UCLA

Posters

Title

CON 1: Embedded Networked Sensing of Subsurface Water Quality Calibration, Fault Detection and Feedback Control

Permalink https://escholarship.org/uc/item/4sr1r7n9

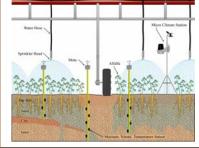
Authors

Nithya Ramanathan Yeonjeong Park <u>et al.</u>

Publication Date

2006

Center for Embedded Networked Sensing

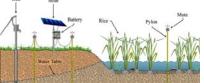

Embedded Networked Sensing of Subsurface Water Quality: Calibration, Fault Detection, and Feedback-Control

Nithya Ramanathan², Yeonjeong, Park¹, Laura Balzano³, Juyoul Kim¹, John Ewart⁴, Marci Burt¹, Thomas Harmon⁴, Deborah Estrin², Jenny Jay¹, Eddie Kohler², Jose Saez⁶, Sarah Rothenberg¹, Naim Busek², John Hicks⁷, Che-Chuan Wu¹, Steve Margulis¹, Mani Srivastava³, Charlie Harvey⁵

¹UCLA Civil & Environmental Engineering, ²UCLA Computer Science, ³UCLA Electrical Engineering, ⁴UC Merced School of Engineering, ⁵MIT, ⁶Loyola Marymount University, ⁷CENS Staff

Problem Description: Creating a modular sensing platform for the subsurface environment

Nitrate in Reclaimed Wastewater in Palmdale, CA


A precision agriculture and environmental protection problem:

- (1) Reclaimed wastewater can help to extend
- irrigation water supplies in arid climates (2) Over-taxing of the soil's nutrient assimilation
- capacity can threaten underlying groundwater supplies (water regulatory authorities require strict monitoring)
- (3) CENS has created an embedded network using soil pylons to observing and managing nitrate propagation through the Palmdale soils

Arsenic in Bangladesh Groundwater

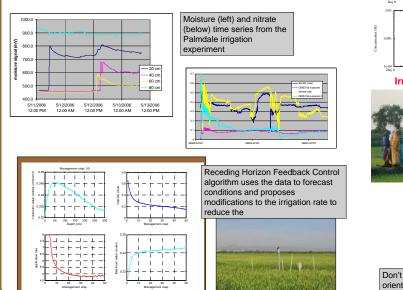
A current working hypothesis to be investigated:

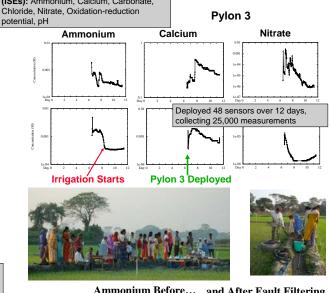
- During irrigation, rice-paddy return flow is the main water infiltrating through the Fe band (2) Anoxic irrigation water causes changes in the redox environment
- of the Fe band and below (3) Arsenic is mobilized as the recharge flows through the Fe band.

Proposed Solution: Soil "pylons" have been developed and piloted in several scientific contexts

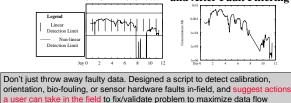
Palmdale Engineering Objectives

- Develop soil pylons for observing mass and energy fluxes in soils
- Validate these pylons for the case of irrigation using nitrate-laden reclaimed water
- Scale up a distributed network of soil pylons to a meaningful agricultural scale (10s of hectares)


ťð


 Local <u>rain gauge</u> sensors monitor spatially distributed irrigation rate

Soil moisture sensors monitor local water content to support the observations of water infiltration and redistribution


· Thermistors monitorlocal a ir temperature and belowground gradient to support energy balance in evapotranspiration calculations

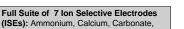
 Off-the-shelf vs. CENS-fabricated nitrate sensors (in situ test bed system for CENS Sensor Group)

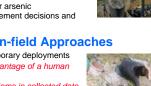
Ammonium Before... and After Fault Filtering

UCLA – UCR – Caltech – USC – CSU – JPL – UC Merced

Bangladesh Science Goals

- · Use dense temporal/spatial sensing of a sensor network to validate hypothesis
- Develop proxy geochemical measurements to indicate elevated arsenic concentrations, as arsenic sensors are not available (previous work showed that ammonium and calcium correlated with arsenic at our site)




Develop a reactive transport model for arsenic mobilization. This will inform well placement decisions and deep well construction.

Systems Challenges and In-field Approaches

Rapid Deployments i.e. a short or temporary deployments Are portable, reusable, and can take advantage of a human ser in the field

However, even small disruptions or problems in collected data must be addressed quickly, as overall quantity of gathered data is small relative to long-term deployments

