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Abstract Mutational activation of the BRAF proto-oncogene in melanocytes reliably produces

benign nevi (pigmented ‘moles’), yet the same change is the most common driver mutation in

melanoma. The reason nevi stop growing, and do not progress to melanoma, is widely attributed

to a cell-autonomous process of ‘oncogene-induced senescence’. Using a mouse model of Braf-

driven nevus formation, analyzing both proliferative dynamics and single-cell gene expression, we

found no evidence that nevus cells are senescent, either compared with other skin cells, or other

melanocytes. We also found that nevus size distributions could not be fit by any simple cell-

autonomous model of growth arrest, yet were easily fit by models based on collective cell

behavior, for example in which arresting cells release an arrest-promoting factor. We suggest that

nevus growth arrest is more likely related to the cell interactions that mediate size control in

normal tissues, than to any cell-autonomous, ‘oncogene-induced’ program of senescence.

Introduction
Activating BRAF mutations (e.g. BRAFV600E) are the most common oncogenic mutations in mela-

noma, seen in about 66% of cases (Davies et al., 2002). Curiously, the same mutation is found in

89% of melanocytic nevi (Pollock et al., 2003)—the benign, pigmented ‘moles’ found on the skin of

most individuals. In animal studies, melanocyte-specific expression of BRAFV600E efficiently produces

nevi, but only very rarely melanoma (Dankort et al., 2009; Dhomen et al., 2009; Patton et al.,

2005). The widely-accepted explanation is that transformed melanocytes undergo oncogene-

induced senescence (OIS), arresting proliferation before additional oncogenic events can occur (e.g.

Bennett, 2003; Huang et al., 2017; Kaplon et al., 2014; Michaloglou et al., 2005).

Nevus melanocytes are indeed growth-arrested, but the assumption that OIS is the cause remains

untested, in part because of a lack of criteria to rigorously define OIS in vivo (Damsky and Bosen-

berg, 2017). Initially studied as a consequence of forced expression of oncogenes in cell cultures

(Serrano et al., 1997), OIS has come to be seen as a distinctive cellular stress response character-

ized by a phenotype of growth arrest, morphological and metabolic changes, chromatin alterations,

and secretion of growth factors, chemokines, cytokines and proteases (Campisi and d’Adda di

Fagagna, 2007; Gorgoulis et al., 2019; Ito et al., 2017; Kuilman et al., 2010).
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Given an abundance of ‘hallmarks’ of senescence, one might think that recognizing this cell state

in vivo should be straightforward. Yet no single hallmark distinguishes senescence from other

growth-arrested cell states. Phenotypes once thought to be ‘gold standards’, such as expression of

lysosomal beta-galactosidase, cyclin-dependent kinase inhibitors, or p53, commonly mark only sub-

sets of senescent cells (Wiley et al., 2017), as well as non-senescent cells (Tran et al., 2012). More-

over, observations of supposedly senescent cells resuming proliferation (e.g. Beauséjour et al.,

2003), imply that permanent cell cycle exit cannot be used as a distinguishing feature. In vivo senes-

cence, as a result, is currently somewhat of a Gestalt diagnosis, that is assessed by a collection of

traits, no subset of which is necessary or sufficient. Yet there is no clear consensus on which traits are

best to assess, and recent meta-analyses of gene expression suggest that some of the most com-

monly assessed features are not ‘core’ to senescence at all (Hernandez-Segura et al., 2017).

The reason it is important to clarify how BRAF-transformed nevus melanocytes stop growing is

that it shapes how we think about the origins of melanoma. OIS is usually portrayed in cell-intrinsic

terms: oncogene expression within a transformed cell produces a stress within that cell, which trig-

gers it to senesce. Even those who acknowledge a possible role for paracrine signals (Acosta et al.,

2013; Elzi et al., 2012; Ito et al., 2017; Wajapeyee et al., 2008) still portray the process as some-

thing initiated and orchestrated by cell-autonomous responses to oncogenes. This naturally leads to

an approach to melanoma prevention and treatment that focuses on understanding how oncogenes

derange intracellular processes; how those derangements elicit stress responses; and what might

enable cancer cells to circumvent those responses (e.g. Bennett, 2003; Damsky and Bosenberg,

2017; Vredeveld et al., 2012; Yu et al., 2018). In contrast, as we argue below, it is possible that

the growth arrest displayed by nevus melanocytes has little to do with oncogene-induced stress, and

may have more to do with networks of cell–cell communication that are characteristic of melano-

cytes, independent of whether they are transformed. In this case, the most effective path to under-

standing how to prevent or treat melanoma could be to better elucidate the normal physiology of

melanocytes in their environment.

eLife digest Melanocytes are pigment-producing cells found throughout the skin. Mutations

that activate a gene called BRAF cause these cells to divide and produce melanocytic nevi, also

known as “moles”. These mutations are oncogenic, meaning they can cause cancer. Indeed, BRAF is

the most commonly mutated gene in melanoma, a deadly skin cancer that arises from melanocytes.

Yet, moles hardly ever progress to melanoma.

A proposed explanation for this behavior is that, once activated, BRAF initiates a process called

“oncogene-induced senescence” in each melanocyte. This process, likened to premature aging, is

thought to be what causes cells in a mole to quit dividing. Although this hypothesis is widely

accepted, it has proved difficult to test directly.

To investigate this notion, Ruiz-Vega et al. studied mice with hundreds of moles created by the

same BRAF mutation found in human moles. Analyzing the activity of genes in individual cells

revealed that nevus melanocytes that have stopped growing are no more senescent than other skin

cells, including non-mole melanocytes.

Ruiz-Vega et al. then analyzed the sizes at which moles stopped growing, estimating the number

of cells in each mole. The data were then compared with the results of a simulation and

mathematical modeling. This revealed that any model based on the idea of cells independently

shutting down after a number of random events could not reproduce the distribution of mole sizes

that had been experimentally observed. On the other hand, models based on melanocytes acting

collectively to shut down each other’s growth fit the observed data much better.

These findings suggest that moles do not stop growing as a direct result of the activation of

BRAF, but because they sense and respond to their own overgrowth. The same kind of collective

sensing is observed in normal tissues that maintain a constant size. Discovering that melanocytes do

this not only sheds light on why moles stop growing, it could also help researchers devise new ways

to prevent melanomas from forming.

Ruiz-Vega et al. eLife 2020;9:e61026. DOI: https://doi.org/10.7554/eLife.61026 2 of 24

Research article Cancer Biology Computational and Systems Biology

https://doi.org/10.7554/eLife.61026


Here, we investigate the details of nevus growth arrest in a model in which melanocyte-specific

Braf activation generates hundreds of nevi on the skin of mice (Dankort et al., 2009). By examining

both single-cell transcriptomes and the dynamics of growth arrest in nevus-associated melanocytes,

we make two key observations: First, patterns of gene expression in arrested nevus melanocytes fail

to identify them as any more senescent than other skin cells or normal melanocytes, arguing against

a primary role for any form of senescence in their arrest. Second, the timing and statistics of nevus

formation effectively argue against any relatively simple cell-autonomous process as being the cause

of growth arrest. Ultimately, we propose a model in which arrest is driven not by oncogene stress,

but by feedback mechanisms similar to those commonly involved in normal tissue homeostasis.

Results

Dynamics of nevus growth
Characterizing the dynamics of nevus growth and arrest requires observing nevi that started growing

at known times. We took advantage of a mouse model in which Cre-mediated recombination intro-

duces the activating V600E mutation into the endogenous Braf locus. When crossed onto a back-

ground carrying a Tyr-CreER transgene, the mice acquire the BrafV600E mutation only in cells of the

melanocytic lineage, and only after Cre activation by 4-hydroxytamoxifen (4-OHT), applied either

systemically or through painting on the skin.

As shown previously (Dankort et al., 2009), 4-OHT treatment of these mice leads to develop-

ment of numerous pigmented nevi. Visualization of nevi is hindered, however, by the strong pigmen-

tation in hair follicles which, except at microscopic resolution, can be difficult to distinguish from

nevi. One way to circumvent this difficulty is to observe nevi only during the telogen phase of the

hair cycle, when follicle-associated pigment is not present (conveniently, synchronization of hair

cycles may be maintained on a large patch of skin through depilation).

As shown in Figure 1, in mice whose back skin was treated with topical 4-OHT at postnatal day 2

(P2), P3 and P4, nevi were apparent macroscopically at telogen (P50; Figure 1A). Live imaging, using

multi-photon microscopy (MPM; Saager et al., 2015), revealed that, like human nevi, mouse nevi

consist of scattered nests of pigment-containing cells (Figure 1B). Nevi could also be visualized

post-mortem, using a dissecting microscope, on the undersurface of pieces of telogen-stage back

skin (Figure 1C).

An alternate approach to visualization that did not require hair synchronization was to generate

nevi by painting 4-OHT on glabrous (hairless) skin, such as the ventral surface of the paw, permitting

tracking of individual nevi on a daily basis. As shown in Figure 1D, when forepaws were treated with

4-OHT from P2 through P4, tiny nevi could be detected as early as P6. Serial observation indicated

that most nevi reach a maximum size somewhere between P16 and P21 (Figure 1D , Figure 1—fig-

ure supplement 1A). This suggests that, in the mouse, BrafV600E-transformed melanocytes arrest

within 2–3 weeks. To confirm this, we used BrdU labeling to monitor DNA synthesis. Because mela-

nin readily obscures immunohistochemical signals, these experiments were done in an albino (unpig-

mented) genetic background, using premelanosome protein (Pmel) staining to identify melanocytes.

As shown in Figure 1F, albino mice generate nests similar to those seen in pigmented mice. In such

animals, BrdU readily incorporated into hair follicle melanocytes (Figure 1E, Figure 1—figure sup-

plement 1B), whereas by p21 nests within nevi were uniformly negative for BrdU, implying growth

arrest (Figure 1F, Figure 1—figure supplement 1C).

The conclusion that Braf-induced nevi are already growth-arrested by P21 agrees with the reports

of others (Damsky and Bosenberg, 2017), and is lent further support by time course measurements

of nest size by MPM (Figure 1C), which show that nest size distributions change insignificantly

between P21 and P50 (Figure 4—figure supplement 1A-B).

Do nevi undergo OIS?
As discussed above, senescence is usually accompanied by distinctive gene expression. Various

gene expression ‘signatures’ have been developed to help investigators identify senescent cells and

distinguish them from cells that have become growth-arrested by other processes. We considered

several of these (Source data 1):
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1. A set of genes encoding the most commonly considered ‘hallmarks’ of senescence, that is
p53, Rb, lysosomal beta-galactosidase, H2AX, and three cyclin-dependent-kinase inhibitors
(‘Classical’, seven genes [Campisi and d’Adda di Fagagna, 2007; Collado and Serrano,
2006]);

2. A gene signature that distinguishes cultured human fibroblasts growth-arrested by BRAF-
transformation from quiescent fibroblasts (‘Kuilman’, 21 genes [Kuilman et al., 2008])

3. Results of a meta-analysis (Hernandez-Segura et al., 2017) of publications on fibroblasts, mel-
anocytes, and astrocytes, comparing senescence (induced by multiple different stresses) with
quiescence, yielding ‘universal’ signatures of genes that are up- and downregulated specifically
in senescence (‘Universal Up’, 31 genes, and ‘Universal Down’, 23 genes) as well as signatures
of genes specifically up- or down-regulated by senescence induced in melanocytes (‘Melano-
cyte Up’, 397 genes and ‘Melanocyte Down’, 135 genes).

Figure 1. Dynamics of nevus growth. (A-D) Visualization of nevi on BrafV600E mice. (A) Live imaging of back skin at

telogen-stage (P50), following hair depilation. Scale bar = 5 mm. (B) Live imaging of a sample like that in panel A

using multi-photon microscopy. The central square is an en face view of the skin (x-y plane), while rectangles

above and to the right are cross-sections (x-z and y-z planes, respectively, with blue lines marking the location of

the central image). Melanin autofluorescence appears yellow, second harmonic generation of collagen is cyan, and

keratin autofluorescence is green. Dashing outlines dermal melanocyte nests. Scale bar = 318 mm. (C) Appearance

of nevi on the undersurface of back skin (at P21). Scale bar = 1 mm. (D) Nevus development on the ventral

(glabrous) surface of the paw. Images of a single paw were taken at the indicated ages. Scale bar = 0.5 cm. (E-F)

Assessment of melanocyte proliferation. Sections are from albino wildtype (E) and BrafV600E (F) skin at P21.

Melanocytes were identified by premelanosome protein (Pmel) immunohistochemistry and proliferation assessed

by BrdU incorporation. Wildtype hair follicle (HF) melanocytes (E) incorporate BrdU whereas nevus melanocytes (F)

do not. Scale bar = 20 mm.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1 . Dynamics of nevus growth.

Ruiz-Vega et al. eLife 2020;9:e61026. DOI: https://doi.org/10.7554/eLife.61026 4 of 24

Research article Cancer Biology Computational and Systems Biology

https://doi.org/10.7554/eLife.61026


4. The most statistically significant genes in a recent meta-analysis (Chatsirisupachai et al., 2019)
of 20 replicative senescence microarray datasets from the Gene Expression Omnibus (‘Chatsiri-
supachai Up’, 237 genes and ‘Chatsirisupachai Down’, 244 genes).

5. A list of genes characteristic of the ‘Senescence-Associated Secretory Phenotype’ (‘SASP’, 81
genes), compiled from 38 literature references (for citations see Source data 1).

To determine whether any of these proposed signatures fits nevus melanocytes, we performed

single-cell RNA sequencing on dissociated cells from the back skin of nevus-bearing mice at both

P30 and P50 (i.e. after nevi have stopped growing), using wildtype skin as a control. Using known

cell-type marker genes (Figure 2—figure supplement 1A-B), we identified 14 different cell types in

the skin, including melanocytes (Figure 2A). Unsupervised clustering further sub-divided the melano-

cytes into four groups (Figure 2B): Two of them, Mel 0 and Mel 1, were composed of cells found

only in nevus-bearing, and not wildtype, skin (Figure 2C); they are highly similar in gene expression,

primarily differing in having a slightly lower level of pigment gene expression in Mel 1 versus Mel 0

(Figure 2D). We identify them as the ‘nevus melanocytes’, because they are seen only when nevi are

present, and are by far the predominant melanocyte population in such animals.

Mel 2 cells express the lowest levels of pigmentation genes (Figure 2D), and are seen in both

genotypes (Figure 2C) at all stages (although expanded in number in nevus-bearing animals

(Figure 2F)). Their pattern of gene expression bears a strong resemblance to one recently published

for melanocyte stem cells isolated from telogen-stage hair follicles (Zhang et al., 2020). In particular,

they express Cd34, which has been proposed to be a marker for bulge-associated melanocyte stem

cells (Joshi et al., 2019).

Finally, cells of cluster Mel 3, which express the highest levels of pigment genes (Figure 2D), are

found in both mutant and wildtype mice, but only at the P30 time point (Figure 2E–F). We thus

identify them as mature hair follicle melanocytes, as such cells are present exclusively during anagen

phase of the hair cycle (P30), and disappear during telogen (P50).

Because gene signatures are based on the idea of up- and downregulation of expression relative

to some baseline state, to test whether nevus melanocytes fit a known signature it is necessary to

have comparison transcriptomes. We made two types of comparisons: nevus melanocytes versus

every other cell type in the skin (which, with the possible exception of mature keratinocytes, we

would not expect to be senescent); and the four melanocyte subclusters (two of which are nevus-

associated and two of which are not) versus each other. In each case we computed average expres-

sion for each gene in every cell type or cluster, together with a standard error of the mean as a mea-

sure of dispersion. Expression values were then normalized to average expression across all of the

cells being compared (i.e. all skin cells, or all melanocytes, depending on which comparison was

being done) and log2-transformed, so that positive values signify upregulation (relative to the aver-

age for that gene), and negative downregulation. Gene expression was then visualized using heat

maps (Figure 3A and Figure 3—figure supplements 1–2, with positive values in blue and negative

in red). Because gene expression levels inferred from single-cell RNA sequencing tend to be noisy,

particularly for genes with low expression, we ranked all genes by their minimum level of noise (i.e.

normalized standard error of the mean in the least noisy cell type), and used this value (‘n-SEM’,

which is also presented graphically as a bar to the right of each heatmap) to sort gene lists, so that

maps vary from most to least reliable as one goes from top to bottom.

Figure 3A shows the results for the ‘Classical’ and ‘Universal Up’ signatures (heat maps for the

other signatures are shown in Figure 3—figure supplement 1). Here we see no strong enrichment

of blue over red signals in nevus melanocytes, nor in most other cells. When compared with whole

skin, using the ‘Classical’ signature, only Cdkn2a stands out as strongly upregulated in nevus mela-

nocytes, but it is similarly upregulated in skin fibroblasts (it also has the noisiest data among genes

in the signature). With the ‘Universal Up’ signature, more genes are downregulated than upregu-

lated in nevus melanocytes. To quantify such impressions, we summed the log2-transformed data in

each column in every heat map, producing the bar graphs in Figure 3B. We reasoned that summa-

tion of log-transformed data would emphasize consistent trends in the data while suppressing

effects of noise (random positive and negative variation would tend to cancel out). The results sug-

gest that skin fibroblasts better fit the ‘Classical’ senescent signature than any skin cell type, includ-

ing nevus melanocytes, or indeed melanocytes of any cluster. As a control—to demonstrate the

ability of this approach to correctly associate cell types with gene signatures— we analyzed the

same data using a signature of cell proliferation, ‘meta-PCNA’, that represents 129 human genes

Ruiz-Vega et al. eLife 2020;9:e61026. DOI: https://doi.org/10.7554/eLife.61026 5 of 24

Research article Cancer Biology Computational and Systems Biology

https://doi.org/10.7554/eLife.61026


most positively correlated with proliferation marker PCNA in a compendium of normal tissues

(Venet et al., 2011). As shown in Figure 3B (also see Figure 3—figure supplement 1), this signa-

ture (122 genes of which had unambiguous mouse orthologs; Source data 1) identified two kerati-

nocyte populations (‘IFE-cycling’ and ‘Outer Bulge 1’) as highly proliferative (in agreement with

Joost et al., 2020), and mature (postmitotic) keratinocytes as non-proliferative. Importantly, it also

correctly identified nevus melanocytes as non-proliferative—and other melanocytes as prolifer-

ative—in agreement with Figure 1E–F. Interestingly, the relatively high expression of proliferation-

associated genes in non-nevus, hair follicle melanocytes (Mel 3) when compared with nevus

Figure 2. Single-cell RNA sequencing of mouse dorsal skin to transcriptionally characterize melanocytes. (A) Skin cell types are visualized with tSNE

(cells = 35,141) from mice at P30 (n[BrafWT]=2 mice, n[BrafV600E]=2 mice) and P50 (n[BrafWT]=3 mice, n[BrafV600E]=3 mice). Melanocytes are outlined with

a blue box. (B) Subclustering of melanocytes (n = 609) visualized on a tSNE plot. Four clusters were identified. (C) Visualization of melanocytes based on

their genotype on a tSNE plot. (D) A heat map of genes involved in pigmentation. Each cluster expresses these genes at different levels. (E)

Visualization of melanocytes, based on mouse age, on a tSNE plot. (F) Quantification of melanocytes in each cluster based on their genotype (BRAF

wildtype or mutant).

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Single cell RNA sequencing of mouse dorsal skin, to transcriptionally characterize cells.
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melanocytes, was consistent between BrafV600E-expressing and control mice (Figure 3—figure sup-

plement 2), suggesting that tissue context plays a role in whether BrafV600E-expressing cells even

arrest growth.

Figure 3C and Figure 3—figure supplement 1 extend this analysis to the remaining eight poten-

tial signatures of senescence (five consisting of genes that are upregulated; three of genes that are

downregulated). In five of the eight cases, nevus melanocytes rank as less senescent than the aver-

age skin cell; in two of the cases nevus melanocytes are about average. In only one case (‘Chatsirisu-

pachai Down’) does nevus melanocyte gene expression go in the predicted direction for

senescence. However, the Chatsirisupachai signatures had not been curated to remove genes associ-

ated simply with proliferation/quiescence (Chatsirisupachai et al., 2019), and inspection of the

‘Chatsirisupachai Down’ gene list shows that 61 of its 250 genes are shared with the 129-gene meta-

PCNA signature; that is it is more likely a signature of proliferation than ‘non-senescence’ (note the

strong similarity between the ‘Chatsirisupachai Down’ bar graph in Figure 3C and the meta-PCNA

graph in Figure 3B).

To confirm that the senescence-associated gene expression signatures used here truly could iden-

tify melanocytes that had become senescent, we also analyzed published data comparing gene

expression in BRAFV600E-transduced and normal human melanocytes in culture, under conditions in

Figure 3. Gene expression fails to identify nevus melanocytes as senescent. Transcriptomes of clusters identified in Figure 2 were compared with

proposed ‘signatures’ of senescence.( A) Gene expression data for clusters in Figure 2A and B were averaged by cluster and, for each gene, expressed

as a ratio to the average expression level of that gene in the entire skin sample (‘Whole Skin’) or just the melanocyte clusters (‘Melanocytes’). The heat

map displays the logarithm of that ratio, with blue representing upregulation and red downregulation, relative to the appropriate average. Two

proposed signatures for genes upregulated in senescence (‘Classical’ and ‘Universal Up’) are shown (For other signatures, see Figure 3—figure

supplement 1). Gene lists have been sorted by the minimum gene expression variability within the least variable cluster (green-brown bar). (B). The

‘Classical’ heatmaps in panel A are summarized as a bar graph displaying the sum of the log-transformed data. Also shown are summary results for a

proposed signature of proliferation, ‘meta-PCNA’, which clearly distinguishes between cell types expected to be proliferative and non-proliferative (in

normal skin). The ‘Classical’ senescence signature fails to identify nevus melanocytes (Mel 0 and Mel 1) as senescent, especially when compared with

other cell types or other melanocytes. (C). Extension of the analysis in panel B to eight additional signatures.

The online version of this article includes the following source data and figure supplement(s) for figure 3:

Figure supplement 1. Heat maps for other signatures associated with senescence or proliferation.

Figure supplement 2. Comparing proliferation-associated gene expression in cluster 3 (hair follicle) melanocytes from wildtype and Braf-mutant

animals.

Figure supplement 3. Comparing mouse nevus melanocyte gene expression with effects of BRAFV600E on cultured human melanocytes.

Figure supplement 3—source data 1. Data are derived from Table S1 of Pawlikowski et al., 2013, and relate to Figure 3—figure supplement 3.
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which the former developed definitive morphological characteristics of senescence

(Pawlikowski et al., 2013; see Figure 3—figure supplement 3). Of the 23 ‘Universal Down’ signa-

ture genes, 15 were significantly differentially expressed, and 100% of these were decreased in

expression. Of the 31 ‘Universal Up’ genes, 19 were significantly differentially expressed, and 84% of

these were elevated in expression.

Together these data do not support the view that any sort of senescence—oncogene-induced or

otherwise—is characteristic of nevus melanocytes and therefore a possible cause of their growth

arrest.

Does a cell-autonomous process arrest nevi?
As discussed above, OIS is usually presented as a cell-autonomous process (e.g. Dankort et al.,

2009; Dhomen et al., 2009; Michaloglou et al., 2005; Serrano et al., 1997). The simplest cell-

autonomous process that one might imagine is a probabilistic switch: Once oncogene activation

commences, cells arrest with a fixed probability (per time or per cell cycle). Regardless of the molec-

ular details, such a model makes distinctive predictions about clonal dynamics.

Consider the clonal descendants of a single oncogene-transformed founder cell. For any value of

the per-cell-cycle senescence probability (which we denote here as ‘s’), how many cells should we

expect that clone to contain at any given time? How many cell cycles should it take before all of the

cells in most clones should have arrested? Such questions are well studied in mathematics

(Athreya and Ney, 1972), and easily solved by computer simulation. For this particular problem,

there are two key results (Figure 4).

First, the time after which one can expect clones to have stopped growing (e.g. when all cells will

have arrested in, say, 95% or 99% of clones) is a steep function of s. If s < 0.5, (i.e. less than a 50%

chance of arrest per cell cycle), then some clones will never stop growing. If s is, say, 0.53, all clones

will eventually stop growing, but one must wait 51 cell cycles before 99% of them do so (Figure 4A).

Given typical lengths of postnatal mammalian cell cycles, and the fact that we observe cessation of

mouse nevus growth in about 2–3 weeks, we may consider 30 to be a generous estimate for the

maximum number of cell cycles by which nevi stop growing. To achieve 99% clonal arrest by 30 cell

cycles, s must be around 0.56 or higher; to achieve arrest in 95% of clones, s must be greater than

0.52 (Figure 4A).

From the same simulations one may also calculate predicted distributions of clone sizes. There is

a clear reciprocal relationship between mean clone size and the fraction of clones that arrest by 30

cell cycles of time (Figure 4B). For example, a value of s that enables 95% of clones to arrest produ-

ces a mean clone size of only 18.5 cells. For comparison, we estimate cell numbers per nevus to be

in the range of 100–1000 cells (see Materials and methods).

The explanation for the small mean clone sizes produced by simulations can be appreciated by

examining the full size distributions. As shown in Figure 4C–D, such distributions are extremely

heavy-tailed, with a very large number of very small clones and a small number of very large clones

(the histograms in Figure 4C–D are plotted with logarithmic abscissa to facilitate display of all clone

sizes).

Qualitatively, this is very different from what we observed for nevi on the backs of p21 mice. Nevi

displayed a mean radius of 76.8 mm (corresponding to an area of 0.019 mm2, in excellent agreement

with the results of Damsky et al., 2015) and, when plotted on a logarithmic scale, individual radii

displayed a Gaussian-like distribution (Figure 4E; a Gaussian shape on a logarithmic axis is usually

referred to as ‘log-normal’). Interestingly, nest sizes (quantified by MPM) also seem to be log-nor-

mally distributed (Figure 4—figure supplement 1) whether at P21 (panel A) or P50 (panel B). So are

the nests within human melanocytic nevi, despite the latter being an order of magnitude larger than

those in mice (Figure 4—figure supplement 1C). It should be noted that using different units to

represent simulation results (cell numbers) and empirical data (linear dimension) in Figure 4 and its

supplement does not confound comparing the shapes of distributions, thanks to the logarithmic

abscissa: as long as cell number scales as some power of linear dimension, values associated with

log-transformed bins are simply scaled by a constant factor.

The above comparison of observed distributions with the results of computer simulation is not

entirely fair, however: Simulations track all clones, no matter how small, whereas empirical distribu-

tions undoubtedly omit nevi with sizes below some threshold of observability. To correct for this,

one can truncate simulated distributions to remove clones smaller than some threshold size. With no
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a priori way to know what threshold to use, we examined the entire range of plausible truncations

(up to the largest clone sizes). As it turns out, the relative shapes of simulated distributions were

about the same regardless of where they were truncated. The reason for this behavior can be under-

stood by displaying simulated distributions (with bin sizes of one cell) on a log-log plot, and observ-

ing that they fall, over most clone size ranges, on a straight line (see Supplemental Material). This

implies an approximately ‘power law’ relationship which, by definition, is scale-free, that is has the

same relative shape over any range of observations. In fact, for s reasonably close to 0.5, the approx-

imate probability of observing any clone size can be shown analytically to vary inversely with the 3/2-

power of size (for derivation, see Appendix 1).

These data imply that observed nevus size distributions cannot be generated by any cell-autono-

mous, random, time independent, one-step process. But they do not speak to whether a more com-

plicated random process, for example, one with several steps, might suffice. To address this, one

can simulate clonal evolution under multi-step models. Again, dynamic predictions can be made.

First, to achieve clonal stopping times within 30 cell cycles, the minimum per-step transition

Figure 4. Modeling cell-autonomous clonal arrest as a probabilistic process. (A-D) Monte Carlo simulations were

carried out in which a single-cell replicates and arrests with fixed probability, s, per cell cycle. (A) Cell cycles

required before proliferation stops in 95% or 99% of simulations. (B) Mean cells at 30 cell cycles, and fraction of

clones expected to have arrested by then. (C–D) Clone (nevus) size distributions, after 30 cell cycles, assuming

s = 0.56 (C), the probability required for 99% arrest, or 0.53 (D), the probability required for 95% arrest (see panel

A). (E) Actual mouse nevus sizes at P21 (mice = 3, nevi = 768). Dashed line shows median radius, 76.8 mm. (F–I)

Simulations in which proliferating cells arrest after multiple events (stages). (F) The value of s required to ensure

arrest within 30 cell cycles, as a function of number of stages. (G–H) Clone size distributions for two (G), or three

(H) stages, assuming the lowest per-stage transition probability compatible with 99% arrest by 30 cell cycles (see

panel C). (I) Median clone size for different numbers of stages (labeled above each graph), transition probabilities

per stage (plotted on the abscissa), and thresholds below which clones are excluded from analysis. Each curve

represents a different exclusion threshold (between 0 and 200 cells for 1–4 stages, and up to 1600 cells for 5–8

stages, as labeled). Curves change from solid to dashed where the observability threshold becomes inconsistent

with the observations in panel E (in panel E the median nevus has >3 times the area of the smallest observable

nevi; in panel I the curves become dashed when median cell number is less than twice the observability threshold).

Within the hatched region, fewer than 95% of clones arrest by 30 cell cycles. The thin line to right of the hatched

region marks the probability at which 99% of clones arrest by 30 cell cycles. Solid gray demarcates median cell

numbers between 100 and 3000 (see text). All results are from a minimum of 20,000 simulations.

The online version of this article includes the following source data and figure supplement(s) for figure 4:

Source data 1. Raw data used to generate histogram in Figure 4E.

Figure supplement 1. Size distribution of mouse and human nests.

Figure supplement 1—source data 1. Raw data used to generate histograms in Figure 4—figure supplement 1.
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probability increases with the number of steps (Figure 4F). For example, if it takes three random

events to arrest growth in 99% of clones, the average probability of each event needs to be at least

0.66 per cell cycle; with five random events that number is 0.74.

Second, although distributions generated by such models still tend to be heavy-tailed

(Figure 4G), they become less so as the number of steps increases (Figure 4H), gradually approach-

ing something that looks log-normal. This makes mathematical sense: as per-cell-cycle probabilities

approach unity, the system approaches a clock that simply ticks off a fixed number of cell cycles

before stopping. A scenario in which all clones stop at roughly the same time, plus or minus some

variation, necessarily produces a log-normal distribution, since the logarithm of cell size will be pro-

portional to the number of cell divisions.

To determine how many independent steps would be required for a random cell-autonomous

process to produce distributions that fit those we observed for nevi, we simulated up to eight ran-

dom stages, over a variety of transition probabilities (Figure 4I). We subjected the results to a range

of possible truncations, from 0 to 1600 cells, to mimic any observability cutoffs in the empirical data,

and recorded the median clone sizes produced under each of these scenarios.

As described below (see Materials and methods), we estimate that the average nevus has about

500–1000 cells, but given possible errors in the estimate, we consider here a range of values

between 100 and 3000 (gray-shaded area in Figure 4I). Subject to the constraint that enough clones

must arrest within 30 cell cycles, and that observation thresholds cannot be so high that the

observed median is less than twice the threshold, we find that, to produce nevi of even 200 cells

requires 4–5 independent events (stages), depending on whether one requires 95% or 99% clonal

arrest; to reach 500 cells requires 6–7 events. To reach even larger numbers—as would be found in

human nevi, or in other mouse models (Chai et al., 2014)—would require even more stages.

Does a collective process arrest nevi?
The above results indicate that, to generate in vivo-like distributions of nevi, a process something

like a clock is needed, with cells either counting elapsed divisions (or time) since oncogene activa-

tion, or progressing through a sufficiently large sequence of random processes, with tightly con-

trolled probabilities, so that the net outcome is clock-like.

Cell-autonomous counting of cell cycles (up to about 12) can occur in early, cleavage-stage

embryos (Tadros and Lipshitz, 2009), but no mechanism has been described to enable growing (as

opposed to merely cleaving) cells to track more than a small handful of divisions (or the equivalent

amount of time). Erosion of telomeres can mark the passage of large amounts of time in some cells,

but this does not seem to occur to any significant degree in nevus melanocytes (Michaloglou et al.,

2005).

In contrast, if growth arrest is not cell-autonomous, but driven by cell–cell communication, then

clock-like behavior is easily achieved, without any sort of intrinsic cell memory: Consider a simple

communication circuit in which every cell’s arrest probability is simply a monotonically increasing

function of the number of cells around it that have already arrested (Figure 5A). This mechanism

describes a dynamically well-understood feedback process that normal tissues use to control size

(Lander, 2011; Lander et al., 2009). Termed ‘renewal control’ (Buzi et al., 2015), because differen-

tiated cells control the probability that progenitor cells self-renew, the process is often mediated by

secreted TGF-b superfamily members such as myostatin, activin and GDF11 (Gokoffski et al., 2011;

Lee et al., 2005). Because it implements the engineering principle of ‘integral negative feedback’,

renewal control produces highly robust final population sizes that are independent of parameters

such as cell cycle speed or the starting numbers of cells (Buzi et al., 2015; Lander, 2011;

Lander et al., 2009).

When growth arrest due to renewal control is simulated as a probabilistic process (Figure 5B),

the observed size distributions of clones are very close to log-normal. This is because renewal con-

trol effectively enforces cell cooperation, so that once a small fraction of a clone has arrested, the

entire clone stops soon thereafter. The resulting narrow distribution of stopping times produces size

distributions that are approximately log-normal, that is that emulate a clock.

This behavior is a generic outcome of feedback control, and does not depend strongly on the

details of how feedback is implemented. Similar distributions are obtained whether we model nevi

as progressing reversibly or irreversibly through more than one proliferative stage, or use agent-

based simulations in which renewal is controlled by the concentration of a secreted molecule that

Ruiz-Vega et al. eLife 2020;9:e61026. DOI: https://doi.org/10.7554/eLife.61026 10 of 24

Research article Cancer Biology Computational and Systems Biology

https://doi.org/10.7554/eLife.61026


accumulates according to the laws of diffusion and local uptake (Figure 5C–D). The point of these

simulations is not to argue in favor of a specific feedback mechanism, but rather to show that, where

cell-autonomous mechanisms of arrest struggle to fit nevus dynamics, almost any sort of (collective)

feedback does so easily.

Although nevus size distributions alone cannot shed light on the molecular details of how feed-

back might be implemented in nevi, it is interesting that those cells that we identify as nevus mela-

nocytes (Figure 2) express multiple genes encoding ligands with known or suspected growth

inhibitory activities, together with the receptors for those ligands. These include TGFb superfamily

members Gdf11, Gdf15, Tgfb1, Tgfb2, and Tgfb3, as well as other genes associated with growth

inhibition, such as Angptl2, Angptl4, Il6, Sema3a, Sema3b, and Sema3f (Attisano and Wrana, 1996;

Neufeld et al., 2016; Santulli, 2014).

Figure 5. Models and evidence for cooperative, feedback-mediated arrest. (A) A generic integral negative

feedback scheme. ‘Renewal probability’, p, is the probability that offspring of cell division remain dividing (i.e. 1�p

is the probability that they arrest). (B) Clone sizes generated by 9115 stochastic simulations of scheme A, modeled

as an ordinary differential equation, where p falls with the number of arrested cells according to a Hill function

with half-maximal effect at 50 arrested cells. (C–D) Results from a spatial (agent-based) simulation of scheme A, in

which the signal from arrested cells spreads by diffusion. Histogram (C) tabulates clone sizes produced by 100

independent simulations (the histograms in both B and C are logarithmically-scaled to show that the data are well

fit by log-normal distributions). Panels (D) are from a single simulation, showing locations of growing and arresting

cells, and the gradient of the diffusible signal. Bar = 50 mm. The average cell cycle is equivalent to approximately

382 Monte Carlo time steps. (E–F) Using spatial coordinates and areas of 122 nests in seven individual fields at

P21, nests were modeled as disks of equivalent area, and mean sizes of neighboring nests falling within

successively larger annuli around each target nest were determined. Distributions of mean neighbor sizes up to 45

mm away from (E) large (radius >20 mm) and (F) small (radius <20 mm) nests (histograms) are compared with a ‘null

distribution’ derived by random permutation (blue fields). Arrows show deviations in neighbor size distribution

greater than expected at random, and substantially different for large versus small nests.

The online version of this article includes the following source data and figure supplement(s) for figure 5:

Source data 1. Raw data used to generate histograms and permutation tests in Figure 5E–F.

Figure supplement 1. Evidence for influence of nevi on each other’s sizes is minimal at long range.
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The evaluation of such candidates (as well as other genes expressed at too low a level to be reli-

ably detected by single-cell RNA sequencing) will no doubt require further study. In the meantime,

we reasoned that any feedback mechanism based on secreted, diffusible factors should induce spa-

tial correlations among clones. In particular, when clones (or subclones) get close enough to each

other, they should inhibit each other’s growth, leading to a smaller final size. The distance over

which such effects could occur should reflect the spatial decay length of diffusible molecules in the

skin, which is thought to be on the order of no more than a few hundred microns (Chen et al.,

2015). Although our data on macroscopic nevi (Figure 1D), which had been collected in a manner

that included spatial coordinates, did not contain enough examples of nevus spacings in this range

to test this hypothesis, our data on the nests within individual nevi did, as the median spacing

between nests at postnatal day 21 was approximately 79 microns.

To assess whether nests were significantly smaller when located near other nests (especially large

ones), we extracted the coordinates and nest areas from seven separate fields at P21 (representing

122 individual nests) and, modeling each nest as a disk of equivalent area, calculated the mean sizes

of neighboring nests falling within successively larger annuli around each target nest. We compared

the distributions of mean neighbor sizes near the 52 smallest nests (radius <20 mm) with the equiva-

lent distributions around the 70 largest nests.

As shown in Figure 5E–F, within annuli extending 45 mm away from the perimeters of target

nests, we saw fewer examples of large neighbors (radius >30 mm) around large nests (panel E) than

around small ones (panel F). To determine whether the difference was statistically significant, we

used a permutation test in which we randomly swapped nest areas (but not locations) within each

field 5000 times, and recalculated the distributions. This allowed us to plot the envelope enclosing

the 5th and 95th percentiles for permuted data, onto which we overlaid the observed data. Unlike

the observed data, the envelopes of the permuted data (blue zones in Figure 5E–F) look similar

whether target nests are large or small. Moreover, the observed data extended outside of the enve-

lopes only for median neighbor sizes > 30 mm, with the data for small target nevi extending well

above the relevant envelope and the data for large target nevi lying at to the bottom of the enve-

lope (Figure 5E–F, arrows). These results argue that proximity is associated with a small, but signifi-

cant decrease in nest size, supporting the view that nests inhibit each other’s growth. Interestingly,

when we repeated the same analysis using annulus sizes of 150 mm, differences in the sizes of neigh-

bors of small and large nests were not seen, consistent with the view that whatever is promoting

coordination among nests has a spatial range of <150 mm (Figure 5—figure supplement 1).

Discussion
Studies in man, mouse and fish establish that most melanocytic nevi form by mutational activation of

BRAF, which triggers proliferation followed by growth arrest (Damsky and Bosenberg, 2017;

Dankort et al., 2009; Dhomen et al., 2009; Kaufman et al., 2016; Michaloglou et al., 2005;

Patton et al., 2005; Shain and Bastian, 2016). Nevus growth is often considered a paradigmatic

example of OIS, but here we question two of the major tenets of the OIS hypothesis: that nevus mel-

anocytes are actually senescent; and that growth arrest is a direct effect of oncogene action on the

individual cell.

To assess whether nevi are senescent, we used single-cell RNA sequencing in a mouse model of

Braf-driven nevus formation, comparing gene expression of nevus melanocytes with that of other

cell types. Across a wide variety of gene expression signatures, especially those developed to distin-

guish senescence from other growth-arrested cell states, we failed to find any evidence in support of

the OIS hypothesis. By gene expression criteria, nevus melanocytes were less senescent than many

other normal skin cells, including non-nevus melanocytes (Figure 3, and its supplements). These

results support earlier work that also questioned, based on immunohistochemical staining of human

nevi for markers including lysosomal b-galactosidase, Ki67, p16INK4a (CDKN2A), g-H2AX and p53,

whether nevus melanocytes should be considered senescent (Tran et al., 2012). In agreement with

other studies, we do find that Cdkn2A is highly expressed in nevus cells; it is in fact the only ‘classi-

cal’ senescence marker that clearly distinguishes nevus melanocytes from other melanocytes

(Figure 3A). Yet, as others have shown, Cdkn2A is neither necessary nor sufficient for oncogene-

mediated melanocyte growth arrest (Haferkamp et al., 2009; Zeng et al., 2018). Thus, to the
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extent that nevus melanocytes do execute even part of a common senescence program, there is lit-

tle to support the view that this why they stop proliferating.

As for the question of exactly how Braf-induced nevus growth arrest occurs, Figure 6 presents a

continuum of models: In model A, oncogene action elicits a cell-autonomous stress response which,

after some time lag, triggers senescence that shuts proliferation down. This is the form in which the

OIS hypothesis is most frequently presented.

In model C, growth arrest is not a direct effect of oncogene action, but rather a consequence of

growth itself. This type of feedback is commonly used by adult tissues to maintain constant size, and

also enables developing tissues to produce precise numbers of differentiated cells (Kunche et al.,

2016; Lander, 2011; Lander et al., 2009). Because of the collective nature of this mechanism—cells

that have stopped dividing tell other cells in their vicinity to do likewise—it naturally produces semi-

synchronous arrest of spatially-coherent cell clones, and the distinctive log-normal clone size distri-

bution that comes along with that. In contrast, a purely cell-autonomous mechanism (panel A) has

great difficulty producing such distributions (Figure 4), either necessitating the operation of some

kind of multi-cell-cycle clock, or requiring cells to complete a long sequence of independent proba-

bilistic events prior to arresting (Figure 4).

One can, of course, build a model in between these two extremes (model B), in which oncogenes

induce growth arrest directly, but paracrine signals (i.e. SASP factors) help maintain it. If the para-

crine role is important enough, this mechanism might also produce clone size distributions that are

approximately log-normal, so we cannot categorically rule this model out. However, our gene

expression data do not support any versions of it that have been explicitly proposed for nevi. So far,

several groups (working predominantly from in vitro observations) have claimed a critical role for

SASP factors in melanocyte OIS: Wajapeyee et al., 2008 argued that IGFBP7 plays a necessary role

in the establishment of BRAF-V600E-induced melanocyte senescence (a conclusion disputed by

some [Scurr et al., 2010]); Feuerer et al., 2019 proposed that MIA (melanoma inhibitory activity)

secreted by senescent melanocytes is required to maintain senescence; and Damsky and Bosenberg

have proposed that IL1, IL6, IL8 (encoded in mouse by Cxcl15), and type 1 interferons produced by

nevus cells play a role in their arrest (Damsky and Bosenberg, 2017).

Our in vivo data do not support any of these hypotheses. For example, we observed that the vast

majority of Igfbp7 transcripts are produced by fibroblasts and endothelial cells and that, among mel-

anocytes, nevus melanocytes express lower levels of Igfbp7 than non-nevus melanocytes. We did

not detect any Mia transcripts in nevus melanocytes, although it was expressed at detectable levels

Figure 6. Possible mechanisms of growth arrest. Three different models of nevus growth arrest are presented,

varying from classical OIS (A) to feedback control of proliferative cell renewal (C). The model in the middle panel

(B) illustrates a hypothetical hybrid situation, in which paracrine effects of senescence-associated secreted proteins

(SASP) act as inhibitors of melanocyte self-renewal. Although model B can mimic some of the dynamic behaviors

of model C, in the absence of convincing evidence that nevus melanocytes actually are senescent, we favor model

C.
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in non-nevus melanocytes and various other skin cells. Likewise, of Il1 family members, only Il1a tran-

scripts were detected in nevus melanocytes and they were at levels lower than in many other skin

cell types. Il6 was also only weakly expressed in nevus melanocytes, especially when compared with

other cells. Transcripts for type one interferons were not detected in any melanocytic cells, and

Cxcl15 transcripts were not detected in any skin cells at all.

Of course, the accuracy of single-cell RNA sequencing can be limited for weakly expressed genes,

so we cannot completely eliminate the possibility that these factors play some role in nevus growth

arrest. But given these results, and the evidence that nevus melanocytes are not senescent, we

strongly favor the renewal-feedback model (model C). Adopting this model also makes it easier to

accommodate long-standing evidence that nevus growth arrest is not permanent (Shain and Bas-

tian, 2016). For example, it is known that nevi may exhibit a low level of mitoses (Glatz et al.,

2010); that they can grow in response to stimuli such as UV light (Rudolph et al., 1998) or immuno-

suppression (Shain and Bastian, 2016) and, perhaps most tellingly, they can re-grow after incom-

plete surgical resection—stopping again when they reach a typical nevus size (Vilain et al., 2016).

The latter result is inherently problematic for any non-feedback model, but is precisely what renewal

feedback predicts (Lander, 2011; Lander et al., 2009).

Because feedback control of renewal implements a generic strategy (integral negative feedback

[Lander, 2011]), it places no constraints on the molecular details of feedback, short of the fact that

whatever is mediating it needs to rise with the number of cells already arrested. One possibility is

that nevi are responding to some of the same signals that are used in melanocyte homeostasis. For

instance, during anagen phase of the hair cycle, melanocyte stem cells produce progeny that

migrate out of the hair follicle bulge as they differentiate, leaving functional stem cells behind for

future cycles. A variety of experimental and pathological circumstances that allow small numbers of

melanocytes to differentiate within the bulge cause differentiation and loss of the entire stem cell

pool (with concomitant hair graying [Nishimura et al., 2005]). This sort of behavior—where differen-

tiated cells drive the differentiation of their progenitors—is exactly the sort of behavior that drives

feedback models of renewal (Buzi et al., 2015; Lander, 2011; Lander et al., 2009).

Nevi are but one of many types of benign, clonal, proliferative lesions that arise due to the activa-

tion of oncogenes, but rarely if ever progress to malignancy (Adashek et al., 2020). Notwithstand-

ing the disruptive influence that oncogenes can have on cell physiology, the existence of such

lesions suggest that homeostatic mechanisms persist and function at many stages along the road to

cancer. New avenues for cancer prevention and treatment are likely to follow from the detailed eluci-

dation of such mechanisms.

Materials and methods

Key resources table

Reagent type
(species) or resource Designation Source or reference Identifiers

Additional
information

Gene
(Mus musculus)

Braf Mouse Genome
Informatics (MGI)

MGI:88190

Gene
(M. musculus)

Tyr::CreER MGI MGI:3641203 MGI Transgene name:
GeneTg(Tyr-cre/ERT2)13Bos

Genetic reagent
(M. musculus)

B6.Cg-Tg(Tyr-cre/ERT2)
13Bos Braftm1Mmcm /BosJ

Dankort et al., 2009 RRID:MGI:5902125

Antibody Anti-Pmel
(rabbit monoclonal)

Abcam Cat#ab137078
RRID:AB_2732921

Also known as anti-
melanoma gp100
IF (1:500)

Antibody Anti-BrdU
(rat monoclonal)

Abcam Cat#ab6326
RRID:AB_305426

IF (1:500)

Antibody Goat anti-rabbit
alexa fluor 594
conjugated (polyclonal)

ThermoFisher
Scientific

Cat#A-11012
RRID:AB_2534079

(1:2000)

Antibody Chicken anti-rat alexa
fluor 488 (polyclonal)

ThermoFisher
Scientific

Cat#A-21470
RRIB:AB_2535873

(1:2000)

Continued on next page
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Continued

Reagent type
(species) or resource Designation Source or reference Identifiers

Additional
information

Sequence-
based reagent

Braf_F IDT PCR primer 5’-TGAGTATTTTTGTGGCAACTGC �3’

Sequence-
based reagent

Braf_R IDT PCR primer 5’-CTCTGCTGGGAAAGCGCC �3’

Sequence-
based reagent

Cre_F IDT PCR primer 5’- GGTGTCCAATTTACTGACCGTACA-3’

Sequence-
based reagent

Cre_R IDT PCR primer 5’- CGGATCCGCCGCATAACCAGTG �3’

Chemical
compound, drug

4-hydroxytamoxifen Sigma-Aldrich Cat#68047-06-3

Chemical
compound, drug

TrueBlack lipofuscin Biotium Cat#23007

Software,
algorithm

Mathematica Wolfram RRID:SCR_014448

Software,
algorithm

Scanpy Wolf et al., 2018 RRID:SCR_018139

Software,
algorithm

Cell Ranger 10X genomics RRID:SCR_017344

Software,
algorithm

CompuCell3D Swat et al., 2012 RRID:SCR_003052

Mouse treatment for nevus development
BrafV600E, Tyr-CreER (C56BL/6) mice (RRID:MGI:5902125) were genotyped by PCR as previously

described (Bosenberg et al., 2006; Dankort et al., 2007). The primers used in this study are: Braf

forward 5’-TGAGTATTTTTGTGGCAACTGC �3’, Braf reverse 5’-CTCTGCTGGGAAAGCGCC �3’,

Cre forward 5’- GGTGTCCAATTTACTGACCGTACA-3’ and Cre reverse 5’- CGGATCCGCCGCA

TAACCAGTG �3’. Topical administration of 4-hydroxytamoxifen (4-OHT; 25 mg/mL or 75 mg/mL in

DMSO; 98% Z-isomer, Sigma-Aldrich) was administered to pups on their back and/or paws at ages

P2, P3, and P4. Images of nevi on back and paw skin were taken with a digital camera at the indi-

cated ages. Nevi from the underside of the skin were imaged using a dissection microscope. All

mouse procedures were approved by UCI’s IACUC.

Live imaging of the skin by MPM
Mice were sedated, shaved, and depilated with wax strips at the indicated ages (during a telogen

phase) and the dorsal skin was imaged to capture the intrinsic fluorescent signal from keratin, mela-

nin, as well as the second-harmonic-generation signal from collagen, using the LSM 510 NLO Zeiss

system. Excitation was achieved with a femtosecond Titanium: Sapphire (Chameleon-Ultra, Coher-

ent) laser at 900 nm. Emission was detected at 390–465 nm for second harmonic generation (blue)

and 500–550 nm (green) and 565–650 (red) for fluorescence.

In vivo labeling with BrdU
BrdU was prepared in sterile PBS at 10 mg/mL and injected intraperitoneally into mice that were 20

days old at 100 mg/kg of body weight. 24 hr later the mouse was shaved, depilated with wax strips

and the skin was removed and fixed in 10% formalin for 16 hr.

Immunofluorescence
Formalin fixed paraffin embedded skins were sectioned 8 mm thick, deparaffinized with Xylene, and

dehydrated in a series of increasing concentration of ethanol washes. Antigen retrieval was per-

formed with 10 mM citric acid buffer at pH 6.0 for 10 min in a steamer. Samples were washed with

PBS, incubated with TrueBlack for 30 s to reduce autofluorescence, and washed again with PBS. All

antibodies were diluted at a 1:500 and incubated overnight at 4˚C. Samples were washed and incu-

bated with the appropriate secondary antibody. Melanocytes were identified with a Pmel antibody
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(EP4863(2); ab137078, Abcam; RRID:AB_2732921). Cells that incorporated BrdU were visualized

with a BrdU antibody (ab6326, Abcam; RRID:AB_305426).

Cell isolation for single-cell RNA sequencing
BrafWT, Tyr-CreER or BrafV600E, Tyr-CreER mice were euthanized at either P30 (n = 2 of each geno-

type) or P50 (n = 3 of each genotype), shaved, and depilated. A 2 � 3 cm section of the dorsal skin

was removed, and the fat scraped off from the underside. The piece was then diced into smaller

pieces and suspended in dissociation buffer (RPMI, liberase 0.25 mg/mL, Hepes 23.2 mM, Sodium

Pyruvate 2.32 mM, Collagenase:Dispase 1 mg/mL) for 50 min at 37˚C with gentle agitation. After

incubation, DNaseI (232U) was added for 10 min and then inactivated with fetal bovine serum and

EDTA (1 mM). The tissue suspension was further dissociated mechanically with the GentleMACS

using the setting m_imptumor_04.01, which runs for 37 s at various speeds. Single-cell suspensions

were filtered twice through a 70 mm strainer and dead cells removed by centrifugation at 300 x g for

15 min. The live cells were washed with 0.04% UltraPure BSA:PBS buffer, gently re-suspended in the

same buffer, and counted using trypan blue.

Library preparation for single-cell RNA sequencing and analysis
Libraries were prepared using the Chromium Single Cell 3’ v2 protocol (10X Genomics). Briefly, indi-

vidual cells and gel beads were encapsulated in oil droplets where cells were lysed and mRNA was

reverse transcribed to 10X barcoded cDNA. Adapters were ligated to the cDNA followed by the

addition of the sample index. Prepared libraries were sequenced using paired end 100 cycles chem-

istry for the Illumina HiSeq 4000. FASTQ files were generated from Illumina’s binary base call raw

output with Cell Ranger’s (v2.1.0; RRID:SCR_017344) ‘cellranger mkfastq‘ command and the count

matrix for each sample was produced with ‘cellranger count‘. All ten samples (four samples from

P30 [two control (wild type) and two mutant] and six samples from P50 [three control and three

mutant]) were aggregated together with the ‘cellranger aggr‘ command to produce one count

matrix that includes all samples. Data analysis was performed with Scanpy [v1.3.6; RRID:SCR_

018139] (Wolf et al., 2018). Cells with fewer than 200 detected genes, and genes detected in less

than three cells, were discarded. We calculated the percent mitochondrial gene expression and kept

cells with less than 13% mitochondrial gene expression, and cells with fewer than 4000 genes/cell

(35,141 cells). Each cell was normalized to total counts over all genes. In the final preprocessing

step, we regressed out cell-cell variation driven by mitochondrial gene expression and the number

of detected UMI. To identify clusters, we first performed principal component analysis on log-trans-

formed data, using highly variable genes, Louvain clustering (Levine et al., 2015), and visualization

with t-distributed stochastic neighbor embedding (tSNE).

Quantification of nevus and nest size and cell content
To quantify the sizes of nevi in mice, dorsal skin was excised and the underside visualized using a dis-

secting microscope. Nevi were traced, and area calculated using ImageJ. Nest sizes were quantified

in live mice by MPM. Sizes of human nests were measured from histological samples (n = 5) obtained

from the UCI Department of Dermatology. Samples were stained with hematoxylin and eosin and

imaged with a microscope. A dermatologist manually identified the nests on each slide, and nest

area was quantified using ImageJ. Human studies were performed under IRB protocol HS# 2019–

5054.

Estimates of cell numbers for mouse nevi were obtained in two different ways: First, we used esti-

mates from Chai et al., 2014 for melanocytic nuclei per square area of mouse nevus, together with

our observed median nevus radius of 76.8 mm; this approach led to an estimate of 897 cells/nevus.

As the data of Chai et al., 2014 come from a different genetic model, we also estimated cell number

as follows: Using 8 mm sections of back skin from Albino BrafV600E mice, we used fluorescence

microscopy to measure the sizes of 194 Pmel-stained melanocytes within the nests of nevi, obtaining

an average cell diameter of 5.68 mm, and counted approximately 14.4 cells per 104 mm3 of nest. In

pigmented animals, we measured by MPM an average nest cross sectional area of 1385 mm2, an

average nest volume of 38792 mm3, and an average number of nests per nevi of approximately 12,

yielding an estimate of 672 cells/nevus. Given uncertainties in these measures, analyses in the manu-

script take into account the possibility of an average that falls anywhere between 100 and 1000 cells.
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Simulations and agent-based modeling
Stochastic, non-spatial simulations of renewal control were obtained by Monte Carlo simulation, in

which cells duplicated every cell cycle, and then chose randomly whether to differentiate or continue

dividing according to a probability modified by feedback from non-dividing cells. A Hill function,

with Hill coefficient = 1, was used to represent the feedback.

To model feedback in a spatial context, we used CompuCell3D (RRID:SCR_003052), an open-

source platform for Cellular Potts modeling (Swat et al., 2012). In CPM, every generalized object or

‘cell’ is associated with a list of attributes such as cell type, surface area, volume, etc. These enter

into the calculation of an effective energy, which can be summarized as the sum of the contact

energy between neighboring cells and the effective energy due to volume constraints.

Simulations were initialized by seeding a single cell, with a size of 25 pixel2, in the center of a 300

� 300 pixel lattice, which grew and divided according to rules and parameters summarized in

Source data 2. To add variability to cell growth, cells randomly chose one of three different growth

rates after every cell division. To add variability to cell division times, cells randomly chose a target

area, between 72 and 80 pixel2, at which to divide. Growth rates were chosen to be sufficiently slow

that the mean time between cell divisions came out to approximately 382 time steps. At division,

each cell was divided in half by a randomly-oriented division plane.

Upon division, a cell either remained dividing or became permanently arrested. All cells had a

minimum 1% probability of arrest per cell division. Once an arrested cell was generated, it began

continuous secretion of a signaling molecule that diffuses and promotes the transition from dividing

to non-dividing (Kunche et al., 2016). Diffusion and decay of the feedback factor was modeled

deterministically, with parameters chosen to produce a steady state decay length of 15 pixels. The

concentration of this factor at the center of mass of each cell then augmented the arrest probability

of that cell by an amount determined by a Hill function (see Source data 2).

Statistical analysis
Statistical analyses for single-cell RNA sequencing were performed using Scanpy (RRID:SCR_

018139). Other statistical testing was done using Mathematica (RRID:SCR_014448). For the spatial

analysis in Figure 5E–F, nest areas in each field were randomly swapped, with positions held con-

stant, 5000 times, and the distributions of neighboring nest locations and sizes recalculated each

time. This allowed us to generate an envelope enclosing the 5th and 95th percentiles for the per-

muted data, at each target nest size, and compare the observed data with the bounds of that

envelope.
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Appendix 1

Modeling Oncogene-Induced Senescence as a Cell Autonomous
Process—Mathematical Results
Consider the clonal descendants of an oncogene-transformed cell. The simplest model of a cell-

autonomous oncogene-induced arrest process is one in which cells replicate at a constant rate, and

undergo senescence with a constant probability s per cell cycle. Once all the cells in a clone have

undergone senescence, we refer to the clone as ‘extinct’. For any given s, we wish to find the proba-

bility that extinction has occurred by any given time, as well as the distribution of clone sizes that

should be expected at that time.

If the decision to senesce is independent in each daughter cell at each cell division, then this sce-

nario describes a branching process in which each cell produces two senescent cells with probability

s2, two dividing cells with probability (1�s)2, and one dividing and one senescent cell with probabil-

ity 2s(1�s). The theory of branching processes may then be used to obtain the probability generat-

ing function (PGF) for the number of dividing cells after n cell cycles. The offspring distribution of a

single cell as described above may be written as:

f ðzÞ ¼ s2 þ 2sð1� sÞzþð1� sÞ2z2

where z is a dummy variable whose exponent indicates the number of dividing (non-senescent) cells

produced by an event, and the coefficient in front of each zn is the probability of that event. It can

be shown that the PGF for the number of dividing cells after n cell cycles is equal to the n-th compo-

sition of the offspring distribution f unto itself (Hawkins and Ulam, 1944). For example, the PGF for

the number of dividing cells after 2 cell cycles is:

Fð2; zÞ ¼ f ðf ðzÞÞ ¼ s2 þ 2sð1� sÞðs2 þ 2sð1� sÞzþð1� s2Þz2Þ
þð1� sÞ2ðs2 þ 2sð1� sÞzþð1� sÞ2z2Þ2

And in general:

Fðn;zÞ ¼Fð1;Fðn� 1; zÞÞ ¼ f ðFðn� 1;zÞÞ

Thus F(n, 0) is the cumulative probability that there are 0 dividing cells—that is a clone has extin-

guished—after n cell cycles.

The theory of branching processes also tells us that the probability that a clone eventually goes

extinct (over the long run) is just the smallest non-negative root of z = f(z). We solve the equation:

z = s2 + 2 s(1�s)z + (1�s)2z2 and obtain: z = s2/(1�s)2, 0 � s < 0.5 and z = 1, s � 0.5. This con-

firms that only if s � 0.5 is eventual extinction of all clones guaranteed.

Monte Carlo Simulations
The behavior of the above branching processes may be easily observed using Monte Carlo Simula-

tion, seeding each clone with a single dividing cell and specifying the value of s. In the simulations

show in Figure 4, cells divided synchronously and s was used to determine the fate of each daughter

cell after each division. For each simulation it was recorded (1) whether the clone went extinct, and if

so, after how many cell cycles it did so and (2) the number of cells at the time of extinction (or the

end of the simulation).

Distribution of clone sizes at extinction
To derive the distribution of clone sizes at extinction it is helpful to think about clonal development

not in terms of the number n of cell cycle times that have elapsed, but in terms of the cumulative

number of cell division events that have occurred up to any given time within a clone, which we will

represent as h. Assuming clones begin from one cell, the number of cells at extinction (Tc) will simply

be Tc = 1 + h;

To find the expected distribution of values of Tc, we begin by computing the probability that a

clone goes extinct at a given value of h, which we will call pE(h). Recalling that two choices are made

at every division (one per daughter cell), it may be seen that to extinguish at h requires 2 h choices,
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exactly h +1 of which are choices to become senescent, and h �1 events are choices to remain pro-

liferative. This implies that:

pEð1Þ ¼A1s
2

pEð2Þ ¼A2ð1� sÞs3

pEð3Þ ¼A3ð1� sÞ2s4

:::

pEðhÞ ¼Ahð1� sÞh�1
shþ1

where the coefficients Ah are constants that capture the number of different ways that each combi-

nation of choices of s and 1�s can happen. Ah can be thought of as the number of unique full binary

trees that end with h + 1 senescent cells. As senescent cells are the dead ends in those trees, they

are referred to as ‘leaves’ of the tree. The sequence that counts the number of unique full binary

trees is called the Catalan numbers. Ck, the kth Catalan number is the number of unique binary trees

with k+1 leaves. It is defined by:

Ck ¼
1

kþ 1

2k

k

� �

Accordingly,

pE hð Þ ¼
1

hþ 1

2h

h

� �

1� sð Þh�1
shþ1

Consequently, the probability of Tc = m cells at extinction is simply

pTc mð Þ ¼ pE m� 1ð Þ

In Appendix 1—figure 1, panel A, we plot the value of pE(h) as a function of h for different val-

ues of s, using logarithmic axes. Notice that for s sufficiently close to 0.5, the relationship approxi-

mates a line of slope –3/2. Thus, the approximate probability of finding a clone of size m varies

inversely with the 3/2-power of m. In panel B, the analytical results for s = 0.56 are superimposed on

results obtained by Monte Carlo simulation of 500,000 cases.
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Appendix 1—figure 1. Predicting clone sizes at the time of clonal extinction. (A) Analytical results,

under assumptions of different values for the cell-autonomous arrest probability s. (B). A comparison

of the analytical results for s = 0.56 with the outcomes of 500,000 Monte Carlo simulations.
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