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Toward a Comprehensive Developmental Theory for Symbolic Magnitude
Understanding

Hyekyung Park (park.2766@osu.edu)
Department of Psychology, 1835 Neil Avenue

Columbus, OH 43210 USA

John Opfer (opfer.7@osu.edu)
Department of Psychology, 1835 Neil Avenue

Columbus, OH 43210 USA

Abstract

Whether different formats of numbers are represented by one
or more systems across development is a subject of long-
standing interest in the field of numerical cognition, with seem-
ingly contradictory results. Here we examined numerical com-
parison to test a developmental theory that can reconcile these
discrepancies. In Experiment 1, we found numerical under-
standing progresses through three continuous phases of asso-
ciation between numerical symbols and approximate sense of
numerosity. In the youngest age group (prefluent phase), com-
paring numerals were slower than comparing dot arrays, but
became similar (fluent phase) then faster (overlearning phase)
with age. Because this developmental change occurred in the
order of numeric range 1-9, followed by 10-99 and 100-999,
multiple phases co-existed during childhood. Furthermore, re-
sults from Experiment 2 indicated that comparing different for-
mats of numbers was affected by ratio even at the highest levels
of proficiency, suggesting that the approximate number system
is never fully replaced.
Keywords: approximate number system; symbolic numerals;
magnitude comparison

Introduction
Numeracy is an important predictor of arithmetic skill
and mathematical achievements (Holloway & Ansari, 2009;
Libertus, Odic, Feigenson, & Halberda, 2016). Due to the im-
portance of numeracy, a large body of research has focused
on how children learn the meanings of symbolic numerals
and how representations of symbolic numerals change with
age. However, discrepancies in the literature still exist, which
mainly center on whether the ability to represent nonsymbolic
numerosities (e.g., number of dots) provide the foundation for
processing symbolic numerals (e.g., Arabic numerals) across
development (Carey & Barner, 2019; Dehaene, 2011).

The purpose of the present study is to reconcile contra-
dictory explanations from previous studies and provide more
comprehensive developmental framework on how the relation
between symbolic and nonsymbolic number representations
changes over time.

A Common System for Symbolic Numerals and
Nonsymbolic Numerosities
There is considerable evidence that nonsymbolic numerosi-
ties are represented in an inexact way by the approximate
number system (ANS) (Dehaene, 2011). Because the ANS
produces noisy representations of numbers, discriminability
of any two numerosities depends on their ratio. Previous stud-
ies using nonsymbolic magnitude comparison task have re-

vealed that ratio effect is present regardless of age, suggesting
that the numerosities are processed by the ANS across devel-
opment (Halberda & Feigenson, 2008; Halberda, Ly, Wilmer,
Naiman, & Germine, 2012). Furthermore, the researchers re-
ported that the ANS is present in newborn infants and non-
human species, suggesting that the ANS is an evolutionarily
ancient system (Cantlon & Brannon, 2006). Considering the
ANS is an intuitive and innate system, researchers have pro-
posed that the ANS provides the foundation of learning sym-
bolic numerals. A large body of studies has shown that com-
paring Arabic numerals is affected by ratio, which is the hall-
mark of the ANS (Fazio, Bailey, Thompson, & Siegler, 2014;
Moyer & Landauer, 1967; Sekuler & Mierkiewicz, 1977).

Separate Systems for Symbolic and Nonsymbolic
Numbers
On the other hand, alternative approach proposes that differ-
ent formats of numbers are processed by separate systems.
Here, we illustrate two different theories from separate sys-
tem approach.

Separate Number Systems for Children One of the alter-
native theories proposes that learning the meanings of num-
ber words does not involve associating numerical symbols to
the ANS, because the ANS cannot provide exactness of sym-
bolic numerals (Carey & Barner, 2019; Carey, Shusterman,
Haward, & Distefano, 2017). When children were trained to
map the word “ten” with a card that contained 10 objects, they
failed to choose a card with 10 objects when 10 were con-
trasted with different number of objects (Carey et al., 2017).
In addition, the effect of ratio was not observable. For exam-
ple, discriminating 10 from 30 was as bad as discriminating
10 from 15. This result contradicts the ANS mapping hypoth-
esis which predicts that children would be able to recognize
10 objects against different number of objects after training
or be influenced by ratios of number sets.

Separate Number Systems for Adults Studies on how
adults represent symbolic numerals also provide alternative
explanations to the ANS mapping theory (Lyons, Ansari, &
Beilock, 2012; Marinova, Sasanguie, & Reynvoet, 2018).
Among these alternative theories, the symbolic estrangement
hypothesis suggests that repeated use of numerical symbols
would lead symbols to be estranged from the ANS and repre-
sented in exact manner. To test this theory, Lyons et al. (2012)
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Figure 1: Hypothetical developmental trajectories

asked adults to compare different formats of numbers. The
result showed that comparing a dot array with an Arabic nu-
meral took longer than comparing two dot arrays. Worse per-
formance in mixed format comparison task has been thought
to be caused by the switch cost between separate systems of
symbolic and nonsymbolic numbers.

The Current Studies
Both the common system approach and separate systems ap-
proach provide evidence that support corresponding theories.
Nonetheless, previous studies have limitations in explaining
the reasons for contradicting findings.

We suggest that these seemingly discrepant explanations
between theories is not because any of the previous studies
provide invalid explanations for local results. Instead, previ-
ous studies explain only part of the entire process of acquiring
number concepts. Not only do most studies focused on lim-
ited range of developmental trajectory, but they did not ex-
amine the variability of symbolic numeral proficiency within
same age group depending on numeric range.

We propose numerical understanding progresses through
three phases of associative learning across development.
By logical necessity, continuous progression of acquiring
the concept of symbolic numerals entails three qualitative
phases: processing nonsymbolic numerosities more fluently
than symbolic numerals, processing numerosities and numer-
als with equal fluency, and processing numerals more fluently
than numerosities. For convenience, we labeled these phases
as prefluent, fluent, and overlearning phases. These phases
are useful qualitative description of a continuous quantita-
tive progression, much like ‘infant’, ‘toddler’, and ‘child’are
useful descriptions for periods in a continuous aging process.
These phases also map onto the conventional issues of debate.

In prefluent phase (phase 1), approximate sense of dis-
crete number is present, but symbols are meaningless. We
predicted that difference in symbolic and nonsymbolic rep-
resentations would be large in prefluent phase. Fluent phase
(phase 2) is when children learn numerical symbols by asso-
ciating symbols with the quantities they represent. Therefore,
acquiring the meanings of symbolic numerals is the process

of integrating meaningless symbols into the common system
(ANS) that processes nonsymbolic numerosity. In this phase,
processing symbolic numerals will be done as automatically
as nonsymbolic numerosities. In overlearning phase (phase
3), processing symbolic numerals would become more auto-
matic than processing nonsymbolic numerosities due to the
frequent use of symbolic numerals. Previous studies have
shown that older children and adults, who have enough ex-
perience with symbolic numerals, can compare symbolic nu-
merals faster and more accurately than dot arrays (Fazio et al.,
2014; Marinova et al., 2018). Nevertheless, it does not mean
different formats of numbers are processed by separate sys-
tems. Rather, symbolic numerals are still represented as con-
tinuous quantity. For example, comparing Arabic numerals
in overlearning phase would be similar to comparing length
of lines which can be done quickly and accurately. In this
phase, difference between symbolic and nonsymbolic repre-
sentations would increase again.

Based on these three phases, we also hypothesized that
multiple phases would overlap depending on the numeric
range. Since learning symbolic numerals require mapping be-
tween symbols and the ANS, reaching fluent phase and over-
learning phase would be affected by the amount of experi-
ence children have with numerals. Considering frequency of
symbolic numerals decrease as numerical magnitude increase
(Dehaene & Mehler, 1992), association between symbols and
the ANS will be done from smaller to larger numerals. There-
fore, we predicted that children can be at overlearning phase
for smaller quantities while at prefluent phase for larger quan-
tities (Figure 1).

The co-existence and competition among ways of think-
ing about number is also supported by previous studies on
number line estimation (Siegler & Opfer, 2003; Siegler &
Booth, 2004; Siegler, Thompson, & Opfer, 2009). For ex-
ample, Siegler and Opfer (2003) presented 0 to 1000 number
line and asked participants to place numbers on the number
line. The result showed that second and fourth graders rep-
resented numbers inaccurately by overestimating small num-
bers while underestimating larger numbers, indicating loga-
rithmic representation of numbers. However, sixth graders
and adults accurately estimated given numbers, showing lin-
ear representation. In Siegler and Booth (2004) study, on the
other hand, 0 to 100 number line was presented. The result in-
dicated that kindergarteners and first graders showed logarith-
mic representation of numbers, whereas second graders illus-
trated linear representation. Taken together, second graders
represented numbers in different manners depending on the
number range.

The present study was designed to include wide range of
age and numbers. Testing three-phase hypothesis required
us to examine developmental change across age while test-
ing multiple-phase hypothesis required us to examine vari-
ability within age group. Therefore, we tested 4- to 12-year-
olds as well as adults to observe three phases. In addition,
we included number ranges 1-9, 10-99, and 100-999 to test
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multiple phase hypothesis. We used magnitude comparison
tasks to measure gradual change from prefluent phase to over-
learning phase by taking account the noisiness of representa-
tions. More importantly, we measured reaction time to di-
rectly compare automaticity of processing symbolic and non-
symbolic numbers.

Experiment 1
In Experiment 1, we tested two hypotheses. The first hypoth-
esis was that numerical understanding progresses through
three continuous phases – from processing numerosity more
automatically than numerals, to processing numerosity and
numerals equally automatically, to processing numerals more
automatically than numerosities. The second hypothesis was
that this understanding of numerals is range-dependent, such
that the children with same age could be in as much as all
three phases at the same time, with the probability of being in
an advanced phase being negatively associated with the mag-
nitude of the numbers. To examine the relative difference
between symbolic and nonsymbolic representations of num-
bers, we used symbolic and nonsymbolic magnitude compar-
ison tasks.

Method
Participants We tested 186 4-year-olds to 12-year-olds and
66 adults in the study. Adults were undergraduate students.
Children were tested at a museum or at schools.

Materials and Procedures The experiment was conducted
on a 13-inch laptop, using a MATLAB program. Participants
were given two comparison tasks. Their tasks were to choose
the larger of two quantities. Two stimuli were presented on
each side of the screen simultaneously for 2500ms after fixa-
tion. Presentation time 2500ms was chosen to be long enough
for young children to view 3-digit symbolic numerals but
short enough to prevent them from counting dot arrays. Par-
ticipants could make a response while stimuli were presented.
Participants were asked to press ‘Q’ if they thought the left
stimulus was larger and ‘P’ if they thought the right stimulus
was larger. Participants were asked to answer as accurately
and as quickly as possible. Feedback was not provided. For
children, neutral responses was provided. Reaction times and
accuracy were recorded.

Two comparison tasks included dot-dot and numeral-
numeral conditions. In dot-dot condition, two sets of dots
were presented. In numeral-numeral condition, two Arabic
numerals were presented. Twenty-eight trials each for quan-
tities 1-9, 10-99, and 100-999 were presented, yielding 84 tri-
als for each condition. Thus, each participant completed 168
trials. The stimuli of quantities 1-9 consisted of every pos-
sible pair ranged from 2 to 9. To equate the ratios between
different numeric range, the stimuli of quantities 10-99 were
created by multiplying 7 to the stimuli of quantities 1-9. The
stimuli of quantities 100-999 were created by multiplying 63
to the stimuli of quantities 1-9. The ratio of large to small
numbers ranged from 1.125 to 4.5.

In the dot-dot condition, yellow dots were presented on the
left while blue dots were presented on the right side of the
screen. Instead of equating total surface areas of dot arrays
or sizes of dots, we manipulated left to right ratio of non-
numerical features of each pair to check whether participants
responded based on number of dots, or on non-numerical
features (DeWind, Adams, Platt, & Brannon, 2015; Starr,
DeWind, & Brannon, 2017). Ratio of either field area or in-
dividual dot size was randomly chosen from three different
ratios (2:1, 1:1, and 1:2). Therefore, there were nine possi-
ble combinations of non-numerical stimulus features. Field
area indicated the area in which the dots were drawn. In the
numeral-numeral condition, the physical size of Arabic nu-
merals was equal across trials.

Results
Responses that took longer than 3 SD of each age group’s
reaction times (RT) and RTs shorter than 200ms were ex-
cluded. Excluding outliers yielded 99.5% of the adults’ data
and 98.5% of the children’s data. For analysis, we fitted a lin-
ear multilevel regression model (Gelman & Hill, 2006) with
random intercepts by subject using lme4 package in R.

As a preliminary analysis, we first analyzed whether partic-
ipants’ responses in dot-dot condition were based on numeri-
cal values or on non-numeric features. Analysis was done af-
ter excluding 9 adults whose non-numeric feature data were
not available. Their data were included in further analysis.
Participants were more likely to solve the dot comparison task
based on numerical values (RT: b = - .09, SE = .01, p < .001;
accuracy: b = 1.53, SE = .04, p < .001) than dot size (RT:
b = - .02, SE = .01, p < .01; accuracy: b = .41, SE = .04,
p < .001) or field area (RT: b = - .05, SE = .01, p < .001;
accuracy: b = .29, SE = .02, p < .001). This result illustrated
that even though participants were influenced by non-numeric
features of dot arrays, their responses were mainly based on
the quantity of dots.

For the main analysis, we aimed to test three-phase hypoth-
esis and multiple phase hypothesis by analyzing the RTs from
correct responses and RTs from all responses. We examined
the difference between dot-dot and numeral-numeral condi-
tion and how the difference changes over development. To
calculate the difference between condition, we first calculated
each participant’s z-scores of RT in dot-dot and numeral-
numeral condition. Then we subtracted z-score of numeral-
numeral condition from z-score of dot-dot condition. This
value – normalized RT – is given by the formula: (z-score
of RT in dot-dot condition) – (z-score of RT in numeral-
numeral condition). Negative values of normalized RT in-
dicate that comparing dot arrays were faster than comparing
Arabic numerals, whereas positive values indicate Arabic nu-
merals were compared faster than comparing dot arrays. If
normalized RT is 0, it indicates RT in dot-dot condition is
equal to RT in numeral-numeral condition. Therefore, larger
normalized RT means that performance in numeral-numeral
condition was relatively better than in dot-dot condition.

We analyzed the effect of age (4 to 19 years) and numeric
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Figure 2: Normalized RT from correct trials by numeric
range. Solid lines with 95% confidence intervals represent
mean normalized scores generated from 1000 simulations
from the fitted model. Raw means and their standard errors
are presented with ×.

range (1-9, 10-99, and 100-999) on the normalized RT to in-
vestigate if relative automaticity of numerals changes with
age and depends on numeric range. We used a mixed linear
model including by-subject random intercept (Figure 2). The
result showed that normalized RT was larger in older partici-
pants (correct trials: b = .30, SE = .05, p < .001; all trials: b
= .30, SE = .05, p < .001), indicating that older participants
were relatively better in numeral-numeral condition than in
dot-dot condition compared to younger participants. In ad-
dition, normalized RT decreased as numeric range increased
(correct: b = - .25, SE = .02, p < .001; all: b = - .26, SE =
.02, p < .001). The effect of numeric range illustrates that
developmental change occurred gradually from quantity 1-9
to 10-99 to 100-999. In addition, the interaction between age
and numeric range was significant (correct: b = .12, SE = .02,
p < .001; all: b = .14, SE = .02, p < .001), indicating the
effect of numeric range decreased with age.

To characterize age groups by phase of development, we
next examined from when normalized RT becomes larger
than 0 for each numeric range (1-9, 10-99, 100-999). We
used a bootstrap procedure to estimate 95% confidence inter-
val (CI) using boot package in R and examined whether 95%
CI included 0 or not. Normalized score in prefluent phase
would be significantly smaller than 0 while normalized score
significantly larger than 0 would indicate overlearning phase.
Normalized score not significantly different from 0 would in-
dicate fluent phase. For bootstrap procedure, we randomly
sampled normalized score with replacement based on the ex-
perimental data in one simulation. Then, we calculated mean
normalized score for each age group and for each numeric
range based on the simulated data. Therefore, one simula-
tion yielded total of 27 mean normalized scores. We repeated
same procedure 10,000 times and estimated 95% CI (Tian,
Braithwaite, & Siegler, 2020).

For numeric range 1-9, normalized RTs from 4-year-olds

(correct trials: M = -0.23, 95% CI = [-0.55, 0.10]; all trials:
M = -0.18, 95% CI = [-0.55, 0.20]) to 6-year-olds (correct:
M = 0.07, 95% CI = [-0.15, 0.36]; all: M = 0.08, 95% CI =
[-0.11, 0.29]) were not significantly different from 0. 7-year-
olds (correct: M = 0.25, 95% CI = [0.07, 0.46]; all: M = 0.27,
95% CI = [0.09, 0.48]) and older participants were faster at
comparing numerals than dot arrays. For numeric range 10-
99, comparing numerals become similar with comparing dot
arrays from 9-year-olds (correct: M = -0.15, 95% CI = [-0.32,
0.01]; all: M = -0.09, 95% CI = [-0.29, 0.09]) and continued
to show similar automaticity until 12-year-olds (correct: M
= -0.07, 95% CI = [-0.24, 0.10]; all: M = -0.02, 95% CI
= [-0.19, 0.17]). Only adults were faster when comparing
numerals than dot arrays (correct: M = 0.16, 95% CI = [0.09,
0.22]; all: M = 0.19, 95% CI = [0.13, 0.26]). For numeric
range 100-999, normalized RTs for 10-year-olds (correct: M
= -0.05, 95% CI = [-0.27, 0.17]; all: M = -0.00, 95% CI =
[-0.23, 0.23]) to 12-year-olds (correct: M = -0.10, 95% CI =
[-0.34, 0.11]; all: M = -0.05, 95% CI = [-0.27, 0.15]) were
not significantly different from 0. Normalized RT of adults
were larger than 0 (correct: M = 0.16, 95% CI = [0.10, 0.22];
all: M = 0.19, 95% CI = [0.13, 0.27]).

Consistent with our prediction, results from normalized RT
illustrated that automaticity of processing symbolic numerals
is acquired gradually in three phases. In addition, develop-
mental change took place from small to large numeric range,
leading to a coexistence of multiple phases during childhood.
For numeric range 1-9, 4- to 6-year-olds were already at flu-
ent phase, and 7-year-olds reached overlearning phase. For
numeric range 10-99, fluent phase started to occur around
9 years of age. For numeric range 100-999, 10-year-olds
reached fluent phase. Only adults were at overlearning phase
for numeric range 10-99 and 100-999.

Experiment 2
Results from Experiment 1 indicated that symbolic numer-
als are gradually mapped to the ANS before being processed
much more automatically than would be expected from a
purely ANS representation. In Experiment 2, we tested if
different formats of numbers are represented by the ANS by
employing a mixed format comparison task (Lyons et al.,
2012). We were specifically interested in the sensitivity to
the ratio for mixed format comparison. Carey et al. (2017)
illustrated that children who failed to map number words to
nonsymbolic numerosities were not affected by ratio. In this
sense, we predicted that participants being sensitive to ratio
when solving mixed format comparison task would indicate
symbolic and nonsymbolic numbers are represented approx-
imately on a same continuum. In contrast, absence of ratio
effect would show that symbolic numerals are processed in a
different manner from dot arrays.

We investigated how the strength of ratio effect would
change in accordance with three phases of numerical devel-
opment that were proposed in Experiment 1. If development
involved mapping symbolic numbers to the ANS, ratio effects
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would be expected to be stronger in older participants and
weaker for large numbers. In contrast, if symbolic numbers
become estranged from the ANS, ratio effects would become
weaker with age and be stronger for larger numbers. In addi-
tion, if learning symbolic numerals go through separate path
from the ANS in childhood, strength of the ratio effect would
not differ depending on numeric range.

Method
Participants Participants in Experiment 2 were same as in
Experiment 1.

Materials and Procedures Participants were given a dot-
numeral comparison task. In the task, one of the stimuli was
presented in a nonsymbolic format (an array of dots) while
the other was presented in a symbolic format (an Arabic nu-
meral). The dots were presented in blue. The side (left or
right) containing the dot array was randomized. Except the
format of numbers in comparison task, number pairs and pro-
cedures in Experiment 2 were identical with Experiment 1.

Results
Responses that took longer than 3 SD of each age group’s re-
action times and reaction times (RT) shorter than 200ms were
excluded. Excluding outliers yielded 96.7% of the adults’
data and 97.3% of the children’s data. We fitted a linear mul-
tilevel regression model with by-subject random intercepts.
We analyzed the effect of ratio (1.125 to 4.5), age (4 to 19
years), and numeric range (1-9, 10-99, and 100-999) by us-
ing mixed linear model for RT and using generalized mixed
linear model with logit link for error rate.

Speed and accuracy improved with age (correct RT: b = -
.41, SE = .03, p < .001; all RT: b = - .37, SE = .03, p <
.001; error rate: b = - .37, SE = .03, p < .001). RT decreased
(correct: b = - .04, SE = .01, p < .001; all: b = - .05, SE =
.01, p < .001) and error rate increased (b = .33, SE = .02, p
< .001) as the numeric range increased. In addition, RTs and
error rates were affected by ratio of stimuli (correct RT: b = -
.06, SE = .01, p < .001; all RT: b = - .05, SE = .01, p < .001;
error rate: b = - .35, SE = .02, p < .001), thereby exhibiting
the hallmark of the ANS. The interaction between ratio and
age was not significant for RT (correct: b = .01, SE = .01, p
= .18; all: b = .01, SE = .01, p = .23), but was significant for
error rate (b = - .17, SE = .02, p < .001). This result indicated
that the ratio effect on accuracy became stronger as age of
participants increased. Interaction between ratio and numeric
range was significant both for RT (correct: b = .05, SE = .01,
p < .001; all: b = .05, SE = .01, p < .001) and error rate (b =
.05, SE = .02, p < .01), showing ratio effect became weaker
for larger numeric range.

To further examine the strength of association between
symbolic numerals and nonsymbolic numerosities, we com-
puted each individual’s sensitivity to ratio based on the slope
of the relation between ratio and error rate. We fitted logistic
regression including probability to choose left stimulus as a
dependent variable and log(nleft) - log(nright) as a predictor. A
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Figure 3: Ratio effects of error rate by age and numeric range.
Solid lines with 95% confidence intervals represent mean ra-
tio effects of error rate generated from 1000 simulations from
the fitted model. Raw means and their standard errors are
presented with ×.

larger value of slope means that participants were more sen-
sitive to ratio between stimuli. We examined the effect of age
(4 to 19 years) and numeric range (1-9, 10-99, 100-999) on
the ratio effect using mixed linear model including by-subject
random intercept (Figure 3).

The result showed that ratio effect of error rate became
stronger as age increased (b = .47, SE = .04, p < .001) and be-
came weaker as numeric range increased (b = - .40, SE = .02,
p < .001). Interaction between age and numeric range was
significant (b = .05, SE = .02, p < .05), indicating that devel-
opmental change was clearer in larger numeric range. Taken
together, results from individual’s ratio effect supported the
hypothesis that symbolic numbers become more strongly as-
sociated with the ANS with age and experience.

General Discussion
The purpose of the present study was to propose a develop-
mental framework that can reconcile seemingly incompati-
ble results from previous studies. Even though the existing
theories provide evidence for part of the developmental tra-
jectory, they could not explain the cause of the contradictory
findings. For example, in contrast with the results that seem
to support separate number systems for children, numerous
studies revealed that children could associate number words
to the ANS when the task does not require children to un-
derstand exact meanings of the number words (Gunderson,
Spaepen, & Levine, 2015; Odic, Le Corre, & Halberda, 2015;
Wagner & Johnson, 2011). Similarly, even though separate
systems approach proposes adults show switch cost between
different formats of numbers (Lyons et al., 2012; Marinova et
al., 2018), adults are influence by ratios when comparing two
Arabic numerals (Moyer & Landauer, 1967). Nevertheless,
the common system approach does not explain through which
process symbolic numeral representation becomes more pre-
cise than nonsymbolic numerosity representation.
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We predicted that results from previous studies can be
explained by three phases of associative learning between
numerical symbols and the ANS. We examined variability
across age groups to test if acquisition of number concept de-
velop in three phases. In addition, we examined variability
within age group to test if multiple phases overlap depending
on the numeric range.

Results from Experiment 1 showed that normalized RT
was affected by numeric range, showing that mapping be-
tween symbolic numbers and the ANS occurs gradually from
smaller to larger numbers, leading to the coexistence of multi-
ple phases during development. Children could process sym-
bolic numerals in a similar way with dot arrays from age 4
for numeric range 1-9, age 9 for numeric range 10-99, and
age 10 for numeric range 100-999. This difference between
numeric range indicates that even if children became faster
in comparing numerals from small numeric range, they were
still faster in comparing dot arrays from larger numeric range.
Furthermore, results from Experiment 2 indicated that differ-
ent formats of numbers are continued to be represented by a
common system even after symbolic numerals become more
automatically processed than nonsymbolic numerosities.

Multiple phases or representations of numerical concepts
have also been investigated in other contexts. For exam-
ple, studies on number line estimation illustrated that second
graders showed linear representation for 0 to 100 range of
number line while showing logarithmic representation for 0
to 1000 range of number line (Siegler & Booth, 2004; Siegler
& Opfer, 2003). Furthermore, studies using Stroop task to
measure automaticity of processing symbolic numerals also
showed that children’s performance is affected by numeric
range (Mussolin & Noël, 2007). Mussolin and Noël (2007)
asked second to fourth graders to compare physical size of
two Arabic numerals when the relative difference of numeral
magnitudes were either congruent or incongruent with phys-
ical size difference. The results showed that for second
graders, interference of numeral magnitude was significant
for 1-digit numerals, but the effect was weaker for 2-digit
numerals smaller than 50 and not significant for 2-digit nu-
merals larger than 50. In contrast, third and fourth graders
were equally interfered by numeral magnitude regardless of
numeric range.

In conclusion, our results indicate that the ANS provides a
foundation for children’s first learning of symbolic numerals
and that symbolic numerals are continued to be represented
by the ANS in adulthood. The results supported our hypothe-
ses that numerical development go through three continuous
phases. In addition, developmental process occurred not in
the way of mastering the previous phase and then moving
onto the next phase. Instead, multiple phases overlapped de-
pending on numeric range.
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