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Abstract 

The genetic basis of human facial variation and craniofacial birth defects remains

poorly  understood.  Distant-acting  transcriptional  enhancers  control  the  fine-

tuned spatiotemporal expression of genes during critical stages of craniofacial

development1–3. However, a lack of accurate maps of the genomic locations and

cell type-resolved  activities of craniofacial enhancers prevents their systematic

exploration in human genetics studies. Here, we combine histone modification,

chromatin  accessibility,  and  gene  expression  profiling  of  human  craniofacial

development with single-cell  analyses of the developing  mouse face to define

the  regulatory  landscape  of  facial  development  at  tissue-  and  single  cell-

resolution.  We  provide  temporal  activity  profiles  for  14,000  human

developmental craniofacial enhancers. We find that 56% of human craniofacial

enhancers  share  chromatin  accessibility  in  the  mouse  and  we  provide  cell

population- and embryonic stage-resolved predictions of their  in vivo activity.

Taken  together,  our  data  provide  an  expansive  resource  for  genetic  and

developmental studies of human craniofacial development.

Introduction

The development of the human face is a highly complex morphogenetic process.

It requires the precise formation of dozens of intricate structures to enable the

full  complement  of  facial  functions  including  food  uptake,  breathing,  speech,

major  sensory  functions  including  hearing,  sight,  smell,  taste,  and  nonverbal

communication  through  facial  expression.  Intriguingly,  these  functional

constraints  coincide  with  substantial  inter-individual  variation  in  facial

morphology,  which  humans  use  as  the  principal  means  for  recognizing  each
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other.  Apart  from  providing  the  basis  for  normal  facial  variation,  early

developmental processes underlying facial morphogenesis are highly sensitive to

genetic  abnormalities  as  well  as  environmental  effects4.  Even  subtle

disturbances during embryogenesis can result in a range of craniofacial defects

or dysfunctions5. In embryonic facial development, the primary germ layers as

well as the neural crest contribute crucially to the formation of the pharyngeal

arches, the frontonasal process and the midface, which in combination give rise

to the derived structures of the face6–9.  The primary palate forms by the fifth

week  post  conception10 and  the  development  of  primary  palate  derivatives,

secondary  palate,  and  many  other  structures,  combined  with  overall  rapid

growth, result in a discernable human-like appearance by the tenth week post

conception11.  Genetic  or  environmental  perturbations  during  these  crucial

developmental  stages  are  known  to  result  in  craniofacial  malformations  of

varying  severity  and  of  typically  irreversible  nature12–16.  Development  of  the

mammalian face requires a conserved set of genes and signaling pathways17,

which are regulated by distant-acting transcriptional enhancers that control gene

expression in time and space1,18–24. Together with the genes they control, these

enhancers are a critical component of mammalian craniofacial morphogenesis. It

is estimated that there are hundreds of thousands of enhancers in the human

genome for approximately 20,000 genes25 and chromatin profiling studies have

identified  initial  sets  of  enhancers  predicted  to  be  active  in  craniofacial

development1,25,26. However,  these  data  sets  do  not  cover  critical  stages  of

human facial development, such as secondary palate formation. Several single-

cell  studies  have  been  performed  for  the  developing  face  in  vertebrate  and

mammalian  model  systems,  as  well  as  some  human  face

tissues9,27,29,31,33,35,37,39,42,43,45–54.  While  these  studies  cover  several  specific  cell

lineages or anatomical sub-regions of the face, the broad enhancer landscape of
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mammalian  face  development  at  cell  type  resolution  remains  incompletely

understood.  In  part  due to the continued incomplete annotation  state  of  the

craniofacial  enhancer  landscape,  the  number  of  enhancers  that  could  be

mechanistically  linked  to  facial  variation  or  craniofacial  birth  defects  has

remained limited1,18–23. With an increasingly refined view of the genetic variation

underlying  human  facial  variation28 and  whole  genome  sequencing  as  an

increasingly  common  clinical  approach  for  the  identification  of  noncoding

mutations  in  craniofacial  birth  defect  patients30,32,  an  expanded and accurate

map  of  human  craniofacial  enhancers  is  critical  for  interpretation  of  any

noncoding  findings  emerging  from  these  studies.  Here  we  provide  a

comprehensive compilation of  regulatory  regions from the developing human

face during embryonic stages critical for birth defects including orofacial clefts,

along  with  gene  expression  and  open  chromatin  signatures  at  single  cell

resolution for the developing mouse face. 

Results

Epigenomic Landscape of the Human Embryonic Face

To  map  the  epigenomic  landscape  of  critical  periods  of  human  face

development,  we focused on Carnegie stages (CS) 18-23, a period coinciding

with the formation of important structures including the maxillary palate, rapid

overall growth, and significant changes in the relative proportions of craniofacial

structures that impact on ultimate craniofacial shape11,34,36. These stages are of

direct  clinical  relevance  because  common craniofacial  defects,  including  cleft

palate  and  major  facial  dysmorphologies,  result  from  disruptions  within  this

developmental  window  (Figure 1a)38,40.  To  determine  the  genomic  location  of

enhancers, we generated genome-wide maps of the enhancer-associated histone

mark  H3K27ac  (ChIP-seq),  accessible  chromatin  (ATAC-seq),  and  gene

expression  (RNA-seq)  from  embryonic  face  tissue  for  CS18,  19,  22,  and  23

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102



(Supplementary Figure 1, Supplementary Data 1). To extend our compendium to

earlier stages, we complemented this data with published H3K27ac peaks (ChIP-

seq)  from CS13-17 human face  tissue and an  additional  available  sample  at

CS2026 (Supplementary  Data  1;  Methods).  In  total,  we  observed  13,983

reproducible  human  candidate  enhancers,  as  defined  by  the  presence  of

H3K27ac signal in at least two biological samples at any stage between CS13-23

of development (Supplementary Data 2). We examined the correlation between

H3K27ac peaks and chromatin accessibility focusing on week 7 (comprising CS18

and CS19), since the largest number of perfectly matched datasets (H3K27ac

peaks and chromatin accessibility data from the same biological samples) were

available  for  this  stage.   We observed that  2,225 out  of  3182 (70%)  of  the

reproducible H3K27ac peaks overlap at least one ATAC-seq peak derived from

the same samples (Supplementary Data 3; Methods).

For an initial assessment of the biological relevance of this genome-wide set of

predicted  human  craniofacial  enhancers,  we  compared  it  with  the  large

collection of  in vivo-validated enhancers available through the VISTA enhancer

browser41.  Among the 130 human craniofacial  regulatory  elements  that  have

been tested in VISTA to date and that are annotated for branchial arch, facial

mesenchyme,  or  nose,  we  identified  38  cases  (29%)  with  overlaps  with  an

enhancer  predicted  through  the  present  human-derived  epigenomic  dataset

(Supplementary Figure 2, Supplementary Data 4). A representative example of a

validated VISTA craniofacial enhancer is shown in Figure 1b. 

To assess the value of these data for the discovery of additional craniofacial  in

vivo enhancers in the human genome, we tested 60 candidate human enhancers

in a transgenic mouse assay (Supplementary Data 5; Methods). Of these, a total

of 28 candidate enhancers were positive for reporter activity, out of which we

identified 16 cases of previously unknown enhancers that showed reproducible
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activity  in  craniofacial  structures.  Figure  1c illustrates  the rich  diversity  of

craniofacial  structures  in  which  these  enhancers  drive  reproducible  in  vivo

activity. Examples include enhancers driving expression in restricted subregions

of the medial nasal process and mandible (hs2578), the mandible (hs2580), the

mandible  and  second  pharyngeal  arch  (hs2724),  the  maxillary  (hs2740),  the

medial  nasal  process  and  maxillary  (hs2741),  or  the  lateral  nasal  process

(hs2752, Figure 1c). Of the 16 enhancers positive for craniofacial tissues, 8 were

simultaneously active in non-craniofacial  structures such as the brain or limb,

while the remaining 12 out of the total 28 were only positive in non-craniofacial

tissues (Supplementary Data 5). 

Developmental Dynamics of Human Craniofacial Enhancers

To  further  assess  the  biological  relevance  of  the  human candidate  enhancer

sequences identified by our approach,  we examined known functions of  their

presumptive  target  genes  using  rGREAT  ontology  analysis44.  The  identified

candidate enhancers are enriched near genes implicated in craniofacial human

phenotypes, with 9 of the top 15 terms directly related to craniofacial or eye-

associated  phenotypes  (Figure 2a,  and  Supplementary  Data  6),  including

midface retrusion, reduced number of teeth, and abnormality of maxilla.

In a complementary assessment, we explored the putative target genes of the

human reproducible enhancers with predictions from publicly available promoter-

centric long-range chromatin interaction data for approximately 19,000 human

promoters55. This interaction-based mapping strategy identified 3,005 chromatin

segments  containing  predicted  craniofacial  enhancers  interacting  with  the

promoters  of  2,921  nearby  genes  (Supplementary  Data  7;  Methods).  Across

2,263 predicted gene-enhancer pairs with epigenomic enhancer predictions and

gene expression data available from identical biological samples, we observed a

positive  correlation  between  sample-specific  enhancer  activity  and  gene
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expression levels (p=0.00002; Mann-Whitney U Test; see Supplementary Figure

3, Supplementary Data 8; Methods). We also examined the genome-wide set of

human craniofacial candidate enhancers for the presence of noncoding variants

implicated in inter-individual  variation in facial  shape and in craniofacial  birth

defects through genome-wide association studies (GWAS). We aggregated lead

SNPs  from  41  studies  of  normal  facial  variation  and  craniofacial  disease

(Supplementary Data 9; Methods). From 1,404 lead SNPs from these studies, we

identified 27,386 SNPs in linkage disequilibrium (LD; r2  0.8) with the lead SNPs

for  the  appropriate  populations  in  the  respective  craniofacial  GWAS.  Upon

intersection with H3K27ac-bound regions from bulk face tissue between stages

CS13-23 (Figure 1a),  we  observed a total  of  209 predicted enhancer  regions

overlapping  with  605  unique  LD  SNPs.  This  LD  SNP  density  represents  an

enrichment compared to control SNPs not implicated in craniofacial traits (OR =

1.27, p<10-8; Methods). This includes 43 candidate enhancer regions overlapping

with 102 unique disease SNPs, and 176 candidate enhancers overlapping with

515 unique SNPs for normal facial variation (Supplementary Data 10). 

The activity of individual enhancers can be highly dynamic across developmental

stages, supporting that enhancers regulate both spatial and temporal aspects of

developmental gene expression25,56. To explore the temporal dynamics of human

craniofacial enhancers, we determined the temporal activity profile of all 13,983

human  candidate  enhancers  by  week  of  development,  covering  gestational

weeks  4 to 8  (Figure 2b;  Methods).  We found that  a small  proportion  (1,624

elements  or  11.6%)  of  elements  were  predicted  to  be  continuously  active

(labeled “constant” in Figure 2b) as enhancers throughout all five weeks. Nearly

half (6,347) showed narrow predicted activity windows limited to a single week,

while another 3,749 showed continuous activity periods covering a subset of the

five  weeks.  A  smaller  number  of  enhancers  (2,236)  with  predicted  non-
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continuous activities  likely contains elements with truly discontinuous activity

(e.g., in different subregions of the developing face), and elements not reaching

significant signal at some stages, e.g., due to changes in relative abundance of

cell  types.  We  note  that  the  analysis  of  temporal  dynamics  of  subsets  of

enhancers may potentially be influenced by the variable number of samples or

peaks per week. However, we do not observe obvious confounding effects due to

these variables within the samples we have analyzed (Supplementary Figure 4,

Supplementary Data 11; Methods). In combination,  these data sets provide an

extensive  catalog  mapping  the  genomic  location  of  human  craniofacial

enhancers,  including  their  temporal  activity  patterns  during  critical  stages  of

craniofacial development. 

To assess the conservation of candidate enhancers identified from human tissues

in  the  mouse  model,  we  compared  H3K27ac  binding  data  from  human

developmental stages CS13-23 to published results for histone modifications at

matched stages of mouse development25. The majority (12,179 of 13,983; 87%)

of the human candidate enhancers are conserved to the mouse genome at the

sequence level, defined by the presence of alignable sequence using LiftOver

(UCSC Genome Browser57) and that is syntenic relative to surrounding protein-

coding genes. Among these conserved sequences, 8,257 (59%) of the human

candidate  enhancers  showed H3K27ac binding  in  the  mouse,  indicating  their

functional  conservation.  The  remaining  3,922  (28%)  regions  were  sequence-

conserved but showed no evidence of enhancer activity in the mouse tissues

examined (Supplementary Data 12; Methods), suggesting that these regions are

active enhancers in humans only and highlighting the potential value of human

tissue-derived epigenomic data for human craniofacial enhancer annotation.

To assess whether the differences in epigenomic signatures between human and

mouse translate into species-specific differences in in vivo enhancer activity, we
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used a transgenic mouse assay to compare the human and mouse orthologs of

an enhancer showing an active enhancer signature in the human genome only.

We chose a candidate enhancer located near genes  POP1,  NIPAL2 and  KCNS2,

located in the 8q22.2 region associated with non-syndromic clefts of the face59

(Figure 2c/d). Documented mutations in  POP1 cause Anauxetic Dysplasia with

pathognomonic  short  stature,  hypoplastic  midface and hypodontia  along with

mild intellectual disability61,63,64. We generated enhancer-lacZ-reporter constructs

of the human and mouse orthologs of the candidate enhancer region and used

CRISPR-mediated transgene insertion at the H11 safe harbor locus65,66 to create

transgenic  mice.  Embryos  transgenic  for  the  human  ortholog  (hs2656)  show

reproducible  activity  in  the  developing  nasal  and  maxillary  processes  at

embryonic  day  (e)  12.5,  confirming  that  the  human  tissue-derived  enhancer

signature correctly predicts in vivo activity at the corresponding stage of mouse

development  (Figure 2c).  In  contrast,  we  did  not  observe  reproducible

craniofacial enhancer activity with the mouse orthologous sequence, concordant

with  the  absence  of  enhancer  chromatin  marks  in  mouse  at  this  location

(mm2280, Figure 2d). 

Single-cell Transcriptomics of the Craniofacial Development

To provide a higher-resolution view of the enhancer landscape of craniofacial

development,  we  complemented  these  detailed  maps  of  human  craniofacial

enhancers  with  single  cell-resolved  data,  with  the  goal  to  identify  the cell

population-resolved  activity  signatures  of  individual  enhancers.  Given  the

genetic heterogeneity, limited availability, and processing challenges associated

with early human prenatal tissues, we performed these studies on mouse tissues

isolated from corresponding developmental stages (Figure 3). 

We  generated  a  detailed  transcriptome  atlas  from  relevant  stages  of

development and analyzed mouse facial tissue isolated from e11.5, e12.5, and
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e13.5  by  single-cell  RNA-seq  (see  Methods).  Applying  Uniform  Manifold

Approximation  and  Projection  (UMAP)  non-linear  dimensionality  reduction  for

unbiased clustering resulted in 42 primary detectable clusters (Supplementary

Figures  5-8,  Supplementary  Data  13-14).  We  analyzed  57,598  cells  with  a

median of 1,659 genes expressed per cell. We systematically assigned cell type

identities to the resulting clusters (Supplementary Figures 9-10, Supplementary

Data 15-16; Methods) in our final Single-cell annotated Face eXpression dataset

(henceforth referred to as  ScanFaceX),  which includes 16 annotated cell types

capturing the developing mammalian face and associated tissues (Figure 3a).

Trajectory  analyses  using  Seurat  recapitulated  the  main  lineages  including

epithelial,  mesenchymal,  endothelial,  and  neural  crest-derived  cell  types

including  melanocytes  relevant  to  face  development  (Figure  3b).  The  final

annotated  cell  type  clusters  showed  strong  cluster-specific  expression  of

established markers genes relevant to craniofacial development such as Col2a1

(chondrocytes)67–69,  Msx1  (undifferentiated  mesenchyme)70–72,  Perp (epithelial

cells)73,74,  Emcn (endothelial  cells)75,76,  Lhx2 (sensory  neurons)77,78,  Pax6

(melanocytes)58,60,  Tnnt1 (myocytes)62, and  Ptn (connective tissue)79 (Figure 3c

and 3d,  Supplementary  Figure 11).  These benchmarking results  indicate  that

ScanFaceX provides an accurate single-cell transcriptome reference for relevant

stages of craniofacial development that can serve as a foundation for integration

with other chromatin data types. 

Differential Chromatin Accessibility and Gene Expression

To  identify  developmental  enhancers  at  single-cell  resolution,  we  performed

single-nucleus  ATAC-seq  (snATAC-seq)80 on  mouse  face  embryonic  tissues  at

select developmental time points (Figure 4). Across all stages analyzed, 41,483

cells that passed all quality control steps were considered in the final analysis,

and their unbiased clustering resulted in 20 discernable clusters (see Methods).
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Out of a total of 115,521 open chromatin regions in the snATAC-seq  data, we

observed  16,564  differential  accessible  regions  (DARs)  across  20  separate

clusters,  indicating  that  each  of  the  clusters  has  distinct  open  chromatin

signatures  (Supplementary  Figure  12,  Supplementary  Data  17).  Next,  we

integrated our single-cell  open chromatin  data with the cell  type annotations

from ScanFaceX single-cell transcriptome data using Seurat-based label transfer

(see Methods).  Upon integration,  a substantial  subset of DARs (10,038 out of

16,564; 60%) across 11 annotated clusters for developing craniofacial cell types

were retained. Clusters labeled chondrocytes, myocytes and connective tissue,

and  sensory  neurons  showed  high  correlation  between  the  two  data  types

(Figure  4a-b,  Supplementary  Figures  13  and  14;  Methods).  Chromatin

accessibility  at  putative distal  enhancer  regions as well  as  transcription start

sites  showed  distinct  cell  type  specificity.  For  example,  the  representative

intergenic  region  near  Isl2 and  Scaper, and  an  intronic  region  of  Lrrk1

differentially  active in  clusters  representing sensory  neurons  and/or  epithelial

cells,  illustrate  the  resolution  of  our  data  relative  to  previously  available

predictions from bulk face tissue25,82,84 (Figure 4c). Within the immediate vicinity

of  these two enhancer  regions,  we display genes  with  positive  expression in

ScanFaceX  and  those  that  were  reported  in  the  OMIM catalog86,87 as  human

disease-causing. Both Isl2 and Aldh1a3 are highly expressed in sensory neurons

and epithelial cell clusters, respectively, in ScanFaceX data (Figure 4c). Isl2 has

been shown to be selectively expressed in a subset of retinal ganglion cell axons

that have important functions in binocular vision88. Allelic variants and mutations

in  SCAPER cause intellectual disability with retinitis pigmentosa in humans89–91.

The Lrrk1 intronic element is near Aldh1a3, a gene adjacent to Lrrk1; mutations

in  the  orthologous human  ALDH1A3 cause  an  autosomal  recessive  form  of

isolated  microphthalmia92–95.  These  putative  enhancer  regions  near  Isl2  and
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Scaper, and in the intron of Lrrk1 drive reproducible lacZ-reporter activity in the

developing  mouse  face  at  e11.5  in  anatomical  regions  where  neuronal  and

epithelial cell types are expected to be found (mm2285 and mm2282, Figure 4c).

Notably, the spatial expression pattern of mm2285 and mm2282 is consistent

with the expression of Isl2 in cranial ganglia96,97, and the expression of Aldh1a3 in

the retina and the nasal epithelium98 in similar developmental windows in mice in

vivo. In an additional example, an enhancer near the promoter region of Mymx,

which  is  exclusively  active  in  the  myocyte  cluster,  coincides  with  Mymx

expression in myocytes in ScanFaceX (Supplementary Figure 15).
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To  facilitate  utilization  of  the  full  set  of  genome-wide,  cell  type-resolved

enhancer predictions, we used these mouse tissue-derived single-cell enhancer

predictions in combination with our human bulk tissue-derived enhancer catalog,

to  generate  a  Single-cell  annotated  Face eNhancer  (ScanFaceN)  catalog  of

human enhancer regions with predicted activity profiles across craniofacial cell

types  (Supplementary  Data  18-20). The  majority  (7,899  of  13,983;  56%)  of

human  tissue-derived  facial  candidate  enhancers  overlap  with  an  accessible

chromatin region in at least one cluster of our  ScanFaceN catalog, and 2,339

(30%) of these regions overlap with DARs in ScanFaceN. 

Cell Population-resolved Enhancer Activity Predictions
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To explore the relationship between predicted cell type specificities of enhancers

and  their  respective  spatial  in  vivo activity  pattern  during  craniofacial

development, we intersected the ScanFaceN DARs from the 11 main ScanFaceX-

matched clusters with craniofacial enhancers validated in vivo and curated in the

VISTA  Enhancer  Browser41 (Figure  5a).  We  observed  general  correlations

between  cluster-specific  accessibility  and  spatial  in  vivo  patterns  among  77

formerly validated VISTA enhancers that showed chromatin  accessibility in  at

least one of the 11 main clusters. For example, the predicted connective tissue-

mesenchymal cluster (cluster 2) of the  craniofacial snATAC-seq tends to group

VISTA  enhancers  with  activity  specific  to  the  branchial  arches  (Figure  5b).

Despite broad correlations,  we observed considerable heterogeneity of spatial

patterns within most clusters. For example, the chondrocyte cluster (cluster 13)

has multiple VISTA enhancers with activity in the mid-face, paranasal regions,

and/or  a  region  at  the  junction  of  the  developing  forebrain  and  nasal

prominences that may constitute the developing cartilaginous regions of the face

(Figure  5b).  These  observations  underscore  the  spatiotemporal  complexity  of

craniofacial  morphogenesis,  which  relies  on  intricate  cellular  processes  in

combination with highly regionalized regulatory cues. 

Craniofacial Enhancer Activity at Single-cell Resolution

To explore whether craniofacial enhancer activity can be quantitatively assigned

to specific cell types  in vivo,  we generated transgenic mice in which selected

craniofacial  enhancers  were  coupled  to  a  fluorescent  mCherry reporter  gene

(Figure 6a). We examined three different craniofacial enhancers (hs1431, hs746

and hs521), two of which (hs1431 and hs746) we formerly demonstrated to be

required for  normal  facial  development1 (Figure 6b).  In  all  cases,  we isolated

craniofacial  tissue from transgenic  reporter  embryos  at  e11.5 and  performed

scRNA-seq  (Figure 6a).  For  hs1431,  near  Snai2,  which  is  active  across  many
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regions of the developing face, mCherry expression is observed across almost all

cell clusters, indicating that hs1431 is broadly active across multiple cell types

during craniofacial development (Figure 6c). In contrast, hs746 which is in the

vicinity  of  Msx1,  is  primarily  active  in  a  cluster  predicted  to  represent

undifferentiated  mesenchyme  and  in  a  subset  of  cells  expressing  Msx1  in

ScanFaceX, a gene shown to regulate the osteogenic lineage99. Similarly, based

on  ScanFaceX annotations,  enhancer  hs521,  located  near  Gbx2,  is  primarily

active in a subset  of  predicted mesenchymal  cells  and chondrocytes,  and its

activity  coincides with  a subset of  cells  expressing  Gbx2  (Figure 6c),  a  gene

known to be active in the developing mandibular arches9. Together, these data

illustrate  how  purpose-engineered  enhancer-reporter  mice  can  be  used  to

validate  and  further  explore  the  in  vivo activity  patterns  of  craniofacial

enhancers identified through genome-wide single-cell profiling studies.

Discussion

The  lack  of  data  from  primary  tissues  and  incomplete  mapping  of  human

developmental enhancers in craniofacial morphogenesis has been a challenge in

the systematic assessment of the role of enhancers in craniofacial development

and disease. In the present study, we have generated human bulk and mouse

single-cell data to create a comprehensive compendium of enhancers in human

and mouse development, including temporal profiles and predictions of cell type

specificity. We identify major cell populations of the developing mammalian face,

along with corresponding genome-wide enhancer profiles. While many predicted

enhancers show conserved epigenomic signatures indicating an active enhancer

state in both mouse and human, we also observed elements with human-specific

enhancer  activity  signatures,  suggesting  that  the  human  but  not  the  mouse

ortholog is an active in vivo enhancer. We also provide additional predictions of

regions  with  human-specific  enhancer  signatures  that  show  no  functional
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conservation  in  mice  that  can  be  identified  by  profiling  human  tissues.  We

observed that  enhancer  hs2656,  but  not  its  mouse ortholog mm2280,  shows

craniofacial  in  vivo activity  in  transgenic  mice.   This  is  consistent  with  an

epigenomic  enhancer  signature  at  this  element  in  human,  but  not  in  mouse

tissue.  These lineage-specific differences in epigenomic signature and  in  vivo

activity are likely due to sequence differences within the enhancer element itself,

which may affect transcription factor binding sites or other functionally critical

motifs  embedded  in  the  enhancer.  For  example,  within  the  most  conserved

425bp core sequence of enhancer hs2256, 31% of the nucleotide positions show

differences  between  human  and  mouse,  which  include  binding  sites  for

transcription factors  that are important  for craniofacial  development,  such as

TFAP2B  and TCF4100,101,103.  While  human-specific  signatures  would  need to  be

validated in suitable human tissue- or cell-based assays to conclusively confirm

bona  fide lineage-specific  in  vivo activity,  these  data  suggest  that  profiling

human tissues is  an effective way to identify candidate regions with  human-

biased enhancer signatures. Our compendium of human craniofacial enhancers

expands  previously  reported26,53 human  craniofacial  enhancer  catalogs,  by

approximately  5,000  newly  identified enhancers  for  weeks  7-8  of  human

craniofacial development primarily identified in this study. When comparing with

craniofacial  enhancers  identified  in  previous  studies,  we  find  that  our  data

provides independent confirmation for 37% of reported primate enhancers and

15% of human-biased enhancers18. Of the 13,983 reproducible human enhancers

described  in  this  study,  47%  showed  evidence  of  enhancer-associated  RNA

signatures  in  the  FANTOM5  database81,83.  In  contrast,  when  restricting  this

analysis  to  a  more  differentiated  craniofacial  cell  type  available  in  FANTOM5

(human  embryonic  palatal  mesenchyme)81,83,85,  we  observed  enhancer  RNA

signatures for only 3.8% of our 13,983 predicted enhancers, likely reflecting that
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this  cell  type  is  only  one  of  many  that  were  present  in  our  tissue  samples

(Supplementary Data 2 and 21). Generally, the imperfect overlap of craniofacial

enhancers  identified  in  some  of  these  studies  may  be  due  to  differences  in

epigenomic profiles from primary tissues comprising the entire face versus  in

vitro differentiation  of  a  specific  lineage  such  as  neural  crest  or  palatal

mesenchyme.  Additional  possible  sources  of  variation  include  differences  in

experimental  modalities  (H3K27ac  binding versus  measurements  of  enhancer

RNA),  and  imperfect  matching  of  in  vivo developmental  stages  with  in  vitro

models. In this study, we leveraged genome-wide profiling of H3K27ac binding

for identification of enhancers. The tissue-specific validation rate we observe is

comparable  to  that  we  observed  in  other  studies  using  similar  methods  for

prediction of in vivo enhancer activities25. We note that alternative experimental

approaches that measure non-coding RNAs or massively-parallel reporter assays

with  or  without  mutational  screens  can  also  be  used for  identifying  putative

enhancer  elements  and  may  be  useful  for  capturing  additional  craniofacial

candidate enhancers108,110.

Our data illustrate  the considerable temporal  dynamics of human craniofacial

enhancers,  a  critical  aspect  for  understanding  the  developmental  timing  of

enhancer activity related to specific phenotypes such as clefts and mid-facial

deformities. As clinical sequencing becomes increasingly common and accessible

to both patients and the medical community, our data may serve as an essential

resource to address the gaps in understanding the potential  pathogenicity of

regulatory variants. 

The  single-cell  resources  generated  through  this  study,  ScanFaceX for gene

expression and ScanFaceN for enhancers, contain a total of  115,521 candidate

enhancers  as  defined  by  chromatin  accessibility,  including  10,038  that  show

differential chromatin accessibility for major cell  types in face morphogenesis.
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While  previous  single-cell  studies  of  the  developing  face  from  other  animal

models have described extensive annotations for ectomesenchyme, we find that

the complexity of cell types in the developing mouse face poses some challenges

in  this  respect.  In  particular,  in  comparing  several  mouse  orthologs  of  the

embryonic zebrafish ectomesenchymal markers54 expressed in  ScanFaceX  that

show  relatively  high  accessibility  in  ScanFaceN in  neural  crest-derived

populations (Supplementary Figure 16),  regional  identities marked by specific

genes are not obviously delineated in ScanFaceX. These differences in cell type

distributions  and  marker  gene  activity  may  be  explained  by  the  extent  of

differentiation,  growth  rate,  evolving  cell  states,  and  developmental  timing

underlying  craniofacial  morphogenesis.   One  of  the  limitations  of  present

methods is the ability to capture low-expressing genes or rarer cell populations

among other technical and statistical challenges112,114. We also note that utilizing

cell type annotations from ScanFaceX and integrating those with single-cell open

chromatin data provides correlative but not definitive evidence for the target

genes of a given enhancer, which requires verification through complementary

experimental methods  116,118,119. We demonstrated how engineered mice can be

used  to  study  these  enhancers  in  vivo at  single-cell  resolution.  Using  a

transgenic reporter assay coupled to single-cell RNA-seq, we defined the activity

of  three  craniofacial  enhancers  during  embryonic  development  at  single-cell

resolution.  This  approach  illustrates  how these methods  can  be  combined to

determine the in vivo specificity of individual enhancers and relate their activity

to cell type-specific expression of their putative target genes. We note that  in

vivo transgenic reporter assays can demonstrate that an enhancer is sufficient to

drive expression in a tissue or cell type of interest, but integration into a safe

harbor locus such as H11 removes the enhancer from the full epigenomic and

three-dimensional context of its native locus120.  Therefore, reporter expression
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may not fully recapitulate the full endogenous activity of a given enhancer in its

original genomic location.

All of these data are also available in FaceBase and the VISTA Enhancer Browser

for  community  use1,84,121.  In  summary,  our  work  provides  a  multifaceted  and

expansive resource for studies of craniofacial enhancers in human development

and disease.

Methods

Ethics Statement

This research complies with all relevant ethical regulations. All aspects involving

human  tissue  samples  were  reviewed and approved by  the  Human  Subjects

Committee  at  Lawrence  Berkeley  National  Laboratory  (LBNL)  Protocol  Nos.

00023126 and 00022756.  All animal work  was reviewed and approved by the

LBNL Animal Welfare Committee. 

Human embryonic face samples were obtained from the Human Developmental

Biology  Resource’s  Newcastle site (HDBR, hdbr.org),  in  compliance  with

applicable state and federal laws. The National Research Ethics Service reviewed

the  HDBR  study  under  REC  Ref 23/NE/0135,  and  IRAS  project  ID: 330783 in

compliance with requirements from the National  Health Services for research

within the UK and overseas.  HDBR is a non-commercial  entity funded by the

Wellcome  Trust  and  Medical  Research  Council.  Fetal  tissue  donation  is

confidential, anonymized, completely voluntary with fully informed and explicitly

documented written consent, and the participants do not receive compensation.

In accordance, no identifying information for human samples in this study was

shared by HDBR. More information about HDBR policies and ethical  approvals

can be accessed at https://www.hdbr.org/ethical-approvals. 

Human Samples
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Primary data from embryonic whole face samples at post-conception weeks 7

and  8  were  generated  in  this  study.  Whole  face  region  excluding  eyes  was

dissected at HDBR (Supplementary Figure 1), and all embryonic samples were

shipped on dry ice and stored at −80°C until processed. Embryos of both sexes

were included in the experiments. However, we did not consider embryo sex as a

variable  in  our  studies  since  craniofacial  development  is  expected  to  show

minimal  differences at these early stages of  development. ChIP-seq data  for

three samples at Carnegie stage (CS)18, one sample at CS 19, two samples at

CS22  and  one  sample  at  CS23  are  presented  in  this  study,  along  with

accompanying ATAC-seq data for two samples at CS18, one sample at CS19, one

sample each at CS22 and CS23. RNA-seq data for four samples at CS18, one

sample  at  CS19,  seven  samples  at  CS22,  and  four  samples  at  CS23  were

generated  in  this  study  and  analysis  from  a  subset  of  these  is  presented.

Processed data for CS 13-17, and CS20  was obtained from previously published

studies 26 and included in our downstream integrative analyses. All datasets are

listed in Supplementary Data 1. 

Animal Studies and Experimental Design 

Mice used for this study were housed at the LBNL Animal Care Facility, which is

fully accredited by AAALAC International.  Mice were housed on a 12-hour light-

dark  cycle  in  standard  micro-isolator  cages  on  hardwood  bedding  with

enrichment  consisting  of  crinkle  cut  naturalistic  paper  strands.  Mice  were

maintained on ad libitum PicoLab Rodent Diet 20 (5053) and water supply with

30-70% environmental humidity and temperature of 20 – 26.2oC. All mice were

health  checked  and  monitored  daily  for  food  and  water  intake  by  trained

personnel.  Animals  of  both  sexes  were  used  in  the  analysis.  Sample  size

selection and randomization strategies were followed based on our experience of
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performing  transgenic  mouse  assays  for  ~3000  published  enhancer

candidates65,66. 

Transgenic Mouse Assays in vivo

60 candidate human enhancer elements were selected based on a combination

of criteria including overlap with ATAC-seq peaks, strength of H3K27ac active

enhancer signatures, non-mouse annotated regions, and vicinity of genes with

known or proposed roles in craniofacial development based on human genetics

and/or mouse knockout studies (e.g., genes listed under term “abnormality of

the  face”;  HP:0000271  in  Human  Phenotype  Ontology124 or  “craniofacial

abnormalities”; MP:0000428 in the Mammalian Phenotype Browser125). 

Mouse  enhancer  elements  mm2280,  mm2281  mm2282,  and  mm2285  were

selected  based  on  conservation  criteria  or  predicted  from  single-cell  gene

expression read outs and single-cell chromatin accessibility profiles.  Transgenic

enhancer-reporter assays were performed per established protocols 65,66. Briefly,

a  minimal  Shh promoter  and  reporter  gene  were  integrated  into  a  non-

endogenous, safe harbor locus 66 in a site-directed transgenic mouse assay. The

selected genomic region corresponding to the selected enhancer element was

PCR amplified from human or mouse genomic DNA where applicable;  the PCR

amplicon  was  cloned  into  a  lacZ-reporter  vector  (Addgene  #139098)  using

Gibson assembly (New England Biolabs)  126.  The final transgenic vector consists

of  the  predicted  enhancer–promoter–reporter  sequence  flanked  by  homology

arms intended for the H11 locus in the mouse genome. Sequence of the cloned

constructs  was  confirmed with  Sanger sequencing or  MiSeq.  Transgenic  mice

were generated using our pronuclear injection protocol66. Briefly, sgRNAs (50 ng/

μl)  targeting  the  H11 locus  and  Cas9  protein  (Integrated  DNA  Technologies

catalog  no.  1081058;  at  final  concentration  of  20 ng/μl)  was  mixed  in

microinjection buffer (10 mM Tris, pH 7.5; 0.1 mM EDTA). The mix was injected
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into  the  pronuclei  of  single  cell  stage  fertilized  FVB/NJ  (Jackson  Laboratory;

Strain#:001800)  embryos  obtained from the oviducts  of  super-ovulated 7–8

weeks old FVB/NJ females mated to 7-8 weeks old FVB/NJ males. The injected

embryos were cultured in M16 medium supplemented with amino acids at 37 °C

under 5% CO2 for ~2 hours and transferred into the uteri of pseudo-pregnant CD-

1  (Charles  River  Laboratories;  Strain  Code:  022)  surrogate  mothers. Embryos

were collected  for  downstream experiments  at  embryonic  days  10.5  through

15.5 (Theiler stages 17-23). Beta-galactosidase staining was performed in our

standardized pipeline  with the following modification. Embryos were fixed with

4%  paraformaldehyde  (PFA)  for  30 minutes  for  E11.5  embryos,  respectively,

while rolling at room temperature. The embryos were genotyped for presence of

the  transgenic  construct.  Embryos  positive  for  transgene  integration  into

the H11 locus  and  at  the  correct  developmental  stage  were  considered  for

comparative reporter gene activity across respective stages and were imaged on

a  Leica  MZ16  microscope.  Genomic  coordinates  for  VISTA  enhancer  hs2656

(Figure 2); enhancer mm2280 (Figure 2), mm2282 and mm2285 (Figure 4), and

mm2281 (Supplementary Figure 15) are shown in Supplementary Data 5 and 22

respectively. 

For  transgenic  experiments  demonstrating  enhancer  activity  at  single-cell

resolution and involving hs1431, hs746 and hs521 (Figure 6), a combination of

Hsp68 promoter and mCherry reporter were used. 

ChIP-seq

Chromatin immuno-precipitations were performed using established methods in

our laboratory 127. Briefly, frozen and non-cross-linked face tissue was dissociated

in PBS by pipetting until homogenized and cross-linked with 1% formaldehyde at

room  temperature.  Cells  were  lyzed  and  chromatin  was  sonicated  using  a

Bioruptor device (Diagenode) to obtain fragments with an average size ranging
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between  100–600  bp.  Input  sample  was  set  aside  and  stored  appropriately,

Protein  A  and  G  Dynabeads  (Invitrogen)  were  added  to  the  sample,  and

chromatin  was  incubated  for  2h  at  4°C  with  5  μg  of  anti-H3K27ac  antibody

(Active Motif, Cat# 39133, Lot 01613007). Immuno-complexes were sequentially

washed,  and the immunoprecipitated  DNA complexes were eluted in  an SDS

buffer at 37°C for one hour. Samples were reverse-crosslinked with Proteinase K

overnight at 37°C. DNA was purified with a ChIP DNA clean concentrator (D5205

Zymo Research), and a KAPA SYBR Green qPCR mix was used to assess presence

of H3K27 acetylated regions versus negative control regions. DNA was quantified

using Qubit, and  size distribution and DNA concentration of the samples were

assessed on the Agilent Bioanalyzer. Illumina TruSeq library preparation kit was

used for downstream library preparation, and libraries were sequenced as single-

end  50  bp  reads  on  an  Illumina  HiSeq  2500.  

ChIP-seq data was analyzed using the ENCODE histone ChIP-seq Unary Control

Unreplicated  pipeline  (https://www.encodeproject.org/pipelines/ENCPL841HGV/)

implemented  at  DNAnexus  (https://www.dnanexus.com).  Briefly,  reads

were mapped to the human reference genome version hg38 using BWA (v0.7.7)

and  sorted  bam  file  generated  using  samtools  (v0.1.19).  For  the  ChIP-seq

datasets  at  CS13-15,  CS17  and  CS2026,  publicly  available  and  post-mapped

TagAlign files were used.  Peak calling was performed using MACS2 (v2.2.4; --

broad flag, q-value < 0.05); upon broad peak calling and applying the FDR filter,

bed files were combined and merged using bedtools102. A combined peak set was

called  by  merging  peaks  from  all  samples,  and  overlapping  peaks  for  each

sample  were  counted  using  overlap_peaks.py.  Merged  peaks  within  1kb  of

transcription  starts  sites  as  defined by GENCODE were removed,  resulting in

70,075 distal peaks. Of those, 13,983 peaks were present in at least two samples
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in each embryonic week which were retained for final analysis. For a break-down

of samples as well as peaks per week, see Supplementary Data 8. 

We note that the use of human embryonic tissue samples, which are typically

derived from individual or a small number of fetal tissue donations, can introduce

variability regarding tissue dissection and genetic heterogeneity. While some of

these sources of variation are unavoidable, we tried to minimize potential batch

effects. To make the analysis as comparable as possible, we down-sampled the

number of input reads and the read length to a common denominator (15 million

and 50 bp, respectively), and used the standard ENCODE peak-calling pipeline.

To  assess  the  possible  presence  of  batch  effects  between  data  from  these

studies,  we  compared  temporal  transitions  between  weeks  (Supplementary

Figure  4).  In  this  analysis,  we  did  not  observe  discontinuities  specifically

associated with the transition time points  between batches.  While we cannot

exclude the presence  of  some batch  effects,  this  result  suggests  that  study-

specific batch effects do not confound our temporal dynamics analysis in major

ways.

ATAC-seq

Embryonic samples were processed for ATAC-seq using standard methods 127. In

short, harvested tissues were lysed, centrifuged for 10min at 500 x g, at 4oC, and

the resulting cell pellet was treated with the Nextera DNA transposase Tagment

DNA Enzyme (Catalog number:  20018705) and the transposed DNA was eluted

using Qiagen MinElute PCR purification kit.  Samples were then PCR amplified

using  the  NEB  Next  High-Fidelity  2xPCR  Master  Mix  (catalog  number:

NEBE6040SEA)  with  Nextera  PCR  primers  1

(AATGATACGGCGACCACCGAGATCTACACNNNNNNNNTCGTCGGCAGCGTC)  and  2

(CAAGCAGAAGACGGCATACGAGATNNNNNNNNGTCTCGTGGGCTCGG)  and  DNA

was purified as described above. The eluted library was analyzed for quality in a
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Bioanalyzer  High  Sensitivity  assay  and  samples  were  subsequently  deep

sequenced on an Illumina  HiSeq2500.  ATAC-seq data was analyzed using the

ENCODE  ATAC-seq  (unreplicated)  pipeline

(https://www.encodeproject.org/pipelines/ENCPL344QWT/).  Briefly,  reads  were

aligned with the Bowtie2 aligner  and filtered to remove unmapped and non-

primary alignments, low quality reads as well as PCR duplicates. A subsample of

15 million reads was used as input to peak-calling, adjusted for Tn5 shift reads

and  sets  of  biological  samples  were  assembled  along  with  pseudoreplicates.

Peak calls excluded ENCODE blacklist regions104 and peaks were assessed at an

Irreproducible Discovery Rate of 0.05. 

RNA-seq

Samples  were  processed  for  RNA-seq  and  libraries  were  generated  with

established protocols105,127.  Briefly,  RNA was isolated from the dissociated face

tissue using TRIzol Reagent (Life Technologies), all samples were DNase-treated

(TURBO DNA-free Kit,  Life Technologies),  and assessed for quality (RNA 6000

Nano Kit, Agilent) on a 2100 Agilent Bioanalyzer. TruSeq Stranded Total RNA with

Ribo-Zero Human/Mouse/Rat kit (Illumina) was used to prepare RNA-seq libraries

according to manufacturer’s protocol.  RNA-seq libraries were depleted of high

molecular weight products in an Illumina Resuspension Buffer and by incubating

in 60 μL Agencourt AMPure XP beads for 4 min. AMPure beads were pelleted,

washed twice with 80% ethanol  and the DNA was eluted per manufacturer’s

instructions.  RNA  concentration  and  quality  of  the  RNAseq  libraries  were

assessed using a 2100 Bioanalyzer with the High Sensitivity DNA Kit (Agilent),

and libraries were sequenced as single-end 50 bp reads on an Illumina HiSeq

2500. 

RNA-seq  data  was  analyzed  using  the  ENCODE  RNA-Seq  (Long)  Pipeline-1

replicate  pipeline  (https://www.encodeproject.org/pipelines/ENCPL002LSE/)
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implemented at DNAnexus (https://dnanexus.com). Briefly, reads were mapped

to the reference genome using STAR align (V2.12). Genome wide coverage plots

were  generated  using  bam to  signals  (v2.2.1). Gene  expression  counts  were

generated  using RSEM (v1.4.1).  Human datasets  were analyzed  using human

reference genome version hg38,  and  GENCODE v24 gene annotations. Mouse

datasets  were  analyzed  using  mouse  reference  genome  version  mm10  and

GENCODE M4 gene annotations.

rGREAT Ontology Analyses 

To  identify  human  phenotype  ontology  terms  enriched  in  our  list  of  13,983

reproducible  human  craniofacial  enhancers,  we  ran rGREAT44 (Bioconductor

version:  Release  3.17) that  performs  GREAT106 analysis

(http://great.stanford.edu) on non-coding regions to predict their functions based

on  annotations  of  nearby  genes.  Following  parameters  were  used  from  the

GREAT tool: a default of 5kb upstream and 1kb downstream basal plus extension

for  proximal  regulatory  regions,  up  to  10  kb  for  distal  regions,  and  curated

regulatory domains were included. A background of whole genome hg38, a cut-

off based on Binomial False Discovery Rate < 0.01, and Fold Enrichment > 2 was

applied to retain the top terms (Supplementary Data 6). 

Enhancer-Target Gene Predictions 

We intersected our list of 13,983 reproducible human enhancers with publicly

available long-range chromatin interaction data derived from promoter capture

HiC  for  approximately  19,000  promoters  in  human  embryonic  stem  cells55.

Genomic coordinates of the interacting fragments were converted to hg38, the

predicted target gene and extent of overlap with the human enhancers from this

study are  reported in  Supplementary  Data  7.  For  3,005 chromatin  segments

containing  predicted  human  craniofacial  enhancers,  and  interacting  with  the

promoters  of  2,921  genes,  we  performed  Spearman’s  Ranked  Correlation
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Coefficient (SRCC) analysis between enhancer signal intensities (H3K27ac ChIP-

seq, Trimmed Mean of M-values normalized) and gene expression counts (RNA-

seq)  of  the  assigned  target  genes  (Supplementary  Data  7)  for  predicted

enhancer:target gene pairs versus all other pairs. We performed this analysis for

combined as well as individual activity windows shown in Figure 2b for a subset

of matched samples, i.e., five instances where enhancer predictions and gene

expression data were available from identical human embryonic face samples,

namely CS18_12612, CS18_12695, CS19_12696, CS22_11963, and CS23_12492

(Supplementary Figure 3, Supplementary Data 8). Mann-Whitney U test statistic

was used to ascertain significance between the correlated enhancer:target gene

pairs  of  interest  versus  all  other  pairs.

We note that the correlation is highly significant but quantitatively moderate.

This  is  likely  due  to  technical  factors  including  imperfect  enhancer-gene

associations,  target  gene  predictions  not  being  available  for  all  enhancers,

differences arising from comparing predictions from human embryonic stem cells

versus complex primary human embryonic tissue encompassing varying stages

of differentiation, not excluding cases with redundant enhancers acting on the

same  gene(s),  and  uncertainty  about  the  expected  quantitative  correlation

between H3K27ac signal intensity at an enhancer and the expression level of a

target gene. For the correlation for class "week-specific" in Supplementary Figure

3b, the comparisons may not be significant due to the lack of capability of SRCC

to detect patterns driven by one or two data points.

GWAS Data

The NHGRI-EBI  Catalog  of  Genome-wide  association  studies107 was  mined  for

studies  with  the  following  keywords:  craniofacial,  face,  cleft  lip,  cleft  palate,

microsomia,  salivary,  taste,  and  tooth.  The  compiled  studies  comprised  of

diverse populations and ethnicities ranging from those belonging to the Unites
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States,  Europe,  Taiwan,  China,  Singapore,  Korea  and  the  Philippines,  Brazil,

Spain,  Latin  Americas,  Uyghurs  as  well  as  admixed  populations.  For  data

published in the catalog by early 2022, we aggregated 41 studies representing

normal facial variation as well as dento-oro-craniofacial disease. The SNiPA tool109

was used for querying SNPs in linkage disequilibrium (r2  0.8) with the lead SNPs

for  the appropriate  populations for  the respective GWAS.  This  compilation of

GWAS  (Supplementary  Data  9-10)  was  intersected  with  13,983  reproducible

human enhancers derived from primary embryonic bulk face between CS13-23.

We have partitioned a total of 14,137,504 SNPs from the dbSNP155111,113 catalog

by their association with normal face variation or human disease and overlap

with reproducible fetal human face enhancers described in this work. We found

that  605  out  of  27386  (2.3%)  of  normal  face  variation-  or  human  disease-

associated SNPs overlapped the peaks,  while only 245,727 out of 14,083,942

(1.8%) of non-associated SNPs did. The overlap was significantly different from

random expectation with an odds ratio of 1.27 (Pearson's Chi-squared test with

Yates' continuity correction: X-squared = 34.102, df = 1, p-value = 5.229e-09).

Intersecting VISTA Catalog with Predicted Craniofacial Enhancers

We intersected a subset of 130 human craniofacial regulatory elements (out of

3,193 total  curated) in the VISTA Enhancer Browser  with 13,983 reproducible

human candidate enhancers for weeks 4-8 from this study requiring a minimum

100bp overlap (Supplementary Figure 2, and Supplementary Data 4). We note

that  VISTA  enhancers  are  not  a  random  sample  of  the  genome  and  are

intentionally picked for their high levels of evolutionary conservation, high levels

of epigenomic signal in embryos, lower repeat content, and proximity to genes

known to regulate embryonic development. 

Single-cell RNA-seq
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Both  wild-type  FVB/NJ  crosses  (ages  7-8  weeks),  as  well  as  transgenic  mice

harboring the Hsp68 promoter and mCherry reporter at H11 locus and generated

as described earlier in Methods were used. Transgenic embryos were harvested

at the determined developmental stage, between 11.5 - 13.5 dpc (8 samples at

e11.5, 1 sample at e12.5, and 4 samples at e13.5), and examined for positive

mCherry signal  if  applicable.  Embryos  positive  for  mCherry  reporter  activity

showed reproducible and comparable enhancer-reporter expression as seen in

the lacZ expression patterns for VISTA enhancers hs1431, hs521 and hs746 used

in this study. Embryos were consistently kept in ice-cold PBS until  dissection.

Upon fluorescent screening, developing face tissue was dissected with the aid of

a  Leica  MZ16 microscope,  and  immediately  processed  for  downstream

experiments. Fresh mouse embryonic face tissue was mechanically dissociated

by pipetting gently into a single-cell  suspension using Accumax, assessed for

viability of cells and cell density using Trypan Blue staining. Individual cells were

quantified,  spiked  with  10%  HEK293T/17  frozen-thawed  cells,  and  processed

using the 10X Genomics Chromium Next GEM Single Cell 3’ protocol including

transcript  capture  and  library  preparation  for  single-cell  gene  expression.

Samples  were  either  processed  individually  or  pooled  using  a  Multi-seq

strategy115 upstream of  the  10X Genomics  Chromium protocol.  The  resulting

libraries were sequenced on an Illumina HiSeq2500 or NovaSeq 10X. BCL files

from Illumina were processed into FASTQ format, individual sample libraries were

de-multiplexed as necessary,  reads were aligned to mm10 reference genome

where mCherry sequence was added as an additional chromosome. Cell Ranger

3.1.0 software was used to process the raw sequence files and generate feature-

barcode matrices. After correcting for batch effects, data from all libraries was

aggregated into a single R object file using the 10X Genomics Cell Ranger 3.1.0.

Seurat v3.2 guided clustering tutorial was used for formal downstream analyses
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117,128,129. Adhering to the standard pre-processing workflow and quality control,

cells with unique feature counts between >200 and < 5%mitochondrial reads

were retained. Based on the inspection of UMI/gene count plots, the UMI range

which preserved the main group of cells and excluded both droplet debris and

likely clumps of cells was established for each sample separately (2,000-4,000

minimum, 15,000-60,000 maximum). For scRNA-seq, samples were integrated

using standard Seurat procedure; SelectIntegrationFeatures function was run on

a list  of  all  9 samples to be integrated to find 3,000 most  variable features.

mCherry transcripts, genes on chromosomes X or Y (Gencode vM24) and cells

expressing  >5%  mitochondrial  genes  (with  names  starting  with  mt)  were

removed  from  that  list.  PrepSCTIntegration,  FindIntegrationAnchors and

IntegrateData functions were run to obtain an integrated dataset. Normalization,

feature selection, scaling, dimensional reduction, clustering and finding cluster

biomarkers i.e., differentially expressed features were performed as guided. Our

final Seurat/clustered UMAP consists of a 25,645 feature by 57,598 cell matrix,

with a median of 1,659 and a range of 500 - 8,840 genes expressed per cell

(Supplementary Figure 5),  and a range of 474-9,148 cells for the smallest  to

largest clusters (Supplementary Data 16).

Assigning cell-type identity to scRNA-seq clusters: We systematically assigned

cell type identities to the clusters in our craniofacial scRNA-seq dataset using two

computational methods. (i) Using our primary single cell dataset as query, we

assigned cell type identities by Seurat-based automated reference mapping to a

published  large  single-cell  gene  expression  dataset  130 of  whole  mouse

embryonic development for stages e9.5-13.5, the reference was down sampled

to  100K  cells  for  efficient  processing  and  retained  all  38  broad  cell  types

originally described. 27 cell types from the reference were summarily mapped in

our craniofacial scRNA-seq dataset by Seurat’s label transfer; the referenced cell
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types showed a good overall correlation with the cell types associated with the

top 20 marker genes in most clusters in our ScanFaceX dataset. (ii) In parallel,

we  used  the  scoreMarkers  wrapper  function  described  in  the  scran package

which uses effect sizes (Cohen’s d statistic) to perform differential expression to

list  marker  genes  for  each  of  the clusters  in  a  scRNA-seq dataset  122.  These

marker gene sets were tested for enrichment of Gene Ontology (GO) biological

process  terms  by  performing  a  hypergeometric  test  to  identify  GO  terms

overrepresented in our ScanFaceX dataset. Cell-type annotations from methods

(i) and (ii) described above were compared and resulted in each cluster in the

ScanFaceX dataset  having  one  or  more  cell-type  annotations.  Finally,  cell

clusters that showed similar or close cell-type specific signatures were manually

merged  to  reflect  16  formal  annotations  for  definitive  cell  types  capturing

craniofacial  development  and  morphology.  We  note  that  the  label  “other

craniofacial”  encompasses  a mix of  cells  with the following descriptive terms

retained from the auto-referencing steps: palate development, roof  of mouth,

mesenchyme, and premature oligodendrocytes. (Supplementary Figures 7, 9-11,

Supplementary Data 14-16).

Single-nucleus ATAC-seq

Wild-type  FVB/NJ  crosses  (ages  7-8  weeks)  were  used  to  generate  mouse

embryos  for  each  of  the  developmental  stages  e10.5-15.5.  Face  tissue  was

dissected, flash frozen in liquid nitrogen (N2) and stored at -80oC until ready to

process.  Tissue was  transported  to  the Center  for  Epigenomics,  University  of

California,  San Diego School  of  Medicine,  La  Jolla,  CA for  processing  using a

combinatorial indexing-assisted single nucleus ATAC-seq strategy 80. Briefly, nuclei

were isolated and permeabilized in optimized conditions, pelleted and suspended

in  resuspended in  500μL high  salt  tagmentation  buffer.  Nuclei  were  counted

using a hemocytometer and 2,000 nuclei were dispensed into each well of a 96-
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well plate per sample. A BenchSmart™ 96 (Mettler Toledo) was used to add 1μL

barcoded Tn5 transposomes to each of the wells in the 96-well plate, the mix

was  incubated  for  60  min  at  37 °C  with  shaking (500 rpm).  EDTA at  a  final

concentration of 20mM was then added to each well for incubation at 37 °C for

15 min with shaking (500 rpm) to terminate the Tn5 reaction. Next, nuclei were

suspended in 20 μL of 2x sorting buffer (2 % BSA, 2 mM EDTA in PBS), wells for

each  sample  were  combined  and  stained  with  Draq7  at  1:150  dilution  (Cell

Signaling). 20 nuclei per sample were sorted per well into eight 96-well plates

(total  of  768 wells)  in 10.5 μL of  Elution Buffer (25 pmol primer i7,  25 pmol

primer i5,  200 ng BSA (Sigma) using a Sony SH800. A Biomek i7 Automated

Workstation  (Beckman  Coulter)  was  used  for  performing  downstream  steps.

Samples were incubated at 55 °C for 7 min with shaking (500 rpm) in 1 μL 0.2%

SDS, followed by addition of 12.5% Triton-X to quench the SDS. Samples were

PCR-amplified (12.5 μL NEBNext High-Fidelity 2× NEB PCR Master Mix; [72 °C 5

min, 98 °C 30 s, (98 °C 10 s, 63 °C 30 s, 72°C 60 s) × 12 cycles, held at 12 °C]).

Wells were combined post-PCR. A manual MinElute PCR Purification Kit (Qiagen)

along with a vacuum manifold (QIAvac 24 plus,  Qiagen) was used for library

purification,  and  size  selection  was  performed  with  SPRISelect  reagent

(Beckmann Coulter, 0.55x and 1.5x). A Qubit fluorimeter (Life Technologies) was

used  to  quantify  the  libraries  and  the  nucleosomal  pattern  of  fragment  size

distribution  was  verified  on  a  High  Sensitivity  D1000  Tapestation  (Agilent).

Libraries  were  sequenced  on  a  NextSeq500  or  HiSeq4000  (Illumina)  using

custom sequencing primers. 

Reads  were  aligned  to  mm10  reference  genome  using  bowtie2  with  default

parameters  and cell  barcodes  were added as  a BX tag  in  the bam file. Only

primary alignments were kept. Duplicated read pairs were removed with Picard,
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and  proper  read  pairs  with  insert  size  less  than  2000  were  kept  for  further

analysis.

Clustering and cell-type annotation: snapATAC2 (version 1) package was used to

perform read counting and cell clustering for both all-tissue clustering and tissue-

level clustering 131. First, we removed nuclei with less than 400 fragments or TSS

enrichment < 4 for all  tissues and calculated a cell-by-bin matrix at  5000-bp

resolution  for  every  sample  independently,  binarized  the  matrices  and

subsequently merged them for each clustering task. Next, we filtered out any

bins  overlapping  with  ENCODE  blacklist  (mm10,

http://mitra.stanford.edu/kundaje/akundaje/release/blacklists/mm10-mouse/

mm10.blacklist.bed.gz). To stabilize the variance and reduce the impact of noise,

we normalized the read coverage of all  bins with log10 (count+1), applied Z-

score  transformation  to  ensure  that  each  feature  contributes  equally  to

downstream analyses, and only removed bins with absolute Z scores higher than

2.  After  these  filtering  steps,  we  calculated  Jaccard  Index  and  performed

dimensional  reduction  using  the  runDiffusionMaps  function  on  similarity

matrices.  The  memory  usage  of  the  matrices  scales  quadratically  with  the

number of nuclei.  Therefore, given the computational limitations at the time of

analysis, and based on evidence provided by SnapATAC131,  we sampled a subset

of 30,000 “landmark” nuclei to compute the matrices and then extended to the

rest of the cells. After dimensional reduction, we selected top 20 eigenvectors

based on the variance explained by each eigenvector and computed 20 nearest

neighbors for each nucleus and applied the Leiden algorithm (leiden clustering

resolution =1) to define 20 clusters. 

To perform label transfer from the scRNA-seq to the corresponding snATAC-seq

data we first  created a gene activity matrix from the snATAC-seq data using

accessibility  in  TSS  and  gene  bodies  with  the  SnapATAC  package.  We  then
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converted  our  gene  activity  matrix  into  a  Seurat  object  and  used  default

parameters  for  the  Seurat  function  FindTransferAnchors to  perform canonical

correlation analysis on the gene activity matrix along with the gene expression

quantification  from the  scRNA-seq  data.  The  FindTransferAnchors function  in

Seurat  uses  unsupervised  identification  of  anchors  representing  cells  from

separate datasets, with the assumption that these cells are derived from shared

biological states132. Finally, we used the  TransferData function to annotate the

snATAC-seq data via label transfer. 

For the scatter plots showing normalized accessibility versus gene expression

(Figure 4b), we used a gene by cell matrix which has counts for reads at the TSS

and the gene body of each marker gene.   

Comparing  Human  Craniofacial  Enhancers  with  Previously  Reported

Enhancer  Catalogs

We compared  human  enhancers  identified  in  this  study  with  a  set  of  5,000

primate enhancers profiled from cranial  neural  crest  cell  differentiation using

both chimpanzee and human cells and a list of 1,000 human-biased enhancers18.

Genomic coordinates of these enhancers were converted to hg38 using LiftOver

and intersected with our list of 13,933 reproducible human enhancers. Similarly,

enhancers identified by Cap Analysis of Gene Expression (CAGE) including those

from normal  human  embryonic  palatal  mesenchyme (HEPM:CNhs11894)  cells

were obtained from the FANTOM5 database81,83,85.  Genomic coordinates of the

enhancer lists from FANTOM5 were converted to hg38 and intersected with the

13,983 human reproducible craniofacial  enhancers from this study. Results of

these analysis are reported in Supplementary Data 2.  

Statistics and Reproducibility
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Statistical  analyses are described in detail  in the Methods section above.  For

human  embryonic  face  samples,  we  performed  experiments  with  biological

replicates as follows: three at CS18, one at CS19, two at CS22 (with two technical

replicates  for  one of  two samples),  one at  CS19 for  ChIP-seq.  We performed

experiments with two biological replicates at CS18, and one each at CS19, and

CS22-23 for ATAC-seq; four replicates at CS18, one at CS19, seven at CS22, and

four at  CS23 for RNA-seq.  For  single-cell  experiments of  the mouse face,  we

performed  experiments  for  eight  biological  replicates  at  E11.5,  and  four

replicates  each  at  E12.5  and  E13.5  respectively  for  scRNA-seq,  while  single

samples at each of the six mouse embryonic stages (E10.5, E11.5, E12.5, E13.5,

E14.5,  and  E15.5)  were  processed  for  snATAC-seq.  For  transgenic  assays

primarily performed and reported in this study, we confirmed results in at least

two  independent  animals  (range  2-10  positive  results)  and  used  criteria

consistent with our site-directed transgenesis pipeline established for the VISTA

Enhancer Browser. Individuals who qualitatively assessed the results of  in vivo

transgenic reporter assays were blinded to genotyping information. For all other

experiments, the investigators were not blinded to allocation during experiments

and  outcome  assessment.  No  statistical  method  was  used  to  pre-determine

sample size. No data that passed quality control criteria for experiments were

excluded  from  the  analyses.  The  experiments  were  not  randomized.  Unless

otherwise stated, default parameter settings were employed for any software

tool that was used in the analyses.  Whenever a p-value is reported in the text,

the statistical test is also indicated. All statistics were estimated, and plots were

generated using the statistical computing environment R (www.r-project.org)/ R

version 4.1.0.

Imaging
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For  both brightfield and fluorescent images,  all  embryos were imaged with a

Leica  MZ16  microscope  and  a  Leica  DFC420  digital  camera  using  identical

lighting conditions.

Data Availability

The ChIP-seq, ATAC-seq, RNA-seq as well  as scRNA-seq and snATAC-seq data

presented in this publication, and generated as part of this study are accessible

at the National Institute of Dental and Craniofacial Research’s FaceBase84,121,133,134

Consortium (facebase.org), and can be found under the following records: RNA-

seq, ChIP-seq and ATAC-seq analysis of human fetal tissue. FaceBase Consortium

Accession:  FB00001358  https://doi.org/10.25550/3C-4G62.  Single-cell  RNA-seq

and  single-nucleus  ATAC-seq  analysis  of  mouse  embryonic  tissue. FaceBase

Consortium  Accession:  FB00001359  https://doi.org/10.25550/3C-4R98  .   These

data are additionally deposited in NCBI’s Gene Expression Omnibus135,136and are

accessible  through  GEO  Series  Accession  GSE235858

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE235858.  Additional

data supporting the findings of this study are available from the corresponding

author upon reasonable request.  Images of embryos with  lacZ-reporter activity

are available from the VISTA Enhancer Browser https://enhancer.lbl.gov/. Source

data  are  provided in  the Source Data File  with  this  paper,  and as a publicly

accessible Seurat/R objects as applicable.

Code Availability

No  previously  unreported  custom computer  code,  mathematical  algorithm or

software  were used in  the analyses of  data  presented in  this  study.  Current

community-accepted and benchmarked bioinformatic  methods were used and

are appropriately cited in the main text and Methods.   
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Figure 1. Developmental enhancers in human craniofacial morphogenesis. a.
Developmental time points coinciding with critical windows of craniofacial morphogenesis
are shown by Carnegie stage (CS) and post-conceptional week (PCW) in humans, and
comparable  embryonic  (e)  stages  for  mouse  are  shown  in  embryonic  days.  b.
Representative embryo image at e15.5 for an in vivo validated enhancer (hs1431) shows
positive  lacZ-reporter  activity  in  craniofacial  structures  (and limbs).  Adjacent  graphic
shows the genomic context and evolutionary conservation of the region, with H3K27ac-
bound and open chromatin regions located within the hs1431 element. c. Six examples
of human craniofacial enhancers discovered in this study with in vivo activity validated in
e11.5 transgenic mouse embryos. Enhancers hs2578, hs2580, hs2724, hs2740, hs2741
and hs2752 show lacZ-reporter activity in distinct subregions of the developing mouse
face. Lateral nasal  process (lnp), medial nasal process (mnp), maxillary process (mx),
mandibular process (md), and pharyngeal arch 2 (pa2). n, reproducibility of each pattern
across embryos resulting from independent transgenic integration events.
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Figure  2.  Developmental  dynamics  and  conservation  of  human  craniofacial
enhancers.  a. Results  of  rGREAT  ontology  analysis  for  13,983  reproducible  human
craniofacial  enhancers,  ranked  by  Human  Phenotype  q-value.  The  ontology  terms
indicate  that  our  predictions  of  human  craniofacial  enhancers  are  enriched  near
presumptive  target  genes known to  play important  roles in craniofacial  development
(examples  in  boxes).  b. Predicted  activity  windows  of  13,983  candidate  human
enhancers (rows) arranged by gestational week 4-8 of human development (columns).
Blue, active enhancer signature; white, no active enhancer signature. Source data are
provided as part of Supplementary Data 2 and in Source Data file.  c/d. Left: Genomic
position and evolutionary conservation of human candidate enhancer hs2656 (c) and its
mouse  ortholog  mm2280 (d).  The  human  sequence,  but  not  the  orthologous  mouse
sequence, shows evidence of H3K27ac binding at corresponding stages of craniofacial
development (beige tracks). Right: Representative embryo images at e12.5 show that
human enhancer hs2656, but not its mouse ortholog mm2280, drives reproducible lacZ-
reporter  expression  in  the  developing  nasal  and  maxillary  processes  at  e12.5.  n,
reproducibility of each pattern across embryos resulting from independent  transgenic
integration events.
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Figure 3. Gene expression in the mammalian craniofacial complex at single cell
resolution. a. Uniform Manifold Approximation and Projection (UMAP) clustering, color-
coded  by  inferred  cell  types  across  clusters  from  aggregated  scRNA-seq  for  the
developing mouse face at embryonic days 11.5-13.5, for 57,598 cells across all stages.
Cartoon shows the outline of dissected region from the mouse embryonic face at e11.5,
corresponding regions were excised at other stages.  b. Same UMAP clustering, color-
coded by main cell lineages. c. Expression of select marker genes in cell types shown in
(a). See Supplementary Figure 11 for additional details.  d. UMAP plots comprising cells
with  >1.5-fold  gene  expression  for  marker  genes  representing  specific  cell  types  as
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shown in (a) and (c). Source data are provided as a publicly accessible Seurat/R object
file, see Data Availability Statement for details.

 

                  
   
Figure 4. Differential chromatin accessibility at craniofacial  in vivo enhancers
correlates with expression of nearby genes. a. Unbiased clustering (UMAP) of open
chromatin regions from snATAC-seq of the developing mouse face for stages e10.5-15.5
for  approximately  41,000  cells.  The  cell  types  are  assigned  based  on  label  transfer
(Seurat)  from  cell-type  annotations  of  the  ScanFaceX data. b.  Correlation  between
normalized gene expression (x-axis)  from  ScanFaceX and normalized accessibility  (y-
axis)  from  snATAC-seq  for  select  genes  (Epcam,  Dsp,  Cthrc1,  Cldn5)  and  their
transcription start  sites with the highest  correlation evident  in relevant  cell  types.  c.
Genomic  context  and  evolutionary  conservation  (in  placentals)  for  corresponding
regulatory regions in the vicinity of the Isl2/Scaper locus, and an intronic distal enhancer
within  Lrrk1.  Tracks  for  individual  snATAC-seq  clusters  from  developing  mouse  face
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tissue  (e10.5  to  e15.5),  with  cluster-specific  open  chromatin  signatures  for  relevant
annotated cell types are shown for the same genomic regions. Colors in (4b) and the
individual snATAC-seq tracks in (4c) correspond to the color code used in (4a). UMAP of
ScanFaceX data  shows  expression  of  Isl2  and  Aldh1a3  (gene  adjacent  to  Lrrk1)  in
expected cell-types. Images for a representative mouse embryo at e11.5 for both loci
show validated in vivo lac-Z-reporter activity of the respective regions; black arrowheads
point towards stained regions. n, reproducibility of each pattern across embryos resulting
from independent transgenic integration events.  Source data for 4b are provided as a
Source Data file.                               

Figure  5. Correlating  Cell  Population-Resolved  Enhancer  Signatures  with
Enhancer in vivo Activity Patterns. a. Heatmap indicates the chromatin accessibility
of 77 craniofacial  in vivo VISTA enhancers in 11 major clusters representing predicted
cell types. cpm: counts per million. b. Representative images of transgenic embryos from
VISTA Enhancer Browser, showing  in vivo activity pattern of 35 selected enhancers at
e11.5.  Embryo  images  are  grouped  by  example  cluster-types  from  (a)  in  this
retrospective assignment. Source data for 5a are provided as a Source Data file.
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Figure 6. Enhancer activity at single-cell resolution. a.  in vivo activity pattern of
select  craniofacial  enhancers  (hs1431,  hs746,  hs521)  at  e11.5,  visualized  by lacZ-
reporter assays (top). In separate experiments, the same enhancers were coupled to an
mCherry-fluorescent reporter gene and examined by scRNA-seq of craniofacial tissues of
resulting embryos. UMAPs show enhancer-driven mCherry expression (see Figure 3a for
reference).  b. Location  of  enhancers  hs1431,  hs746  and  hs521  in  their  respective
genomic context (red vertical lines), along with protein-coding genes within the genomic
regions and local conservation profile (PhyloP).  c. Seurat-based average expression of
genes  in  the  vicinity  of  the  respective  enhancers,  and  proportion  (percent)  of  cells
expressing  those  genes  in  annotated  cell  types.  Enhancer-driven  mCherry signal  is
plotted  in  the  center  in  between the  names  of  the  two genes whose promoters  are
closest to its location within the genome. For example, for hs1431, mCherry is highly
expressed  (indicated  by  red  color  intensity)  in  clusters  labeled  “other  cellular”,
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“myocytes”, “skeletal, other”, “connective tissue”, and “undifferentiated mesenchyme”,
while it is also expressed in a larger proportion of cells (indicated by greater diameter of
the circles) in those same clusters. In the same plot, Snai2 is highly expressed (indicated
by blue color intensity) in a subset of cells (indicated by lesser diameter of circles) in
identical  clusters as compared to mCherry.  Bottom panels show expression of  Snai2,
Msx1, and  Gbx2 as likely candidate  target  genes for  each of  the enhancers hs1431,
hs746 and hs521 across UMAPs.  undiff.:  undifferentiated IsO: Isthmic Organizer Cells.
Source  data  are  provided  as  a  publicly  accessible  Seurat/R  object  file,  see  Data
Availability Statement for details.
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