µ(i+1),ϑ(i)

−j , za)p(ϑj | φ(i+1),σ2(i+1), µ(i+1),ϑ(i)
−j , za)

p(zb | φ(i+1),σ2(i+1), µ(i+1),ϑ(i)
−j , za)

. (C.9)

We draw the proposal value in the same manner as the previous parameters from the pro-
posal distribution p(ϑj | φ(i+1),σ2(i+1), µ(i+1),ϑ(i)

−j , za), where the vector {ϑ(i)
−j , za} becomes the

conditioning points. This proposal distribution is the multivariate Gaussian distribution with struc-
tural parameters {φ(i+1),σ2(i+1), µ(i+1)} and conditioning points {ϑ(i)

−j , za}. Then, the acceptance
ratio is

r =
p(zb | ϑ∗

j ,φ
(i+1),σ2(i+1), µ(i+1),ϑ(i)

−j , za)

p(zb | ϑ
(i)
j ,φ(i+1),σ2(i+1), µ(i+1),ϑ(i)

−j , za)
. (C.10)
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Appendix D

Temporal Moment Formulation for
Injection Tests in Chapter 3

According to Li et al. [2005] and Zhu and Yeh [2006], the k-th-order temporal moment
mk(x) for a pressure-buildup curve s(x, t) is defined by

mk (x) =

� ∞

0
tks (x, t) dt. (D.1)

In this study, we use only the zero-order moment m0(x) for the inversion to characterize the T field,
which can exclude uncertainty in the storage coefficient and avoid an alias effect of the storage-
coefficient uncertainty to the T field. Under the constant injection condition, we obtain m0(x) from
the equation:

∇ · (T∇m0) + τQδ (x− xp) = 0, (D.2)

with the boundary condition at the Drichlet boundary Γdri as,

m0 = 0, on ΓDri, (D.3)

where T (x) is the depth-integrated T value, τ is the injection duration, Q is the constant injection
rate and xp is the injection well location. The Drichlet boundary condition was imposed at the
nearest observation well location, where the m0 value is known, in the same manner that Firmani et
al. [2006] imposed a boundary condition at the injection well location. Note that Equation (D.2) is
the same as the one for determining hydraulic head under steady-state flow with a constant injection
rate τQ.
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Appendix E

Bayesian Model-based Geostatistics for
3-D Structural Parameters in Chapter 3

According to Diggle and Ribeiro [Chapter 6, 2006], we calculate the posterior distribu-
tions of the 3-D geostatistical structural parameters conditioned on u(x). First, the scales λh and λv

and nugget variance ν2 depend only on u as

p(λh,λv, ν
2|u) ∝ π(λh,λv, ν

2)|Vβ̂ |
1
2 |(R(3−D) + ν2I)|−

1
2 (S2)−

N−1
2 , (E.1)

where each term is defined as the follows:

Vβ̂ = [1T (R(3−D) + ν2I)−11]−1,

β̂ = Vβ̂1T (R(3−D) + ν2I)−1u,

S2 =
uT (R(3−D) + ν2I)−1u − β̂TV −1

β̂
β̂

N − 1
, (E.2)

where N is the dimension of u, R(3−D) = R(3−D)(x, x) is the auto-correlation matrix for u, 1 is the
N -vector with all the elements equal to one, and I is the identity matrix. The variance η2 follows an
inverse-scaled χ2 distribution χ2

Scl with (N − 1) degrees of freedom and a scale parameter equal to
S2:

p(η2|λh,λv, ν
2, u) ∼ χ2

Scl(N − 1, S2). (E.3)

The mean follows a normal distribution with mean β̂ and variance η2Vβ̂:

p(β|η2,λh,λv, ν
2, u) ∼ N(β̂, η2Vβ̂). (E.4)

We multiply Equation (E.1), (E.3), (E.4), and the prior distribution to determine p(β, η2,λh,λv, ν2|u).




