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Abstract

The cause of hot-Jupiter radius inflation, where giant planets with Teq>1000 K are significantly larger than
expected, is an open question and the subject of many proposed explanations. Many of these hypotheses postulate
an additional anomalous power that heats planets’ convective interiors, leading to larger radii. Rather than examine
these proposed models individually, we determine what anomalous powers are needed to explain the observed
population’s radii, and consider which models are most consistent with this. We examine 281 giant planets with
well-determined masses and radii and apply thermal evolution and Bayesian statistical models to infer the
anomalous power as a fraction of (and varying with) incident flux ò(F) that best reproduces the observed radii.
First, we observe that the inflation of planets below about M=0.5MJ appears very different than their higher-
mass counterparts, perhaps as the result of mass loss or an inefficient heating mechanism. As such, we exclude
planets below this threshold. Next, we show with strong significance that ò(F) increases with Teq toward a
maximum of ∼2.5% at Teq≈1500 K, and then decreases as temperatures increase further, falling to ∼0.2% at
Teff=2500 K. This high-flux decrease in inflation efficiency was predicted by the Ohmic dissipation model of
giant planet inflation but not other models. We also show that the thermal tides model predicts far more variance in
radii than is observed. Thus, our results provide evidence for the Ohmic dissipation model and a functional form
for ò(F) that any future theories of hot-Jupiter radii can be tested against.

Key words: planets and satellites: gaseous planets – planets and satellites: interiors – planets and satellites: physical
evolution
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1. Introduction

The longest-standing open question in exoplanetary physics
is what causes the inflated radii of “hot Jupiters,” gas giant
planets on short-period orbits heated to equilibrium tempera-
tures Teq>1000 K (Miller & Fortney 2011). Since the first
detection of planet HD 209458 b (Charbonneau et al. 2000;
Henry et al. 2000), the radii of the vast majority of these
transiting gas giants have exceeded the expected radius of
∼1.1 times that of Jupiter, sometimes approaching 2 Jupiter
radii. This excess radius appears to correlate with the level of
incident stellar irradiation (Guillot & Showman 2002; Laughlin
et al. 2011), rather than, e.g., semimajor axis (Weiss
et al. 2013). A wide range of theories have been proposed to
explain this, most of which postulate an additional “anom-
alous” power that heats the convective interior of the planet,
leading to larger radii. Typically, these theories are tested by
directly modeling the physics to determine if they can produce
large enough radii to explain the observations (e.g., Ginzburg
& Sari 2016; Tremblin et al. 2017). We shall take a more
complete approach by determining what anomalous powers are
needed to explain the radii of the whole observed population,
and then considering what models are most consistent with this.

This approach is feasible thanks to the work of surveys such
as WASP, HAT, and Kepler, which have identified a large
number of transiting giant planets. Follow-up radial-velocity
measurements have yielded mass measurements for many of
these. Merging data from the NASA Exoplanet Archive (Akeson
et al. 2013) and exoplanet.eu (Schneider et al. 2011), we
examine the set of transiting planets with measured masses and
radii with relative uncertainties of less than 50%, in the mass
range < <ÅM M M20 13 J. The resulting flux-radius-mass data

are shown in Figure 1. Several patterns are apparent. First, many
planets with high incident flux are anomalously large—these are
the hot Jupiters. The flux at which these excess radii become
apparent has been estimated to occur at 0.2 Gerg s−1 cm−2

(Miller & Fortney 2011), equivalent to an equilibrium temper-
ature Teq≈1000K. Second, the degree of radius inflation
increases steadily with flux. Finally, the degree of radius inflation
is greater at lower masses. This is more visible in Figure 2,
which plots radius against planetary mass.
In modeling the interior structure of a transiting giant planet

with a measured mass, there are two key variables that are not
directly observable: the bulk heavy-element abundance and the
anomalous power. Planets at fluxes below the inflation
threshold, including Jupiter and Saturn, are well described by
evolution models with zero anomalous power. In this cool giant
regime, we can directly infer the heavy-element mass from the
observables. Our previous work, Thorngren et al. (2016), did
this for the ∼50 known cool transiting giant planets (those with
Teq<1000 K), and observed a correlation between the
planetary heavy-element mass and the total planet mass of

»Å( ) ( )M M M M58z J
.61. That cool giant sample and this hot

giant sample do not differ much in semimajor axis (typically
∼0.1 versus ∼0.03 au), so we do not expect their formation
mechanisms or composition trends to differ. Thus, for this
work, we apply this relation with its predictive uncertainty as a
population-level prior on the heavy-element masses of the hot
Jupiters. By doing this, we constrain one of the two unobserved
variables, allowing us to infer planetary anomalous power.
Individually, planets may vary in composition so by themselves
our predictions are not particularly precise. However, since
planets as a population will follow the trend line, a hierarchical
Bayesian model based on this prior allows us to combine
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information from our whole sample to infer the shape of the
anomalous power as a function of the flux ò(F). The use of the
flux as a predictor was suggested by Guillot & Showman
(2002) and Weiss et al. (2013), among others.

A key advantage of this approach is that it is robust against
certain sources of modeling error. In Thorngren et al. (2016),
we discussed the modest systematic uncertainties inherited
from the equations of state and the distribution of metals
within the planet (e.g., core versus mixed into the envelope).
These issues, as well as statistical uncertainty regarding
the mass–metallicity trend and our use of fixed-metallicity
atmospheres, could lead to an error in the radius of the model
planets. Two factors would act to ameliorate these effects.
First, the effects of radius suppression from metallicity would
act on planets regardless of temperature, and so the first-order
errors in deriving the mass–metallicity trend and the impact of

metals on hot giant radii would cancel out. Second, because
our sample contains a broad cross-section of different masses
and fluxes for M>0.5MJ, biases which relate to the planet
mass such as atmospheric metallicity are evenly applied to
all flux levels. Thus, this type of error may impact the
overall magnitude of ò(F), but will have much less effect on
the shape of the function. These features do not eliminate
systematic error, but they do allow for more confidence in our
results.

2. Lack of Inflated Sub-Saturns

An interesting feature is apparent in the mass–radius
relationship. Figure 2 shows the masses and radii of our
sample of planets, along with prediction lines of constant
temperature and inflation power. The relationship between the
temperature (color) and inflation power is posterior to our
model (discussed in Section 4), but the general shape of the
lines themselves is generic, and appears for any mass-
independent model of inflation power. It is apparent that with
decreasing mass and constant inflation power, the radius
anomaly becomes larger exponentially. This is not seen in the
observed planet radii. In fact, giant planets are not observed
with surface gravity less than about 3 m s−2, even though our
models allow it and the transits of such large planets would be
readily detectable. This might be the result of an inflation
mechanism that is inefficient at low masses, but this possibility
is weakened by examining the frequency of planets in mass–
flux space (see Figure 3).
Consider the population of high-mass Jupiters compared to

lower-mass Saturns, separating the groups at 0.5MJ. Among
Jupiters, many high-flux planets are observed: 58% (164/281)
have more than 1Gerg s−1 cm−2. Among Saturns, we find only
22% (21/97) that experience this level of insolation. This
discrepancy does not appear to result from any observational
biases. It is possible that significant mass loss could occur if
planets inflate too much. Because radii increase with decreasing
mass, any mass loss that occurs might experience positive
feedback. This is similar to what was seen in Baraffe et al.
(2004), though their mass-loss rate appears to have been too
high (Hubbard et al. 2007). The best alternative hypothesis
appears to be that Saturns preferentially stop migration further
from the parent star and that planets at these masses also
experience a significantly less efficient inflation effect. Further
study will require more advanced models, which we leave to
future work. To avoid this issue, we restrict our attention to
planets with M>0.5 MJ.

3. Planet Models

Our interior structure models are broadly the same as those in
Thorngren et al. (2016), with only two changes for this work on
inflated giant planets. We solve the equations of hydrostatic
equilibrium, conservation of mass, and an equation of state (EOS)
based on the SCvH (Saumon et al. 1995) solar H/He EOS and the
EOS of a 50/50 ice/rock mixture (Thompson 1990):
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Figure 1. Radii of transiting giant exoplanets plotted against their incident flux
(or equilibrium temperature) and colored by mass on the log scale. The dotted
red line is the radius of a Jupiter-mass pure H/He model with no inflation
effect, an approximate upper limit on the non-inflated case. The dotted vertical
line is the empirical flux cutoff for inflation (Demory & Seager 2011; Miller &
Fortney 2011). Beyond this level planets are anomalously large, with the
excess radius correlated with flux. Less massive planets exhibit the strongest
effect.

Figure 2. Radii of transiting giant exoplanets plotted against their masses,
colored by equilibrium temperature. The solid lines are the radii of model planets
of average (posterior mean) composition and inflation power using our Gaussian
process results described below for various equilibrium temperatures (500, 1000,
1250, 1500, 2000 K) on the same color scale. For each given Teq, models show
the radii increasing dramatically at lower masses, coinciding with the absence of
planets in that region. This upturn is a feature of any plausible model of
anomalous power. Since it seems plausible that a mass-loss process affects this
low-mass population, we restrict our study to planets with M>0.5 MJ.
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Metals were fully mixed into the convective envelope using
the additive volumes approximation. No core was included
because for planets of this mass the radius difference would be
minor (see Thorngren et al. 2016). Heat flow out of the planet
(and therefore thermal and structural evolution) was regulated
using the atmospheric models of Fortney et al. (2007).
Additional details and analysis of the effect of our modeling
choices can be found in Thorngren et al. (2016). Sample
evolution calculations are shown in Figure 4.

The most important modeling addition is the inclusion of an
additional heating power òFπ R2. The resulting power balance
of the interior of the planet is

p
¶
¶

= -( ) ( )E

t
R F F4 . 42

int

Here, Fint is the intrinsic flux of energy radiated out of the
planet as computed by the atmosphere model. Note that our
definition of ò differs slightly from other authors, such as
Komacek & Youdin (2017), who deposit the energy at a
particular depth within the planet. Using their results, our
definitions agree for their models where the power is deposited
at the radiative-convective boundary or deeper. Otherwise, our
ò is smaller than theirs by a factor of <1 depending on depth
and stage of evolution.

The other change was an improvement to the thermal
evolution integration system. The new system uses the SciPy
(Van Der Walt et al. 2011) function Odeint to adaptively
integrate the changes in planet internal entropy. We have also
added a system to detect when the planet is near thermal
equilibrium (when òFπR2≈Lint), and quickly completes the
evolution accordingly. This serves to handle the stiffness of the
ODE near an equilibrium of high specific entropy.

4. Bayesian Statistical Analysis

Our statistical analysis is based on a hierarchical Bayesian
approach, with two levels in the hierarchy. The lower level
consists of our beliefs about the properties of individual planets
given the observations and our planetary mass–metallicity
relation from Thorngren et al. (2016) as a prior on bulk
metallicity. The upper level combines information about the

individual planets to infer population-level patterns in anom-
alous power. The variables we will use are listed and described
in Table 1.

4.1. Planetary Statistical Models

We wish to understand the observed radii of giant planets,
which have normally distributed errors, in terms of our interior
structure models R(t, Mz, M, ò, F). As such, we construct the
following normal likelihood for observing the ith planet’s
radius to be Robs given the structure models parameters:



 s=

( ∣ )
( ∣ ( ) ) ( )

p R t M M

R R t M M F
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z
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Here,  refers to the normal distribution, and  m s( ∣ )x , is
the PDF of  m s( ), evaluated at x (similarly for the uniform 
and log-normal  distributions). The observed flux F i is
known precisely enough (compared to the other observations)
that we will neglect the effect its uncertainty has on the model
radius uncertainty. Previous studies provide us with observa-
tional constraints on Mi and t i, which we will use as priors.
Combined with the motivated prior on Mz

i from our mass–
metallicity relationship, we have

~ ( ) ( )t t t, , 6i i i
0 1

 a b s~ +( ( ) ) ( )M Mlog , , 7z
i i

z

 s~ ( ) ( )M M , . 8i i
m
i
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 m s( ), is the base-10 log-normal distribution with
location μ and scale σ (i.e., the log10 of the variable is
distributed as  m s( ), ). Using these priors, we can write a
posterior distribution for the structure model parameters (t i, Mz

i ,
Mi, ò i) as follows:


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Figure 4. Example outputs of our evolution models for a 1 MJ planet at
2 Gerg s−1 cm−2 for different heavy-element masses and values of heating
efficiency. Solid and dashed lines have 60 and 30 ÅM of heavy elements,
respectively, and black, purple, and orange lines have 0%, 1%, and 2% heating
efficiencies, respectively. The plot extends to extremely young ages to illustrate
the transition from rapidly cooling young planets to the nearly static older
planets. Planets in our sample are generally older than a gigayear, so the effects
of the heavy-element abundance and heating efficiency are not easily
disentangled.

Figure 3. Mass vs.flux of observed transiting giant planets, colored by radius.
Below about 0.4 MJ, considerably fewer high-flux planets are detected, an
effect not seen in low-flux planets. Transit observational biases do not explain
this. Runaway mass loss could explain both this and the lack of low-mass
highly inflated planets, though biases from formation and migration models
might also exist.
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The purpose of this model is to infer ò i. If we apply a simple
uniform prior  ~ ( )0%, 5%i , we can infer the interior
structure parameters for the ith planet. Figure 5 shows the
results of this approach for HD 209458 b. Unfortunately, as
seen in the figure, data from a single planet do not provide
enough information to infer much about ò i. In the next section,
we describe a hierarchical model that combines the information
from many planets to draw conclusions about the anomalous
power as a function of flux ò(F).

4.2. Models of Anomalous Power

For convenience, we define the function Qi as follows:


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We include the model parameters as explicit arguments, and let
the constants be indicated by the index i. This function reduces the
right-hand side of Equation (11) to Qi(t i, Mz

i, Mi, ò i) p(ò i). To
combine information from many planets together, we assume that
the planet parameters t i, Mz

i, and Mi as well as Robs
i are a priori

independent between planets, and thus we can simply multiply
their probabilities together. For this equation we will leave the
prior on ò i in the general form ( )p .

  µ
=

( ∣ ) ( ) ( ) ( )t M M Rp p Q t M M, , , , , , . 13z
i

N
i i

z
i i i

obs
1

We can now focus on constructing models of ò i. First, we
consider the models in which the heating efficiency ò is given
by a deterministic function of several hyperparameters f. We
will refer to this function generally as  f( )( )F ,i , and consider
several specific functions (power-law, logistic, and Gaussian),
differentiated by their subscripts. These models were chosen
because they all allow for low heating efficiencies at low
fluxes, but exhibit differing behavior at high fluxes. The
power-law model is a classic and simple model for many
astronomical phenomena, the logistic model captures the
possibility that the inflation effect “turns on” at some flux, and
the Gaussian model covers the case that heating efficiency
declines at high flux.

 f =( ) ( )F F, , 14p p
k

0

 f =
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F F
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, 15l l k
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2
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2

For each of these models, we choose the follow weakly
informative proper priors for the hyperparameters:

 f µ ´( ) ( ∣ ) ( ∣ ) ( )p k0, 5% 0, 2 , 17p

  f µ ´ ´( ) ( ∣ ) ( ∣ ) ( ∣ ) ( )p F k0, 5% 1, 2 3, 1 , 18l 0 0

  f µ ´ ´( ) ( ∣ ) ( ∣ ) ( ∣ ) ( )p F s0, 5% 1, 2 0, 2 . 19g 0 0

In the power-law case, the uniform distribution demands ò0
and k be such that that no planet’s ò leave the [0%, 5%] bounds.
In the logistic case, the prior on k is fairly informative,
demanding that the transition be somewhat similar to the scale
of the data; this parameter would be poorly constrained
otherwise. Now we substitute  f( )F ,i into Equation (13),
which together with the hyperpriors gives us the following
posterior:



f

f fµ
=
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( ) ( ( )) ( )

t M M Rp

p Q t M M F

, , ,

, , , , . 20

z
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N
i i

z
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obs

1

The Gaussian process (GP) model takes a slightly different
form. In it, we model ( )log10 as a GP with mean 0 and
covariance matrix K. We use the squared exponential kernel
with a small white noise component s = -102

2 3 for numerical
convenience, which amounts to a relative spread of about 7% in
linear space. Thus, the covariance matrix for the process is

Table 1
A List of Variables Used in the Bayesian Model

Parameters

Mz
i , Mz The bulk heavy-element mass of the ith planet, all planets.

Mi, M The true mass of the ith planet, all planets.
t i, t The true age of the ith planet, all planets.
ò i,  The anomalous heating efficiency (see Section 3) of the ith

planet, all planets.

Hyperparameters

=ϕ [ ]k,p 0 The vector of hyperparameters for the power-law model
of ò(F).

=ϕ [ ]F k, ,l 0 0 The vector of hyperparameters for the logistic function
model of ò(F).

=ϕ [ ]F s, ,g 0 0 The vector of hyperparameters for the Gaussian model
of ò(F).

s=ϕ [ ]l,gp 1 The vector of hyperparameters for the Gaussian process
model of ò(F).

Constants

α, β, σz Fitted values from the planetary mass–metallicity
relationship.

Robs
i , σr

i The observed radius and uncertainty of the ith planet.
Mobs

i , σm
i The observed mass and uncertainty of the ith planet.

t0
i , t1

i The observational lower and upper limits on the age of the
ith planet.

F i The time-average incident flux onto the ith planet.

Note. The superscript is the index of the planet (numbered 1 to N = 281),
whereas an arrow refers to the variable for all of the planets as a vector, e.g.,
the 10th component of Mz is Mz

10. Parameters refer to model parameters of the
lower hierarchical level of the model, and hyperparameters refer to those of
the upper level. Constants are known, fixed values that describe the results of
previous studies, and therefore do not need to be sampled. α, β, and σz are
from Thorngren et al. (2016) and the remainder are from various telescope-
based observational studies retrieved from exoplanets.org (Schneider
et al. 2011) and the NASA Exoplanet archive (Akeson et al. 2013) (see
Section 1).
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We define some weakly informative priors for fgp as
follows:

 f sµ ´( ) ( ∣ ) ( ∣ ) ( )p l0, 1 0, 1 . 22gp 1
2

Because we do not have simple normal distributions for
them, we cannot marginalize out , and instead must keep them
as parameters hierarchically connected through the GP prior.
To provide an appropriate lower boundary condition on the
function, we include an independent portion of the prior on ò i

(in combination with the GP) such that the model is

    fµ
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The log-normal portion is the Gaussian process. The Gi

component is useful because it sets an appropriate lower
boundary condition for ò(F). Experimentation reveals that this
boundary condition has little effect when F>2Gerg s−1 cm−2

(the region of interest); we merely include it to best represent
our belief about the function for the full range of fluxes. With
these priors and likelihood, Bayes’s theorem yields the

Figure 5. Inferred parameters for HD 209458 b, using Equation (11). The parameters are mass in Jupiter masses, planetary metal mass fraction, inflation efficiency,
and age in gigayears. The planet is old enough that its age uncertainty has little effect on the other parameters. As expected, the main driver of ò uncertainty is Zpl. For
this planet, we disfavor an inflation efficiency below ∼1%. Together with other planets, some of which disfavor high ò, this forms the basis for our inference of ò(F).
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posterior for the GP model:


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Finally, we constructed a simple model for the thermal tides
model of hot-Jupiter inflation (Arras & Socrates 2009). We
adapt the scaling relations of Socrates (2013), µ -L T R Peq

3 4 2,
where L is the total anomalous power, P is the period, Teq is the
equilibrium temperature, and R is the planet radius. We model
this as follows, where ò0 is a model parameter, using the
present-day radius and flux for simplicity:

 = - -( ) ( )F R P F . 26t 0
2 2 .25

4.3. Statistical Computation

We wish to use a Metropolis–Hastings MCMC (Hastings
1970) sampler to draw samples from the posteriors given
above. However, if we do this with no further simplifications,
we will end up exploring the parameters very slowly. This is
because the models listed above have a very large number of
parameters (∼1100) thanks to the many nuisance parameters
(Mz

i , Mi, etc.), which each have one parameter per planet. The
complexity of our Metropolis–Hastings sampler scales with
dimension at roughly ( )d2 : ( )d posterior PDF evaluations
(see Roberts & Rosenthal 2004) that cost ( )d . However, we
are really only interested in f for the various models, plus  in
the GP case. We can save a great deal of computational effort
by directly sampling marginal distribution and rewriting the
posteriors as follows:

ò
f
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We use td and the like as shorthand for integration over
every component of t in sequence over their full domain;
Equation (28) has 843 nested integrals.

~
Q

i
is defined as Qi

integrated over t i, Mz
i , and Mi:

 òº
~ ( ) ( ) ( )Q Q t M M dt dM dM, , , , , . 31

i i i
z
i i i

z
i i

In this way, we have rewritten the 3N-dimensional integral in
Equation (28) as N separate three-dimensional integrals in
Equation (29). This rewrite of the posteriors is possible because
the planet parameters are only connected to each other through
the hierarchical prior on ò. The GP posterior can be simplified

in a similar fashion:

 

  





f f fµ

´
~

=


( ∣ ) ( ) ( ∣ ( ))

( ) ( ∣ ) ( ) ( )

R K Fp p

Q G F

0, , ,

0, 5% , . 32
i

N
i i i i

obs gp

1
0

Using this formulation to get posterior samples relies on our
ability to compute ~ ( )Q

i
up to a constant of proportionality. This

is easier than it might appear. Equation (31) is proportional to the
single planet posterior PDF (Equation (11)) for  µ( ) ( )p 0, 5% ,
marginalized over t i, Mz

i, and Mi. We chose this prior for epsilon
because we do not believe that ò will exceed 5%. We can estimate
this marginal PDF by sampling from the posterior and applying a
Gaussian kernel density estimate with reflected boundaries (see
Silverman 1986) to the ò samples. Figure 6 shows the results of
this procedure for WASP-43 b. Doing this for each planet i gives
us ~ ( )Q

i
. These can be plugged into the marginalized models

(assuming 0<ò<5%), radically reducing the dimension.
As estimated above, our sampler scales with dimension at

roughly ( )d2 , so breaking it up into many subsamplers is
highly desirable. The result is a much more computationally
efficient sampling system, at the cost of no longer having
posterior samples of the structure parameters.
Scatterplot matrices of our upper-level model posteriors are

shown in Figures 7–10, and those of the lower-level model for
HD 209458 b are shown in Figure 5. The upper-level posteriors
are provided in an accompanying data file. The plots were
made using corner.py (Foreman-Mackey 2016).
To compare different models, we are unable to use the more

familiar model selection criteria, the BIC/AIC, as these are
only defined for non-hierarchical models. This is because in the
hierarchical case the number of parameters is not well defined
(Gelman et al. 2014). Probably the most Bayesian approach is
to compare the Bayes factors (also called the evidence) of the
models. However, Gelman et al. (2013, Chapter 7.4) advise
against their use in the case of continuous variables with
uninformative priors as we have here. Furthermore, computing
Bayes factors here would be computationally expensive.
Instead, we make use of the deviance information criterion

Figure 6. Histogram and kernel density estimate (the black line) of the

posterior inflation power ò (proportional to ~ ( )Q
i

) for WASP-43 b. In this case,
smaller values of ò are more likely, but larger values are not ruled out. Note that
the KDE matches the histogram, as is required for us to be able to use it as a
likelihood for the upper level of the hierarchical model.
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(DIC), which is similar to the AIC in interpretation, but which
makes use of an estimate of the effective number of parameters
(Spiegelhalter et al. 2002), derived from the variance of the
log posterior likelihood. The empirical DIC from a set of
samples is

= - +( ( ∣ˆ )) [ ( ( ∣ ))] ( )y yp pDIC 2 log 4Var log . 33s s

Here, ̂ is the posterior mean of  and Vars is the variance of
the log likelihood across samples. Note that while the samples
in question are taken using the posterior, this computation is

Figure 7. Scatterplot matrix of the GP hyperparameter posterior (see
Equation (21)). It is fairly well behaved, but has a long right tail. This is a
common feature for Gaussian processes.

Figure 8. Scatterplot matrix of the Gaussian function hyperparameter posterior
(see Equation (16)). Two modes were observed, differing primarily in height
òmax; the model with a peak of ò≈2% is favored over the model with peak
ò≈3.5% by a probability ratio of about 3:1. The discovery of more giant
planets around the ≈1500 K peak will help to resolve this further.

Figure 9. Scatterplot matrix of the power-law hyperparameter posterior
(see Equation (14)). A strong correlation between the coefficient F0 and the power
k is seen. This likely reflects the constraint that the function achieves adequate
power for the many planets at around Teq≈1300 K, yet avoids exceeding 5% for
the hottest planets, which would exceed the bounds of our grid. Such constraints
are difficult for the power law to achieve. Regardless, as a result of its overestimate
of high Teq radii, this model had a comparatively disfavorable DIC.

Figure 10. Scatterplot matrix of the logistic function hyperparameter posterior
(see Equation (15)). Thanks to our prior on k, which demanded the transition be
similar to the scale of the data, the resulting posterior is well behaved and easy
to sample from. The model is not bad, but its DIC indicates that it is still
inferior to a model that decreases at high equilibrium temperatures.
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done using the likelihood. In the results, the model with the
more negative DIC is favored. The interpretation of ΔDIC is
similar to that of the AIC and BIC, in which differences of
>∼6 are strong evidence in favor of the model with the lesser
DIC (e.g., Kass & Raftery 1995 for BIC).

To produce posterior predictive mass–flux–radius relations,
we assume the planets are old (5 Gyr), and for given M and F,
we draw Mz from Equation (8) and òi from  f( )F, margin-
alized over the posterior f( ∣ )Rp obs . These sampled values are
then plugged into the structure models R(t, Mz, M, ò, F). The
result is a probability distribution in R for the given parameters.

5. Results

The results for ò(F) are shown in Figure 11. All functional
forms yield similar results below about 0.5Gerg s−1 cm−2, but
differ significantly above this. The GP model reaches a peak at
around 1600 K and decreases toward zero with high statistical
confidence, as shown by the uncertainty bounds. At high
fluxes, the uncertainty in heating power is roughly constant,
and so declines as a fraction of flux. Figure 2 shows the
predicted radius for a given mass of 5Gyr old planets of
average (posterior mean) composition and inflation power
using the GP model. The predictions align well with planets of
similar mass and temperature. The shape of ò(F) presented by
the GP is corroborated by comparison of the DIC values. Of the
parametric models, the Gaussian model is most favored, with a
DIC of −1723. The logistic model was next, at −1648,
followed by the power-law model at −1641. We interpret this
to mean that ò decreases toward zero at high fluxes with high
statistical significance, in agreement with our conclusions from
the GP approach. The DIC of the GP model is −1723, so there
is no significant preference between it and the Gaussian model.
We present the Gaussian model since it takes a simple
analytic form, as a percent of flux and with flux in units of
Gerg s−1 cm−2:

 = -
-

-
+ -

+

-
+

⎡
⎣⎢

⎤
⎦⎥( ) ( ( ) ( ))

( )
( )F

2.37 Exp
log .14

2 .37
. 34.26

1.3 .069
.060 2

.059

.038 2

Note that for planets whose interiors are in thermal
equilibrium where Ein=Eout and therefore dR/dt=0 (which
may happen quite early—see Figure 4), the intrinsic temper-
ature is directly related to ò as

 
s

= =⎜ ⎟⎛
⎝

⎞
⎠ ( )T

F
T

4
, 35int

1
4 1

4 eq

where σ is the Stefan–Boltzmann constant, and the conversion
from flux to equilibrium temperature assumes an ideal black-
body with full heat redistribution.
To visualize why the Gaussian model is preferred, we

compute the posterior predictive radius distributions, and
compare them to the radii of our observed planets. Figure 12
compares these predictions for the favored GP model and the
next-best logistic model to the observed radii as a function of
incident flux, divided into six mass bins. The models only
diverge at high fluxes, about 2Gerg s−1 cm−2. Beyond this, the
logistic model systematically overestimates the radii, and the
GP does not. To make this clear, Figure 13 shows the residual
to the expected radius (the radius anomaly) for high fluxes
under a no-inflation model, the logistic model, and the
Gaussian model. Here, the increasing bias of the logistic model
for the 30 planets at such high fluxes is apparent. Even a flat ò
at high flux predicts overly large planets, hence our conclusion
that ò(F) must decline.
For our model of thermal tides (Arras & Socrates 2009), we

examined the scaling relations for thermal tides from Socrates
(2013) (Equation (26)), and found this potential power source to
much too strongly increase with flux to reproduce the observed
radii. The variance also appears overly high; for example, the
scaling relations force ò to vary by more than an order of magnitude
just in planets with fluxes between 0.8 and 1.2Gerg s−1 cm−2. As
a result, we encountered considerable difficulty getting the model
(see Section 4.1) to fit. We were only able to fit a model by
imposing the regularizing constraint that ò for any individual planet
cannot exceed 4.5%, a level far above what is otherwise needed to
explain the observed radii. Under this requirement, we measure

 = - ( )log 1.61 .06510 0 ; Figure 14 shows the the inferred
heating efficiencies for the sample planets as a function of flux. The

Figure 11. Posteriors of our statistical models of inflation power (as a percent
of flux) against incident flux, with 1σ uncertainty bounds. The red line is a
power-law model, yellow is logistic, blue is Gaussian, and black is the GP. The
Gaussian model is strongly favored over the other parametric models by the
DIC model selection criterion, and the GP strongly indicates a negative
relationship at high flux. This decrease in inflation efficiency at higher fluxes is
important, because it matches predictions from the Ohmic dissipation
mechanism of hot-Jupiter inflation.

Figure 12. Radii of transiting giant planets against flux, divided into six mass
bins. The blue line and region are the Gaussian model’s predicted radius and 1σ
uncertainty bounds. The black line is the prediction for the next-best model, the
logistic function. The latter makes similar predictions but overpredicts radii of
high-flux planets, so the DIC favors the Gaussian model by a statistically
significant margin. This is more obvious looking directly at the residuals,
which are shown in Figure 13.
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MCMC was able to fit the bulk of the data by placing them in the
.5%–3% range, but the scaling is far too extreme. In explaining the
bulk of the planets, a huge 43% (122/281) of the data exceeded the
upper bound. Without the constraint, very few of the planets
actually end up inflated; the range of coefficients to ò0 given by the
scaling relation from Socrates (2013) is simply too large. As such,
we conclude that the dominant source of inflation power in the
observed population does not follow the thermal tides scaling
relation.

6. Discussion

The Gaussian shape is significant because it exclusively
matches predictions of hot-Jupiter inflation from the Ohmic
dissipation mechanism. Under this model, magnetic interactions

transfer energy from the atmosphere of a planet into its interior
(Batygin & Stevenson 2010). The effect is initially increasing
with greater atmospheric temperatures and therefore ionization,
but at very high temperatures the magnetic drag on atmospheric
winds (Perna et al. 2010) inhibit the process (Batygin et al. 2011;
Menou 2012). Batygin et al. (2011) predict a scaling with
equilibrium temperature as ò ∝ (1500K/Teq)

4. Menou also
derives scaling laws for this effect, estimating the peak ò to occur
at 1600 K, depending on the planetary magnetic field strength
(Menou 2012). Ginzburg & Sari (2016) support this conclusion,
estimating a peak ò to occur at 1500 K, with power-law tails on
either side. Finally, MHD simulations in Rogers & Komacek
(2014) find a peak at 1500–1600 K. Figure 11 shows that the
posteriors of our favored models match these predictions well. If
Ohmic dissipation is responsible for our observation, then our
measured ò(F) is presumably the average over various planetary
magnetic field strengths.
A noteworthy difficulty with identifying our results with the

Ohmic dissipation model is the depth at which the anomalous
heat is deposited. Our model assumes that anomalous heating is
efficiently conducted into the interior adiabat. Ohmic heating,
however, is generally believed to be deposited at pressures low
enough that only a portion of the deposited energy is inducted
into the adiabat and a delayed cooling effect is produced
(Spiegel & Burrows 2013; Wu & Lithwick 2013; Komacek &
Youdin 2017). Indeed, Rogers & Komacek (2014) do not see
sufficient heating to explain the observed radii. As well as
differing from our modeling assumptions, this appears incon-
sistent with the results of Hartman et al. (2016), who observe
reinflation of giants as their parent stars age and brighten over
their main-sequence lifetime. This effect would be prohibi-
tively slow in the shallow deposition case (Ginzburg &
Sari 2016). Thus, if Ohmic heating is to explain our results,
it must either violate these predictions or be modified by an
additional effect that ushers the heat further into the planet. The
advection effects proposed by Tremblin et al. (2017) show that
such effects are plausible and that there is still a great deal left
to understand about atmospheric flows in hot Jupiters.
As the results of Tremblin et al. (2017) stand, our

observations do not seem to support them as the sole cause
of inflation. They predict observable inflation occurring well
below the observed 0.2Gerg s−1 cm−2 threshold, and do not
appear to support a decrease in efficiency at high flux.
However, our results might align better if temperature-
dependent wind speeds are considered within their model,
which could slow flows both at especially low and high Teq.
Slower winds at high Teq would be a natural consequence of
magnetic drag (Perna et al. 2010). We view our results here as
support for the idea that magnetic drag is quite important in the
hottest atmospheres.
Other candidate inflation models do not match our results

very well. Tidal heating may introduce non-negligible energy
into planet interiors, but cannot fully explain the anomalous
radii (Miller et al. 2009; Leconte et al. 2010), and would not
reproduce our relationship with flux. The thermal tides
mechanism (Socrates 2013) appears to predict more variation
in ò than can plausibly exist (see Figure 14). Delayed cooling
models propose that no anomalous heating occurs and that radii
anomalies instead result from phenomena that prevent the
escape of formation energy, such as enhanced atmospheric
opacities (Burrows et al. 2007) or inefficient heat transport in
the interior (Chabrier & Baraffe 2007). This energy would

Figure 13. Difference between observed and predicted radius plotted against
incident flux assuming typical composition planets under the cool giant model
(no inflationary effect), the logistic model, and the Gaussian model (see
Figure 11). Arrows show the handful of planets where the model exceeded the
observed radius by more than 1RJ, which typically occurs only for very hot,
very low mass planets whose radii are extremely sensitive to bulk metallicity.
Heavy-element abundance variations Thorngren et al. (2016) are sufficient to
explain the scatter (see Figure 12). Error bars depict observational error only.
The plot illustrates why our statistical tests prefer the Gaussian model over the
logistic model: the logistic model consistently overestimates the radii of planets
at high fluxes, while the Gaussian model does not.

Figure 14. Posterior heating efficiencies for our sample planets as a function of
flux, using the thermal tides scaling relationship from Socrates (2013) but
leaving a constant scaling factor as a fit parameter. The match with
observations was poor, as it forces ò to vary by orders of magnitude in ways
not apparent in the planet radii. The DIC was −1642, much lower than the GP
or Gaussian models, though this was likely affected by our constraint that
ò<4.5%. A large fraction of the data (43% or 122/281) exceeded this upper
bound and was clipped down to 4.5%.
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otherwise rapidly radiate away. The issue with these proposals
is that they do not inherently depend on flux and cannot explain
the results of Hartman et al. (2016). Furthermore, in the case of
layered convection (see Leconte & Chabrier 2012) resulting in
delayed cooling (Chabrier & Baraffe 2007), structure evolution
simulations in Kurokawa & Inutsuka (2015) show that layered
convection would not occur in young giants, and that even if
layers are imposed, they would need to be implausibly thin
(1–1000cm) to achieve the observed radii.

The situation for Saturn-mass planets (those excluded from
our model) remains puzzling. As described in Section 2, these
exhibit a different relationship with flux than Jupiter-mass
planets (Figure 2) and have been found less frequently in high-
flux orbits than their higher-mass analogs (Figure 3).
Inefficiency in the heating mechanism, perhaps by lower
magnetic field strengths, could explain the former observation,
but not the latter. Furthermore, Pu & Valencia (2017) recently
showed that Ohmic dissipation should occur in Neptunes, so
we can reasonably expect that it would work on Saturns as
well. Some observational biases are doubtless present, but
would likely not produce the effects seen. Thus, it seems
possible that mass loss is occurring. However, the exact
mechanism would be unclear; for example, neither XUV-
driven mass loss (Yelle 2004; Lopez et al. 2012) nor boil-off
(Owen & Wu 2016) appear to significantly affect planets in this
mass range. As such, the cause of these observations is an open
question.

There is still much work to be done in understanding hot-
Jupiter radius inflation. A promising avenue are the case of
“reinflated” hot Jupiters, which are planets whose radii may be
increasing over time as their stars evolve off the main sequence
and brighten (Lopez & Fortney 2016). Grunblatt et al. (2017)
have conducted promising observations of two potentially
reinflated planets around subgiant stars. Our posterior radius
predictions are closer to their observations under the reinflated
case, but more planets will be needed to establish strong
statistical significance. Comparing the main-sequence reinfla-
tion results of Hartman et al. (2016) with structure models
could reveal the timescale of reinflation, which is closely
related to the depth of energy deposition (Ginzburg &
Sari 2016; Komacek & Youdin 2017). If reinflation does
indeed occur, delayed cooling models are ruled out. Follow-up
work of Tremblin et al. (2017) to determine how their results
would be affected by temperature-dependant wind speeds
would also be helpful. Finally, further magnetohydrodynamic
simulations are needed to properly understand heat flow in the
outer layers of these planets. Our results add to this picture by
providing strong evidence of a heating efficiency drop at high
temperatures and thereby pointing us toward the Ohmic
dissipation model; they also suggest that 3D atmospheric
circulation models need to take magnetic fields into account.
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