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Abstract of the Thesis

Concave Penalized Estimation of Causal Gaussian

Networks with Intervention

by

Dacheng Zhang

Master of Science in Statistics

University of California, Los Angeles, 2016

Professor Qing Zhou, Chair

We propose a penalized log-likelihood method for estimating causal Bayesian networks using

a mix of intervention data and observation data, based on Aragam and Zhou’s previous

algorithm [AZ15]. A causal Bayesian network is represented as a directed acyclic graph

(DAG). With intervention data, we can distinguish the true graph from DAG equivalence

classes and learn about special structures in the graph. Tests on simulated data show that

this method is consistent and is superior to other methods in multiple aspects such as true

positive rate and timing. A two-stage approach to estimate big networks is proposed as an

application of our method.
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CHAPTER 1

Introduction

Bayesian network has seen its wide application in recent years in various modern areas

such as gene regulatory networks, medicine, and text classification, following the growing

demand of machine learning techniques. Bayesian network is useful for the fact that its

graphic representation, which is a directed acyclic graph (DAG), can be used to represent

conditional dependence relationships among variables. This encourages us to use Bayesian

network to do causal inference on the data and phenomena we observed from these variables,

in order to learn the mechanism behind them. In most cases, the primary task of causal

inference is learning the structure of a causal Bayesian network, or equivalently, its DAG

representation. Though it has been shown that structure learning of a Bayesian network is

an NP-hard problem [CGH94], numerous estimating methods have been developed. Apart

from using prior domain knowledge to facilitate the learning process, most of these methods

can be categorized as constraint-based and score-based, as well as some hybrids of these two

categories.

Constraint-based methods run repeated tests to detect the existence of edges between

nodes. Edges are deleted if the connecting nodes are shown to be conditionally indepen-

dent, so in the end the remaining edges will represent causal relationships between edges.

PC algorithm [SGS00, KB07] and the Maximum Minimum Parents and Children (MMPC)

algorithm [TBA06] are two classic examples among many others adopting this idea.

A score-based method, on the other hand, sets up a scoring function, usually consisting

of likelihood and penalty terms, over all possible DAGs, and then search for one DAG that

optimizes said scoring function. Classic choices of the scoring function include likelihood-

equivalence Bayesian Dirichlet score metric [HGC95], minimum description length [LB94],
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and other types of metrics. Recent development of methods in this category are often

accompanied with focus on sparse penalty. For instance, van de Geer and Bühlmann [GB13]

used `0 penalized maximum likelihood, while Meinshausen and Bühlmann [MB06] and Fu

and Zhou [FZ13] adopted `1 penalty.

Hybrid methods take advantages of both categories, as they first use constraint-methods

to limit possible DAGs to a much smaller space, and then optimize for some scoring functions.

The Max-Min Hill-Climbing (MMHC) algorithm [TBA06] is one famous example; another

method under this category integrated an information-theory-based approach and a scoring-

function-based approach [CAL08].

The basis algorithm of our new algorithm from Aragam and Zhou’s work [AZ15] is a score-

based method, as it requires neither prior domain knowledge nor conditional dependence

tests; it adopts a concave penalty in a more generalized and flexible form. As a step forward,

our algorithm presented in this article makes use of intervention data to better distinguish

the true underlying DAG from its equivalence classes. Related works on using intervention

include He and Geng’s work [HG08] finding an optimal experiment design for intervention to

correct the directions of edges; Hauser and Bühlmann [HB15] establishes maximum likelihood

estimator for the DAG on a mixture of both observational and interventional data.

The rest of this article is organized into five sections. Section 2 shows the importance of

intervention to help identify the true model among equivalence classes on general Bayesian

network models, and then establish a formulation of the structure learning problem specific

for causal Gaussian networks by translating it into an concave penalized optimization prob-

lem. Section 3 highlights core details of as well as supplements to the original algorithm,

including several changes made to utilize intervention data. Section 4 summarizes numerical

results of simulation studies on networks of different sizes, and compares our new algorithm

with other methods. Section 5 proposes a two-stage approach, as an application of our new

algorithm, to estimate Bayesian networks of even bigger sizes. Section 6 concludes the article

with remarks and discussions.
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CHAPTER 2

Preliminaries

Before we propose a detailed setup for our estimating method, we first present a general

discussion on the necessity of intervention data in estimating Bayesian networks. A causal

Bayesian network is often represented in two common ways. One way is the joint probability

distribution: for a causal Bayesian network with p random variables X1, . . . , Xp, the joint

probability distribution can be factorized as

P (X1, . . . , Xp) =

p∏
j=1

P (Xj|ΠG
j ), (2.1)

where ΠG
j is the set of “parents” of Xj; in other words, a change in one or some nodes in

ΠG
j will directly “cause” a change in the distribution of Xj, eventually affecting observed

outcomes of Xj. When Xj does not have any parents, we set ΠG
j = ∅. This is how the causal

relationships are reflected in the joint distribution factorization.

On the other hand, the structure of a causal Bayesian network can also be represented

by a DAG G = (V,E), with V = {1, . . . , p} as the set of nodes in the graph, and E = {(i, j) :

Xi ∈ ΠGj , 1 ≤ i, j ≤ p} as the set of directed edges. The acyclicity of G is essential for (2.1) to

be well-defined, while the directions of edges will explicitly represent the causal relationships

between nodes. The weights of edges are less relevant to the structure of a DAG so they are

neglected in our method, since our primary task is inference on the structure of the causal

Bayesian network.

To see how intervention would help determine a causal Bayesian network, let us consider

the simplest case, with only two nodes, X1 and X2. We can factorize the joint probability

in two ways:

P (X1, X2) = P (X1)P (X2|X1) = P (X2)P (X1|X2). (2.2)
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Each in this equivalence class represents a DAG G1 : X1 → X2 and G2 : X2 → X1, respec-

tively, and can serve as a reasonable explanation of the casual relationship between these

two nodes. With purely observational data only and no prior domain knowledge, we do not

have any evidence to give preference to one DAG over the other one. Naturally we shall

consider using experimental intervention as a test to gain evidence to distinguish the true

causal relationships from others in its equivalence class.

Suppose during the data generation process we can fix X2 with some known distribu-

tion P (X2|·) which is independent of the DAG, while letting X1 generated under the true

mechanism. We will immediately see there is a difference between the new joint distribution

assuming either G1 or G2 is the true DAG:

P̃ (X1, X2) =

 P (X1)P (X2|·) , if G1 : X1 → X2 is true;

P (X2|·)P (X1|X2) , if G2 : X2 → X1 is true.
(2.3)

As a result of such difference, the log-likelihood of these two DAGs will also be different;

we may then infer the true causal relationships by choosing the DAG that maximizes the

log-likelihood function. This is how intervention will play a critical role in our proposed

estimating method.

Note that in (2.3), the interventional distribution P (X2|·) appears in both cases. It is

also independent of the DAG, so it can be dropped when maximizing the log-likelihood to

simplify the calculations.

To apply this general idea to a more specific setting, from now on we will focus on

Gaussian networks; we assume the data, without any intervention, come from a p-variate

Gaussian distribution:

(X1, . . . , Xp) ∼ N (0,Σ), (2.4)

This can be rewritten as a system of Gaussian structural equations as follows:

Xj =

p∑
i=1

βijXi + εj, j = 1, . . . , p. (2.5)

Here εj’s are mutually independent noises with εj ∼ N (0, ω2
j ) and independent of ΠG

j as well;

let Ω = (ω2
1, . . . , ω

2
p) ∈ Rp

+ be a vector collecting the variances. Coefficients β0
ij take non-zero
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values if and only if i ∈ ΠGj . Let B = (βij)p×p be the coefficient matrix. It is possible to

construct a DAG from B, denoted as GB, containing all edges i → j whenever βij 6= 0. We

refer to GB as the graph induced by B.

As for interventions, we assume the interventions on each Xj follow N (0, σ̂2) i.i.d. for

all j. A node free from intervention still follows the distribution described in (2.5), though

at the time some or all of its parent nodes may be under intervention. It is advised that all

the nodes of a DAG should be topologically sorted, i.e. i < j for all j that is a parent of

i, so that this system (2.5) can be used as an efficient mechanism to sequentially generate

samples following the desired distribution.

Having specified the distributions, we now present how we organize the sample data

generated in an experiment into an n × p data matrix X. The rows of X are independent

samples which shall be grouped into p blocks, so that the j-th group Xj contains all nj

rows where Xj is under intervention. We allow multiple interventions in each row, so these

p groups may overlap. When a mixture of observational data and intervention data is

presented, we will allow an additional (p + 1)-th group Xp+1 for the observational samples;

in other words, this group consists of the rows where none of the nodes is put under the

intervention distribution.

Let Oj be the collection of row indices where Xj is not under intervention, and n−j =

|Oj| = n− nj. By plugging in the density of Gaussian distributions defined in (2.5), we get

the negative log-likelihood function of B and Ω as

L(B,Ω|X) =

p∑
j=1

[n−j
2

log(ω2
j ) +

1

2ω2
j

∥∥X[Oj ,j]
−X[Oj ,−j]B[−j,j]

∥∥2
]
, (2.6)

where M[Ia,Ib] denotes a submatrix of M by only selecting rows in the set Ia and columns in

the set Ib.

Since we are estimating a sparse DAG, we would like to include penalty terms along with

the negative log-likelihood into the score function. We impose a penalty function pλ(·) on

each βij, so as to discourage estimates with too many edges, thus avoiding overfitting and

ensuring sparsity. λ will be the tuning parameter and we will introduce additional shape

parameters for more flexibility.
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To summarize, so far we have successfully translated our causal Gaussian network struc-

ture learning problem into seeking a solution the following minimizing problem:

minimize
B,Ω

L(B,Ω|X) +
∑
i,j

αjpλ(|βij|)

subject to ω2
1, . . . , ω

2
p > 0, GB is an DAG.

(2.7)

Here αj = n−j/n is a weight added to the penalty function to reflect the fact that βij only

appears n−j times out of total n samples.

By minimizing this score function, we will get a sparse estimate of the true underlying

Bayesian network. In the next chapter we will provide details as well as new features in the

minimizing algorithm as an supplement to Aragam and Zhou’s work [AZ15].

6



CHAPTER 3

Algorithms

3.1 Non-convex optimization

It is easy to check that the negative log-likelihood function (2.6) is non-convex, which

makes our optimization work harder than conventional convex optimization. However, we

can overcome this by a reparameterization:

ρj = 1/ωj, φij = βij/ωj, i, j = 1, . . . , p.

R = (ρ2
1, . . . , ρ

2
p), Φ = (φij)p×p.

(3.1)

Under the new reparameterization we can rewrite the negative log-likelihood function as

L(Φ, R|X) =
n∑
j=1

[
− n−j log(ρj) +

1

2

∥∥ρjX[Oj ,j]
−X[Oj ,−j]B[−j,j]

∥∥2
]
. (3.2)

The new loss function is now convex, and Φ induces a graph of the same structure as B does,

so the constraint on GB being acyclic is exactly translated to GΦ being acyclic. It should be

clear that this DAG constraint is still non-convex.

In our work we use the minimax concave penalty (MCP) [Zha10] as the penalty on all

φij. It is defined for t ≥ 0 as

pλ(t; γ) := λ
(
t− t2

2λγ

)
1(t < λγ) +

λ2γ

2
1(t ≥ λγ) (3.3)

It can be checked that αpλ(t; γ) = pαλ(t;
1
α
γ). This is useful when rescaling the penalty terms

and will allow us to absorb the weights into the penalty terms to get a more unified formula

for minimizers, as we will see in (3.11) in the next section.
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3.2 Coordinate descent

The non-convex constraint on GΦ being acyclic has made it impossible to minimize the

objective function over the entire parameter space of all φij’s simultaneously since no global

minimum point is garunteed. Instead we will use coordinate descent; that is, at each time

we only minimize the objective function over one variable while holding the others fixed, and

then we cycle through all variables until convergence.

Moreover, the acyclicity constraint inspires us to minimize over the pair {φij, φji} simul-

taneously, as they cannot be both be non-zero at any time. Therefore, to ensure acyclicity,

when minimizing, we first check whether adding the edge i→ j induces a cycle; if so, we set

φij = 0 and minimize over φji. Similarly, if adding j → i induces a cycle, we just set φji = 0

and minimize over φij. If neither of them induces a cycle, we minimize over them separately

and chooses whichever achieves a smaller value in the score function.

For each single variable, the contributing terms in the score function are:

Q1(φij) =
1

2

∥∥ρjX[Oj ,j]
−X[Oj ,−j]B[−j,j]

∥∥2
+ αjpλ(|φij|; γ),

Q2(ρj) = −n−j log ρj +
1

2

∥∥ρjX[Oj ,j]
−X[Oj ,−j]B[−j,j]

∥∥2
(3.4)

In these functions all other variables other than φij or ρj are considered fixed. Without loss

of generality, we may assume the columns in the partial data matrix X[Oj ,·] are normalized

to have unit length and center at 0, since such a rescaling will not change the minimizer.

To find the minimizer for Q1, we need to rewrite Q1 :

Q1(φij) =
1

2

∑
h∈Oj

(
ρjxhj −

∑
k 6=i

φkjxhk − φijxhi
)2

+ αjpλ(|φij; γ) (3.5)

=
1

2

∑
h∈Oj

x2
hi

( 1

xhi
r

(h)
ij − φij

)2

+ αjpλ(|φij|; γ) (3.6)

=
1

2

( ∑
h∈Oj

(r
(h)
ij )2 − 2φij

∑
h∈Oj

xhir
(h)
ij + φ2

ij

)
+ αjpλ(|φij|; γ) (3.7)

=
1

2

(
φ2
ij −

∑
h∈Oj

xhir
(h)
ij

)2

+ pαjλ
(φij; γ/αj) + const. (3.8)

Here r
(h)
ij := ρjxhj −

∑
k 6=i φkjxhk. From (3.6) to (3.7) we expand the squares and make use
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of the assumption that
∑

h∈Oj
x2
hi = 1 to simplify the expressions.

The constant term on the last line does not involve φij so it can be dropped in the

minimization process. This allows us to find the minimizer by solving a minimizing problem

in a more general form:

arg min
β

Q1(β) =
1

2
(β − β̃)2 + pλ(|β|) (3.9)

When we choose MCP as the penalty term, the solution to the minimizing problem above

is given by the following cases depending on γ: [Zha10]

if γ > 1, Sγ(β̃, λ) =


0, |β̃| ≤ λ,

sgn(β̃)
(
|β̃|−λ
1−1/γ

)
, λ < |β̃| ≤ λγ,

β̃, |β̃| > λγ,

if 0 < γ ≤ 1, Sγ(β̃, λ) =

 0, |β̃| ≤ λ,

β̃, |β̃| > λ,

(3.10)

Now back to (3.8), clearly the minimizer will be

φ∗ij = arg minQ1(φij) = Sγ/αj

( ∑
h∈Oj

xhir
(h)
ij , αjλ

)
. (3.11)

On the other hand, minimizing Q2(ρj) is much more direct as we do not have to go into

cases:

ρ∗j = arg minQ2(ρj) =
c+

√
c2 + 4n−j
2

, where c =
∑
k 6=j

φkj
∑
h∈Oj

xhkxhj. (3.12)

3.3 Algorithm

Below is a summary of the entire algorithm.

It should be pointed out that coordinate descent is heavily affected by the order of nodes.

Edges between last few nodes in the graph may be dropped simply due to acyclicity induced

by edges estimated earlier in this cycle, even though they may be the true minimizer. It

is suggested that we either permute the columns of the data matrix before running the

algorithm, or permute the nodes each time we cycle through all the pairs when running the

algorithm.
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Algorithm 1: CCDri Algorithm for mixed observation and intervention data

Input: Data matrix X of size n× p; a list of n vectors where each vector contains

labels indicating the nodes under intervention in its corresponding row in X;

initial estimates (Φ(0), R(0)); penalty parameters (λ, γ); error tolerance ε > 0;

maximum number of iterations M .

1. Normalize the columns of X[Oj ,·] (j = 1, . . . , p) to unit length for each j separately, so

a normalization for X[Oj ,·] does not affect the normalization for X[Ok,·] for k 6= j.

2. Cycle through ρj for j = 1, . . . , p, minimizing Q2 over each ρj at a time.

3. Cycle through the p(p− 1)/2 pairs {φij, φji} for j, k = 1, . . . , p and k < j, minimizing

Q1 over each pair according to the following cases:

(a) If φij (or φji) must be 0 due to acyclicity, then we minimize Q1 over the other

one in the pair, and update the pair as {0, φ∗ji} (or {φ∗ij, 0}).

(b) If there is no acyclicity constraint, then we try to find a minimizer to

Q1(φij) +Q1(φji) while setting φij and φji to 0 respectively, and choose the

better minimizer of the two as the update for the pair.

4. Repeat Step 2 and Step 3, until either the difference between two updates

maxi,j |φ
(l−1)
ij − φ(l)

ij | is less than ε, or iteration times exceeds M .

5. Convert the final result (Φ̂, R̂) back to the original parameters (B̂, Ω̂) as output

estimates.

3.4 Solution path

When estimating the Bayesian network from samples, we feed the algorithm with a series

of λ to generate a solution path, from which we will choose the best one based on criteria

involving some performance metrics.

The main factor we evaluated is the Structure Hamming Distance (SHD) [TBA06] be-
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tween each estimate and the true graph. It is defined as the minimal number of the following

three types of operators required to make the two DAGs match: add, delete, and reverse the

direction of an directed edge.

We choose the best estimate to be the one in the solution path with smallest SHD from

the true graph; in the event of a tie, the one with more estimated edges is preferred, as we

do not want an underfitting model even though we know the true Bayesian network should

be sparse.
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CHAPTER 4

Simulation results

4.1 Performance in small networks

In the following simulations, we generate samples with interventions, and apply this

algorithm (CCDri), the original algorithm without considering intervention effects (CCDr),

along with CCDAG algorithm from Fu and Zhou (2013). For the last one, the best estimate

is selected from the solution path using the same criteria as our algorithm. The number

of nodes in the graph ranges from p ∈ {10, 20, 50, 100}, and the number of expected edges

in the graph ranges from n ∈ {0.5p, p, 2p} for each p. For each pair of n and p, we run

simulations twice, where each node will get intervention twice and 5 times respectively.

The performance will be based on the following three factors: SHD; truth positive rate

(TPR), which is defined as the percentage of correctly estimated edges in the true graph; and

false discover rate (FDR), which is defined as the percentage of incorrectly estimated edges

(estimated in the reverse direction, or not existing in the true graph) in the estimated graph.

We will report each factor averaged over simulations repeated 50 times for each setting.

Intervention times = 2 Intervention times = 5

p n Algorithm TPR FDR SHD TPR FDR SHD

10

5

CCDri 0.4676 0.3296 3.46 0.7963 0.2008 1.542

CCDr 0.3459 0.4339 3.98 0.4686 0.4779 3.208

CCDAG 0.3310 0.2378 4.20 0.8094 0.1615 1.583

10
CCDri 0.3959 0.3923 6.98 0.6993 0.2586 4.00

CCDr 0.2832 0.4854 7.96 0.4175 0.5097 6.46

Continued on next page
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Table 4.1 – Continued from previous page

Intervention times = 2 Intervention times = 5

p n Algorithm TPR FDR SHD TPR FDR SHD

10

10 CCDAG 0.4365 0.3620 7.44 0.7730 0.2406 3.66

20

CCDri 0.3085 0.4710 16.48 0.4708 0.3952 13.20

CCDr 0.2180 0.6018 18.32 0.2694 0.5736 16.68

CCDAG 0.5821 0.3718 13.76 0.7740 0.2604 8.18

20

10

CCDri 0.5646 0.3169 4.64 0.7725 0.2059 2.94

CCDr 0.3394 0.5625 6.74 0.5540 0.4304 5.12

CCDAG 0.5213 0.3440 5.72 0.8287 0.1865 2.72

20

CCDri 0.5546 0.3429 11.38 0.7174 0.2337 7.16

CCDr 0.3446 0.5285 15.16 0.5166 0.4401 11.72

CCDAG 0.4902 0.3407 13.42 0.7984 0.1920 6.16

40

CCDri 0.2915 0.4297 32.76 0.4206 0.4263 29.78

CCDr 0.2160 0.5214 35.24 0.2594 0.5305 34.54

CCDAG 0.4220 0.4159 32.22 0.7016 0.3177 20.82

50

25

CCDri 0.6689 0.3069 8.82 0.8411 0.1570 4.46

CCDr 0.5114 0.4550 12.82 0.5532 0.4390 11.88

CCDAG 0.6376 0.3120 9.86 0.8306 0.1645 4.84

50

CCDri 0.6510 0.2902 20.48 0.7793 0.2096 13.42

CCDr 0.5197 0.4357 28.32 0.5905 0.3960 24.36

CCDAG 0.6098 0.3006 23.96 0.8112 0.2078 13.68

100

CCDri 0.4533 0.4110 68.82 0.3349 0.5190 79.66

CCDr 0.3349 0.5190 79.66 0.4038 0.4882 74.28

CCDAG 0.4790 0.4291 77.86 0.6888 0.3142 51.20

100 50
CCDri 0.7407 0.2597 13.92 0.8446 0.1567 8.42

CCDr 0.5723 0.4272 22.64 0.5758 0.4232 22.84

Continued on next page
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Table 4.1 – Continued from previous page

Intervention times = 2 Intervention times = 5

p n Algorithm TPR FDR SHD TPR FDR SHD

100

50 CCDAG 0.7127 0.2847 16.14 0.7931 0.2165 11.80

100

CCDri 0.7274 0.2527 31.84 0.8322 0.1618 18.76

CCDr 0.5798 0.4022 50.26 0.5910 0.3926 45.68

CCDAG 0.6989 0.3106 40.66 0.7919 0.2257 25.60

200

CCDri 0.5922 0.3426 107.08 0.6692 0.2812 90.14

CCDr 0.4858 0.4401 132.60 0.5122 0.4220 127.52

CCDAG 0.5470 0.3552 127.00 0.7432 0.2908 85.36

Table 4.1: Performance in small networks compared with other methods

Table 4.1 summarizes the result of the simulations. Overall CCDri outperforms CCDr,

which shows that this new algorithm is indeed effective in estimating Bayesian network by

taking advantage of the intervention introduced to the data. From the table we also see that

our algorithm works better when the graph is sparse (i.e. when n/p2 is small).

We may observe that for fixed p, when n grows, the accuracy of all algorithms drops, as

TPR decreases and FDR increases. This is due to the fact the increasing number of edges in

a graph means a more complex acyclic constraint on optimization. When doing coordinate

descent in the last few pairs, edges are more likely to be chosen because they do not induce

any cycle in the graph rather than because they minimize the score function better their

reversed edges.

As for comparing CCDri with CCDAG, we can see that when each node gets less inter-

vention (twice), the performance of CCDri and CCDAG are close; when each node gets more

intervention (5 times), CCDAG slightly outperforms, at the cost of taking much longer time.

This will be shown in the figure 4.1 below. It can be seen that CCDAG becomes much slower

when the Bayesian network grows bigger, while accuracy does not improve very significantly.

Lastly we will take one particular setting n = p = 100 and investigate the effect or using
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Figure 4.1: Comparing time used by CCDri and CCDAG

more intervention data. First we add intervention data step by step to see verify that our

algorithm gives consistent estimators. As the figure on the left in Figure 4.2 shows, this is

indeed the case; the average timing increases as well, steadily from 1.022 seconds to 3.676

seconds. In practice we may put intervention on each node 5 to 10 times in order to achieve

high accuracy at an affordable cost.

Another way to use more intervention data is to put intervention on multiple nodes

simultaneously in each sample. In this experiment we increase the number of nodes getting

intervention from 1 to 20 in each step. As the figure on the right in Figure 4.2 shows,

this is a working method as well, though not as effective as using more samples; however,

average timing for this method does not increase too much, merely from 0.946 seconds to

1.076 seconds. This method can be used when we can ensure that the intervention we put

on different nodes simultaneously are independent and do not interact with each other.
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Figure 4.2: The effect of using more intervention

4.2 Performance in larger networks

We also run simulations for graphs with n > 100 nodes. The number of nodes in the

graph ranges from p ∈ {200, 500}, and the number of expected edges in the graph ranges

from n ∈ {0.5p, p, 2p} for each p. CCDAG is dropped in these settings, because it takes

much longer time only to give estimates at similar accuracy as our algorithm does, as we

have seen in the pervious simulations. Instead, we compare our algorithm with MMHC from

bnlearn package. We also considered PC algorithm form pcalg package in the preparation

of the simulations. However, it is not included because the estimated graph of PC algorithm

contains edges with both directions, so it is not a DAG, and thus not suitable to calculate

SHD as well as other performance metrics.

Again, the results show that CCDri outperforms CCDr. However, in these simulations

the difference of time used by CCDri and CCDr becomes more significant, even in the

cases where each node get intervention only twice. This is primarily due to the amount of

extra computation procedures introduced by intervention. It is also surprising to see that,

while MMHC performs poorly in sparse Bayesian networks as its FDR is unusually high,
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it performs even better than CCDri when n = 2p so the network is not too sparse. This

suggests that MMHC might tend to overfit.
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Intervention times = 2 Intervention times = 5

p n Algorithm TPR FDR SHD TPR FDR SHD

200

100

CCDri 0.7560 0.2486 25.84 0.8423 0.1563 16.22

CCDr 0.5784 0.4200 44.52 0.5760 0.4197 44.04

CCDAG 0.6776 0.7179 171.96 0.6692 0.6750 138.34

200

CCDri 0.7538 0.2355 54.96 0.8311 0.1645 38.56

CCDr 0.5918 0.3897 92.50 0.6072 0.3761 88.86

CCDAG 0.7749 0.4087 108.46 0.7741 0.3829 97.00

400

CCDri 0.6796 0.2859 170.82 0.7620 0.2180 131.50

CCDr 0.5732 0.3720 222.18 0.5920 0.3515 211.1

CCDAG 0.6949 0.1955 141.90 0.7702 0.1622 108.58

500

250

CCDri 0.7766 0.2165 60.09 0.8254 0.1553 37.28

CCDr 0.5585 0.4348 119.5 0.5811 0.3902 78.41

CCDAG 0.6546 0.7839 627.5 0.7544 0.7007 560.3

500

CCDri 0.7672 0.2328 132.0 0.8039 0.1674 96.15

CCDr 0.6210 0.3756 220.1 0.6808 0.3064 204.5

CCDAG 0.7665 0.5074 396.5 0.7974 0.4835 340.6

1000

CCDri 0.7365 0.2269 336.8 0.8128 0.1633 274.3

CCDr 0.6043 0.3101 488.2 0.6803 0.2417 390.1

CCDAG 0.8661 0.1493 203.4 0.8909 0.1221 175.2

Table 4.2: Performance in large networks compared with other methods
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CHAPTER 5

Application on big networks

We have simulation results in the previous section showing that when the Bayesian net-

work is too big, global intervention on all nodes may require much longer time for running

algorithm. Therefore, we would want to avoid putting intervention directly on the entire

causal Bayesian network.

Instead, we propose a two-stage approach which allow us to put a smaller amount of

intervention on a group of local nodes to focus on estimating the causal structure among

these nodes. The main idea is to break the big network into smaller components where

we may afford more intervention experiments, so as to get more detailed estimates on local

structures.

In the first stage, we will use observational data only to get a rough estimate of the big

network. It does not matter much if the directions of edges are reversed. Instead, we would

rather focus on the estimated structure of the network, to see if it can be decomposed into

several smaller subgraphs. Characteristic structures such as 1→ 2→ 3 and 1→ 2← 3 can

also be identified and to be investigated later as well.

In the second stage, we still generate samples based on the whole true graph, but at

the same time we are adding intervention to the nodes in a subgraph that we want to learn

better about the causal relationships inside. Estimates will be based on both observational

data from first stage and experiment data just generated. When comparing SHD between

the solution path and the true graph, we will focus on the subgraph rather then the entire

graph. If we want an estimate for the entire graph, we may repeat this process for each

subgraph, and then combine estimates for each one into a larger graph.

Besides estimating the components, we may also investigate on several characteristic
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structures in a Bayesian network. Suppose we have identified edges among nodes 1, 2, 3

as 1—2—3 in the first stage, but we are unsure of the directions yet. Then we can just

put intervention on these three nodes to distinguish the true causal relationships from its

equivalence classes, whether 1→ 2→ 3, 1→ 2← 3 or 1← 2→ 3.

The two-stage approach is effective when the true graph can indeed be partitioned into

several subgraphs. If this is not the case, then we may have to force a partition of the graph;

edges connecting these partitions in the true graphs are then lost and will not be estimated

in the second stage. We will need additional experiments if we want to detect and recover

such structures.

In simulation studies, by merging estimates of each component in the second stage, we

will indeed get a better estimate of the network than first stage alone. However, improvement

is not very significant; true positive rate (TPR) rises from around 50% in the first stage,

to just around 60% in the second stage; on the other hand, the drop in false discovery rate

(FDR) is not too much as well. Another disadvantage of this approach would be that even

if we just focus on a local group of nodes in the second stage, we still generate samples from

the whole network, which may take more time than expected. A summary of simulation

results can be found from Table 5.1.

First stage Second stage

p n partitions TPR FDR SHD TPR FDR SHD

50 50 5 0.4606 0.2814 22.84 0.5499 0.2605 17.13

100 100 5 0.5849 0.2986 35.12 0.6523 0.2577 31.34

100 100 10 0.5096 0.3311 41.81 0.6080 0.3115 39.22

200 200 5 0.6834 0.2749 62.29 0.7879 0.2301 56.18

200 200 10 0.6202 0.3122 67.05 0.7014 0.3004 62.50

Table 5.1: Performance of the two-stage approach

The success of this two-stage approach requires an rough estimate of the network in the

first stage that a) is sparse so we can decompose the graph into multiple partitions, and b)
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contains most of the edges, so few nodes are singled out and edges connecting them to larger

components may be identified in the second stage. This requires a tuning of the parameters.

Another factor that we need to consider is that, the amount of intervention we need to flip

back the edges which are reversely estimated from purely observational data in the first

stage. As we can see, this two-stage approach is still under development and is open to

improvements in multiple directions.
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CHAPTER 6

Discussions

In this article we have made improvements to Aragam and Zhou’s CCDr algorithm to

estimate sparse Gaussian Bayesian network, by taking advantage of intervention data to

distinguish the true causal structure from its equivalence classes. The new method has been

shown in simulation experiments to be effective as it has a significantly higher accuracy than

the original method, in different Bayesian network models of different sizes and sparsity.

This algorithm will be included in an R package, which is currently still under construction,

for causal Bayesian network learning.

With the introduction of intervention data along with observational data, it has indeed

improved accuracy; meanwhile, it also requires more resource to meet the computational

needs. To solve this, we have proposed a two-stage approach to use intervention locally to

get better local estimates, and then combine them together for a global estimate. This still

needs to be polished and will be one of our future research directions. Another solution is to

identify the minimal set of nodes that we need to put intervention on in order to completely

identify the true Bayesian network model; this is less statistically related, yet it is still one

of our interests. We are also looking for ways to improve the efficiency of our algorithm by

fitting to the input sample data structure more closely.

22



References

[AZ15] Bryon Aragam and Qing Zhou. “Concave penalized estimation of sparse Gaussian
Bayesian networks.” Journal of Machine Learning Research, 16:2273–2328, 2015.

[CAL08] X. W. Chen, G. Anantha, and X. Lin. “Improving Bayesian Network Struc-
ture Learning with Mutual Information-Based Node Ordering in the K2 Algo-
rithm.” IEEE Transactions on Knowledge and Data Engineering, 20(5):628–640,
May 2008.

[CGH94] David M Chickering, Dan Geiger, David Heckerman, et al. “Learning Bayesian
networks is NP-hard.” Technical report, Citeseer, 1994.

[FZ13] Fei Fu and Qing Zhou. “Learning sparse causal Gaussian networks with experimen-
tal intervention: regularization and coordinate descent.” Journal of the American
Statistical Association, 108(501):288–300, 2013.
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