
UCSF
UC San Francisco Previously Published Works

Title
Is Ciprofloxacin a Substrate of P‐glycoprotein?

Permalink
https://escholarship.org/uc/item/4sr265mk

Journal
Archives of Drug Information, 4(1)

ISSN
1753-5174

Authors
Park, Miki Susanto
Okochi, Hideaki
Benet, Leslie Z

Publication Date
2011-03-01

DOI
10.1111/j.1753-5174.2010.00032.x
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4sr265mk
https://escholarship.org
http://www.cdlib.org/


ORIGINAL ARTICLE
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A B S T R A C T

Introduction. Studies using MDCKII and LLC-PK1 cells transfected with MDR1 cDNA indicate that ciprofloxacin
is not a substrate of P-glycoprotein. However, our data has shown that transport studies done using different P-gp
overexpressing cell lines (MDCKI-MDR1, MDCKII-MDR1 and L-MDR1), could lead to contradictory conclusion
on whether a compound is a substrate of P-gp. The aim of our study was to determine if ciprofloxacin is indeed not
a P-glycoprotein substrate using MDCKI cells transfected with human MDR1 cDNA.
Methods. Semi-quantitative RT-PCR was used to determine the mRNA level of MDR1 while Western blot was
performed to determine the protein expression level of P-gp, MRP1 and MRP2 in various cells. Ciprofloxacin
bidirectional transport studies were performed in MDCKI, MDCKI-MDR1, MDCKII, MDCKII-MDR1,
MDCKII-MRP2, LLC-PK1, L-MRP1 and L-MDR1 cells.
Results. Ciprofloxacin showed net secretion in MDCKI-MDR1 but net absorption in MDCKI cells. Various P-gp
inhibitors decreased the B to A and increased the A to B transport of ciprofloxacin in MDCKI-MDR1 cells while
having no effect in MDCKI cells. The B to A transport of ciprofloxacin in MDCKI-MDR1 cells was not affected by
non-P-gp inhibitors. In the presence of indomethacin, ciprofloxacin showed net secretion instead of net absorption
in MDCKI cells while in the presence of probenecid and sulfinpyrazone, there was no net secretion and absorption.
There was no difference in ciprofloxacin transport between MDCKII and MDCKII-MDR1, LLC-PK1 and
L-MDR1, LLC-PK1 and L-MRP1 and MDCKII and MDCKII-MRP2.
Conclusions. Transport data in MDCKI and MDCKI-MDR1 cells indicate that ciprofloxacin is a substrate of P-gp
but data from MDCKII, MDCKII-MDR1, LLC-PK1 and L-MDR1 cells indicate that ciprofloxacin is not a
substrate of P-gp. Vinblastine, a well-known P-gp substrate, also did not show differences between LLC-PK1 and
L-MDR1 cells. Further studies need to be performed to characterize these P-gp overexpressing cell lines and the
transport of ciprofloxacin.
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Introduction

C iprofloxacin is an antibiotic belonging to the
quinolone family with a broad spectrum anti-

bactericidal activity [1]. The oral bioavailability of
ciprofloxacin is 50–80% [2] and at least 10% of
ciprofloxacin is eliminated via intestinal secretion
[3], of which <1% is due to biliary excretion [4]. A
number of studies have reported that intestinal

secretion of ciprofloxacin does not seem to be
mediated by P-glycoprotein (P-gp) [5–9]. Using
LLC-PK1 cells transfected with the human
MDR1 cDNA (L-MDR1), de Lange et al. [7]
showed that there was no difference between the
apical to basal (A to B) and basal to apical (B to A)
transport of ciprofloxacin in L-MDR1 cells.
However, ciprofloxacin did significantly inhibit
the transport of rhodamine-123, a known P-gp
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substrate, in L-MDR1 cells [7]. Lowes and
Simmons [9] showed that there was no net secre-
tion of ciprofloxacin in MDCKII and MDCKII-
MDR1 cells, suggesting that ciprofloxacin is not a
P-gp substrate.

The aim of this study was to determine whether
ciprofloxacin is indeed not a P-gp substrate using
MDCKI cells transfected with human MDR1
cDNA (MDCKI-MDR1) [10]. Our data has
shown that transport studies done using different
P-gp overexpressing cell lines, MDCKI-MDR1,
MDCKII-MDR1 [11] and L-MDR1 [11], could
lead to contradictory conclusion on whether a
compound is a substrate of P-gp. For example,
vinblastine is a widely accepted P-gp substrate and
transport studies done in our lab in MDCKI-
MDR1 cells confirm that it is a substrate of P-gp.
However, studies done using LLC-PK1 and
L-MDR1 cells showed no difference in vinblastine
transport between those two cell lines, which
would suggest that vinblastine is not a P-gp sub-
strate [12]. Another example is trimethoprim,
shown to be a substrate of P-gp based on studies
in MDCKI-MDR1 and L-MDR1 cells [13].
However, there was no difference in trimethoprim
transport between MDCKII and MDCKII-
MDR1 cells [12].

Methods

Cell Culture
MDCKI, MDCKI-MDR1 (a gift from Dr. Ira
Pastan of the National Institutes of Health),
MDCKII, MDCKII-MDR1 and MDCKII-MRP2
(a gift from Prof. Dr. Piet Borst of the Dutch
Cancer Institute) were cultured in Dulbecco’s
modified Eagle’s medium (DMEM) supplemented
with 10% fetal bovine serum (FBS) while LLC-
PK1, L-MRP1 and L-MDR1 cells (a gift from
Prof. Dr. Piet Borst of the Dutch Cancer Institute)
were cultured in M-199 media with 10% FBS. For
all the cells that contained the MDR1 cDNA,
80 ng/mL colchicine was added to the media to
select for the transfectant cells. Cells were seeded
onto PET cell culture inserts of a 6-well plate
system at a density of roughly 300,000 cells/insert
and grown to confluency as a monolayer for 5–7
days at 37°C and 5% humidified CO2-atmosphere.
The media was changed every 2–3 days.

Bidirectional Transport Study
The transport experiments were adapted with
modifications from Zhang et al. [14]. Most experi-

ments were repeated at least twice and there were
triplicates in each study. To determine if ciprof-
loxacin is a substrate of P-gp, MRP1 or MRP2,
bidirectional transport studies were performed in
the controls and P-gp, MRP1 or MRP2 overex-
pressing cell lines. All cells were fed fresh media
the day before the transport studies. On the day of
the experiments, the cells were washed once and
preincubated for ~15 minutes at 37°C in 5% CO2

with Hank’s Balanced Salt Solution containing
22.5 mM HEPES (HBSS-H). To measure ciprof-
loxacin transport in the B→A direction, 2.5 mL of
HBSS-H solution containing the drug was put
into the basal (B) side and 1.5 mL of HBSS-H was
put into the apical (A) side. At selected time points,
200 ml aliquot were taken from the A side and
replaced with fresh HBSS-H. For measuring
ciprofloxacin transport in the A→B direction, the
drug solution was put into the A side and aliquots
were taken from the B side. For inhibition studies,
the inhibitor was put in both the A and B sides.
During the studies, the cells were incubated
in a shaking incubator at 37°C. To establish cell
integrity, [14C]-mannitol (a paracellular marker)
(NEN, Boston, MA) transport was measured
for 1 hour at the end of the experiments. Transport
of [3H]-digoxin (NEN, Boston, MA) and [3H]-
vinblastine (Amersham, Piscataway, NJ), known
P-gp substrates, was also measured as positive
controls.

Sample Analysis
Samples were stored at -20°C until analysis by
high performance liquid chromatography (HPLC)
using a Zorbax SB-C18 250 ¥ 4.6 mm (Phenom-
enex, Torrance, CA) column. The mobile phase
was methanol and 0.5% glacial acetic acid (50:50,
v/v). The flow rate was 1 mL/min. An UV detector
(Agilent, Santa Clara, CA) was used to detect
ciprofloxacin at 280 nm.

Western blot
To compare P-gp, MRP1 and MRP2 expression in
our cell lines, Western blot and RT-PCR were
performed. For Western blot, cells were grown in
T75 flasks, rinsed with PBS Ca2+, Mg2+-free solu-
tion and scraped into 15 ml Falcon tubes. The
tubes were centrifuged for 15 minutes at 6000 g at
4°C. The supernatants were discarded and the
pellets were washed again with PBS Ca2+, Mg2+-
free solution and centrifuged. The resulting pellets
were resuspended with lysis buffer pH 7.4 (10 mM
KCl, 10 mM Tris-HCl, and 1.5 mM MgCl2), put
on ice and sonicated for 20 s (3¥). The protein
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concentrations were determined by BioRad assay.
All samples were diluted to the same concentration
and mixed with Laemmli sample buffer (1:3),
loaded onto 7.5% SDS-PAGE gels and run at
200 V for ~45 minutes. The gels were incubated
with blotting buffer (25 mM Tris, 192 mM
glycine, 20% methanol) for 15 minutes at 4°C,
then blotted to nitrocellulose membranes for 1
hour at 200 mA. The membranes were blocked
with 5% dry milk solution in Tris-buffered solu-
tion (TBS) for 2 hours at room temperature (RT)
and then washed with TBS containing 0.05%
Tween-20 (TTBS). Depending on the proteins of
interest, the membranes were incubated overnight
at 4°C with either 50x diluted anti-MRP1 clone
MRPr1 antibody (MC-201, Kamiya Biomedical,
Seattle, WA), 500x diluted c219 (for detecting
P-gp) antibody (Signet, Dedham, MA) or 50x
diluted anti-MRP2 clone M2 III-6 (MC-206,
Kamiya Biomedical, Seattle, WA). The next day,
the membranes were washed several times with
TTBS before incubation for 1 hour at RT with
their appropriate secondary antibody (3000x
diluted goat anti-mouse (Gibco BRL Life
Technologies, Grand Island, NY) for c219 and
anti-MRP2 antibodies and goat anti-rat
(Boehringer-Ingelheim, Indianapolis, IN) for anti-
MRP1 antibody. The membranes were washed
several times with TTBS and incubated with
premix enhanced chemiluminescent reagents 1 &
2 (Amersham, Piscataway, NJ) for 1 minute before
developing the film.

One Step Semi-quantitative RT-PCR
The cells were rinsed in PBS Ca2+ Mg2+ free solu-
tion and RNA isolation was done according to the
protocol outlined in TRIzol (Invitrogen Life
Technologies, Carlsbad, CA). The quantity of
extracted RNA was determined by spectrophoto-
metric analysis. The RNA samples were stored at
-80°C until RT-PCR. One step cDNA synthesis
and PCR reaction was done using the Qiagen
OneStep RT-PCR Reaction Kit (Qiagen, Valen-
cia, CA) in PCR Express machine (Thermo
Hybaid, Ashford, Middlesex, United Kingdom).
Sequences of the primers used were as follows:
forward primer: 5′-GCC TGG CAG CTG GAA
GAC AAA TAC ACA AAA T-3′, and reverse
primer: 5′-AGA CAG CAG CTG ACA GTC
CAA GAA CAG GAC T-3′ (Invitrogen Life Tech-
nologies, Carlsbad, CA). This primer pair pro-
duced a 285 bp segment of the MDR1 gene. For
internal standard, we utilized the 18S gene with
the competimer technology from Ambion (Austin,

TX). The expected product of the 18S gene was
489 bp. The cycling parameters were as follows:
cDNA synthesis at 50°C for 30 minutes; denatur-
ation step for 15 minutes at 95°C; amplification
step (26 cycles) was 1min at 94°C _ 1 minute at
59°C _ 1 minute at 72°C; extension step was 15
minutes at 72°C. The RT-PCR products were run
on 2% E-gel (Invitrogen, Carlsbad, CA) for 30
minutes at 66 V. The bands were visualized with
the UV transilluminator and a picture was taken
with a Polaroid camera.

Data Analysis
For the bidirectional transport study experiments,
the total amount of drugs transported into the
other side was calculated according to the follow-
ing formula:

measured sample concentration
volume on sampling side

cell 

i

ggrowth area

Drug flux was calculated using the LINEST func-
tion from Microsoft Excel. The LINEST function
calculated the slope of the line that best fits the
amount of drugs transported vs. time plot. Flux
values were calculated for each of the triplicates
and were averaged to give us the average value of
the flux and the standard deviation associated with
it. The apparent permeability value was calculated
as follows:

P SD cm s
average flux SD

dosing concentrationapp ± ( ) = ±

Statistical significance was tested by ANOVA
using the Primer Express program created by Dr.
Stanton Glantz (UCSF, San Francisco, CA).

Results and Discussion

Characterization of Cell Lines
Before conducting each transport study, cell integ-
rity and monolayer confluency were confirmed by
microscopy and transepithelial electrical resistance
(TEER) measurements. Under the microscope,
P-gp, MRP1 and MRP2 overexpressing cell
lines (i.e. MDCKI-MDR1, MDCKII-MDR1,
MDCKII-MRP2, L-MRP1, and L-MDR1)
appeared to have different morphologies com-
pared to their respective control cell lines.
MDCKI-MDR1 and L-MRP1 cells grew faster
than their control cell lines, MDCKI and
LLC-PK1 cells, respectively. They also had
higher TEER values. The average TEER values
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for MDCKI, MDCKI-MDR1, LLC-PK1 and
L-MRP1 were 150, 1500, 165 and 240 W respec-
tively. However, TEER value measurement was
not very accurate and precise. There were large
variations associated with the values. Furthermore,
for many cell lines such as MDCKI, MDCKII,
MDCKII-MDR1, LLC-PK1 and L-MDR1,
TEER values were very close to the values mea-
sured in the absence of any cells (~140 W). There-
fore, to further monitor cell integrity and
monolayer confluency, at the end of the experi-
ments, we also measured [14C]-mannitol (a para-
cellular marker) transport for 1 hour. As expected,
we did not find any significant difference in the B
to A and A to B transport of mannitol in our cell
lines (data not shown). Unlike TEER values, we
also did not find large variations in the Papp of
mannitol between controls and overexpressing cell
lines. For example, there was about a 10-fold
difference in TEER values between MDCKI
and MDCKI-MDR1 cells (~150 and 1500 W
respectively) but the Papp values for mannitol in
those two cell lines were approximately the same
(~5 ¥ 10-7 cm/s). The mannitol Papp values in
MDCKII, MDCKII-MRP2 and MDCKII-
MDR1 cells were similar to MDCKI and
MDCKI-MDR1 cells. They were higher in LLC-
PK1, L-MDR1 and L-MRP1 cells (~13 ¥ 10-7,
12 ¥ 10-7 and 35 ¥ 10-7 cm/s, respectively).

We also performed Western blot and RT-PCR
studies to compare the expression of Pgp/MDR1,
MRP1 and MRP2 among our cell lines. Figure 1
shows the result of an RT-PCR experiment
to compare the expression of MDR1 mRNA
among various cell lines. As expected, expression
of MDR1 mRNA was much higher in P-gp
overexpressing cell lines, MDCKI-MDR1 and
MDCKII-MDR1 cells, compared to their control

cell lines, MDCKI and MDCKII cells, respec-
tively. The results also show that the expression of
MDR1 mRNA was higher in MDCKII cells com-
pared to MDCKI cells.

Figure 2A shows the Western blot result of
P-gp (~170 kDa) expression comparison among
various cell lines. Western blot result agrees with
the observations from RT-PCR studies (Figure 1).
P-gp expression was higher in P-gp overexpressing
cell lines, MDCKI-MDR1, MDCKII-MDR1 and
L-MDR1 cells, compared to their control cell
lines, MDCKI, MDCKII and LLC-PK1 cells,
respectively. The result also shows that P-gp
expression was higher in MDCKII compared to
MDCKI or LLC-PK1 cells.

Figures 2B and C show the Western blot result
of MRP1 and MRP2 (~190 kDa) expression com-
parison among various cell lines, respectively. As
expected, MRP1 expression was much higher in
the MRP1 overexpressing cell line, L-MRP1 cells,
compared to its control cell line, LLC-PK1 cells,
where MRP1 expression was not observed. The
identity of the abundant lower band is not known
but we think it could be the unglycosylated form of
MRP1 protein. The result also shows that MRP1
expression was similar in MDCKI, MDCKI-
MDR1, MDCKII and MDCKII-MDR1 cells.
MRP2 expression was much higher in the MRP2
overexpressing cell line, MDCKII-MRP2 cells,
compared to its control cell line, MDCKII cells. It
is interesting that no MRP2 expression was
detected in a P-gp overexpressing cell line,
MDCKI-MDR1 cells, which suggests that MRP2
expression was downregulated in that cell line,
versus its control, MDCKI cells. However, no
downregulation of MRP2 expression was observed
in another P-gp overexpressing cell line, the
L-MDR1 cells.

Bidirectional Transport Study Data
Because P-gp is an efflux transporter that pumps
drugs out from cells into the apical solution, for a
P-gp substrate, the B to A flux should be greater
than the A to B, with the difference more pro-
nounced in the P-gp overexpressing cell line. For
ciprofloxacin, the B to A flux was higher than the A
to B flux in the MDCKI-MDR1 cells, with the B
to A flux higher and A to B flux lower compared to
MDCKI cells (Figure 3). The B to A/A to B ratio
was about 10 in MDCKI-MDR1 cells and it was
abolished to about 1 at 4°C (Table 1). This indi-
cates that ciprofloxacin is a substrate of P-gp.
Interestingly, the B to A flux was lower than the A
to B flux in MDCKI cells. MDCKI cells have an

Figure 1 RT-PCR results of MDR1 mRNA comparison in
several cell lines.
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endogenous expression of P-gp, as shown by our
RT-PCR studies (Figure 1). Normally for a P-gp
substrate, e.g., digoxin and vinblastine, the B to A
flux is higher or equal to the A to B flux in MDCKI
cells. But it was the opposite for ciprofloxacin. The

A to B flux was higher than the B to A flux, with the
B to A/A to B ratio of about 0.4 in MDCKI cells
(Table 1). This result agrees with the data from
Cavet et al. [5]. This suggests that ciprofloxacin,
besides being a substrate of P-gp, is also a substrate
of an absorptive transporter that pumps in the
opposite direction of P-gp. We believe it is an
energy dependent transporter because at 4°C, the
difference between the A to B and B to A fluxes in
MDCKI cells was abolished, bringing the B to A/A
to B ratio up from 0.4 to about 1 (Table 1).

To further test if ciprofloxacin is a P-gp sub-
strate, we investigated the effect of various inhibi-
tors on ciprofloxacin transport in MDCKI and
MDCKI-MDR1 cells. P-gp inhibitors impede
drug efflux from the cells out into the apical side,
therefore, in the presence of P-gp inhibitors, the B
to A flux will be decreased and the A to B will be
increased. If complete inhibition of P-gp function
is achieved and no other transporters are involved,
the B to A flux should equal the A to B flux. The

A B

C

Figure 2 Western blot results of (A) P-gp; (B) MRP1; and (C) MRP2 expression comparison among various cell lines.

Figure 3 Bidirectional transport of 100 mM ciprofloxacin in
MDCK1 (gray line) and MDCK1-MDR1 (black line) cells.

, � = B→A and �, � = A→B.
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effect of P-gp inhibitors will be more pronounced
on P-gp overexpressing than control cell lines
since the P-gp overexpressing cell line has a
greater flux difference between the B to A and A to
B directions.

GG918, cyclosporine, ketoconazole, vinblas-
tine, verapamil and quinidine are P-gp inhibitors.
Dicloxacillin, trimethoprim and erythromycin
are P-gp substrates. Glycosarcosine is an inhibitor
of PEPT1, a pH-dependent uptake transporter.
Probenecid and PAH are inhibitors of
organic anion transporters. TEA is an inhibitor of
organic cation transporters. Sulfinpyrazone and
indomethacin are MRP1 and MRP2 inhibitors.
Figure 4 shows the effect of various inhibitors on
ciprofloxacin B to A/A to B ratio in MDCKI cells.
In this study, in the absence of any inhibitors, the
B to A/A to B ratio of ciprofloxacin was about 0.2.
The ratio increased significantly to about 0.9,
1.2 and 2.5 with probenecid, sulfinpyrazone
and indomethacin, respectively. P-gp inhibitors
(GG918, cyclosporine, vinblastine, verapamil, and
quinidine) and a PEPT1 inhibitor (glycosarcosine)
had no significant effects on ciprofloxacin trans-

port in MDCKI cells. It is interesting that we did
not observe any effects with P-gp inhibitors. We
expected the B to A/A to B ratio to decrease with
P-gp inhibitors. One explanation could be that the
ratio was low and it is hard to reduce something
that was already low. Another explanation could be
that those inhibitors, besides inhibiting P-gp activ-
ity, could also inhibit the activity of the unidenti-
fied absorptive transporter.

The fact that glycosarcosine had no effect
implies that ciprofloxacin is not a substrate of
PEPT1. We had confirmed this further by
running a pH gradient comparison study, where
we did not see any difference (data not shown). It
is interesting that in the presence of a MRP1 and
MRP2 inhibitor, indomethacin, the B to A/A to B
ratio flipped from less than 1 to about 2.5. This
suggests that indomethacin inhibited the activity
of the unidentified absorptive transporter, and
when this transporter was inhibited, P-gp effect
could be observed. The data also suggest that
MRP1 could be the unidentified absorptive trans-
porter but studies using L-MRP1 and MDCKII-
MRP2 indicate that ciprofloxacin is not a substrate

Table 1 Bidirectional transport of 25 and 100 mM ciprofloxacin in MDCKI and MDCKI-MDR1 cells

Cell Line Concentration

Papp ¥ 10-7 (avg � SD, n = 3, cm/s) B→A

B→A A→B A→B

MDCKI 25 4.5 (0.4) 10.6 (1.2) 0.4
MDCKI 100 3.8 (0.4) 9.2 (0.9) 0.4
MDCKI 4°C 25 2.1 (0.7) 1.7 (0.4) 1.2
MDCKI-MDR1 25 35.4 (1.0) 3.5 (0.4) 10
MDCKI-MDR1 100 21.9 (1.4) 1.0 (0.03) 22
MDCKI-MDR1 4°C 25 1.3 (0.4) 1.1 (0.2) 1.2
No cells 25 128.3 (2.8 153.7 (30.9) 0.8

Figure 4 Effect of various inhibitors on
25 mM ciprofloxacin B→A/A→B ratio in
MDCK1 cells. The inhibitors are GG918
(2.5 mM), cyclosporine (20 mM), vinblas-
tine (100 mM), verapamil (50 mM), quini-
dine (100 mM), probenecid (100 mM),
glycosarcosine (10 mM), sulfinpyrazone
(1 mM) and indomethacin (100 mM).
*P < 0.01.
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of MRP1 and MRP2 (Tables 2 and 3). The absorp-
tive transporter could be an organic anion trans-
porter since probenecid increased the B to A/A to
B ratio of ciprofloxacin. Vanwert et al. [15] has
shown that ciprofloxacin is a substrate of OAT3
and probenecid is an inhibitor of OAT3.
Probenecid was also shown to competitively
inhibit ciprofloxacin renal secretion in humans
[16].

In MDCK1-MDR1 cells, the B to A flux
significantly decreased in the presence of P-gp
inhibitors (GG918, cyclosporine, ketoconazole,
vinblastine, verapamil, trimethoprim, quinidine)
while non-P-gp inhibitors (probenecid, PAH, gly-
cosarcosine, sulfinpyrazone, TEA) had no effect
(Figure 5A). As expected with P-gp inhibitors, the
A to B flux significantly increased with cyclospo-
rine, ketoconazole and vinblastine (Figure 5B).
Trimethoprim, probenecid, indomethacin and
TEA decreased the A to B flux. This could mean
that they inhibited the activity of the unidentified
absorptive transporter. Figure 5C shows the effect
of various inhibitors on ciprofloxacin B to A/A to B
ratios in MDCK1-MDR1 cells. As expected, P-gp
inhibitors decreased the ratio while sulfinpyrazone
and TEA increased the ratio, which is presumed to
be due to inhibition of the function of the uniden-
tified absorptive transporter.

In MDCKII cells, the ciprofloxacin B to A flux
was almost equal to the A to B flux (Figure 6). This
was not what we observed in MDCKI cells.
Western blot and RT-PCR studies show that P-gp
expression was higher in MDCKII compared to
MDCKI cells (Figures 1 and 2A). Therefore, we
believe that in MDCKI cells, which had lower
expression of P-gp, the absorptive transporter

played a bigger role than P-gp, which then
resulted in higher A to B than B to A fluxes for
ciprofloxacin. In MDCKII cells, where the P-gp
expression was higher, the two transporters con-
tribute to the same extent, with equal B to A and A
to B fluxes, therefore we did not see the difference
between the B to A and A to B fluxes in this cell
line. This will hold true only if ciprofloxacin is a
substrate of canine P-gp. The B to A and A to B
fluxes were lower in MDCKII-MDR1 compared
to MDCKII cells (Figure 6). However, there was
no difference between the B to A and A to B flux
for ciprofloxacin in MDCKII-MDR1 cells, with
the B to A/A to B ratio of about 1 (Table 2), sug-
gesting that ciprofloxacin is not a substrate of
P-gp. This agrees with the data reported by Lowes
and Simmons [9]. As reported by de Lange [7],
there was also no difference in the B to A fluxes of
ciprofloxacin between LLC-PK1 and L-MDR1
cells but the A to B flux was slightly lower in
L-MDR1 cells but the difference was not statisti-
cally significant (Table 3).

Currently we do not know the cause of the
discrepancy among these P-gp overexpressing cell
lines. The endogenous expression of other pro-
teins could be affected depending on the method
used to create P-gp overexpressing cell lines. The
Western blot data show that MRP2 expression was
downregulated in MDCKI-MDR1 cells but not in
L-MDR1 cells (Figure 2C). It is possible that
besides P-gp, the expression of another trans-
porter was upregulated in MDCKI-MDR1 (but
not in MDCKII and L-MDR1) cells and this
transporter was responsible for the observed
ciprofloxacin B to A/A to B difference between
MDCKI and MDCKI-MDR1 cells and the activ-

Table 2 Bidirectional transport of 25 mM ciprofloxacin in MDCKII, MDCKII-MRP2 and MDCKII-MDR1 cells

Cell Line

Papp ¥ 10-7 (avg � SD, n = 3, cm/s) B→A

B→A A→B A→B

MDCKII 17.6 (3.6) 15.6 (2.5) 1.1
MDCKII-MRP2 15.0 (1.1) 11.3 (7.3) 1.3
MDCKII-MDR1 6.8 (1.2) 7.5 (1.2) 0.9

Table 3 Bidirectional transport of 25 mM ciprofloxacin in LLC-PK1, L-MRP1 and L-MDR1 cells

Cell Line

Papp ¥ 10-7 (avg � SD, n = 3, cm/s) B→A

B→A A→B A→B

LLC-PK1 23 (2.3) 18 (1.8) 1.3
L-MRP1 17.5 (0.9) 19.6 (1.0) 0.9
L-MDR1 22.6 (1.7) 12.8 (1.8) 1.8
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ity of this transporter in MDCKI-MDR1 cells was
inhibited by the P-gp inhibitors used in our
studies. Further studies need to be performed to
determine if ciprofloxacin is indeed not a
P-glycoprotein substrate. One such study could be
a comparison in brain accumulation of ciprofloxa-
cin between wild type and P-gp knockout mice,
mdr1a/b (-/-) mice. No statistically significance
difference in ciprofloxacin accumulation in brains
of wild type and P-gp knockout mice would indi-
cate that ciprofloxacin is not a substrate of P-gp.
However, this cannot conclusively show that

ciprofloxacin is not a substrate of human P-gp
since species difference in P-gp transport activity
has been reported [17].
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