
UCSF
UC San Francisco Electronic Theses and Dissertations

Title
Quantitative Pathway Modeling and Analysis in Cancer

Permalink
https://escholarship.org/uc/item/4sr3z9tf

Author
Novak, Barbara Anna

Publication Date
2007-06-15

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4sr3z9tf
https://escholarship.org
http://www.cdlib.org/

by

Barbara Anna Novak

DISSERTATION

Submitted in paitial satisfaction of the requirements for the degree of

DOCTOR OF PHILOSOPHY

in

Biological and Medical Informatics

in the

GRADUATE DIVISION

•of the

UNIVERSITY OF CALIFORNIA, SAN FRANCISCO

Copyright 2007
by

Barbara Anna Novak

 ii

Acknowledgements
This thesis marks the end of a long journey that began with the desire to

understand the inner workings of life and resulted in the decision to pursue a career in

bioinformatics. Along the way, many people have helped me find my path and sustained

me and it is with great pleasure that I acknowledge their contributions.

I would like to thank my Ph.D. advisor, Ajay Jain, for all of his guidance and

support. Throughout my time as a graduate student, he provided encouragement and

helpful advice. More importantly, he taught me to look at problems scientifically, to

rigorously examine my assertions and to present my research coherently. Without his

support, I wouldn't be where I am today.

Without data to analyze and pathways to parse, this thesis wouldn't have been

possible,. I would like to thank all of the researchers who kindly shared their data with

me: Frank McCormick, for the picture of RTK pathway that started it all; Joe Gray and

the members of his laboratory for the breast and ovarian data sets; Fred Waldman, for the

bladder data set; and Martin McMahon and Stefan Gysin, for the pancreatic data set.

I would also like to thank all of the people at caBIG, the Cancer BioInformatics

Grid project at the National Cancer Institute, both for supporting this work and for

helping me integrate my project with the greater community of pathway analysis

research. I would especially like to thank Gary Bader, for his help with understanding the

BioPAX standard, and Shannon McWeeney and Ted Laderas at Oregon Health Sciences

University, for their work on rigorously testing QPACA's functionality.

 iii

I am thankful to all of the other members of the Jain laboratory for providing both

support and needed distraction throughout the years. First, the other graduate students

provided a stimulating and fun environment: Chris Kingsley (who shared my experience

battling with caBIG), Lawrence Hon (who shared an office with me for many years and

put up with my occasional desires to procrastinate), and Tuan Pham (who brought tasty

Vietnamese sandwiches and kept me company when the other two had left for bigger and

better pastures). Additionally, I would like to thank the two postdocs in the lab: Jane

Fridlyand (for putting up with silly statistics questions) and Taku Tokuyasu (for making

me think about the biology behind everything).

Without the help of the various program coordinators for the Biological and

Medical Informatics program, particularly Barbara Paschke and Rebecca Brown, I would

have been lost within the UCSF bureaucracy.

I am grateful to all of my friends for putting up with my attempts to explain what

I do and for dragging me out to movies and dinners when I was immersed in work.

I would like to thank my parents, Blanka and Miloslav Novak, for standing by me

and supporting me throughout my time as a student.

Lastly, and most importantly, I wish to thank my husband, Ellis Verosub, for

patiently continuing to support and encourage me despite the lengthening tenure of my

time as a graduate student. Without him, I would have been lost and to him I dedicate this

thesis.

 iv

Abstract
Quantitative Pathway Modeling and Analysis in Cancer

Barbara A. Novak

Biological pathways describe the inter-relationships of genes, proteins, and

molecules within a biological system. The study of specific pathways often requires

painstaking research into each possible element of the network. Consequently, existing

knowledge of gene regulatory networks is limited, resulting in hypotheses that are

incomplete or at various levels of refinement. Computational modeling and quantitative

analytical approaches seek to fill this information gap.

This dissertation describes the development of QPACA (Quantitative Pathway

Analysis in Cancer), a system for pathway visualization and analysis. QPACA addresses

three aspects of the general problem: 1) representation and visualization of pathways in

the context of biological data, 2) recognition of gene sets that are part of a pathway or

coordinated process, and 3) augmentation of pathways by prediction of pathway

membership. The pathway representation is designed to be flexible and extensible in

order to enable the widest variety of pathway structures and components possible, while

the analytical methods directly address the issues inherent in analysis of human systems

without making limiting assumptions about the structure of pathways or discretizing data.

QPACA has been used to analyze a number of microarray data sets, employing

both yeast and human samples. Four primary results are presented, each of which derives

from aspects of QPACA's application to microarray data for analysis or visualization: 1)

statistical analysis of differential expression patterns in the context of pathway

 v

representations supports the generation of biological hypotheses; 2) gene expression data

are sufficient to support computational recognition of hypothesized pathway gene sets

across a broad variety of biological processes; 3) gene expression data can be used to

produce ranked lists of gene products that are enriched for proteins that interact with

members of a predefined pathway; and 4) the surprising ubiquity of detectable signals in

expression data that bear on human pathway structure appears to be due to largely non-

annotated transcriptional programs present within established pathways.

 vi

Table of Contents

Chapter 1 Introduction.. 1
1.1. Systems Biology ... 1
1.2. Modeling Pathways... 3
1.3. Transcriptional Regulation Biology.. 4

1.3.1. Motif finding.. 6
1.4. Microarray technologies in cancer research.. 6
1.5. Statistical and other issues .. 9

1.5.1. Statistical issues of large data sets ... 10
1.5.2. Issues with heterogeneous data sets... 12

Chapter 2 Review of Pathway Literature .. 14
2.1. Introduction... 14
2.2. Pathway representation and curation .. 14

2.2.1. Pathway exchange formats .. 16
2.3. Pathway-based data analysis... 16
2.4. Model recognition and induction .. 17
2.5. Conclusion .. 18

Chapter 3 QPACA: System Design .. 20
3.1. Introduction... 20
3.2. Pathway model.. 21
3.3. QPACA optimization method... 25
3.4. System architecture ... 29

3.4.1. Design overview .. 29
3.4.2. Implementation .. 30
3.4.3. QPACA toolset design... 34

3.5. Conclusion .. 35

Chapter 4 Pathway Exploration and Visualization .. 36
4.1. Introduction... 36
4.2. Exploration of gene/gene relationships in an array-based comparative genomic
hybridization experiment .. 39
4.3. Exploration of CGH phenotype of ERBB2 in expression of RTK genes....... 41
4.4. Exploration of pancreatic cancer cell line data in the context of the RAS
subpathway ... 44
4.5. Conclusion .. 47

Chapter 5 Computational Recognition of Pathways from Microarray Expression
Data 48

5.1. Introduction... 48
5.2. Materials and Methods.. 50

5.2.1. Data and data processing ... 50
5.2.2. Permutation testing and p-value calculation .. 51

 vii

5.3. Results... 52
5.4. Discussion and conclusion.. 56

Chapter 6 Computational Prediction of New Pathway Members from Microarray
Expression Data ... 57

6.1. Introduction... 57
6.1.1. Cross-validation in biological pathway augmentation............................. 58

6.2. Materials and Methods.. 59
6.2.1. Augmentation algorithm and scoring metrics.. 59
6.2.2. Data and data processing ... 60

6.3. Cross-validation of pathway augmentation using human and yeast microarray
data 61
6.4. Cross-validation of pathway augmentation using closely related subpathways
 65

6.4.1. Subpathway creation.. 67
6.4.2. Results.. 69

6.5. Conclusion .. 71

Chapter 7 The Relevance of Sequence Patterns to QPACA 72
7.1. Introduction... 74
7.2. Methods... 74

7.2.1. Data .. 74
7.2.2. Cluster formation ... 75
7.2.3. MaMF setup and evaluation... 76

7.3. Results and discussion .. 78
7.3.1. Analysis of E2F binding sites in ovarian tumors 78
7.3.2. Permutation analysis of MaMF generated motifs in pancreatic cancer cell
lines 80

Chapter 8 Conclusion and future directions ... 84

References.. 88

Appendix A. QPACA Model .. 93
A.1.1. QPACA Pathway Language.. 93
A.1.2. Sample QPACA GUI Usage ... 96

Appendix B. QPACA Analytical Module.. 98
B.1.1. PathwayAnalysis Usage .. 98
B.1.2. PredictGenes Usage... 99

Appendix C. Code Documentation .. 100

 viii

List of Tables
Table 1. BioPAX road map... 16

Table 2. Results table for a representative set of pathways. ... 53

Table 3. Breakdown of individual p-values with sample subselection for each pathway.53

Table 4. Results for pathway recognition in subpathways. .. 69

Table 5. Pathway clusters. .. 76

Table 6. Selected MaMF motifs that are similar to E2F... 80

 ix

List of Figures
Figure 1. Participants in transcriptional regulation... 5

Figure 2. Overview of two-color spotted microarrays.. 8

Figure 3. QPACA overview.. 20

Figure 4. QPACA pathway representation examples. .. 22

Figure 5. QPACA pathway object model. .. 23

Figure 6. Mapping between QPACA, BioPAX and KGML object models. 25

Figure 7. QPACA optimization algorithm.. 27

Figure 8. Pseudo-code for optimization algorithm. .. 28

Figure 9. Magellan UML component diagram. .. 31

Figure 10. QPACA system architecture overview.. 32

Figure 11. Sequence diagram for QPACA visualization tools. .. 33

Figure 12. Sequence diagram for QPACA analytical tools. ... 34

Figure 13. The receptor tyrosine kinase signaling (RTK) pathway.................................. 37

Figure 14. The RAS subnetwork of the T-cell receptor signaling (TCR) pathway.......... 38

Figure 15. Correlation in aCGH of bladder tumors. ... 40

Figure 16. Visually differentiating between two classes of tumors.................................. 43

Figure 17. Gene expression differences in cell lines treated and untreated with a

MAP2K1 inhibitor. ... 45

Figure 18. Discriminating between treated and untreated cell lines. 46

Figure 19. Pseudo-code for permutation methods. ... 52

Figure 20. Comprehensive pathway recognition results from all 191 human and yeast

pathways. .. 55

Figure 21. Pseudo-code for augmentation algorithm.. 60

Figure 22. Comprehensive pathway augmentation results from 101 human and yeast

pathways. .. 63

Figure 23. Pathway augmentation for the RTK pathway. .. 65

Figure 24. Expression heatmap of Cell Cycle pathway. ... 66

Figure 25. Subpathways in the Cell Cycle pathway (hsa04110). 68

 x

Figure 26. Comprehensive pathway augmentation results for all subpathways. 70

Figure 27. Cell cycle pathway (hsa04110) showing clustering, subpathways, and known

E2F motifs... 78

Figure 28. Distribution of MaMF score p-values for all expression modules. 81

Figure 29. Sample pathway description in QPACA Pathway Language.......................... 94

Figure 30. Analysis method selection in Magellan... 96

Figure 31. QPACA parameter selection ... 96

Figure 32. QPACA data visualization results page. ... 97

 xi

Chapter 1

Introduction

1.1. Systems Biology

One of the major goals of current biological research is the elucidation of the

complex interactions and transformations in biological systems that drive their function

and behavior. This systems-based approach utilizes high-throughput techniques in the

realms of functional genomics, proteomics, metabolomics and transcriptomics to generate

quantitative data for the construction and validation of computational models.

While previous efforts in identifying the genes and other components in an

organism have provided a valuable list, it is not sufficient for understanding the

fundamental complexity of the whole system. A simple catalogue misses information

about how the parts assemble to form the organism, how they interact with each other,

how the organism reacts to stimuli and malfunctions, and what design principles govern

the organism. The answers to these questions are important both for a greater

understanding of the system as a whole as well as for enabling any modifications for

improved system behavior.

 1

A system-wide understanding of a biological organism can be broken down into

four fundamental areas: system structure (assembly and interaction of the system

components), system dynamics (system behavior over time), control method (system

control), and design method (system design principles). Progress in all of these areas

requires breakthroughs in computational science, biology, and measurement

technologies, as well as integration of any discoveries with existing knowledge.

Before tackling the more complex issues of system dynamics, control, and design,

it is necessary to understand the basic structure of the system. Conventionally, the study

of a specific biological pathway has required painstaking research into each possible

element of the network, both by conducting new series of experiments and by surveying

the existing literature to identify and describe interactions. This approach has resulted in a

limited, though focused, knowledge of biological networks, with hypotheses about

pathway interactions that are at various levels of refinement and completeness.

Computational modeling and quantitative analytical approaches seek to fill this

information gap. The use of high-throughput technologies, which make it possible to

survey the behavior of thousands of elements at once, allows pathway interactions to be

more easily examined. Gene expression microarrays have been used extensively in an

attempt to elucidate the behavior of genes based on transcriptional regulation. Post-

transcriptional and post-translational information, however, have been harder to measure

with high accuracy or in high throughput.(Kitano 2002)

This work focuses on this fundamental aspect of systems biology by furthering

the understanding of biological pathways through the development of a generalized

system for pathway visualization and analysis. While the focus on pathways clearly

 2

requires addressing aspects of pathway definition and representation, issues that surround

the data available for analysis and predictions about pathway structure are also important.

These issues include the experimental methods for generating high-throughput data, as

well as the particular statistical problems inherent in using these techniques. The

centrality of expression data for the modeling aspects of this work also requires some

discussion of transcription factors and the computational methods used to study their

behavior.

1.2. Modeling Pathways

Biological pathways model the inter-relationships of nucleic acids, proteins, small

molecules, and processes within a biological system. They are useful constructs in

studying the structure, dynamics and control of an organism. In a disease such as cancer,

which is essentially a result of disorder within the structure of the system, the study of the

relationships of genes to each other is particularly relevant.

Pathway models are fairly subjective, depending on the author’s focus and

intended objective. While they can describe biological processes down to the molecular

level, including such information as rate constants and specific molecular interactions,

they can also be fairly high-level, consisting merely of a set of interconnected elements.

The level of detail can reflect either the author's intended use for the pathway (high level

analyses don't necessarily require detailed knowledge of rate constants) or the actual level

of knowledge about a particular pathway or pathway step (many holes still exist in the

understanding of complex interactions in biological systems). Additionally, pathways

tend to be descriptions of the general case; not all portions of a pathway may be active in

a particular cell type or under a certain set of conditions.

 3

Broadly, several major categories of biological pathways exist: metabolic

pathways, molecular interaction networks, signal transduction networks, and gene

regulatory networks. Metabolic pathways describe a series of enzyme catalyzed chemical

reactions that form a metabolic product, which can then be used or stored by the cell.

Molecular interactions networks depict actual physical binding interactions between

cellular components. Signal transduction networks refer to the set of processes by which

an organism senses both external and internal environmental cues and coordinates the

behavior of individual cells to support the function of the organism as a whole. Finally,

gene regulatory networks delineate the interactions that govern transcription of genes into

mRNA and its subsequent translation into proteins.

Each pathway category comes with its own associated vocabulary, conventions,

and (in some cases) exchange standards. The following chapter will go into greater detail

on existing pathway models, efforts at pathway analysis and a discussion about standards

for pathway data exchange.

1.3. Transcriptional Regulation Biology

Gene regulatory networks govern the execution of the genetic instructions for

both the development and the functioning of an organism. These genetic instructions are

encoded in the organism's genome, which is composed of strands of DNA sequence,

consisting of a four-letter alphabet. Embedded within this sequence are relatively short

stretches of DNA called genes, each of which encodes the specific information necessary

to manufacture a particular protein. The working units of a cell are actually these

proteins, which carry out the tasks necessary for the function and survival of the

organism. Genes are first transcribed into messenger RNA, which is then translated into

 4

proteins. Each gene in an organism has a specific set of functions, which are not

necessarily relevant at all time points or in all cell types, thus control machinery must be

present in the cell to determine which genes are turned "on" and at which times. Gene

regulatory pathways describe this cellular machinery, known as transcriptional

regulation. The two primary participants in this process are proteins known as

transcription factors and transcription factor binding sites, 5-15 bp long DNA sequences

often located in the gene promoter region. For a gene to be expressed (that is, translated

into RNA and then protein), a specific set of transcription factors is required to bind to

the gene's transcription factor binding sites. Each transcription factor is capable of

binding to several binding sites whose sequences can differ by several bases. The correct

set of transcription factors triggers binding of RNA polymerase and initiates

transcription. A transcription factor can also inhibit gene expression by blocking RNA

polymerase binding. Figure 1 shows the typical structure of a genetic sequence

containing the gene, with its transcription and translation start sites, as well as several

different transcription factor binding sites in the promoter region, which can be located

several hundreds of bases upstream of the gene itself.

Transcription
start site

Translation
start site

gene3' 5'

Transcription
factor

Promoter
region

Transcription factor
binding sites

Figure 1. Participants in transcriptional regulation.

 5

1.3.1. Motif finding

Understanding the control structure for a particular gene is dependent on knowing

which transcription factor binding sites, and thus which transcription factors, are involved

in driving its transcription. The process of finding these transcription factor binding sites,

which are highly conserved and occur repeatedly throughout the genome, is known as

motif finding. Traditional experimental methods to find binding sites for a particular

transcription factor are labor intensive, resulting in many computational techniques for

finding binding site sequences in promoter regions. Many different computational

approaches exist in the field of motif finding, all roughly based on either pattern

matching (finding new motifs based on known motifs) or pattern detection (finding over-

represented novel motifs). (Elnitski, Jin et al. 2006)

Chapter 7 will discuss using MaMF, a motif finder specifically geared toward

finding the types of complex transcription motifs common in higher organisms, in

combination with pathway analysis to examine the transcriptional programs present

within established pathways.

1.4. Microarray technologies in cancer research

This section introduces the microarray technologies, including both expression

and comparative genomic hybridization arrays, used in the development and testing of

this work.

Microarrays provide a powerful method for simultaneously detecting and

quantifying the relative amounts of thousands nucleic acid sequences in a heterogeneous

mixture. Microarrays generally work in a fairly straightforward manner. DNA sequences

corresponding to the desired probe DNA are attached to a solid substrate. Then, samples

 6

containing the target DNA are labeled with a fluorescent dye and hybridized to the array.

Since binding affinities between particular probes and targets are not known, microarrays

produce relative measurements of hybridization intensities.

Microarrays have generally been used to measure gene expression using cDNA

derived from biological samples. Two major platforms exist for measuring gene

expression: two-color spotted cDNA on glass slides and synthesized oligonucleotides on

silicon. In recent years, microarrays have also been used to measure genomic aberrations

in cancer. The platform used in this analysis uses a similar technology to that used in the

two-color expression arrays.

1.4.1. Platforms for measuring gene expression

Two major platforms exist for measuring gene expression using microarrays: two-

color hybridization onto spotted arrays and lithographically deposited oligonucleotide

arrays (Affymetrix). As can be seen in Figure 2, the first platform requires comparison of

two biological samples. mRNA is isolated from each sample and used for the synthesis of

first strand cDNA labeled with either Cy3 (green) or Cy5 (red) fluorescent dye. Then,

these labeled samples are hybridized to a glass slide containing spots of purified cDNA

representing individual genes. The ratio of red to green fluorescence can be used to

measure the relative concentrations of the corresponding test or reference sample for each

individual mRNA represented on the slide.

 7

Isolate RNA

“Normal” cells Tumor cells

RT/PCR
Label with

Fluorescent Dyes

Cy3 Cy5

Combine
equal
amounts

Hybridize to
array

DNA microarray

Scan

Figure 2. Overview of two-color spotted microarrays.
While this schematic shows a two-color expression microarray, the basic sequence of events is very similar
for aCGH. In aCGH, instead of isolating RNA and then using RT/PCR to obtain fluorescently labeled
DNA, DNA is isolated from the samples and fluorescently labeled. In the case of expression arrays, the
probes on the array are gene-based DNA probes, while aCGH probes are generally a genome- or
chromosome-wide set of bacterial artificial chromosomes intended to span the entire genomic space.

The Affymetrix platform, on the other hand, uses a set of ~20 bp long

oligonucleotide targets, instead of cDNA targets. These targets are deposited onto a

quartz slide using photolithography, a semiconductor manufacturing technique. Each

gene is represented by a carefully chosen set of oligonucleotide matches and mismatches

whose hybridization signals are then combined using a proprietary algorithm to form a

single mRNA expression value for that gene.

Two-color arrays were the first to be widely available and are still usually cheaper

to construct. They are also usually the only choice for less well-studied organisms that

 8

don’t justify commercial manufacture. Affymetrix style arrays have become more

common due to generally better data quality (higher signal-to-noise ratio), better

reproducibility (calculated expression values are absolute, not relative to a control

sample), and decreasing costs.

1.4.2. Microarray-based comparative genomic hybridization

Comparative genomic hybridization (CGH) is a method for detecting copy

number changes (gains, losses, or amplifications) in tumor cell genomic DNA.

Traditionally, CGH has been performed by hybridizing fluorescently labeled DNA

isolated from normal and cancerous tissue to a metaphase spread of normal chromosomes

(FISH, or fluorescent in situ hybridization). The ratio of fluorescence intensity from these

two samples indicates the gains or losses present at different physical locations in the

genome. Due to the use of ratios, genomic aberrations resulting in balanced DNA

content, such as tetraploidy, cannot be detected.

In array-based comparative genomic hybridization (aCGH), the samples are

instead hybridized to probes printed on a glass slide, as in the two-color microarrays

described above. These probes are derived both from known genes as well as from non-

coding regions of the genome. The advantages of the array-based technique are improved

resolution and dynamic range, as well as the ability to directly map aberrations to

genomic sequence. (Pinkel, Segraves et al. 1998; Snijders, Nowee et al. 2003)

1.5. Statistical and other issues

In an ideal world, it would be possible to find easily manipulated cell lines or

organisms in which one could measure the concentration of both expressed transcripts

 9

and translated proteins, both over time and under multiple conditions (such as knockouts,

drug treatment, RNAi treatment, etc.). Given access to such data and including

information about metabolite concentration and assuming that the data were at an

appropriate granularity, it should be possible to work out a great deal of pathway biology.

With such ideal data, many specific biochemical interactions and transformations could

be identified. Data sets that approach this theoretical construct, however, are not even

available in yeast and other lower organisms, much less in the human case.

The most readily available form of high-throughput data for these analyses has

been microarray expression data. Even though this data is limited to the scope of

transcriptional regulation as seen through mRNA expression levels, it has been a boon to

research because it allows researchers to measure many different genes within the same

experiment. This ability has, however, introduced problems of appropriate analysis,

mainly having to do with statistical issues. Issues arising from the inherent noise in the

measurement technology also limit these data. Additionally, the genes and, in large

heterogeneous experiments, the samples that are actually involved in the process under

study are outnumbered by those that are not involved.

1.5.1. Statistical issues of large data sets

In general, statistical measures help in determining whether or not a particular

observation occurred by chance. For example, one commonly asked question in an

expression microarray experiment as described above is which genes exhibit significantly

highly coordinated behavior. On the surface, this question is fairly easily answered:

simple calculate the correlation coefficients for all of the gene pairs and compare the

results to a random permutation of the data (to assign a significance value). While this

 10

technique would work on a smaller data set, the types of data sets encountered in

microarray analysis run into something called the "multiple comparisons problem."

Essentially, this problem arises whenever a large number of independent observations are

evaluated using the same significance cutoff as would be used when considering one

observation.

In order to understand the reason why large data sets have inherent statistical

issues, it is first necessary to understand the underlying statistics involved in determining

whether or not the observed data has occurred by chance.

This question falls into the statistical area of hypothesis testing, which seeks to

differentiate between a null and an alternate hypothesis. The null hypothesis is defined as

the theory, either believed to be true or used as a basis for argument, that there is no

difference between two observations. The alternate hypothesis is that a difference does

exist between the two observations. To carry out this test, a statistic is defined to measure

the difference between the two observations. Then, this measurement is compared to a

theoretically determined or empirically calculated distribution of that statistic under the

null hypothesis. The probability value (p-value) of the hypothesis test is defined as the

probability of arriving at a value of the test statistic as extreme or more extreme than

those observed by chance alone. Small p-values suggest that the null hypothesis is

unlikely to be true. Thus, a p-value of less than 0.05 indicates that 5% of the observed

values could occur by chance.

Generally, a p-value ≤ 0.05 is considered to be significant. When considering 20

observations, one would expect to see one observation with a significant p-value purely

by chance. A typical microarray experiment can contain tens of thousands of genes. An

 11

uncorrected p-value would then result in hundreds of false positives. Several approaches

have been used to calculate corrected p-values for high dimensional data sets. (Westfall

and Young 1993; Jain, Chin et al. 2001; Tusher, Tibshirani et al. 2001; Olshen and Jain

2002; Segal, Dahlquist et al. 2003; Storey and Tibshirani 2003).

This work will discuss one way of avoiding the multiple comparisons problem by

using orthogonal annotation and data sources to reduce the number of observations.

1.5.2. Issues with heterogeneous data sets

In the ideal case as described above, a data set used for examining a pathway

would contain a carefully chosen set of perturbations that could be used to find new

pathway elements and deduce the connections between them. In yeast and bacterial

systems, such controlled perturbations of a system state have yielded biologically

reasonable results (Friedman, Linial et al. 2000; Ideker, Thorsson et al. 2001; Paley and

Karp 2002). This method relies on using prior knowledge of a pathway to generate

hypotheses that can be tested using microarray data. The results can then be used to

augment the pathway structure.

It has also been observed in yeast that only certain perturbations of a system are

relevant to the corresponding pathways. In Hughes’ yeast compendium, perturbations of

genes in a particular pathway yielded the most informative changes in gene expression

within that pathway, though not the largest. While deletion of erg genes, for example, had

large effects on amino acid biosynthesis (as did many other deletions), the most specific

(though smaller) effects were on the expression of genes in the erg pathway. (Hughes,

Marton et al. 2000)

 12

In higher organisms, it is frequently impossible or at least impractical to generate

the types of controlled perturbations necessary for a systematic analysis of a pathway as

described above. The data sets typically available for these organisms are fairly

heterogeneous. Human cancer data sets, for example, frequently contain multiple

instances of the cancer phenotype, across many individuals (and possibly multiple tumor

types), each representing a unique experiment of nature. Given that each sample in such a

data set has a different set of genomic, genetic, and epigenetic disregulations, there is no

reason to expect, a priori, that all of the samples will be relevant to a quantitative study

of a particular set of genes in a particular pathway.

Chapter 3 will describe a method for selecting relevant perturbations from the

type of large heterogeneous data sets frequently encountered when studying higher

organisms. Chapter 5 and Chapter 6 will validate this method using both yeast and human

data sets and pathways.

 13

Chapter 2

Review of Pathway Literature

2.1. Introduction

The last chapter briefly introduced the concept of biological pathways, the

different types of pathways, and the types of data generally available for pathway

analysis. This chapter will focus on existing efforts in modeling, storing and exchanging

pathway information; in analyzing pathway structure; and in using pathways to further

analysis of large data sets.

Pathway modeling can be conceptually divided into three main sub-areas: 1)

representation and curation, 2) data analysis, and 3) model recognition and augmentation.

2.2. Pathway representation and curation

As discussed in Chapter 1, many different types of pathways exist, each with its

own unique set of representational challenges as well as existing representational

conventions, vocabulary and in some cases even exchange standards.

In terms of representing structure, pathways are complex both in the large number

of possible interactions, the many possible variations of components and connections,

and the different levels of known detail for different pathways.

 14

Pathway curation efforts are extensive and varied. Pathguide (Bader, Cary et al.

2006) lists over 200 biological pathway resources, ranging from organism specific

pathway databases, such as EcoCyc (Karp, Riley et al. 2002), to multi-organism

databases, such as KEGG (Kanehisa 1997; Kanehisa and Goto 2000) to pathway

diagramming and analysis tools, such as GenMAPP (Dahlquist, Salomonis et al. 2002).

In order for this data to be useful it needs to be accessible in a useful manner. For the

casual browser, a visual representation of a pathway, such as the diagrams provided by

BioCarta (http://www.biocarta.com/genes/index.asp), may be sufficient. In order to

integrate pathways with data and perform complex analyses, however, it is necessary to

extract the actual data from the databases and transform it into a representation that is

computationally accessible.

One proposal for representing pathways, both as useful visual aides and as useful

computational tools, is the Molecular Interaction Map (MIM). MIMs are a diagram

convention that incorporate the following attributes: each molecular species should

appear only once; multimolecular complexes should be represented concisely and

extensibly; protein modifications should be represented uniquely, and any significant

combination of molecular complexes should be represented (Kohn 1999). These

attributes are important to consider when creating representations that are both rich in

detail and computationally tractable.

Unfortunately, while many of the existing databases make their data accessible in

computationally readable formats, each databases uses its own vocabulary and

representational conventions. Frequently, two databases will have different names for the

 15

same object or the same name for two different objects. Combining data from several

different sources can be quite labor intensive.

2.2.1. Pathway exchange formats

Currently, there is no universally used standard for pathway exchange, though

three formats have been proposed and are under development: PSI-MI (Proteomics

Standards Initiative - Molecular Interaction), which focuses on representing protein

interaction data; SBML (System Biology Markup Language), which focuses on

biochemical network models, and BioPAX (Biological Pathway data exchange), which is

the most general of the three and can encompass data from the other two. Table 1 shows a

roadmap for the development and scope of the BioPAX format. As of this writing,

BioPAX is at level 2, which allows for encoding all types of pathway elements, but is

restricted to metabolic pathways and molecular interactions. Chapter 3 will further

discuss the use of the BioPAX format in this work.

Table 1. BioPAX road map
Development level Scope of format Sample data sources
Level 1 Metabolic pathways aMAZE, BioCyc, KEGG, PUMA2
Level 2 Level 1 plus molecular interactions BIND, HPRD, intAct, MINT

Level 3 Level 2 plus signaling pathways and gene
regulation

CSNDB, INOH, PATIKA, Reactome,
TRANSPATH

Level 4 Level 3 plus genetic interactions FlyBase, MIPS
Future levels Level 4 plus abstract associations PubGene, GeneWays
For a complete list of the databases currently using the BioPAX format, see www.pathguide.org.

2.3. Pathway-based data analysis

Pathway-based data analysis can be either qualitative (using a pathway diagram to

map out data values) or quantitative (combining pathway-based information with data

analysis to reach a quantitative result). Many of the existing pathway databases allow the

former type of analysis. Separate pathway analysis tools, such as Cytoscape (Shannon,

 16

Markiel et al. 2003), also exist for this type of analysis as well as for more complex

qualitative and quantitative diagram-centered analyses.

Pathway-based quantitative data analysis, such as the Barkai ‘transcription

module’ research (Ihmels, Friedlander et al. 2002), is an example of pathway-based

quantitative data analysis. A transcription module is the set of genes and experimental

conditions (data samples) that contribute to their co-regulation. They find these

transcription modules by beginning with a set of genes suspected to belong to a

transcription module (based on annotation or sequence similarity) and then using an

algorithm to first choose relevant experiments and then refine the gene set to produce a

common signature that can be used to identify these transcription modules. Similarly,

Stuart et. al. (Stuart, Segal et al. 2003) showed that, by combining co-expression

relationships found in many different experiments in several different organisms, it is

possible to deduce functional relationships between genes.

2.4. Model recognition and induction

Attempts to induce pathway structure have remained separate from the efforts to

represent already existing knowledge. While some of the representation efforts, like

KEGG (Nakao, Bono et al. 1999), have also delved into the pathway prediction field,

many have approached this problem from a different direction. Pathway representation

and data visualization have been seen as ways of gathering knowledge for use by the

scientific community, but pathway prediction efforts have focused on mathematical

approaches to extracting interaction information from raw data.

Previous efforts to predict biological networks from expression data have relied

on three major types of algorithms: pair-wise, equation-based, and network-based. While

 17

each one has yielded important results, all of them have specific limitations. Pair-wise

algorithms are based on correlations (Arkin, Shen et al. 1997) and are thus unable to

determine causation. Equation-based algorithms, which can be linear (D'Haeseleer, Wen

et al. 1999), non-linear (Weaver, Workman et al. 1999), or differential (Arkin, Ross et al.

1998), are either very coarse or require detailed knowledge of biochemical interactions.

Finally, network-based algorithms are either Boolean (Liang, Fuhrman et al. 1998;

Akutsu, Miyano et al. 2000), which requires discretization of data and thus loss of

information, or Bayesian (Friedman, Linial et al. 2000; Hartemink, Gifford et al. 2001;

Jansen, Yu et al. 2003), which can be biased toward more simple models in the absence

of enough data (Smith, Jarvis et al. 2003). Many of these algorithms require making

assumptions that are known to be untrue (e.g. that biological networks contain no

feedback cycles). The validity of these different methods tends to be difficult to assess

because many of the interactions have not been biologically tested, nor are common

benchmarks yet available in this relatively young field. With the advent of

comprehensive yeast expression datasets, some labs (Smith, Jarvis et al. 2003) have

begun to try more data-driven approaches that rely less on mathematical formalisms.

2.5. Conclusion

The work differs from the aforementioned efforts in three ways. First, on a

representational level, QPACA explicitly represents the objects and inter-relationships

that comprise a pathway. The visual depiction is automatically generated. This is

precisely the converse of efforts such as KEGG and BioCarta, where the diagrams are the

primary representation and the pathway must be derived from the depiction. Second,

while many curation-oriented efforts focus on comprehensive but static pathway

 18

descriptions over a broad set of processes, this effort focuses on constructing tools that

allow domain experts to rapidly construct and modify pathways for use in data

exploration, which may itself feed back onto the original pathway structure. Third, many

of the pathway recognition, induction, and network modeling approaches are rooted in

formalisms that either restrict representational richness (no feedback cycles, etc.) or

require substantial data reduction (binary or ternary states) that may limit their utility.

QPACA's framework imposes no such limitations and introduces novel methodological

development to address problems of pathway recognition and augmentation.

 19

Chapter 3

QPACA: System Design

3.1. Introduction

The previous chapters demonstrate both the necessity for pathway-based

analytical tools as well as the challenges inherent in the creation of these tools. QPACA,

Quantitative Pathway Analysis in Cancer, was developed with the goal of creating an

easy to use system for the exploration (both visual and computational) of both fine- and

coarse-grained pathway structure and of experimental data within the context of that

structure. At the core of this system lies a simple and flexible pathway model. Using this

model, it is possible to interrogate relationships between genes within a pathway as well

as to visualize pathways and data. More importantly, QPACA also incorporates a set of

analytical tools for pathway recognition and augmentation.

QPACA Pathway Model
and Analysis Tools

Pathway
Visualization

Analysis
Results

(a) Input (b) (c) Output

Pathway
Knowledge

Data

Figure 3. QPACA overview.
The QPACA system (b) accepts inputs in the form of pathway knowledge (BioPAX, KGML, or QPACA
formatted text files) and data (tab-delimited text files). The system presents outputs as either a visual
representation of the pathway input or as computational analysis results.

 20

As can be seen in Figure 3, QPACA takes well-defined input (both pathways and

data), feeds it through the pathway model and analysis tools, and then outputs pathway

visualizations based on those inputs and a set of analysis parameters. This chapter begins

with a discussion of the QPACA pathway model and how external pathway knowledge is

translated and utilized by the system. Then, it discusses the optimization algorithm that

forms the basis of QPACA's analytical tools. It concludes with a discussion of how these

pieces fit together within the system architecture.

Application of the system to the exploration of three biological datasets will be

discussed in Chapter 4, while Chapter 5 and Chapter 6 will discuss the development and

testing of the QPACA analytical tools.

3.2. Pathway model

The development of pathway analysis tools was dependent on a solid pathway

model that was ideally both intuitive and flexible. Specifically, QPACA's pathway model

needed to be accessible to the average biologist as well as flexible enough to handle the

myriad different types of pathways that exist in biology. At the time it was developed, no

such pathway model existed.

QPACA models pathways as directed graphs, a computational structure composed

of nodes connected by edges. Directed graphs offer the benefit of an existing body of

algorithms for navigation, visualization and structure analysis. Within this structure,

QPACA models physical entities and processes in pathways as nodes. The various types

of interactions between these entities and processes are then modeled as edges connecting

the nodes. To encompass the complexity inherent in pathway structure without losing the

flexibility of the directed graph structure, QPACA's model also includes a special type of

 21

node called the "event" node. Rather than representing a concrete concept in the pathway,

this node type represents an event that occurs in the pathway, such as phosphorylation or

the formation of protein complexes. In addition, each of these pathway components can

be assigned any number of attributes stored as user-defined name-value pairs. Several

different types of pathway interactions mapped to the QPACA representation can be seen

in Figure 4.

A + P pAkinase phosphorylation
event

pA

kinase

A P
(c) phosphorylation

B A B
+1

B A B
-1

(a) activation

(b) both activation and inhibition

A

A

+1

Figure 4. QPACA pathway representation examples.
On the left are several typical pathway interactions. On the right are those interactions mapped to QPACA
pathway components. QPACA nodes are indicated as boxes, while the edges are denoted as lines
connecting the boxes. The direction of the arrows indicates the direction of the interaction. (a) and (b) show
typical signaling interactions with no modifying event. QPACA stores this information as two nodes
(representing each side of the signaling interaction) connected by an edge that has either a positive
(activation) or negative (inhibition) edge type attribute. Note that, as in (b), nodes may have multiple edges
connecting them, signifying different possible interactions, reversible reactions, etc. A more complex
interaction (such as phosphorylation in (c)) is represented using an event node. The edges in this case do
not have edge type modifiers. Any physical entities involved in aiding the interaction are connected to the
event node with an undirected edge.

One further refinement that QPACA makes to the basic directed graph structure is

the notion of assemblies of pathway components. In Figure 4c, two pathway components,

A and phosphate, join together to form phosphorylated A. QPACA is capable of

representing this "assembly" of two items as a separate component composed of the two

 22

original components. Assemblies are essentially any collection of pathway components

that acts as one node in an interaction. This concept encompasses both the idea of

physically assembled groups of objects, such as protein complexes, as well as

interchangeable groups of objects, such as families of proteins that may act

interchangeably at a particular node in the pathway structure.

id
type
attributes

PathwayComponent

id
type
attributes

PathwayElement

id
type
attributes

PathwayAssembly

id
type
attributes

PathwayVertex
type
attributes
to
from

PathwayEdge

pathEffect(path)
nConnected(startVertex, steps, direction)
getClosest(vertex)
shortestPath(vertex)
minimumSpanningTree()

attributes
Pathway

1..*

1

1..*

1

0..*

1
1

2

0..*

1

1

0..*

Figure 5. QPACA pathway object model.

Figure 5 shows the pathway object model that corresponds to the QPACA

pathway representation. This figure details the composition of each pathway object and

 23

their relationships with each other. Each object in the model inherits from the

PathwayComponent object, which ensures that each child object has an id, type and set of

attributes. The id and type of each object serve to uniquely identify it and provide some

basic information about its nature. The model supports arbitrary ids and types, though

pre-defined types are necessary for accurate visualization and navigation. Attributes are a

set of name-value pairs that store user-defined sets of annotations for each object. The

smallest unit of the pathway is the PathwayElement, which represents a single physical

element (such as a protein or molecule) or process within a pathway. PathwayAssemblies

are containers of PathwayElements or other PathwayAssemblies that represent complexes

or families of pathway elements. The PathwayEdge and PathwayVertex objects encode

all information about the pathway relationships. PathwayVertices can be either simple

nodes, which must contain a PathwayAssembly representing the object found at that

node, or event nodes, which may contain a PathwayAssembly indicating an object that

facilitates the event (such as a catalyst). PathwayEdges encode the relationships between

different nodes. Finally, the Pathway object contains the PathwayVertices and

PathwayEdges and provides methods for querying the pathway objects and navigating the

pathway structure.

QPACA includes a set of filters for accessing pathway information from several

different file formats: KEGG Markup Language (KGML)(Kanehisa, Goto et al. 2004),

BioPAX (http://www.biopax.org) and the QPACA pathway language (see A.1.1). The

explicit mapping between the different object models can be seen in Figure 6. The

QPACA language allows biologists to directly enter their pathways into QPACA, and

support for both BioPAX and KGML allow QPACA to be used with the existing pathway

 24

databases. While BioPAX is being adopted as a pathway exchange standard by most of

the public pathway databases (such as Reactome and KEGG) as well as by caBIG, at this

writing it is still at level 2. Signaling pathways and gene regulation networks will not be

fully supported until level 3. In order to facilitate use with all of the available KEGG

pathways, the KGML filter was also added.

entity

physicalEntity

complex

protein

dna

rna

smallMolecule

pathwayinteraction

physicalInteraction

conversioncontrol

catalysismodulation

transportWithBiochemicalReaction

transport biochemicalReactioncomplexAssembly

(a) QPACA object model (b) BioPAX object model

PathwayComponent

PathwayElement

PathwayAssembly

PathwayVertexPathwayEdge

Pathway

pathway

entry

component graphics

alt

substrate product

subtype

relationreaction

(c) KGML object model

Figure 6. Mapping between QPACA, BioPAX and KGML object models.
The mappings between the three different object models are indicated in color and are fairly
straightforward. All of these pathway models are based on the directed graphs with nodes and edges. Nodes
and their corresponding physical entities are outlined in black. Edges, representing the different types of
possible interactions are shaded in gray. Each model explicitly represents a pathway object, shaded in
orange. Each model also has a parent object that represents a generic physical object (shaded in yellow) as
well as an object that represents complex groups (shaded in green).

3.3. QPACA optimization method

Once a pathway model is in place, it can be used to provide support for pathway

based analytical analyses. QPACA's analytical methods take a set of pathway genes and

 25

employ an optimization method to filter the data set such that it concentrates data that are

most informative for that particular set of genes.

Chapter 1 (Section 1.5.2) discussed the specific example of the erg pathway in the

Hughes yeast compendium, which showed that those samples with perturbations of genes

in a particular pathway yielded the most informative changes in gene expression in that

pathway. Similarly, given the general heterogeneity of the typical human cancer data set,

it is unlikely that all samples in a given data set will be informative for a particular set of

selected genes. QPACA resolves this issue by automatically selecting these relevant

samples through the maximization of a scoring metric (see Figure 7). The goal of this

method is to identify a specific subset of biological samples where the variation of gene

expression across these samples conveys information about the function of the genes

being studied. In simpler terms, this method can be used as a tool for pathway

recognition, the ability to discriminate between real pathways and non-pathways.

A specific discussion of QPACA's ability to distinguish pathways from non-

pathways using microarray expression data, given a set of genes hypothesized to be part

of a pathway or coordinated process, can be found in Chapter 5.

 26

a subset of experiments (green)
that is optimized for high score

among the pathway genes (blue)

Subselection
procedure

Samples →G
enes →

Samples →G
enes →

microarray data pathway

SRC SOS1GAP1IP4BP

HRAS
NRAS

Figure 7. QPACA optimization algorithm.
Sample subselection is achieved through the use of an optimization method that takes as input a large
microarray data set, a set of genes, and a number of iterations. The method follows a simple hill-climbing
optimization approach. Initially, a random subset of samples is chosen and scored. Then, in each
subsequent iteration, a random sample is swapped into the subset and a new score is calculated. If the new
score is better than the old score, the new subset is retained for the next iteration; otherwise the subset
reverts to its previous state. The scoring metric was the median of the gene-gene correlations across all
pairs of genes within a sample subset.

The optimization method employed in sample subselection follows a simple hill-

climbing approach. A data set consists of a matrix of log-expression changes (denoted E)

of a gene g ∈ G{1, ..., N} over experimental samples s ∈ S{1, ..., M}, where N and M are

the number of genes and samples, respectively. The optimization finds the optimal

sample subset, Spath, for a specific subset of genes, Gpath. To decide whether a set of

genes is part of a pathway, Gpath is composed of all genes in the data set that belong to

that specific putative pathway. Figure 8 shows a pseudo-code representation of the

optimization procedure.

 27

procedure optimize(Gpath, E)
for i in (1:numStartPoints)
 randomly select subset of samples Sinit ⊂ S
 numIter := 0
 Scurrent := Sinit
 do until (no change in Scurrent)
 or (numIter == maxIter)
 snew := pick random sample snew ∈ S ∩ Scurrent

 sold := pick random sample sold ∈ Scurrent

 Stest := (Scurrent – sold) ∪ snew
 if (score(Gpath,Stest,E) > score(Gpath,Scurrent,E))
 Scurrent := Stest
 ++numIter
 if (numIter == 0) or (score(Gpath,Scurrent,E) > score(Gpath,Spath,E))
 Spath := Scurrent
end

Figure 8. Pseudo-code for optimization algorithm.
score(gene subset, sample subset, expression matrix) is defined as the median of all gene-gene correlations
(using Pearson's correlation) across all pairs of genes within the gene subset over the sample subset given
the expression matrix. In the described experiments, maxIter was set to 600 and numStartPoints was set to
20 based on empirical evidence that these numbers ensure convergence.

One application of the method is to test whether a gene set is behaving in a

coordinated fashion, and whether the coordination is relevant to our notion of a biological

pathway. This test pertains to the common biological observation that some small set of

genes appears to be behaving similarly (as in a hierarchical clustering of expression

patterns), but where it is important to ask more quantitatively whether this gene set is also

related through a common pathway. Chapter 5 reports on the algorithm’s ability to yield

high scores on sets of known pathway genes as compared with random sets of genes (to

simulate false pathways) or randomized expression data (to simulate data with no signal).

The optimization method may also be applied to the question of biological

pathway augmentation. Given a pathway for which the algorithm was able to recognize

the gene set as a pathway, the scoring metric can then be used to rank the remaining non-

pathway genes. Highly ranked genes could be hypothesized to also belong to the

pathway. Chapter 6 reports on the algorithm's ability to find new pathway genes by

 28

conducting a series of cross-validation experiments in which a percentage of randomly

chosen known pathway genes were held out during optimization and scoring of the

pathway. Then, QPACA's scoring methodology was used to rank-order the held-out

pathway genes and compare them to the background of non-pathway genes: those in

other known pathways, those not known to belong to any other pathways and those in

other closely related pathways.

However, ranking genes using the scoring metric described in Figure 8 (the

median of all gene-gene correlations) results in many tied scores. As a result, Chapter 6

will also show the use of a refined scoring metric that substitutes the average of the top

10% of all gene-gene correlations, which reduces the number of tied genes.

3.4. System architecture

3.4.1. Design overview

At a basic level, QPACA can be seen as a black box that takes the pathway

information and data that are input into the system and outputs a set of annotated images

or data based on a set of user specified parameters (see Figure 3). This black box contains

three basic modules: the pathway model (which controls input and output of pathway

information), the visualization tools (which create annotated images) and the analysis

tools (which generate pathway recognition and prediction results). The pathway model

and associated code is responsible for input and output of pathway information. The

visual and analysis tools both access the pathway model and share a common user

interface, but are otherwise separate toolsets. Each of the modules can be accessed

independently from the command-line.

 29

The full system is organized in a 3-tier architecture (see Figure 10). This structure

allows for the logical separation of user-facing client, the system's application logic, and

the back-end database and tools. The user sees a set of dynamically generated web pages

within a simple web-browser, removing the need for separate installation of QPACA for

each user. These pages are dynamically generated by the application server based on

inputs received from the user and information retrieved from the database and generated

by the QPACA tools.

3.4.2. Implementation

3.4.2.1. Magellan

Magellan is a web-based system for the upload, storage, and analysis of

multivariate data as well as annotations. It allows biologists to perform analyses of their

data over the Internet through the use of a server-based system framework that interfaces

with many different analytical systems. To maximize thee different types of information

that the system can handle, data and annotations are treated as abstract entities with a

user-defined type and value. Annotations may be used for analyses or visualization, as

well as for intelligent subsetting of larger datasets. Analytical methods are deployed in a

modular fashion that allows straightforward additions of new functionality or changes to

existing functionality. Figure 9 diagrams the different components of the system and their

interaction with each other.

 30

Analytical Methods

Java Business Logic

Database

JSP Pages

Database
Access/Modification

User Information Analysis

NCI Data Sources

Variable
Projection

Variable
Selection

Sample

DataType

Curated
Annotation

Identifier
Derived

Annotation

caBIO caArray

GUI - Web Browser

Oracle 8i

Clustering Visualizations
Correlation and

Permutation

Classification
CGH Analysis

Methods

Other

Pathway
Analysis

Figure 9. Magellan UML component diagram.
This diagram shows the various interactions of the different components of Magellan. Magellan is roughly
divided into a graphical user interface (GUI), a database, Java-based business logic, Java Server Pages
(JSP) presentation pages, analytical methods, and NCI data sources. The JSP pages present information
from the database and the analytical methods to the user via the web browser GUI. They directly contact
the database for accessing user information as well as general data access and modification. The Java
business logic is responsible for coordinating all interaction with the data for analyses as well as
coordinating access to the outside NCI data sources. Analytical methods exist as separate modules,
allowing straightforward modification of existing methods as well as addition of new methods.

3.4.2.2. QPACA as an analysis module

Figure 10 shows the structure of QPACA and its relationship to the different

components of the Magellan system. As a part of Magellan, the QPACA toolset is

available to researchers through a standard web browser. The specific interfaces between

the QPACA tools and Magellan are detailed in the sequence diagrams in Figure 11 and

Figure 12. Additionally, the QPACA tools can also be directly installed on the client

 31

machine as stand-alone command-line programs. See Appendix B for further

documentation.

Tier 2: Application Logic Tier 3: Database and Tools

Magellan QPACA tools

visualTools

analysisTools

QPACA
Analysis
Pages

results/
data
files

Database

Magellan DB
JDBC

Tier 1: Client

web
browser

HTML
via

Outside data sources

caArray caBIO Pathway DB

Figure 10. QPACA system architecture overview.

 32

MagellanAnalysisToolsResearcher GUI

pathwayImage

viewImage(pathway)
createImage(pathway)

validate(pathway)

pathwayImage

getData(dataID)

getImage(pathway)

createImage(pathway)

pathwayImage

calculateStatistic
(dataSet, statistic)

overlayData(dataSet,
statistic, pathwayImage)

coloredPathwayImage

overlayData(dataID,
pathway, statistic)

coloredPathwayImage,dataSet

alt
[image does not exist]

[image exists]

alt

validate(pathway)

[statistic != null]

highlightHighScoringEdges
(validationRules, pathway)

getImage(pathway)

createImage(pathway)

pathwayImage

alt

[image does not exist]

[image exists]

validate(pathway)

highlightEdges(validationResults,
pathwayImage)

highlightedImage
highlightedImage

dataSet

Figure 11. Sequence diagram for QPACA visualization tools.
Interactions between the QPACA visualization tools and the Magellan GUI, Magellan database, and user
are indicated as a series of lines denoting actions and boxes indicating duration. The blue boxes represent
different possible actions based on pre-existing conditions. The actions shown encompass the different
possible ways to view images within the QPACA system: (1) simply viewing the automatically generated
image, (2) coloring an image based on a specified dataset or computed statistic, and (3) coloring an image
based on pathway recognition results from the Analysis Tools (see Figure 12).

 33

Researcher GUI AnalysisTools Magellan

validationResults,
pathwayDataSet,

nonPathwayDataSet

validatePathway(dataID,
pathway, analysisParameters)

getData(dataID)

dataSet

parseData(dataSet, pathway,
analysisParameters)

pathwayDataSet, otherDataSet

calculateScores
(nonPathwayGeneSet)

predictInterestingGenes
(validationResults,

nonPathwayGeneSet, threshold)

geneList
geneList

validatePathway
(pathwayDataSet, otherDataSet)

resultFile

predictInterestingGenes
(validationResults,

nonPathwayGeneSet, threshold)

filterScores(geneScores,
validationResults, threshold)

Figure 12. Sequence diagram for QPACA analytical tools.
Interactions between the QPACA analysis tools and the Magellan GUI, Magellan database, and user are
indicated as a series of lines denoting actions and boxes indicating duration. Two major actions are shown:
(1) validatePathway, which performs the pathway recognition analysis task, and (2)
predictInterestingGenes, which performs the pathway prediction analysis task.

3.4.3. QPACA toolset design

The QPACA toolset is composed of three separate modules: the pathway model,

the visualization tools, and the analysis tools. The first two are written in Java, while the

last is written in C for greater computational speed. The module containing the pathway

model can be used to control input and output of pathway information as well as to

navigate the pathway structure and answer basic questions based purely on the structure

using standard graph-based algorithms. The model is built on the OpenJGraph open

source Java library, which provides most of the basic graph functionality. Automatically

generated visual graph output is provided using Graphviz (http://www.graphviz.org),

open source graph visualization software. As discussed in Section 3.2, pathway input can

 34

come in three different file formats: BioPAX, KGML, or QPACA. QPACA's

visualization module is also written in Java and provides classes and methods for

coloring pathways based on data. This module can also calculate correlation and the F-

statistic and color the pathway based on these computed values. Finally, the analysis

module computes pathway recognition and augmentation results based on a dataset and

gene lists derived from pathways. For further documentation of these software modules,

see Appendix B.

3.5. Conclusion

This chapter introduced QPACA's system design, covering both the general

architecture as well as specifics of both the pathway model and the analytical algorithms.

QPACA is composed of three distinct modules: the pathway model, the visualization

toolset, and the analysis toolset. The pathway model provides the basis for both the

qualitative and quantitative analysis techniques. Chapter 4 will present several examples

of using the visualization tools, while Chapter 5 and Chapter 6 will discuss the use and

validation of the pathway recognition and pathway augmentation algorithms. Chapter 8

will explore combining these pathway analysis tools with analysis of transcription factor

binding sites.

 35

Chapter 4

Pathway Exploration and Visualization

4.1. Introduction

The previous chapter covered the design and implementation of QPACA. A

working pathway model not only formalizes the representation of biological pathways, it

also allows mapping from the experimental data space to the pathway space and enables

researchers to ask questions about their data involving pathway structure and pathway-

derived gene sets. One basic use for a pathway representation in data analysis is to simply

reduce the dimensionality of a large data set to only those genes known to be involved in

a known affected process, thereby avoiding the multiple comparisons problem outlined in

Chapter 1. Additionally, a pathway representation can be used to provide a quick

overview of the samples in a data set, creating a simple visual profile that can reveal

differences in the types of samples. Finally, the gene/gene relationships of genes known

to be closely related based on pathway structure can be easily queried and compared to

mutational status or experimental conditions.

This chapter discusses three examples of using QPACA to explore and visualize

data in the context of pathways that yield interesting insights into gene/gene relationships

 36

in these data sets. Two pathways were used for these analyses: the receptor tyrosine

kinase signaling (RTK) pathway, as defined by local experts (Figure 13), and the RAS

subnetwork of the T-cell receptor signaling (TCR) pathway (Figure 14). These two

pathways are representative of the different types of pathway elements and interactions

that QPACA can model as well as of the different input types QPACA can handle

(QPACA and BioPAX formats).

RTK Pathway

EGFR
ERBB2
EPHA2
HGFR

PIK3CB
PIK3CD
PIK3R1
PIK3R2
PIK3CA

SRC SOS1 PLCG1GAP1IP4BP

E2F1
E2F2
E2F3
E2F4

CCNE1
CCNA2

ARF1

CDK2

TP53

CDKN1A

MYC
MYCN

S-phase

HRAS
NRAS

RGL3

RAF1

AKT1
AKT2

GSK3B

MLLT7 BAD

PIP3 RACGAP1

CCND1CDK4

RB1

CCND2CDK6MDM2 CDKN2A CDKN1B TNFSF6

Apoptosis

RPS6KB1

PDK1

PTEN

Actin

DAG1 IP3

PKC

AP1M2

RAP1GDS1FOSB

Ca

RASGRP1

Cell adhesion

RALA

MAP2K1

MAPK3

ELK1

Cytoskeleton

Integrins,

Figure 13. The receptor tyrosine kinase signaling (RTK) pathway.
The image was automatically generated by QPACA based on a description written in the QPACA pathway
language. Black lines/arrows indicate excitatory interactions, while red lines/tees indicate inhibitory
interactions. Nodes in the graph can represent gene products (rectangles), molecules (diamonds), or
processes (green text). Joined rectangles indicate that a particular node can be represented by more than one
gene product. Complexes of gene products are indicated by black dots with blue lines joining them to the
members of the complex. The RTK pathway consists of the following 57 genes: EGFR, ERBB2, EPHA2,
HGFR, SRC, SOS1, GAP1IP4BP, RGL3, RALA, RAF1, MAP2K1, MAPK3, ELK1, CCND1, CDK4,
CCND2, CDK6, RB1, E2F1, E2F2, E2F3, E2F4, CCNE1, CCNA2, CDK2, ARF1, MDM2, CDKN2A,
CDKN1A, TP53, MYC, MYCN, HRAS, NRAS, GSK3B, CDKN1B, TNFSF6, MLLT7, BAD, AKT1, AKT2,

 37

RPS6KB1, PDK1, PTEN, PIK3CB, PIK3CD, PIK3R1, PIK3R2, PIK3CA, RACGAP1, PLCG1, DAG1,
PKC, AP1M2, FOSB, RASGRP1, and RAP1GDS1.

TCR pathway - RAS subnetwork

transport

ERK1-2_active

biochemicalReaction

MEK1_active

biochemicalReaction biochemicalReaction

biochemicalReaction

BRAF_active

biochemicalReaction

c-FOS_active

interaction

biochemicalReaction

RAF1_active

biochemicalReaction

complexAssembly

biochemicalReaction

transport

biochemicalReaction

biochemicalReaction

c-FOS

biochemicalReaction

ERK1-2_inactive

RAS family GTP

ERK1-2 ELK-1 (phosphorylated)

RAF1

MEK1

PKC alpha_activePKC beta_active

COT RAF1_active HePTP ELK-1

BRAF

Figure 14. The RAS subnetwork of the T-cell receptor signaling (TCR) pathway.
The image was automatically generated by QPACA based on a BioPAX level 2 formatted file downloaded
from NCI-Nature Pathway Interaction Database (PID) (http://pid.nci.nih.gov). This diagram shows two
pathway features not seen in Figure 13: 1) color-coding of activation/inhibition edges (green arrows
indicate activation, red bars indicate inhibition (not seen)) and 2) use of event nodes as described in section
3.x (ovals). BioPAX level 2 is not able to encode certain commonly used pathway conventions. In this case,
families of proteins are not encoded in the BioPAX output file, even though they are stored in the PID.
Also, interactions with other pathways cannot be easily modeled, hence the presence of a generic
"interaction" event node at the bottom of the diagram, which the PID lists as a link to the Calcium
subnetwork of the TCR pathway. The RAS subnetwork consists of the following 11 genes: BRAF, PRKCB
(PKC beta), PRKCA (PKC alpha), RAF1, MAP2K1 (MEK1), MAP3K8 (COT), MAPK3 (ERK1), MAPK1
(ERK2), ELK1, FOS (c-FOS).

 38

4.2. Exploration of gene/gene relationships in an array-based

comparative genomic hybridization experiment

Statistical analysis of microarray data can be aided by utilizing the context of a

known pathway. In this instance, a set of array-based comparative genomic

hybridizations (aCGH) derived from primary human bladder tumors were analyzed in the

context of the Receptor Tyrosine Kinase (RTK) pathway (Figure 13). CGH measures the

relative copy number of tumor DNA versus normal DNA. The data set consisted of 41

bladder tumors of different stages(Veltman, Fridlyand et al. 2003). Data was obtained

from both high resolution (2000 clone) and oncogene focused (500 clone) arrays of

bacterial artificial chromosomes (BACs). Using the pathway representation and focusing

on gene/gene relationships in S-phase checkpoint control, several subsets of candidate

genes for this analysis were formed. First, all genes within six steps upstream of S-phase

checkpoint control (set 1) were found via graph traversal of the RTK pathway

representation. Then two subsets were formed: a) all gene pairs within this set that are

within three steps of each other or which target, or are targeted by, the same gene (set 2);

b) all genes that are frequently changed in the data set (set 3). The first two subsets

focused on genes pairs that were believed to be closely tied to a process known to be

important in tumor growth and to consist of genes that were closely related to each other.

Since knowledge of pathway membership is imperfect, the third set attempted to

incorporate genes that might also be involved.

Two separate statistical analyses were performed: cross-locus correlation as well

as complementation and concordance. In CGH data, closely mapping loci are expected to

correlate in copy number, since large deletions and amplifications spanning many loci are

 39

common. Strong correlations between loci that map far apart, however, can indicate non-

trivial interactions. For this test, the correlations for all genes in sets 1 and 3 were

computed. Significance was tested by permutation. Several pairs of distantly located

genes were found to be highly correlated: gain of ERBB2 (17q12) and gain of CCNE1

(19q13.11) (p<0.05), loss of TP53 (17p13.3) and gain of CCND1 (11q13) (p<0.1), and

gain of AIB1 (20q12) and loss of PTEN (10q23) (p<0.05). The last pair is particularly

interesting because it incorporates a gene that was not included in the pathway

description.

ELK1

CDK2

CCND2 CDKN2A

MLLT7

SRC

RTK Pathway

EGFR
ERBB2
EPHA2
HGFR

PIK3CB
PIK3CD
PIK3R1
PIK3R2
PIK3CA

SOS1 PLCG1GAP1IP4BP

E2F1
E2F2
E2F3
E2F4

CCNE1
CCNA2

ARF1

TP53

CDKN1A

MYC
MYCN

S-phase

HRAS
NRAS

RGL3

RAF1

AKT1
AKT2

GSK3B

BAD

PIP3 RACGAP1

CCND1CDK4

RB1

CDK6MDM2 CDKN1B TNFSF6

Apoptosis

RPS6KB1

PDK1

PTEN

Actin

DAG1 IP3

PKC

AP1M2

RAP1GDS1FOSB

Ca

RASGRP1

Cell adhesion

RALA

MAP2K1

MAPK3

Cytoskeleton

Integrins,

óAIB1/òPTEN

óERBB2/óCCNE

òTP53/óCCND1

Figure 15. Correlation in aCGH of bladder tumors.
The genes highlighted in yellow in the pathway diagram represent all genes in set 1, that is, genes at least 6
steps upstream from S-phase checkpoint control. These genes, along with genes found to be frequently
changed, were used in the correlation analysis. Highlighted in yellow in the red-green correlation plot on

 40

the right are all correlations that were found to be statistically significant. Of special note are the
correlations connected to the pathway diagram in blue. These are: gain of ERBB2 (17q12) and gain of
CCNE1 (19q13.11) (p<0.05); gain of AIB1 (20q12) and loss of PTEN (10q23) (p<0.05); and loss of TP53
(17p13.3) and gain of CCND1 (11q13) (p<0.1). Of these, AIB1 was included in the analysis because it was
frequently changed, not due to pathway membership.

In addition to correlation, complementation and concordance were also

considered. Complementation is defined as change in one gene or locus occurring instead

of change in another gene or locus. Concordance is the opposite, change in one gene or

locus occurring along with change in another gene or locus. For this test, the test pairs

(sets 2 and 3) were compared to a set of random pairs from a null population consisting

of pairs of genes that change frequently and are not located on the same chromosome.

Several complementary relationships were found to be significant: gain of CCND1

behaved complementarily with gain of both E2F3 (p<0.05) and CCNE1 (p<0.05); loss of

CDKN2A was complementary to gain in CCND1 (p<0.1).

When examined in the context of the RTK pathway, gene pairs found in both sets

of analyses fit the information known about the pathway. Additionally, specific

statistically supported hypotheses for potential new interactions were made. It is

important to note that, due to the problem of multiple comparisons, statistical significance

cannot be achieved in the above data set by considering all-by-all locus correlations in

performing these cross-locus comparisons.

4.3. Exploration of CGH phenotype of ERBB2 in expression of

RTK genes

The pathway representation can be used as a visual, as well as computational,

tool. By coloring the nodes in the graph based on either data values (expression, copy

 41

number, etc.) or derived statistical values (correlation, F-test, etc.), it is possible to see

these values changing across many samples.

In a set of breast cancer cell lines (Neve, Chin et al. 2006), statistical analysis

showed that the data set could be divided into two subclasses based on ERBB2

amplification status. For these cell lines, both aCGH and expression data were available.

While the original statistical analysis was done on the aCGH data, the two classes can

also be seen in the RTK pathway when it is colored based on expression (Figure 16).

In this analysis, the statistical relationship between expression levels and a

phenotype (panel A, expression versus ERBB2 amplified phenotype) or the correlation

between genes (panels B and C) can be illustrated. Here, the visualization lends support

to the notion of a biological switch that delineates two states, which are marked by both

ERBB2 amplification at the genomic level and a host of coordinated changes in gene

expression.

 42

ERBB2
EPHA2

Figure 16. Visually differentiating between two classes of tumors.
In all images, white squares indicate missing values, from those genes either not being in the dataset or not
passing the missing value threshold. Two classes of breast cell lines were previously identified using CGH
data: ERBB2 amplifying and EPHA2 amplifying. a) The RTK pathway colored according to a computed F-
statistic, which was based on these two classes. Brighter color indicates a higher discriminative value of the

 43

gene. b) The RTK pathway colored according to each gene's correlation to ERBB2 using expression data.
c) The RTK pathway colored according to each gene's correlation to EPHA2 using expression data. Images
b and c are colored red/green with positive correlations in green and negative correlations in red.
Uncorrelated genes are shown in black. All colors in the image are scaled to the maximum values of the
statistic, i.e. the brightest colors correspond to the maximum actual value, not 1 or -1. The genes that
showed a high discrimination ability between the two classes are outlined in blue. By comparing the
correlation images to the f-statistic image, we can see that those genes with high f-statistics are highly
correlated to either ERBB2 or EPHA2, and that these two genes are negatively correlated with each other.

4.4. Exploration of pancreatic cancer cell line data in the context of

the RAS subpathway

A similar analysis to that in the previous example was also performed on

expression data gathered from several pancreatic cancer cell lines (Gysin, Rickert et al.

2005). This analysis focuses on the RAS subnetwork (Figure 14) since the most

frequently mutated genes in pancreatic cancer are RAS genes (70-90%), mainly KRAS2.

The data set consisted of 22 pancreatic cancer cell lines, both treated and

untreated with CI-1040, a MEK1/2 specific inhibitor, as well as 3 cultures of normal

pancreatic ductal epithelial cells (PDEC) run on the Affymetrix U133 2.0 array. As an

initial overview of the dataset, the data for each sample was plotted onto the pathway

representation, showing that the cell lines did not have equivalent reactions to application

of the inhibitor. Some typical samples can be seen in Figure 17. Next, the Student's t-test

was used to determine if any genes were able to discriminate between the treated and

untreated samples (Figure 18). Those genes that were obviously differentially expressed

in the sample overview (MAP3K8 and FOS) were the only two that showed a statistically

significant ability to discriminate between the treated and untreated samples.

 44

Panc-1+

transport

ERK1-2_active

biochemicalReaction

MEK1_active

biochemicalReaction biochemicalReaction

biochemicalReaction

BRAF_active

biochemicalReaction

c-FOS_active

interaction

biochemicalReaction

RAF1_active

biochemicalReaction

complexAssembly

biochemicalReaction

transport

biochemicalReaction

biochemicalReaction

c-FOS

biochemicalReaction

ERK1-2_inactive

RAS family GTP

ERK1-2 ELK-1 (phosphorylated)

RAF1

MEK1

PKC alpha_activePKC beta_active

COT RAF1_active HePTP ELK-1

BRAF

Hs

transport

ERK1-2_active

biochemicalReaction

MEK1_active

biochemicalReaction biochemicalReaction

biochemicalReaction

BRAF_active

biochemicalReaction

c-FOS_active

interaction

biochemicalReaction

RAF1_active

biochemicalReaction

complexAssembly

biochemicalReaction

transport

biochemicalReaction

biochemicalReaction

c-FOS

biochemicalReaction

ERK1-2_inactive

RAS family GTP

ERK1-2 ELK-1 (phosphorylated)

RAF1

MEK1

PKC alpha_activePKC beta_active

COT RAF1_active HePTP ELK-1

BRAF

Hs+

transport

ERK1-2_active

biochemicalReaction

MEK1_active

biochemicalReaction biochemicalReaction

biochemicalReaction

BRAF_active

biochemicalReaction

c-FOS_active

interaction

biochemicalReaction

RAF1_active

biochemicalReaction

complexAssembly

biochemicalReaction

transport

biochemicalReaction

biochemicalReaction

c-FOS

biochemicalReaction

ERK1-2_inactive

RAS family GTP

ERK1-2 ELK-1 (phosphorylated)

RAF1

MEK1

PKC alpha_activePKC beta_active

COT RAF1_active HePTP ELK-1

BRAF

Panc-1

transport

ERK1-2_active

biochemicalReaction

MEK1_active

biochemicalReaction biochemicalReaction

biochemicalReaction

BRAF_active

biochemicalReaction

c-FOS_active

interaction

biochemicalReaction

RAF1_active

biochemicalReaction

complexAssembly

biochemicalReaction

transport

biochemicalReaction

biochemicalReaction

c-FOS

biochemicalReaction

ERK1-2_inactive

RAS family GTP

ERK1-2 ELK-1 (phosphorylated)

RAF1

MEK1

PKC alpha_activePKC beta_active

COT RAF1_active HePTP ELK-1

BRAF

P
an

c-
1

ce
ll

lin
e

H
s

ce
ll

lin
e

Untreated Treated with CI-1040(a) (b)

(c) (d)

MAP3K8 MAP3K8MAP2K1 MAP2K1

FOS FOS

RAF1

Figure 17. Gene expression differences in cell lines treated and untreated with a MAP2K1 inhibitor.
Gene expression data for two typical cell lines, both treated and untreated with CI-1040, coloring the RAS
subnetwork. Expression ratios were computed for each gene by comparing to the average expression value
for that gene. Red indicates down-regulation compared to the average and green indicates up-regulation
compared to average. (a) and (b) show a cell line (Panc-1) which did not show noticeable differences in
expression when treated with the inhibitor. (c) and (d) show the Hs cell line, which shows a large difference
in expression, especially of MAP3K8(up-regulation) and FOS (down-regulation). There was also a slight
down-regulation of MAP2K1 and a slight up-regulation of RAF1.

 45

T-test between samples with and without CI1040

transport

ERK1-2_active

biochemicalReaction

MEK1_active

biochemicalReaction biochemicalReaction

biochemicalReaction

BRAF_active

biochemicalReaction

c-FOS_active

interaction

biochemicalReaction

RAF1_active

biochemicalReaction

complexAssembly

biochemicalReaction

transport

biochemicalReaction

biochemicalReaction

c-FOS

biochemicalReaction

ERK1-2_inactive

RAS family GTP

ERK1-2 ELK-1 (phosphorylated)

RAF1

MEK1

PKC alpha_activePKC beta_active

COT RAF1_active HePTP ELK-1

BRAF

MAP3K8

FOS

Figure 18. Discriminating between treated and untreated cell lines.
T-test p-values for each gene are indicated in shades of green, with brighter colors indicating more
significant p-values. Both FOS and MAP3K8 (both colored in the brightest green) have p-values ≤ 0.05.

Interactions in pathways frequently rely on post-translational modifications, such

as phosphorylation in the case of MAP2K1 in the RAS subnetwork. Even though the

inhibitor specifically targets MAP2K1, it is not unusual that this gene is not the most

differentially expressed between treated and untreated groups. Instead, treatment with the

inhibitor tends to up-regulate MAP3K8, which phosphorylates MAP2K1. Additionally,

one of the downstream effects of MAP2K1 is activation of FOS transcription. In the

treated cell lines, FOS is frequently down-regulated. Of note in this analysis is the

observation that not all samples behaved similarly in response to the same treatment. The

sample subselection method described in Chapter 3 addresses this exact issue and will be

 46

discussed at greater length in the following chapter. This data set will also be revisited in

Chapter 6 and Chapter 8.

4.5. Conclusion

Using QPACA to visually map both data and statistical values onto a visual

representation of a pathway allowed for insights into several different types of data sets

(both aCGH-based as well as expression-based studies). The context of the pathway was

useful in both reducing the dimensionality of the data for improved statistical testing as

well as for explanation of potential causality. The pathway visualization also reflects

QPACA's ability to parse both locally defined pathways, as well as BioPAX formatted

pathways downloaded from external databases.

Unlike other pathway visualization tools, QPACA also includes tools for

displaying derived statistics (Sections 4.3 and 4.4) as well as tools for easily querying

pathways for genes of potential interest (Section 4.2). The statistical tools allow

biologists to make a quick qualitative assessment of the data in the context of the

pathway, while the querying tools enable biologists to easily ask questions based on

pathway structure.

The following chapters will deal with quantitative pathway analyses addressing

the issues of both pathway recognition and pathway prediction.

 47

Chapter 5

Computational Recognition of

Pathways from Microarray Expression

Data

5.1. Introduction

The previous chapter explored the use of QPACA as a qualitative analytical tool.

This chapter introduces the use of QPACA as a quantitative analytical tool, focusing on

addressing the issue of pathway recognition, which is the ability to discriminate between

real pathways and non-pathways. In a biological context, this type of experiment can aide

in answering the question of whether a set of genes identified through some procedure

(such as differential expression between phenotypes) is likely to be part of a pathway or

coordinated process, rather than simply a collection of genes that are parts of many

tangentially related processes. Computationally, this type of experiment can be used as a

feasibility proof for pathway augmentation. If a set of genes can confidently be identified

as part of a pathway given an experimental data set, then it may be possible to make

predictions of new pathway members given this data set. The following work was carried

 48

out in this second context, as a stepping-stone to pathway member prediction, which will

be further discussed in Chapter 6. Given that the results were positive, inquiries

motivated by the former context are also sensible in applying QPACA.

Chapter 1 and Chapter 2 discussed the problems and promises of rapidly

accumulating gene expression data and the current methods for investigating pathways

using that data. QPACA's analysis method directly addresses the issues inherent in

analysis of human systems without discretizing data or making limiting assumptions

about the structure of pathways. Given a set of genes hypothesized to be part of a

pathway or coordinated process, QPACA is able to reliably distinguish true pathways

from non-pathways using microarray expression data. As discussed in Chapter 1 (Section

1.5.2), only some of the experiments within a large data set are necessarily relevant to a

specific biochemical pathway. By leveraging the optimization method described in

Chapter 3 (Section 3.3), QPACA identifies the particular samples in an experimental data

set that are particularly relevant to a specified set of genes and in so doing also assigns a

coordination score to this set of genes (see Figure 8). This coordination score can then be

used to determine whether a gene set represents a pathway or coordinated process.

This chapter presents data on all human and yeast pathways found in the KEGG

pathway database. In 117 out of 191 cases (61%), QPACA was able to correctly identify

these positive cases as bona fide pathways with p-values measured using rigorous

permutation analysis. Success in recognizing pathways was dependent on pathway size,

with the largest quartile of pathways yielding 83% success.

This work appeared previously in Novak and Jain 2006.

 49

5.2. Materials and Methods

5.2.1. Data and data processing

Both human and yeast expression data sets were considered in developing and

assessing QPACA. The Hughes compendium of yeast data (Hughes, Marton et al.

2000)(287 deletion mutants and 13 environmental conditions) was used primarily to

develop and test the algorithm, while the NCI set of 60 human cancer derived cell lines

(Staunton, Slonim et al. 2001) was used to validate the results in human data. The data

sets contained expression levels for 6356 and 7071 genes, respectively. The data were

processed to remove duplicates, genes with excessive missing values, and genes with

insufficient annotations. Because the algorithm computes correlations across at most 20

samples, a fairly stringent measure of missing values was used. Each gene had to have

signal for at least 80% of the total samples. In the NCI60 data set, this threshold

eliminated roughly 3600 genes. The other genes were eliminated due to insufficient

annotation (~700 genes) and consolidation of duplicates (~800 genes). The yeast data set

had fewer issues with missing annotations and duplicated genes, as well as better general

signal strength. After processing, 6163 genes remained in the yeast data set, while 1954

genes remained in the human data set. Raw expression values were converted to log2

ratios by taking the logarithm of each gene’s value divided by the mean for that gene

across all samples. Additionally, data were normalized by median centering within each

sample (this is an automatic feature of QPACA’s data processing, as it can influence

results markedly if omitted). Both data sets were analyzed in the context of all pathways

in the KEGG database with at least 5 genes in the corresponding data set. In the human

data set, the receptor tyrosine kinase signaling (RTK) pathway, as defined by local

 50

experts, was also analyzed. Figure 13 delineates the composition of this pathway. This

resulted in a total of 83 yeast pathways and 108 human pathways. The pathways varied

substantially in size, with the bottom half containing fewer than 20 genes, and the top

quartile containing 30 genes or more.

5.2.2. Permutation testing and p-value calculation

The algorithm’s ability to recognize pathway membership and to select samples

relevant to a gene set was tested. Scores for each known pathway gene set (coupled with

its experimental expression data) were compared to three distributions: 1) scores resulting

from randomly chosen gene sets of the same size as the pathway set in question; and 2)

scores resulting from randomizing the gene expression data itself; and 3) scores resulting

from randomly chosen gene sets of the same size as the pathway set in question,

restricted to genes represented within KEGG (see Figure 19 for a pseudo-code

description of the methods). In each permutation test, the randomized data comes from

the same microarray experiment as that used for the pathway case being tested. The first

permutation method estimates the likelihood that any equal-sized gene set will find a

sample subset which scores equal to or better than the test. If the probability is low,

confidence of the metric's rationality increases. The second randomization method

controls for the effects of the distribution of data values within a particular set of genes,

which may yield unusual distributions of correlation values under certain degenerate

conditions. Given a particular set of genes from a particular data set, data were

randomized for each gene across all samples. The third method is a further control to test

for the possibility that KEGG genes as a set may be biased.

 51

Additionally, the optimized score(Gpath, Spath, E) was also compared to the

unoptimized score(Gpath, S, E) to determine if the optimization procedure actually

increased our ability to recognize pathways.

method 1: randomize pathway gene set, Gpath, without changing expression
matrix, E
 for i in (1:maxPermutations)
 Grandom := randomly choose gene set from G of same size as Gpath
 Sfinal := optimize(Grandom,E)
 ScoreArray[i] := score(Grandom,Sfinal,E)

method 2: randomize expression matrix, E, without changing Gpath
 for i in (1:maxPermutations)
 E' := randomized matrix E
 Sfinal := optimize(Grandom,E')
 ScoreArray[i] := score(Grandom,Sfinal,E')

method 3: same as method 1, but restrict Gpath to genes found in KEGG
pathways

Figure 19. Pseudo-code for permutation methods.
In each case, the p-value for Gpath was computed by comparing the score(Gpath,Spath,E) to the distribution
of the scores in ScoreArray where:

p-value := count(ScoreArray[i] > score(Gpath,Spath,E)) / maxPermutations
In the experiments described, maxPermutations was set to 500.

5.3. Results

Representative results for gene set recognition on a diverse and non-overlapping

set of yeast and human experimental data sets can be seen in Table 2 and Table 3.

 52

Table 2. Results table for a representative set of pathways.

Organism PathwayID Pathway
Number
of genes

Final
score

p-value w/
subselection

p-value w/o
subselection

sce00052 Galactose metabolism 30 / 30 0.826 <<0.01 <<0.01
sce00230 Purine metabolism 95 / 95 0.231 <0.01 0.03
sce04110 Cell cycle 100 / 100 0.227 0.01 <0.01
sce00100 Sterols biosynthesis 14 / 14 0.682 0.01 <<0.01
sce04020 Second messenger signaling 19 / 19 0.497 0.04 0.26
sce04010 MAPK signaling 55 / 55 0.221 0.11 0.09
sce04070 Phosphatidylinositol signaling 12 / 12 0.376 0.60 0.59

a) Yeast

sce00562 Inositol phosphate metabolism 32 / 32 0.12 0.96 0.55
hsa00010 Glycolysis / Gluconeogenesis 24 / 60 0.253 <<0.01 <<0.01
hsa00052 Galactose metabolism 13 / 28 0.377 <0.01 0.01

RTK Receptor tyrosine kinase signaling 24 / 57 0.198 0.01 <<0.01
hsa04510 Integrin-mediated cell adhesion 25 / 82 0.161 0.01 <<0.01
hsa04010 MAPK signaling 41 / 287 0.1 0.01 0.09
hsa04110 Cell cycle 30 / 120 0.131 0.02 0.05
hsa04350 TGF-beta signaling 11 / 72 0.351 0.03 0.11r
hsa04620 Toll-like receptor signaling 12 / 92 0.299 0.04 0.03
hsa04210 Apoptosis 19 / 96 0.187 0.07 0.34

b) Human

hsa04070 Phosphatidylinositol signaling 13 / 70 0.217 0.29 0.47
Each pathway is listed with its KEGG id, if available. The number of genes indicates those genes that both
belonged to the pathway and were represented in the expression dataset over the total number of genes in
that pathway. The final score is the median of all gene-gene correlations after optimization. Two
empirically derived p-values are listed: 1) the probability that the subselection algorithm gave a better score
than random and 2) the probability that a better score than random could be found without subselection.
The p-values reported represent the most pessimistic p-value derived from each of the three random
permutations, which can be seen in Table 3.

Table 3. Breakdown of individual p-values with sample subselection for each pathway.

PathwayID
Randomized data

p-value
Random gene

set p-value
Random KEGG

genes p-value
sce00052 <<0.01 <<0.01 <<0.01
sce00230 <<0.01 <<0.01 <0.01
sce04110 <<0.01 <<0.01 0.01
sce00100 <<0.01 0.01 <<0.01
sce04020 <<0.01 0.02 0.04
sce04010 <<0.01 <0.01 0.11
sce04070 0.03 0.60 0.02
sce00562 0.35 0.80 0.96
hsa00010 <<0.01 <<0.01 <<0.01
hsa00052 <<0.01 <0.01 <<0.01

RTK <<0.01 <0.01 0.01
hsa04510 <0.01 0.01 <<0.01
hsa04010 <0.01 0.01 <0.01
hsa04110 <<0.01 0.02 0.01
hsa04350 <0.01 0.03 <<0.01
hsa04620 0.01 0.04 0.01
hsa04210 0.02 0.07 0.02
hsa04070 0.27 0.29 <<0.01

The individual p-values are: randomized data (scrambling the data for each gene in the pathway gene set),
random gene set (gene sets of the same size as the pathway gene set randomly selected from the set of
genes in the entire data set that are not part of the pathway gene set), and random KEGG gene set (gene sets
of the same size as the pathway gene set randomly selected from the subset of genes in the entire data set
that belong to other pathways in KEGG).

 53

Table 2 reports the most pessimistic p-value computed from the three methods

described above, while Table 3 provides the breakdown of all three individual p-values.

A p-value of X can be interpreted as the probability that a random set of genes will yield

a p-value of less than or equal to X. For this limited set of pathways, those for which

subselection did not improve the significance of the score included the metabolic

pathways (e.g. galactose metabolism) which are likely to show coordinated expression

under many different conditions. In these pathways, the score was highly significant both

with and without subselection. There were a few pathways, however, for which the score

was not significant in either condition. In these cases (inositol phosphate metabolism and

phosphatidylinositol signaling), it is possible that the perturbations in these pathways

either did not show up in these particular data sets or that the effects were outside the

scope of expression data, through post-translational modifications, for example. In none

of these cases did the subselection process cause a significant result to become

insignificant. Note, however, that significant variability in the p-values obtained using the

three different methods was occasionally observed. These differences are expected, to the

extent that each of the different permutation methods will yield different distributions of

gene expression values. In the random data case, the distribution for the control is exactly

the same as in the non-control. In the other two types of permutations, this is not so, and

consequently, there were differences depending on the method used.

 54

Figure 20. Comprehensive pathway recognition results from all 191 human and yeast pathways.
(a) Cumulative histograms of permutation-based p-values for all analyzed pathways. Most pathways
(117/191 or 61%) had significant scores (p ≤ 0.05) under the most stringent of these methods, indicating
that this method is reproducible over a large and varied set of pathways. (b) Cumulative histograms of the
p-values with optimization for all pathways (red), all pathways without optimization (blue), and for those
pathways with ≥ 30 genes using optimization (green). For each case, the randomization permutation
method was used. The optimization method clearly improves the p-value distribution over no optimization
(p << 0.001 by Mann-Whitney), and restriction to larger gene set sizes also improves the p-value
distribution (p << 0.001 by Mann-Whitney).

Figure 20 illustrates the comprehensive results obtained from all 191 human and

yeast pathways. Panel A shows the cumulative histograms for the three different

permutation methods. While there are some differences in the distributions, particularly

at very low p-values, the three methods do not produce substantially different

interpretations of the data. Using the most pessimistic values (as in Table 2), in 61% of

all cases, we observed significant scores under optimization (p ≤ 0.05). For the reason of

 55

distributional equivalence, we focused on the randomized data method. Panel B shows

the effect of both the optimization procedure and larger gene set sizes for the data

randomization permutation method. The optimization procedure clearly shifts the p-value

distribution to the left, and the subset of pathways with larger gene set sizes also shifts

the distribution to the left (both observations are highly statistically significant). Using

the data randomization permutation method, for pathways with at least 30 genes, we

observe 96% recognition at a false positive rate of 0.05. A more conservative test, using

the most pessimistic of all permutation methods, yields a recognition rate of 83%.

5.4. Discussion and conclusion

The results detailed in this chapter address one aspect of computational structure

elucidation using gene expression data. Given a gene set postulated to be part of a

pathway or coordinated process, QPACA has demonstrated the ability to discriminate

between real pathways and non-pathways. This problem is termed pathway recognition.

Specifically, in 61% of cases known pathways (83% for larger pathways), QPACA was

able to answer affirmatively while rejecting random pathways over 95% of the time.

By employing an automated method for identifying relevant sample subsets,

QPACA has been able to analyze complex pathways relevant to major disease processes

in humans. The next chapter covers the use of QPACA to address the other aspect of

computational structure elucidation: pathway augmentation, or the ability to significantly

enrich for pathway genes over non-pathway genes in making predictions about putative

pathway members.

 56

Chapter 6

Computational Prediction of New

Pathway Members from Microarray

Expression Data

6.1. Introduction

The previous chapter introduced the use of QPACA as a quantitative analytical

tool in pathway recognition. Once a set of genes can reliably be distinguished as a true

pathway or coordinated process, the next logical question is whether that set of genes can

be augmented with new members.

This chapter will describe an approach to the pathway membership augmentation

problem using the same optimization and scoring technique previously described for

pathway recognition. Once a gene set has been recognized as a pathway or coordinated

process, this method ranks non-pathway genes using the same scoring metric that was

used for pathway recognition. Genes that increase the coordination score when added to

the pathway gene set can reasonably be supposed to be related to the existing known

pathway genes.

 57

This technique was tested with a series of cross-validation experiments in which

QPACA was able to yield enrichments for predicted pathway genes over random genes at

rates of 2-fold or better the majority of the time, with rates of 10-fold or better 10–20% of

the time.

6.1.1. Cross-validation in biological pathway augmentation

Cross-validation is a common statistical technique that involves partitioning a

data set into training and validation sets. In the holdout method, some observations,

usually less than 1/3, are randomly chosen to form the validation set while the remaining

observations form the training data. In the case of the QPACA augmentation algorithm, a

randomly chosen 10% of the known pathway genes were held out during the initial

recognition scoring/optimization of the pathway gene set. The augmentation algorithm

was then used to rank both the held-out and non-pathway genes. If the algorithm

successfully identifies potential pathway members, then the held out pathway genes

should rank highly compared to the non-pathway genes.

The general fuzziness and interconnectedness of existing pathway definitions

makes forming a true validation set of known non-pathway genes real data difficult.

Certain broad generalizations can, however, be made. It is possible to subdivide the

negative (i.e., non-pathway genes) into several general groups: (a) genes not known to

belong to any pathway, (b) genes in other known KEGG pathways, and (c) genes in

closely related pathways. It would be expected that enrichment for the held out known

pathway genes would be greatest against the background of set (a) and least against that

of set (c).

 58

Construction of this third background of interrelated pathways was accomplished

by subsetting large pathways. To some degree, all processes within an organism as

interrelated. As a result, many of the most intensively studied pathways in existing

pathway databases contain large numbers of genes (some number in the hundreds) and

many different subprocesses. The RTK pathway in Figure 13, for example, contains

several distinct processes. By choosing gene subsets of these large pathways, it was

possible to examine the effect of genes in closely related pathways on pathway

augmentation.

This chapter will first introduce the augmentation algorithm and scoring metric as

well as the data sets used in the analysis. Then, it will discuss the results of the cross-

validation in two separate sections: first focusing on the data sets used in Chapter 5 and

the first two backgrounds described above and then focusing on an ovarian data set and a

background of closely related subpathways.

Portions of this work on cross-validation in the human and yeast data sets

presented in Chapter 5 appeared previously in Novak and Jain 2006.

6.2. Materials and Methods

6.2.1. Augmentation algorithm and scoring metrics

The method used for pathway augmentation is described in Figure 21. In essence,

each gene is scored based on the recognition score for the pathway with that gene added.

Recall that the original scoring metric for pathway recognition was the median of all

gene-gene correlations within the gene set (Figure 8). Unfortunately, due to its reliance

on medians, this method results in a fair number of identical scores. In order to reduce the

 59

number of ties, another scoring metric was also tested: the average of the top 10% of all

gene-gene correlations within the gene set.

procedure augmentPathway(Gpath,GnotPath,E)
 spath = optimize(Gpath,E)
 pathScore = score(Gpath,spath,E)
 foreach gene g in GnotPath

 Gtest = Gpath ∪ g
 gscore = score(Gtest,spath,E)
 if (gscore > pathScore)
 results[g] = gscore
end

Figure 21. Pseudo-code for augmentation algorithm.
Only those genes that improve the score for the pathway gene set are likely candidates for pathway
membership.

6.2.2. Data and data processing

Three data sets were used to explore the utility of this augmentation algorithm.

The initial set of experiments was conducted using the two data sets described in Chapter

5 (NCI60 cell line data and Hughes yeast compendium data). The 101 pathways for

which all three permutation-based recognition p-values were less than 0.1 were used,

eliminating those pathways for which prediction would be unlikely to work. This filtering

matches the way in which a researcher would proceed in practice, where predicted

augmentations of a pathway in which the recognition process failed would not be

believed.

Sets of closely related subpathways were constructed using a data set of serous

ovarian tumors. This data set included CGH as well as expression data, allowing for the

formation of logical pathway submodules. The data set consisted of 50 snap-frozen

serous ovarian tumors from the UAB/Duke Ovarian Cancer SPORE, comprised of 23

patients that survived >60 months (long survivors) and 27 that survived <36 months

(short survivors)(Berchuck, Iversen et al. 2005). Samples in the data set were median-

 60

centered and had a log2 ratio calculated for each value by taking the value divided by the

average of all values for that gene and then taking the log base 2 of this ratio. To account

for outliers that affect the calculation of Pearson's correlation, the data were assigned

ranks prior to analysis. Specific pathways were chosen for the analysis from the KEGG

database (Kanehisa and Goto 2000) that focused on EGFR, PI3K and TGF-beta, which

are all implicated in ovarian cancer. These pathways were: MAPK signaling, calcium

signaling, cytokine-cytokine receptor interaction, phosphatidylinositol signaling, cell

cycle, TGF-beta signaling, focal adhesion, gap junction, and actin cytoskeleton

regulation.

6.3. Cross-validation of pathway augmentation using human and

yeast microarray data

For the 101 pathways from Chapter 5 where QPACA recognized the gene sets as

pathways, cross-validation experiments were performed by holding out random subsets

of known pathway genes and using QPACA’s scoring methodology to rank-order the

held-out pathway genes within a background of non-pathway genes (see Section 6.1.1 for

additional details). Figure 22 summarizes the results using two background gene sets: one

consisting of only of genes found in KEGG and the other of non-KEGG genes. Panel A

shows smoothed histograms of scores for holdout RTK pathway genes and non-pathway

genes (KEGG control gene set). The distributions are roughly normal, with the scores for

the RTK pathway genes clearly shifted to the right. The RTK case was fairly typical in

terms of enrichment of high scores within the pathway holdout set versus the non-

pathway set. Panel B shows the corresponding representative receiver-operating

characteristic (ROC) curve for the RTK pathway and for two other human pathways.

 61

Panels C and D of Figure 22 summarize cross-validation results for the full set of

101 tested pathways with two different backgrounds. In Panel C, the cumulative

distributions of ROC areas for the two control gene sets are shown. Both distributions are

highly skewed to the right of 0.5 (p < 10-6 by exact binomial), indicating that positive

enrichment for pathway genes over non-pathway genes occurs in the vast majority of

cases. The non-KEGG control gene population yields a slightly stronger enrichment.

Panel D shows cumulative histograms of maximal enrichment ratios for both control gene

populations. Given a specific portion of the top-ranked genes in a ranked list, the

enrichment reflects the ratio of the number of true positive genes found divided by the

number of such genes expected by chance. The maximal enrichment ratio is the highest

such ratio over the full range of possible proportions. Enrichments of 2-fold or better

occur for 60% and 70% of the pathways using the KEGG and non-KEGG control gene

sets, respectively. Enrichments of 10-fold or better occur in 12% and 20%, respectively.

Note that all of the results in Figure 22 resulted from running the subset optimization

procedure described previously. On the same set of 101 pathways, without running the

optimization procedure, the chief difference in the results is a marked increase in the

number of pathways for which the resulting ROC areas were significantly less than 0.5

(7% of non-optimized cross-validation runs yielded ROC areas < 0.485 compared with

0% of the runs with optimization).

 62

 0

 5

 10

 15

 20

 25

 30

 0.1 0.15 0.2 0.25 0.3

ycneuqer
F

Score

RTK Holdout Genes versus Other Genes

RTK Holdouts
Other Genes

a) b)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3

eta
R evitiso

P eur
T

Example ROC Curves: KEGG Control Genes

 0.4 0.5 0.6 0.7 0.8 0.9 1

False Positive Rate

RTK (ROC Area 0.71)
HSA00190 (ROC Area 0.80)
HSA04020 (ROC Area 0.50)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

noitropor
P evitalu

mu
C

ROC Area

Cumulative Histograms of ROC Areas

KEGG Control
Non-KEGG Control

c) d)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 2 5 10

noitropor
P evitalu

mu
C

Cumulative Histograms of Maximal Enrichments

 25

Maximum Enrichment

KEGG Control
Non-KEGG Control

Figure 22. Comprehensive pathway augmentation results from 101 human and yeast pathways.
(a) Smoothed histogram of scores for holdout RTK pathway genes (solid line) and non-pathway genes
(dashed line). The non-RTK-pathway genes were taken from the full set of KEGG genes that were not
found in the annotated RTK pathway. The distributions are roughly normal, with the scores for the RTK
pathway genes shifted to the right. (b) Three representative receiver-operating characteristic curves: RTK
pathway (solid line), two KEGG human pathways (dashed lines). The shift of the RTK holdout distribution
to the right of the non-pathway gene distribution yields a favorable ROC curve, with deflection into the
upper left corner, with an area of 0.71. HSA00190 (Oxidative phosphorylation) also shows a favorable
enrichment of known pathway genes against a background of non-pathway genes. HSA04020 (calcium
signaling pathway) shows an atypical case, with no enrichment of pathway genes over non-pathway genes.
(c) Cumulative distributions of ROC areas for all 101 pathways tested with two different backgrounds. The
solid line shows results using the KEGG gene set as the source of non-pathway genes for each pathway
holdout experiment. The dashed line shows similar results, but makes use of genes not annotated within
KEGG as the source of non-pathway genes. Both distributions are highly skewed to the right of 0.5,
indicating that positive enrichment for pathway genes over non-pathway genes occurs in the vast majority
of cases. The non-KEGG control gene population yields a slightly stronger enrichment. (d) Cumulative
histograms of maximal enrichment ratios for both control gene populations. Enrichments of 2-fold or better

 63

occur for 60% and 70% of the pathways using the KEGG and non-KEGG control gene sets, respectively.
Enrichments of 10-fold or better occur in 12% and 20%, respectively.

Recall that the RTK pathway (Figure 13) was a hand-curated representation of

genes downstream of receptor-tyrosine-kinase signaling, particularly emphasizing

pathways that affected cell-cycle regulation, proliferation, and apoptosis (each

particularly important in cancer). Also, note the nominally better enrichments observed in

using the non-KEGG genes as a control set as compared with the KEGG gene set. It is

possible that the high-scoring control genes from the KEGG population of nominally

non-RTK genes might, in fact, include genes that properly belonged to the RTK pathway,

based on existing literature evidence. The top 30 highest-scoring genes (the right-hand

tail of the “Other Genes” distribution from Figure 22a) were examined. Figure 23 depicts

the documented relationships of 12 of these genes to the RTK pathway as originally

curated. 15/30 of the highest-scoring KEGG genes (all nominal false positives in our

cross-validation experiment) properly belong to the RTK or very closely related

pathways.

 64

EGFR
ERBB2
EPHA2
HGFR

PIK3CB
PIK3CD
PIK3R1
PIK3R2
PIK3CA

SRC SOS1 PLCG1GAP1IP4BP

E2F1
E2F2
E2F3
E2F4

CCNE1
CCNA2

ARF1

CDK2

TP53

CDKN1A

MYC
MYCN

S-phase

HRAS
NRAS

RGL3

RAF1

AKT1
AKT2

GSK3B

MLLT7 BAD

PIP3 RACGAP1

CCND1CDK4

RB1

CCND2CDK6MDM2 CDKN2A CDKN1B TNFSF6

Apoptosis

RPS6KB1

PDK1

PTEN

Actin

DAG1 IP3

PKC

AP1M2

RAP1GDS1FOSB

Ca

RASGRP1

Cell adhesion

RALA

MAP2K1

MAPK3

ELK1

Cytoskeleton

Integrins,

VAV1

ZYX

SRF

CDKN2B

MAP3K10HD

BCL2L1

TTK

CDC20

ILK

RTK Pathway
IKBKE
PLCD1
DYRK4

GNAI2

DRD2

Figure 23. Pathway augmentation for the RTK pathway.
This image shows the original annotated RTK pathway as in Figure 13 with the 15/30 top scoring genes
that have documented links to the pathway. Interactions between highly scoring genes (yellow) with
annotated RTK pathway genes (gray) are highlighted in green (Gulbins, Schlottmann et al. 1995; Hall,
Bates et al. 1995; Yang, Zha et al. 1995; Hobert, Schilling et al. 1996; Watson, Robinson et al. 1997;
Bertagnolo, Marchisio et al. 1998; Delcommenne, Tan et al. 1998; Nagata, Puls et al. 1998; Das, Shu et al.
2000; Liu, Dorow et al. 2000; Moores, Selfors et al. 2000; Ohtoshi, Maeda et al. 2000; Zhang, Ho et al.
2001; Humbert, Bryson et al. 2002; Weinmann, Yan et al. 2002). Three additional genes (IKBKE, PLCD1,
and DYRK4) are shown unconnected to the existing diagram. These genes were members of closely related
pathways (MAPK signaling, Calcium signaling and Phosphatidylinositol signaling). DYRK4 is also a
tyrosine kinase (Becker, Weber et al. 1998; Zhang, Li et al. 2005).

6.4. Cross-validation of pathway augmentation using closely related

subpathways

As discussed in section 6.1.1, all processes within an organism are interrelated to

some degree. As a result, what KEGG curators have called a "pathway", especially in the

case of the larger pathways containing hundreds of genes, consists of modules that may

 65

share a connection, but which may not behave as a coordinated process. In fact, when

looking at heatmaps of expression data (such as Figure 24), it is possible to see distinct

clusters of coordinated genes within the many genes in a large pathway.

samples

ge
ne

s

Cell Cycle
hsa04110

Figure 24. Expression heatmap of Cell Cycle pathway.
Image of ovarian data for the KEGG Cell Cycle pathway (hsa04110) with over-expression colored in green
and under-expression colored in red. The image shows all of the genes in the pathway but only the 20
samples that most contribute to the coordination score as chosen by the QPACA optimization algorithm
during pathway recognition. The red and blue colored bar at the top of the heatmap indicates survival
status: short survivors in blue and long survivors in red. The genes in this pathway can be seen to form at
least two fairly distinct coordination modules, divided into a large module which is largely down-regulated

 66

in the left half of the samples (all short survivors) and up-regulated on the right (mainly long survivors).
There is a smaller cluster of genes at the bottom that shows the opposite behavior.

In light of these observations, it makes sense to consider smaller subsets of the

pathway genes. These gene subsets also enable the formation of subpathways that are

known to be closely related and can be used to further examine the efficacy of pathway

membership augmentation using the QPACA algorithm.

This analysis will focus on subpathways in the ovarian data set that were formed

based on both the defined structure of the pathway as well demonstrated relevance to

ovarian cancer based on aCGH data.

6.4.1. Subpathway creation

Subpathways were defined based on the super-pathway's structure and a set of

"core" genes. Since the data set contained both aCGH and expression data, it was

possible to rigorously select several biologically interesting genes that were both highly

deregulated on the genomic level in ovarian cancer and had expression levels that

strongly correlated with the copy number variation. The first of these criteria ensures that

the chosen genes are relevant to the genomic disturbances specific to ovarian cancer. The

second criteria guarantees that the expression levels for these genes are related to these

genomic disturbances.

Specifically, genes with (1) a corresponding CGH clone that had an absolute

difference value of ≥ 0.2 in at least 30 samples and (2) an absolute value of the Pearson's

correlation of aCGH to expression data of at least 0.5 were chosen. These selection

criteria resulted in a list of 613 Affymetrix identifiers, corresponding to 443 unique

annotated genes. Each of the selected pathways contained between one and four of these

genes (see Table 4 for a complete list of pathways and core genes). Neighborhoods of 25-

 67

60 genes (depending on the density of the surrounding pathway interactions) were chosen

around these genes and defined as "subpathways". A sample image of the cell cycle

pathway, highlighting the subpathways, can be seen in Figure 25. Core genes are

highlighted in red.

SMAD4

RBL1
RBL2

RB1

CDK2

E2F2
E2F4

CDC6

CDK7CCNH

MCM2
MCM3
MCM4
MCM5
MCM6
MCM7

DBF4 CDC7

PLK1

CHEK1
CHEK2

TP53

ATM ATR

BUB1BUB3

BUB1B MAD1L1

CCNE1
CCNE2

TFDP1

ANAPC10
ANAPC2
ANAPC4
ANAPC5
ANAPC7

ANAPC11
ANAPC1
CDC23
CDC16
CDC27

HDAC1
HDAC2

MAD2L2
MAD2L1

SKP1A
CUL1
RBX1

CDC14C
CDC14B
CDC14A

YWHAQ
LOC440917

YWHAB
YWHAE
YWHAG
YWHAH
YWHAZ

CDC25B
CDC25C

CDC25A

CREBBP
EP300

ESPL1

SMC1L2
SMC1L1

GADD45G
GADD45A
GADD45B

CCNB3
CCNB1
CCNB2

PCNA

TGFB1
TGFB2
TGFB3

SMAD2
SMAD3

CCNA2
CCNA1

CDK4
CDK6

CCND1
CCND2
CCND3

ORC6L
ORC3L
ORC1L
ORC2L
ORC4L
ORC5L

ABL1

PKMYT1

SFN

PRKDCMDM2

WEE1

CDC45L

GSK3B

CDKN2A
CDKN2B
CDKN2C
CDKN2D

CDC20

PTTG2
PTTG1

FZR1

SKP2

CDKN1A

CDKN1B
CDKN1C

Cell cycle

E2F5

E2F1

CDC2

Figure 25. Subpathways in the Cell Cycle pathway (hsa04110).
The large shaded areas indicate subpathways centered on 3 core genes (HDAC2, WEE1, and CDK7),
which are colored red. The core genes are both highly deregulated at the genomic level in ovarian cancer
and have expression levels that correlate strongly with the copy number variation. The subpathway
centering on WEE1 is colored in pink; the one centering on HDAC2 is in yellow, and the one centering on
CDK7 is in blue. The entire pathway as well as all three subpathways were correctly recognized as being
significantly coordinated using the ovarian cancer expression data set, making them good candidates for
exploration of QPACA’s predictive ability.

 68

6.4.2. Results

Prior to examining pathway augmentation in these subpathways, it is always

necessary to determine pathway recognition using the data set. In the subpathways based

on core genes, 76% had significant recognition scores, which is consistent with the

proportion observed in the Chapter 5. Of note is that some subpathways derived from the

same super-pathways are unrelated to each other in the sense of co-regulation. This

observation is not unexpected given both the distinct coordination modules and the

existence of distinct subprocesses in large curated pathways. Just as some samples in a

large data set do not contribute equally to strong coordination between the genes, some

genes in a large pathway may not show variance on the expression level. Results of the

analysis can be seen in Table 4.

Table 4. Results for pathway recognition in subpathways.

a) Super pathway name
b) Core gene

name
c) Genes in

subpath
d) Recog.
p-value

e) Recog.
score

KRAS 45/54 0 0.115
PAK2 30/34 0 0.154 hsa04010: MAPK signaling

MAP2K7 26/28 0.024 0.125
ATP2B4 50/56 0.306 0.044 hsa04020: Calcium signaling RYR1 39/44 0 0.205

hsa04060: Cytokine-cytokine receptor interaction TNFRSF10B 7/8 0.054 0.455
BCR, DYRK4 23/27 0.032 0.136 hsa04070: Phosphatidylinositol signaling PIP5K1A, PIK4CB 27/29 0.02 0.119

CDK7 32/33 0 0.343
HDAC2 36/38 0 0.274 hsa04110: Cell cycle
WEE1 32/38 0 0.413

hsa04350: TGF-beta signaling PPP2CB 36/41 0 0.174
KRAS 31/36 0 0.132
PAK2 32/38 0 0.121
PTK2 46/49 0.32 0.049 hsa04510: Focal adhesion

CAPNS1 42/46 0.118 0.062
hsa04540: Gap junction KRAS 34/38 0.002 0.126

KRAS 37/39 0.01 0.088
PAK2 22/29 0.542 0.095
PTK2 30/36 0 0.161 hsa04810: Actin cytoskeleton regulation

PIP5K1A 25/31 0.002 0.151
Column (a) gives the pathway ID and name; column (b) specifies the subpathway core gene; column (c)
indicates the number of genes that both belonged to the pathway and were represented in the expression
data set over the total number of genes in the pathway; column (d) lists the p-value for pathway recognition
and column (e) lists the recognition score.

 69

Once a pathway has been determined to exhibit coordinated behavior based on a

data set, non-pathway genes can then be assigned scores using the pathway augmentation

algorithm (Figure 21). As in the previous cross-validation experiments in human and

yeast data described above, holdout experiments were run on the subpathways in which a

random 10% of genes were heldout during the optimization step. Then these heldout

genes were scored along with the non-pathway genes. Enrichment was observed for

known subpathway genes (Figure 26).

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 100 50 25 10 5 2 1

C
um

ul
at

iv
e

P
ro

po
rt

io
n

Maximum Enrichment

Cumulative Histograms of Maximal Enrichments

KEGG Control
Non-KEGG Control

Pathway Control

Figure 26. Comprehensive pathway augmentation results for all subpathways.
Cumulative histograms of maximal enrichment ratios for all control gene populations: all genes found in
the associated superpathway (dashed line), all genes found in other KEGG pathways(solid line), and all
genes not found in KEGG (dotted line). Enrichments of 2-fold or better occur for about 40% of the
pathways using any of the gene sets. Enrichments of 10-fold or better occur in 5% of the pathway gene set,
14% of the KEGG gene set and 24% of the non-KEGG gene set.

Of note is the effect of testing against a background of closely related

subpathways (denoted as "Pathway Control"). As predicted, the enrichment for heldout

genes is lowest against this background, indicating that the more closely related a gene is

to the pathway, the more likely it is that it will have a high coordination score.

 70

6.5. Conclusion

Once a set of genes is known to represent a pathway and is recognized given a

particular dataset, the next obvious avenue of research is computational augmentation of

this pathway. This chapter addressed this problem and demonstrated QPACA's ability to

significantly enrich for pathway genes over non-pathway genes in making predictions of

putative pathway members. QPACA was able to yield enrichments for predicted pathway

genes over random genes at rates of 2-fold or better the majority of the time, with rates of

10-fold or better 10–20% of the time, depending on the control gene set used. It was

compared to three different control gene sets (genes not known to belong to any pathway,

genes belonging to other pathways, and genes belonging to closely related subpathways)

in several different data sets. While enrichment rates on the level of 2-fold may or may

not be of practical significance, rates of 10-fold or higher are more likely to help

prioritize experimental exploration of candidate genes for elaborating pathways of

particular biological interest. Of particular note is the observation that genes known to be

closely related to a pathway are more likely to score highly under the pathway

augmentation algorithm.

The next chapter will explore the synergy that arises by combining sequence-

based analytical methods (specifically, motif finding in gene promoter sets) with the

information derived from measurements of variation in gene expression.

 71

Chapter 7 The Relevance of Sequence

Patterns to QPACA
The previous two chapters addressed two steps in pathway structure elucidation using

gene expression data. First, given a gene set postulated to be part of a pathway or

coordinated process, QPACA demonstrated the ability to discriminate between real

pathways and non-pathways. Second, given a gene set known to represent part of a

pathway, QPACA was then able to significantly enrich for pathway genes over non-

pathway genes in making predictions of putative pathway members. The first problem

was termed pathway recognition and the second pathway augmentation. Specifically, for

the pathway recognition problem, in 61% of cases known pathways (83% for larger

pathways), QPACA was able to answer affirmatively while rejecting random pathways

over 95% of the time. For the pathway augmentation problem, QPACA was able to yield

enrichments for predicted pathway genes over random genes at rates of 2-fold or better

the majority of the time, with rates of 10-fold or better 10–20% of the time depending on

the background used. While enrichment rates on the level of 2-fold may or may not be of

practical significance, it is likely that rates of 10-fold or better may help prioritize

experimental exploration of candidate genes for elaborating pathways of particular

biological interest. Additionally, Chapter 6 also introduced the idea that gene sets are

 72

recognized as pathways not because all genes within them are cross-correlated, but rather

because individual genes grouped together to form highly coordinated expression

modules.

The surprising feature of the results from the previous two chapters is that the

results for pathway recognition and augmentation were made possible based on the

patterns of variation in gene expression alone. No information regarding protein levels,

phosphorylation states, or pairwise physical interactions was required. The natural

question is why it was possible to deduce aspects of pathway structure, as defined by

human curators based on knowledge of the experimental biological literature, from

expression patterns. The most appealing answer is that the transcriptional programs that

govern expression behave in a manner that frequently yields experimentally detectable

patterns of co-variation among gene sets within pathways. If this were so, it should be

possible to identify motifs and/or specific transcription factors that are present, at least

within subsets of pathway genes that themselves exhibit the coordinated behavior that

QPACA detects in differentiating true pathways from non-pathways and in yielding

better than random enrichments in producing ranked lists of potential new pathway

members.

In this chapter, this avenue is explored by combining sequence-based analytical

methods (e.g. motif finding in gene promoter sets) with the information derived from

measurements of variation in gene expression or protein levels. The remainder of this

chapter will describe some preliminary data that supports the idea that simultaneously

considering transcription factor analysis and pathway gene expression coordination may

enhance the ability to make novel pathway membership predictions.

 73

7.1. Introduction

As discussed previously in Chapter 6, gene sets are recognized as pathways not

because all genes in them are cross-correlated, but because some genes form highly

coordinated expression modules. These gene modules are evident in Figure 24.

Since this phenomenon does not appear to be strongly related to the curated

pathway structure, the obvious question is which biological process or processes direct

the expression clustering. Expression data directly measures the relative transcription of

genes into mRNA, and it is reasonable to assume that transcription factors, which are

instrumental to this process, may play a role in the composition of the expression

modules. Common, and perhaps overlapping, transcription factors driving different genes

could account for this observation.

To examine this hypothesis, a method for deterministic motif identification was

used to identify putative transcription factor binding sites in the expression gene clusters.

Several motifs known to affect the genes in question were identified. Additionally, tightly

clustered genes were better at finding consistent motifs than randomly selected gene sets.

7.2. Methods

7.2.1. Data

Two separate data sets were used in this analysis: the ovarian data set described in

Chapter 6 and the pancreatic cancer cell line data set introduced in Chapter 4, section 4.4.

Recall that the pancreatic data set consisted of cell lines that were both treated and

untreated with CI-1040, a selective MAP2K1 and MAP2K2 inhibitor.

 74

The ovarian data set analysis focused on the Cell Cycle pathway, which had also

been examined using the subpathway analysis in Chapter 6. The ovarian data set allowed

a comparison to be made between using pathway structure-based gene sets (subpathways,

see Section 6.4.1) and expression-based gene clusters.

The pancreatic data set was analyzed in the context of several pathways, chosen

specifically for their relevance both to MAPK signaling as well as two well-characterized

transcription factors: E2F and NF-kappaB. These pathways included MAPK signaling

(hsa04010), natural killer cell mediated cytotoxicity (hsa04650), focal adhesion

(hsa04510), cell cycle (hsa04010), and cytokine-cytokine receptor interaction

(hsa04060). Focusing on pathways that incorporate well-known transcription factors

allowed direct comparison of the MaMF derived motifs to the known motifs.

7.2.2. Cluster formation

First, the QPACA pathway recognition algorithm was run to generate a set of

samples particularly relevant to overall coordination within the entire pathway gene set.

Then, gene sets representing distinct expression modules were created using K-means

clustering on the data sets limited to the selected samples. In the Cell Cycle pathway

using the ovarian data set, for example, six clusters were formed (Table 5).

The number of clusters and the cluster size were constrained by several practical

considerations. For this analysis, MaMF (Hon and Jain 2006) was used for motif

identification. MaMF was chosen for its performance in mammalian motif finding, and in

particular because it was designed for and evaluated against human data. MaMF requires

that the input gene sets have at least three genes in order to form a coherent result. In

addition, due to computational limitations, clusters of more than 50 genes were split into

 75

smaller clusters. Given a set of promoter sequences, MaMF produces a ranked list of

putative motifs, each with a numerical score that combines sequence similarity among the

subsequences comprising the motif with the uniqueness of the subsequences given the

background distribution of sequences within the organism under study.

As a result, each pathway split into different numbers of clusters to stay within

these parameters (see Table 5 for a breakdown of pathway and cluster composition).

Table 5. Pathway clusters.

Data set Pathway
Genes in
pathway

Number
of clusters

Ovarian tumors Cell cycle (hsa04110) 102 6

Pancreatic cell lines

Cell cycle (hsa04110)
MAPK signaling (hsa04010)
Natural killer cell mediated cytotoxicity (hsa04650)
Focal adhesion (hsa04510)
Cytokine-cytokine receptor interaction (hsa04060)

102
236
61
154
230

5
13
6

11
19

The larger the pathway, the more clusters needed to be created. The discrepancy between the number of
clusters for the Cell Cycle pathway in the ovarian data set versus the pancreatic data set is attributable to
the fact that dividing the genes into 6 clusters using the pancreatic data set resulted in a cluster that
contained only one gene.

7.2.3. MaMF setup and evaluation

MaMF was used to find putative transcription factor binding sites that were

common to each cluster of genes or subpathway. MaMF was used with the default set of

parameters as described in (Hon and Jain 2006). Specifically, the following parameters

were used: the width of the motif search was set to 11 bp; the nmer size used was 4 bp;

and the number of seeds was set to 1000. Gene promoter sequences were gathered from

the Database of Transcription Start Sites (DBTSS), Version 5.2.0 (Yamashita, Suzuki et

al. 2006). The 14628 unique sequences consisted of –1000 and +200 bp around the

transcription start site. This version was based on the UCSC hg17 genome sequence

release and had already been repeat masked. A background distribution was constructed

by MaMF based on the count with mutations method as used in (Hon and Jain 2006).

 76

Putative binding sites for pathway based gene sets were evaluated in two ways: 1)

qualitative comparison to known binding motifs found in the TransFac database of

transcription factors (Matys, Kel-Margoulis et al. 2006) and 2) quantitative comparison to

randomly selected gene sets. The random gene sets were selected to have the same

number of genes as the pathway-based gene sets with no overlap between the two.

 77

7.3. Results and discussion

7.3.1. Analysis of E2F binding sites in ovarian tumors

SMAD4

RBL1
RBL2

RB1

CDK2

E2F2
E2F4

CDC6

CDK7CCNH

MCM2
MCM3
MCM4
MCM5
MCM6
MCM7

DBF4 CDC7

PLK1

CHEK1
CHEK2

TP53

ATM ATR

BUB1BUB3

BUB1B MAD1L1

CCNE1
CCNE2

TFDP1

ANAPC10
ANAPC2
ANAPC4
ANAPC5
ANAPC7

ANAPC11
ANAPC1
CDC23
CDC16
CDC27

HDAC1
HDAC2

MAD2L2
MAD2L1

SKP1A
CUL1
RBX1

CDC14C
CDC14B
CDC14A

YWHAQ
LOC440917

YWHAB
YWHAE
YWHAG
YWHAH
YWHAZ

CDC25B
CDC25C

CDC25A

CREBBP
EP300

ESPL1

SMC1L2
SMC1L1

GADD45G
GADD45A
GADD45B

CCNB3
CCNB1
CCNB2

PCNA

TGFB1
TGFB2
TGFB3

SMAD2
SMAD3

CCNA2
CCNA1

CDK4
CDK6

CCND1
CCND2
CCND3

ORC6L
ORC3L
ORC1L
ORC2L
ORC4L
ORC5L

ABL1

PKMYT1

SFN

PRKDCMDM2

WEE1

CDC45L

GSK3B

CDKN2A
CDKN2B
CDKN2C
CDKN2D

CDC20

PTTG2
PTTG1

FZR1

SKP2

CDKN1A

CDKN1B
CDKN1C

Cell cycle

E2F5

E2F1

CDC2

Figure 27. Cell cycle pathway (hsa04110) showing clustering, subpathways, and known E2F motifs.
The large shaded areas indicate subpathways centered on core genes (CDK7:blue, WEE1:pink,
HDAC7:yellow) as shown in Figure 25. The genes are colored based on a K-means clustering of their
expression co-variation using a QPACA optimized subset of the ovarian data set. Circled genes are known
targets of E2F (includes: CCNA2, CDC2, CDC6, CDC25A, CCND1, CCNE1, E2F1, E2F2, ORC1L,
PCNA, RB1, RBL1). MAMF identified E2F motifs based on the whole collection of genes, either
subnetwork, or the k-means cluster sets. The K-means motifs had the strongest match to known E2F motifs.

Figure 27 shows the distribution of the gene clusters in the pathway as well as the

location of the subpathways defined in Section 6.4.1. This pathway contains 12 known

 78

E2F target genes, of which 11 are represented in the data set. The purple and yellow

clusters contain four; the green cluster has two, and the orange cluster has one. Within

each cluster, the expression is highly coordinated, but the clusters do not co-vary with

one another. This is consistent with the finding that a large number of other motifs co-

occur with E2F and are likely to be biologically active.(Hon and Jain 2006) Specifically,

AhR, NF-1, EGR, SMAD, CREB, TBP, AP-2, SP1, MYC, ETS, and other transcription

factors have been identified as being functional within the same promoter as E2F.

Using MaMF to survey all of the promoters of the genes in the Cell Cycle

pathway, E2F is the top scoring motif found (see Table 6). It was also found using each

of the three subpathways as well as the expression module clusters. The strongest match

to the known E2F consensus sequence was found when considering those gene sets with

the largest number of genes with known E2F binding sites. Additionally, the expression

modules did far better at finding the known E2F binding motifs than the subpathways,

supporting the idea that these expression modules are, in fact, related to transcription

factor activity. Finally, in addition to matching known E2F motifs, the MaMF generated

motifs also matched other known TransFac motifs, many of which are known to co-occur

with E2F. Specifically, motifs matching AhR, NF-1, SMAD, and Sp-1 were often present

in the top 30 generated motifs.

The gene sets that resulted in particularly good E2F matches also resulted in a

larger number of matches to these co-occurring motifs. Although this is just a single

example, it is instructive. While E2F is ubiquitous (and largely annotated as such) within

the different parts of the Cell Cycle pathway, the clusters that were identified by QPACA

showed strong co-variation among intra-cluster genes but not among inter-cluster genes.

 79

A number of high-scoring motifs were identified that co-occurred with E2F

within these clusters, but a large number of high-scoring motifs did not have an annotated

known transcription factor associate with them within TRANSFAC. In Hon and Jain’s

original paper, a similar feature was noted, where it was shown that the high-scoring

motifs were likely to be biologically important due to underlying coherent expression

effects. Here, a different approach will be used, making use of the pancreatic cancer cell

line data.

Table 6. Selected MaMF motifs that are similar to E2F.

Gene set
Genes
in set

Genes w/
known
E2F BS

Total
E2F

matches
Motif

similarity
Motif
rank Motif consensus

all 94 11 55 0.85 2 ttcGCGCCAAac
CDK7 33 8 26 0.64 7 gCGcCCGGGAArg

HDAC2 38 9 30 0.74 25 CGsTccCGCCAccy
sub-

pathways
WEE1 35 3 17 0.66 5 tgcCGGCCAAa.

1 red 2 0 7 0.78 28 TCTCCCGCCAGG

2 blue 2 0 7 0.73 28 GTTCTCCCGCGGCCAGs

3 yellow 21 4 23 0.81 25 TtCGCGCCaAgm

4 green 35 2 30 0.78 11 TTCrCGcgAAAst

5 orange 12 1 20 0.68 11 ggcgCGGGAAAct.G

clusters

6 purple 22 4 31 0.83 1 TTCgCGcgAAA.

 ttCgCGCCAAac

Gene sets were derived from the Cell Cycle pathway and the ovarian data set (see Table 5 for composition).
The discrepancy between the number of genes listed for each set in this table and in previous tables is due
to mapping between Entrez Gene IDs and Refseq IDs. Genes with known E2F binding sites were derived
from the TransFac database (version 7.0 - public). The motif shown is the best scoring motif in the top 30
motifs found by MaMF. Note that those gene sets with larger numbers of known E2F genes also had higher
scoring E2F motifs found. Underlined sequence is the 11 bp motif found by MaMF; additional sequence
was obtained from the surrounding sequence. Capitalized nucleotides are highly conserved (>50% of the
contributing sequences contain that nucleotide at that position). The motif in bold at the bottom is the
annotated E2F consensus sequence.

7.3.2. Permutation analysis of MaMF generated motifs in pancreatic

cancer cell lines

A more rigorous statistical analysis was performed using the pancreatic data set in

order to explore two questions generated by the above analysis: (1) did the high scoring

motifs found by MaMF using expression modules occur simply by chance and (2) did the

 80

use of QPACA generated sample subsets affect the performance of the expression

modules (would expression modules generated from the entire data set have a harder time

finding relevant motifs).

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
um

ul
at

iv
e

pr
op

or
tio

n

p-value

Distribution of MaMF score p-values

with QPACA subsetting
without QPACA subsetting

Figure 28. Distribution of MaMF score p-values for all expression modules.
Using expression modules, MaMF is able to find better motifs than those found using random gene sets.
The QPACA subsetting algorithm, however, does not seem to enhance MaMF's performance.

Given that a large number of the high-scoring motifs that MaMF found lacked

any annotated known TF, it is natural to question whether motifs with competitive scores

would have arisen by chance. To assess this probability, a null distribution of motifs was

generated by MaMF using 100 random gene sets of the same size as the expression

modules from the pancreatic cell line data set. The p-value for the motifs of a given

module is the percentage of MaMF runs on random gene sets that resulted in higher

scores than the corresponding expression module. Using this statistical measure, 75% of

the expression modules were found to have significantly higher scores than random (see

Figure 28). That is, the actual expression modules within the pancreatic cell line data set

were strongly enriched for high-scoring motifs as detected by MaMF. In this particular

 81

case, it did not appear that the QPACA subsetting made a significantly impact on

MaMF's ability to find high scoring motifs within expression modules identified without

subsetting, but this is of less consequence. QPACA's subsetting algorithm is particularly

powerful in fairly heterogeneous data sets because it is able to tease out signal from the

noise of the uninvolved samples. In this case, all of the samples were related and this may

have created a strong enough expression signal without a need for subsetting.

The key finding is that based on the enrichment for high-scoring motifs from the

pathway expression modules, it seems likely that some significant fraction of the motifs

that were found actually have biological significance. This argument can be strengthened

by considering the fact that the pathways that were chosen for the pancreatic cancer

analysis were enriched for genes known to contain E2F and NF-kappaB binding sites.

Therefore, it is possible to compare which motifs were found for different pathways.

Those pathways that were enriched for genes with E2F binding sites resulted in more

E2F-like motifs than the pathways enriched for NF-kappaB genes and vice versa. So,

analysis of the promoters of genes within the expression modules yielded both known TF

motifs and high-scoring motifs of unknown provenance. Based on the enrichment of

high-scoring motifs versus random gene sets, it appears that some interaction among the

known TFs within these pathways as well as a significant number of additional, non-

annotated TFs is responsible for some of the signal that QPACA is able to make use of in

pathway recognition and augmentation tasks.

This preliminary data supports the idea that expression modules are related to

transcription factor activity and that the involvement of transcription factors in gene

expression may be useful in predicting pathway structure. Defining expression modules

 82

was a bottleneck in this analysis, and a more automated approach to module selection

would enhance future work in this direction. It is clear from the subpathway and cluster

analyses that, just as not all samples are necessarily involved in an expression signature,

not all genes are involved either. Thus, one possible approach to this issue is a

modification of the QPACA subsetting algorithm to include gene subsetting as well as

sample subsetting. This simultaneous optimization of gene set and sample set would

identify more strongly coordinated transcriptional modules than studied here as the basis

for further exploration.

 83

Chapter 8

Conclusion and future directions
This work has described both the development and application of QPACA, a tool

for pathway analysis. QPACA incorporates several facets of pathway analysis: pathway

visualization and definition, visual analysis of experimental data, and computational

pathway recognition and pathway membership prediction.

Chapter 1 and Chapter 2 introduced both the importance of pathway analysis for

the elucidation of systems biology as well as current research efforts in this field.

Pathway analysis is still expanding with many competing and sometimes overlapping

pathway and data storage systems as well as many variations on algorithms to augment

pathway membership and structure. While exchange standards such as BioPAX are

emerging in an effort to unify the disparate pathway databases, these efforts are still not

robust enough to cover all pathway types and instances.

Chapter 3 described the development of QPACA, covering the pathway model,

the optimization algorithm at the heart of QPACA's analytical methods, and the system

architecture. QPACA’s pathway representation was designed to be flexible, extensible

and accessible. It is integrated into the Magellan data analysis application for easy use by

biologists and can import pathway data in three separate formats: BioPAX, KEGG, and

 84

the QPACA language. QPACA’s utility in providing visual analysis of experimental data

was demonstrated in Chapter 4 using several different types of human cancer data.

Chapter 5 and Chapter 6 addressed two steps in pathway structure elucidation

using gene expression data. First, given a gene set postulated to be part of a pathway or

coordinated process, QPACA demonstrated the ability to discriminate between real

pathways and non-pathways. Second, given a gene set known to represent part of a

pathway, QPACA was then able to significantly enrich for pathway genes over non-

pathway genes in making predictions of putative pathway members. The first problem

was termed pathway recognition and the second pathway augmentation. Specifically, for

the pathway recognition problem, in 61% of cases known pathways (83% for larger

pathways), QPACA was able to answer affirmatively while rejecting random pathways

over 95% of the time. For the pathway augmentation problem, QPACA was able to yield

enrichments for predicted pathway genes over random genes at rates of 2-fold or better

the majority of the time, with rates of 10-fold or better 10–20% of the time depending on

the background used. While enrichment rates on the level of 2-fold may or may not be of

practical significance, it is likely that rates of 10-fold or better may help prioritize

experimental exploration of candidate genes for elaborating pathways of particular

biological interest. Additionally, Chapter 6 also introduced the idea that gene sets are

recognized as pathways not because all genes within them are cross-correlated, but rather

because individual genes form highly coordinated expression modules. By employing an

automated method for identifying relevant sample subsets, QPACA has proved to be able

to handle complex pathways relevant to major disease processes in humans.

 85

There are several major areas for future work. First, the recognition and prediction

algorithms can be extended to make use of new scoring metrics and optimization

strategies. Given that the first, very simple, scoring metric yielded positive results, a more

refined scoring metric would possibly be able to tease more information out of the data.

The refined scoring metric presented at the end of Chapter 6 to deal with excessive

prediction score ties is a simple example of this type of modification. Other metrics,

which would allow both direction and magnitude to be taken into account in determining

the score, can be considered that move beyond the simple correlation metric presented

here. In particular, metrics that include pathway structure information could be

particularly fruitful (e.g. by making use of graph-based algorithms that identify minimum

spanning trees, maximum flow networks, etc.). Yet more challenging problems, including

recognition and prediction of interactions (edges in the pathway graph) and full pathway

induction (as opposed to just membership augmentation) are also areas for further

research.

Chapter 7 explored the synergy that could arise by combining sequence-based

analytical methods (e.g. motif finding in gene promoter sets) with the information derived

from measurements of variation in gene expression or protein levels. The existence of the

highly coordinated expression modules observed in Chapter 6 appears to stem, in part,

from a set of common transcription factors that control the genes' regulation. Though

many of the motif patterns that appear to be important within expression submodules of

the pathways are not similar to known transcription factors.

This work has developed representational machinery for encoding knowledge

about the biological networks that researchers conceptualize as “pathways.” The

 86

computational approaches developed for performing analyses and making predictions

about the composition and structure of these pathways have yielded an unexpected result:

that it is frequently possible, in a human cellular system, to detect aspects of pathway

structure from patterns of variation in gene expression. The signal from these variations

manifests as small groups of genes among which expression is strongly coordinated

(within some set of experimental conditions or samples), where many of these groups

comprise a pathway. There appears to be little relationship, however, between the

membership of these transcriptional modules and physical interactions of the sort that are

typically depicted in curated pathway representations. It appears that the influence of

transcription factors may explain a significant fraction of this puzzle, but the degree of

multi-factorial control through transcription factor binding motifs in human cell biology

may be more complex than has been contemplated. By combining data analysis, pathway

knowledge, expression data, and sequence data it should be possible to tease out more

pieces of the puzzle.

 87

References
Akutsu, T., S. Miyano, et al. (2000). "Algorithms for identifying Boolean networks and

related biological networks based on matrix multiplication and fingerprint
function." J. Comput. Biol. 7(3-4): 331-43.

Arkin, A., J. Ross, et al. (1998). "Stochastic kinetic analysis of developmental pathway
bifurcation in phage lambda-infected Escherichia coli cells." Genetics 149(4):
1633-48.

Arkin, A., P. Shen, et al. (1997). "A Test Case of Correlation Metric Construction of a
Reaction Pathway from Measurements." Science 277(5330): 1275-1279.

Bader, G. D., M. P. Cary, et al. (2006). "Pathguide: a pathway resource list." Nucleic
Acids Res 34(Database issue): D504-6.

Becker, W., Y. Weber, et al. (1998). "Sequence characteristics, subcellular localization,
and substrate specificity of DYRK-related kinases, a novel family of dual
specificity protein kinases." J Biol Chem 273(40): 25893-902.

Berchuck, A., E. S. Iversen, et al. (2005). "Patterns of gene expression that characterize
long-term survival in advanced stage serous ovarian cancers." Clin Cancer Res
11(10): 3686-96.

Bertagnolo, V., M. Marchisio, et al. (1998). "Nuclear association of tyrosine-
phosphorylated Vav to phospholipase C-gamma1 and phosphoinositide 3-kinase
during granulocytic differentiation of HL-60 cells." FEBS Lett 441(3): 480-4.

D'Haeseleer, P., X. Wen, et al. (1999). "Linear modeling of mRNA expression levels
during CNS development and injury." Pac. Symp. Biocomput.: 41-52.

Dahlquist, K. D., N. Salomonis, et al. (2002). "GenMAPP, a new tool for viewing and
analyzing microarray data on biological pathways." Nat Genet 31(1): 19-20.

Das, B., X. Shu, et al. (2000). "Control of intramolecular interactions between the
pleckstrin homology and Dbl homology domains of Vav and Sos1 regulates Rac
binding." J Biol Chem 275(20): 15074-81.

Delcommenne, M., C. Tan, et al. (1998). "Phosphoinositide-3-OH kinase-dependent
regulation of glycogen synthase kinase 3 and protein kinase B/AKT by the
integrin-linked kinase." Proc Natl Acad Sci U S A 95(19): 11211-6.

Elnitski, L., V. X. Jin, et al. (2006). "Locating mammalian transcription factor binding
sites: a survey of computational and experimental techniques." Genome Res
16(12): 1455-64.

Friedman, N., M. Linial, et al. (2000). "Using Bayesian networks to analyze expression
data." J. Comput. Biol. 7(3-4): 601-20.

 88

Gulbins, E., K. Schlottmann, et al. (1995). "Molecular analysis of Ras activation by
tyrosine phosphorylated Vav." Biochem Biophys Res Commun 217(3): 876-85.

Gysin, S., P. Rickert, et al. (2005). "Analysis of genomic DNA alterations and mRNA
expression patterns in a panel of human pancreatic cancer cell lines." Genes
Chromosomes Cancer 44(1): 37-51.

Hall, M., S. Bates, et al. (1995). "Evidence for different modes of action of cyclin-
dependent kinase inhibitors: p15 and p16 bind to kinases, p21 and p27 bind to
cyclins." Oncogene 11(8): 1581-8.

Hartemink, A. J., D. K. Gifford, et al. (2001). "Using graphical models and genomic
expression data to statistically validate models of genetic regulatory networks."
Pac. Symp. Biocomput.: 422-33.

Hobert, O., J. W. Schilling, et al. (1996). "SH3 domain-dependent interaction of the
proto-oncogene product Vav with the focal contact protein zyxin." Oncogene
12(7): 1577-81.

Hon, L. S. and A. N. Jain (2006). "A deterministic motif finding algorithm with
application to the human genome." Bioinformatics 22(9): 1047-54.

Hughes, T. R., M. J. Marton, et al. (2000). "Functional discovery via a compendium of
expression profiles." Cell 102(1): 109-26.

Humbert, S., E. A. Bryson, et al. (2002). "The IGF-1/Akt pathway is neuroprotective in
Huntington's disease and involves Huntingtin phosphorylation by Akt." Dev Cell
2(6): 831-7.

Ideker, T., V. Thorsson, et al. (2001). "Integrated genomic and proteomic analyses of a
systematically perturbed metabolic network." Science 292(5518): 929-34.

Ihmels, J., G. Friedlander, et al. (2002). "Revealing modular organization in the yeast
transcriptional network." Nat Genet 31(4): 370-7.

Jain, A. N., K. Chin, et al. (2001). "Quantitative analysis of chromosomal CGH in human
breast tumors associates copy number abnormalities with p53 status and patient
survival." Proc Natl Acad Sci U S A 98(14): 7952-7.

Jansen, R., H. Yu, et al. (2003). "A Bayesian networks approach for predicting protein-
protein interactions from genomic data." Science 302(5644): 449-53.

Kanehisa, M. (1997). "A database for post-genome analysis." Trends Genet 13(9): 375-6.
Kanehisa, M. and S. Goto (2000). "KEGG: kyoto encyclopedia of genes and genomes."

Nucleic Acids Res 28(1): 27-30.
Kanehisa, M., S. Goto, et al. (2004). "The KEGG resource for deciphering the genome."

Nucleic Acids Res 32(Database issue): D277-80.
Karp, P. D., M. Riley, et al. (2002). "The EcoCyc Database." Nucleic Acids Res 30(1):

56-8.
Kitano, H. (2002). "Systems biology: a brief overview." Science 295(5560): 1662-4.
Kohn, K. W. (1999). "Molecular interaction map of the mammalian cell cycle control and

DNA repair systems." Mol. Biol. Cell 10(8): 2703-34.
Liang, S., S. Fuhrman, et al. (1998). "Reveal, a general reverse engineering algorithm for

inference of genetic network architectures." Pac. Symp. Biocomput.: 18-29.
Liu, Y. F., D. Dorow, et al. (2000). "Activation of MLK2-mediated signaling cascades by

polyglutamine-expanded huntingtin." J Biol Chem 275(25): 19035-40.

 89

Matys, V., O. V. Kel-Margoulis, et al. (2006). "TRANSFAC and its module
TRANSCompel: transcriptional gene regulation in eukaryotes." Nucleic Acids
Res 34(Database issue): D108-10.

Moores, S. L., L. M. Selfors, et al. (2000). "Vav family proteins couple to diverse cell
surface receptors." Mol Cell Biol 20(17): 6364-73.

Nagata, K., A. Puls, et al. (1998). "The MAP kinase kinase kinase MLK2 co-localizes
with activated JNK along microtubules and associates with kinesin superfamily
motor KIF3." Embo J 17(1): 149-58.

Nakao, M., H. Bono, et al. (1999). "Genome-scale Gene Expression Analysis and
Pathway Reconstruction in KEGG." Genome Inform Ser Workshop Genome
Inform 10: 94-103.

Neve, R. M., K. Chin, et al. (2006). "A collection of breast cancer cell lines for the study
of functionally distinct cancer subtypes." Cancer Cell 10(6): 515-27.

Novak, B. A. and A. N. Jain (2006). "Pathway recognition and augmentation by
computational analysis of microarray expression data." Bioinformatics 22(2):
233-41.

Ohtoshi, A., T. Maeda, et al. (2000). "Human p55(CDC)/Cdc20 associates with cyclin A
and is phosphorylated by the cyclin A-Cdk2 complex." Biochem Biophys Res
Commun 268(2): 530-4.

Olshen, A. B. and A. N. Jain (2002). "Deriving quantitative conclusions from microarray
expression data." Bioinformatics 18(7): 961-70.

Paley, S. M. and P. D. Karp (2002). "Evaluation of computational metabolic-pathway
predictions for Helicobacter pylori." Bioinformatics 18(5): 715-24.

Pinkel, D., R. Segraves, et al. (1998). "High resolution analysis of DNA copy number
variation using comparative genomic hybridization to microarrays." Nat Genet
20(2): 207-11.

Segal, M. R., K. D. Dahlquist, et al. (2003). "Regression approaches for microarray data
analysis." J Comput Biol 10(6): 961-80.

Shannon, P., A. Markiel, et al. (2003). "Cytoscape: a software environment for integrated
models of biomolecular interaction networks." Genome Res 13(11): 2498-504.

Smith, V. A., E. D. Jarvis, et al. (2003). "Influence of network topology and data
collection on network inference." Pac. Symp. Biocomput.: 164-75.

Snijders, A. M., M. E. Nowee, et al. (2003). "Genome-wide-array-based comparative
genomic hybridization reveals genetic homogeneity and frequent copy number
increases encompassing CCNE1 in fallopian tube carcinoma." Oncogene 22(27):
4281-6.

Staunton, J. E., D. K. Slonim, et al. (2001). "Chemosensitivity prediction by
transcriptional profiling." Proc Natl Acad Sci U S A 98(19): 10787-92.

Storey, J. D. and R. Tibshirani (2003). "Statistical significance for genomewide studies."
Proc Natl Acad Sci U S A 100(16): 9440-5.

Stuart, J. M., E. Segal, et al. (2003). "A gene-coexpression network for global discovery
of conserved genetic modules." Science 302(5643): 249-55.

Tusher, V. G., R. Tibshirani, et al. (2001). "Significance analysis of microarrays applied
to the ionizing radiation response." Proc Natl Acad Sci U S A 98(9): 5116-21.

 90

Veltman, J. A., J. Fridlyand, et al. (2003). "Array-based comparative genomic
hybridization for genome-wide screening of DNA copy number in bladder
tumors." Cancer Res 63(11): 2872-80.

Watson, D. K., L. Robinson, et al. (1997). "FLI1 and EWS-FLI1 function as ternary
complex factors and ELK1 and SAP1a function as ternary and quaternary
complex factors on the Egr1 promoter serum response elements." Oncogene
14(2): 213-21.

Weaver, D. C., C. T. Workman, et al. (1999). "Modeling regulatory networks with weight
matrices." Pac. Symp. Biocomput.: 112-23.

Weinmann, A. S., P. S. Yan, et al. (2002). "Isolating human transcription factor targets by
coupling chromatin immunoprecipitation and CpG island microarray analysis."
Genes Dev 16(2): 235-44.

Westfall, P. H. and S. S. Young (1993). Resampling-based Multiple Testing, Wiley, New
York.

Yamashita, R., Y. Suzuki, et al. (2006). "DBTSS: DataBase of Human Transcription Start
Sites, progress report 2006." Nucleic Acids Res 34(Database issue): D86-9.

Yang, E., J. Zha, et al. (1995). "Bad, a heterodimeric partner for Bcl-XL and Bcl-2,
displaces Bax and promotes cell death." Cell 80(2): 285-91.

Zhang, B. H., V. Ho, et al. (2001). "Specific involvement of G(alphai2) with epidermal
growth factor receptor signaling in rat hepatocytes, and the inhibitory effect of
chronic ethanol." Biochem Pharmacol 61(8): 1021-7.

Zhang, D., K. Li, et al. (2005). "DYRK gene structure and erythroid-restricted features of
DYRK3 gene expression." Genomics 85(1): 117-30.

 91

 Appendix: Documentation of Code

and Data
This section documents the use of the QPACA pathway language as well as the

QPACA analytical methods initially referred to in Chapter 3 and later described in more

detail in Chapter 5 and Chapter 6. This appendix should allow the reader to replicate the

primary experiments and understand the software API. For specifics, such as data files

and source code, the reader should consult the accompanying DVD.

 92

Appendix A.

QPACA Model

A.1.1. QPACA Pathway Language

The pathway language is composed of 3 sections: a) pathway specific

information, such as the name and any other pathway attributes b) element information,

and c) edge information.

 93

pathway_name = "RTK Pathway Sample"

#pathway elements
pathway_elements {
 e10[type=geneProduct;name=ELK1;GeneID=2002]
 e11.a[type=geneProduct;name=CCND1;GeneID=595]
 e12.a[type=geneProduct;name=CDK4;GeneID=1019]
 #complex element type
 a11[type=complex;objects=e11.a,e12.a]
 e13[type=geneProduct;name=RB1;GeneID=5925]
 e14.a[type=geneProduct;name=E2F1;GeneID=1869]
 e14.b[type=geneProduct;name=E2F2;GeneID=1870]
 e14.c[type=geneProduct;name=E2F3;GeneID=1871]
 e14.d[type=geneProduct;name=E2F4;GeneID=1874]
 a14[type=family;objects=e14.a,e14.b,e14.c,e14.d]
 e15.a[type=geneProduct;name=CCNE1;GeneID=898]
 e15.b[type=geneProduct;name=CCNA2;GeneID=890]
 #family element type
 a15[type=family;objects=e15.a,e15.b]
 e16[type=geneProduct;name=CDK2;GeneID=1017]
 e17[type=geneProduct;name=p14ARF;GeneID=1029]
 e18[type=geneProduct;name=MDM2;GeneID=4193]
 e19[type=geneProduct;name=CDKN2A;GeneID=1029;alt.name=p16]
 e20[type=geneProduct;name=CDKN1A;GeneID=1026;alt.name=p21]
 e21[type=geneProduct;name=TP53;GeneID=7157]
 #process element type
 e47[type=process;name=S-phase]
}
#pathway description
pathway {
 e10 -> e19 [weight=1]
 e10 -> a11 [weight=1]
 e19 -| a11 [weight=1]
 e10 -> e20 [weight=1]
 e20 -| a11 [weight=1]
 e20 -| e16 [weight=1]
 e13 -| a14 [weight=1]
 a14 -> a15 [weight=1]
 a15 -> e16 [weight=1]
 e16 -> e47 [weight=1]
 a14 -> e17 [weight=1]
 e17 -| e18 [weight=1]
 e18 -| e21 [weight=1]
 e21 -> e20 [weight=1]
 a11 -| e13 [weight=1]
}
Figure 29. Sample pathway description in QPACA Pathway Language.

Figure 29 shows a sample pathway description illustrating. All attributes are

described using key-value pairs. Each pair is located on a separate line with an "="

separating the key from the value. Keys cannot contain any white space and values must

 94

be delimited with quotation marks if they contain white space. Comment lines start with a

"#".

The first section consists of a set of attribute values describing the pathway. The

only required attribute is "pathway_name".

The "pathway_element" section defines all the components of the pathway. Each

element must have a type and a unique ID. The ID is listed before the bracket. The

allowed types are: geneProduct, family, complex, smallMolecule, and process. Elements

of the "geneProduct" type must also have a GeneID, which denotes the Entrez Gene ID

for that element. The "name" attribute governs the display name for the generated graph.

Elements that group other elements (type "family" or "complex") must be defined after

their constituent parts have been defined. "Family" denotes a group of elements which

may all play the same role at a particular node in the graph. "Complex" denotes a group

of elements that form a physical interaction and act together in the pathway.

The "pathway" section contains the interaction information for the pathway. The

element IDs defined in the previous section are connected with symbols denoting edge

type. Figure 29 shows the activation ("->") and inhibition ("-|") types. A neutral type ("--

") is also currently supported.

 95

A.1.2. Sample QPACA GUI Usage

Figure 30. Analysis method selection in Magellan.
The Analysis Method Selection page in Magellan is the entry point for the QPACA analyses.

Figure 31. QPACA parameter selection
These pages present the user with a set of analysis parameters. On the first page, the top and left are
Magellan specific parameters for data selection, while the column contains all of the QPACA parameters.
The next page shows the automatically generated image for verification purposes and allows the user to
choose the annotation types that match between the data in the Magellan database and the objects in the
pathway.

 96

Figure 32. QPACA data visualization results page.
This page shows visualization result page with a separate image for each selected sample in the data set.
QPACA can also generate statistical summary images (such as correlations to a specified gene or F-statistic
based on sample groups). The images are in SVG format and each one links to a larger version. The larger
versions (also in SVG format) contain embedded links to the Entrez Gene database. The computational
analysis results page (not shown) is presented as a simple directory listing of output files.

 97

Appendix B.

QPACA Analytical Module

B.1.1. PathwayAnalysis Usage

PathwayAnalysis runs the QPACA pathway recognition algorithm. It is necessary

to run this prior to running PredictGenes. Data files should be tab-delimited text files

with gene IDs in the first column and sample names (optional) across the top.

edu.ucsf.qpaca.pathway.PathwayData generates appropriate pathway subsets data files

given a pathway description file and a data set, though any file of the appropriate format

can be used.

> PathwayAnalysis [option] ... datafile

Options:

-opt <n> sets the number of optimization steps to n
(default = 600)

-rgenes perform random gene set permutation
-rdata perform randomized data permutation
-inner <n> sets the number of starting points to n

(default = 20)
-outer <n> sets the number of permutations to n

(default = 1000)
-subsetsize <n> sets the size of the subset of samples to be

chosen to n (default = 20)
-header if the datafile has a header line

(containing sample names)

 98

-datasize <n> sets the number of genes in the data file to n
(defaults to the number of data rows in the
file)

-numsamples <n> sets the number of total samples in the
datafile to n (defaults to the number of data
columns in the file)

-outputdir <directory_name> output directory
-outfile <filename> base name for output file
-help this information

B.1.2. PredictGenes Usage

PredictGenes is responsible for identifying potential new pathway members. The

sample file for PredictGenes is derived from the PathwayAnalysis output.

> PredictGenes [-options] -samplefile samplefilename

 -datafile datafilename –pathdatafile pathwaygenesfilename

Options:

-nsamples <n> number of samples in the sample subset
-ntotalsamples perform random gene set permutation
-outputdir <directory_name> output directory
-outfile <filename> base name for output file
-help this information

The following three tab-delimited files are necessary:

samplefile specifies which samples of the data set to use
in predicting new pathway genes.

datafile should contain the data for those genes which
are not known to belong to the pathway

pathdatafile contains the data for the genes known to
belong to the pathway

 99

Appendix C.

Code Documentation
C.1.1. PathwayAnalysis Usage..101
C.1.2. QPACA Visual Tools Code Documentation...128

 100

QPACA Analytical Tools Code Documentation

PathwayAnalysis pathway recognition module

PredictGenes pathway membership augmentation module

PathwayUtil a collection of utility functions for the PathwayAnalysis
and PredictGenes modules

PathwayAnalysis

PathwayAnalysis is QPACA's pathway recognition module. The
output consists of a final score and a final, optimized subset of samples
that were used to calculate that score.

Usage:
> PathwayAnalysis [options] ... datafile
Options

-opt n
sets the number of optimization steps to n
(default = 600)

-rgenes perform random gene set permutation

-rdata perform randomized data permutation

-starts n
sets the number of starting points to n (default
= 20)

-perm n
sets the number of permutations to n (default =
1000)

-subsetsize n
sets the size of the subset of samples to be
chosen to n (default = 20)

-header
if the datafile has a header line (containing
sample names)

-datasize n
sets the number of genes in the data file to n
(defaults to the number of data rows in the file)

101

-numsamples n
sets the number of total samples in the datafile
to n (defaults to the number of data columns in
the file)

-corrout
print individual correlation values (useful for
debugging)

-intOut n

determines which scores to print out. If n == 0,
only reports the best overall score across all
starting points, otherwise reports all scores
(default).

-outputdir directory_name output directory

-outfile filename base name for output file

-selectgenes n subselects n genes after subselecting samples

-help print usage information

Functions

compute_correlation

Computes all correlations in a 2 dimensional array.
fisher_yates_shuffle

Shuffles an array of size n in place.
get_random_subset

Chooses a random sample subset.
optimize

Performs optimization of samples.
optimizeWithGenes

Performs optimization of genes.
print_help

Prints out a short description of how to run the program.
random_int

Generates a random integer in [0,n).
random_subset

Chooses a random subset without replacement.

102

compute_correlation

Computes all correlations in a 2 dimensional array.

void compute_correlation(
 int colsize,
 int rowsize,
 int *cols,
 int *rows,
 double *correlations,
 double **data);

Parameter Description

colsize
number of columns in the dataset

rowsize
number of rows in the dataset

cols
the columns to use in computing the correlation

rows
the rows to use in computing the correlation

correlations
stores all of the correlation values

data
a 2-dimensional array containing the data

fisher_yates_shuffle

Shuffles an array of size n in place.

void fisher_yates_shuffle(
 double *array,

103

 int n);

Parameter Description

array
the array to shuffle

n
the size of the array

get_random_subset

Chooses a random sample subset.

void get_random_subset(
 int k,
 int n,
 int *set,
 int *rest);

Parameter Description

k
subset size

n
total number of samples

set
int array holding the indices of the random subset

rest
int array holding the rest of the sample indices

Discussion

Generates a random sample subset of size k from a total sample set of
size n and stores the subset in two arrays

104

optimize

Performs optimization of samples.

double optimize(
 int maxSteps,
 int subsetsize,
 int totalsize,
 int datasize,
 int corsize,
 int *genes,
 double *corr,
 double **data,
 int *subset);

Parameter Description

maxSteps
maximum number of optimization steps

subsetsize
size of the subset to optimize for

totalsize
total number of columns in the dataset (samples)

datasize
total number of rows in the dataset (genes)

corsize
size of the output correlation array

genes
array of which genes (indices) to optimize with

corr
output correlation array

data
2-dimensional array of data

subset
final sample subset

105

function result
the final score

optimizeWithGenes

Performs optimization of genes.

double optimizeWithGenes(
 int maxSteps,
 int nGenes,
 int nSamples,
 int nTotalSamples,
 int nTotalGenes,
 double **data,
 int *sampleSubset,
 int *geneSubset);

Parameter Description

maxSteps
maximum number of optimization steps

subsetsize
size of the subset to optimize for

nTotalSamples
total number of columns in the dataset (samples)

nTotalGenes
total number of rows in the dataset (genes)

corsize
size of the output correlation array

data
2-dimensional array of data

sampleSubset
array of which samples (indices) to optimize with

geneSubset

106

final sample subset

function result
the final score

print_help

Prints out a short description of how to run the program.

void print_help(
 void);

random_int

Generates a random integer in [0,n).

int random_int(
 int n);

Parameter Description

n
the upper bound

function result
a random integer in [0,n)

random_subset

107

Chooses a random subset without replacement.

void random_subset(
 int k,
 int n,
 int *arr);

Parameter Description

k
size of the subset

n
total size of the set

arr
array to store the chosen subset

#defines

FILESEP

The character used to separate parts of a filestring.
HEADER

default is no header
NUMBEROPTIMIZAIONS

default value of n for -opt option
NUMBERPERMUTATIONS

default value of n for -perm option
NUMBERSTARTINGPOINTS

default value of n for -starts options
NUMGENES

default value of n for -selectgenes option
SELECTGENES

default is to not perform gene subselection
SUBSETSIZE

default value of n for -subsetsize option

108

FILESEP

The character used to separate parts of a filestring.

/*Unix*/
#define FILESEP "/";

Discussion

When compiling for Unix-based systems use "/"; for Windows use "\\".

HEADER

default is no header

#define HEADER 0

NUMBEROPTIMIZATIONS

default value of n for -opt option

#define NUMBEROPTIMIZATIONS 600

NUMBERPERMUTATIONS

default value of n for -perm option

#define NUMBERPERMUTATIONS 1000

109

NUMBERSTARTINGPOINTS

default value of n for -starts option

#define NUMBERSTARTINGPOINTS 20

NUMGENES

default value of n for -selectgenes option

#define NUMGENES 20

SELECTGENES

default is to not perform gene subselection

#define SELECTGENES 0

SUBSETSIZE

default value of n for -subsetsize option

#define SUBSETSIZE 20

110

PredictGenes

PredictGenes is QPACA's pathway membership augmentation module.

Prior to running PredictGenes, it is necessary to ascertain pathway
recognition using PathwayAnalysis. The sample subset and final score
provided by PathwayAnalysis are then input into PredictGenes along
with a list of non-pathway genes. PredictGenes assigns scores to the
query genes based on the optimized sample subset and score from
PathwayAnalysis.

Usage:
> PredictGenes [-options] -samplefile samplefilename -datafile
datafilename -pathdatafile pathwaygenesfilename
Options

-nsamples n number of samples in the sample subset

-ntotalsamples n number total samples in the data set

-outfile filename
desired name for the output file (default: root of
the datafilename)

-outputdir directory_name output directory (default: current directory)

-help prints usage information

The following three tab-delimited files are necessary:

samplefile
specifies which samples of the data set to use in predicting
new pathway genes.

datafile
should contain the data for those genes which are not known
to belong to the pathway.

pathdatafile
contains the data for the genes known to belong to pathway in
question

Functions

111

compute_correlation

Computes all correlations in a 2-dimensional array.
compute_original_score

Calculates the score for the known pathway gene subset.
compute_scores

Computes the new scores.
print_help

Prints usage information.
read_sample_file

Reads a sample file with no header.

compute_correlation

Computes all correlations in a 2-dimensional array.

void compute_correlation(
 int colsize,
 int rowsize,
 int *cols,
 double *correlations,
 double **data);

Parameter Description

colsize
number of columns in the dataset

rowsize
number of rows in the dataset

cols
the columns to use in computing the correlation

correlations
stores all of the correlation values

data
a 2-dimensional array containing the data

112

compute_original_score

Calculates the score for the known pathway gene subset.

See Also: compute_scores

double compute_original_score(
 int nsamples,
 int ntotalsamples,
 int nsubsetRows,
 int ndataRows,
 int *sampleList,
 double **subsetData,
 double **data);

Parameter Description

nsamples
the number of samples in the sample subset

ntotalsamples
the total number of samples

nsubsetRows
the number of rows in the known pathway gene
subset

ndataRows
the number of total data rows

sampleList
the optimized sample subset

subsetData
the data for the known pathway gene subset

data
the data for the genes to be scored

function result

113

the score for the known pathway gene subset

compute_scores

Computes the new scores.

double* compute_scores(
 int nsubsetCols,
 int ndataCols,
 int nsubsetRows,
 int ndataRows,
 int *sampleList,
 double **subsetData,
 double **data);

Parameter Description

nsubsetCols
the number of columns in the sample subset

ndataCols
the number of total data columns

nsubsetRows
the number of rows in the known pathway gene
subset

ndataRows
the number of total data rows

sampleList
the optimized sample subset

subsetData
the data for the known pathway gene subset

data
the data for the genes to be scored

Discussion

114

The scoring function consists of the mean of the top 10% of all gene-
gene correlations in the gene subset. This differs from the scoring
function in PathwayAnalysis, which is the median of all gene-gene
correlations.

print_help

Prints out a short description of how to run the program.

void print_help(
 void);

read_sample_file

Reads a sample file with no header.

void read_sample_file(
 FILE *fd,
 int *samples,
 int ncols);

Parameter Description

fd
the sample file

ncols
the number of columns in the file

samples
an array used to store the sample information

115

PathwayUtil

A collection of utility functions for the the PathwayAnalysis and
PredictGenes modules.

Functions

bcoeff2

Calculates the binomial coefficient for n choose 2.
compare_doubles

Compares two doubles.
count_cols

Counts the columns in a tab-delimited file.
count_rows

Counts the rows in a file.
doublearray_copy

Copies an array of doubles.
intarray_copy

Copies an array of ints.
lvector

Allocates an unsigned long vector with subscript range v[nl..
nh].

mean

Calculates the arithmetic mean of an array of doubles.
median

Finds the median of an array of doubles.
pearsons

Calculates the pearsons correlation coefficient between two
arrays.

read_file_data

Reads a tab-delimited data file with no headers.
read_file_data_ids

Reads a tab-delimited data file with a header column.

116

read_file_with_headers

Reads a tab-delimited data file with a header column.
select_kth_smallest

Selects the k-th smallest value in a double array.
sort

Sorts an array arr[0..n-1] into ascending numerical order.
variance

Calculates the variance of an array.

bcoeff2

Calculates the binomial coefficient for n choose 2.

int bcoeff2(
 int n);

Parameter Description

n

function result
the binomial coefficient

compare_doubles

Compares two doubles.

int compare_doubles(
 const void *a,
 const void *b);

117

Parameter Description

Parameter Description

a
b

function result
-1 if a < b, 1 if a > b, and 0 if they're equal

count_cols

Counts the columns in a tab-delimited file.

int count_cols(
 FILE *fd);

Parameter Description

fd
the file pointer to the file

function result
the number of columns

count_rows

Counts the rows in a file.

int count_rows(
 FILE *fd);

118

Parameter Description

fd
the file pointer to the file

function result
the number of rows

doublearray_copy

Copies an array of doubles.

void doublearray_copy(
 int n,
 double *src,
 double *dest);

Parameter Description

n
the size of the array

src
the original array

dest
the new array

intarray_copy

Copies an array of ints.

void intarray_copy(

119

 int n,
 int *src,
 int *dest);

Parameter Description

n
the size of the array

src
the original array

dest
the new array

lvector

Allocates an unsigned long vector with subscript range v[nl..nh].

unsigned long *lvector(
 long nl,
 long nh);

Parameter Description

data
the array

n
the size of the array

function result
the variance

mean

120

Calculates the arithmetic mean of an array of doubles.

double mean(
 unsigned long n,
 double arr[]);

Parameter Description

n
the size of the array

arr
the array

function result
the arithmetic mean

median

Finds the median of an array of doubles.

double median(
 unsigned long n,
 double arr[]);

Parameter Description

n
the size of the array

arr
the array

function result
the median

121

pearsons

Calculates the pearsons correlation coefficient between two arrays.

double pearsons(
 double *data1,
 double *data2,
 int n);

Parameter Description

data1
the first array

data2
the second array

n
the size of the arrays

function result
the pearsons correlation coefficient

read_file_data

Reads a tab-delimited data file with no headers.

void read_file_data(
 FILE *fd,
 double **data,
 int ncols);

Parameter Description

122

fd
a file pointer to the file

data
a 2-dimensional array of doubles used to store the
data

ncols
the number of columns in the file

Discussion

Stores the data in the file in a 2-dimensional array of doubles.

read_file_data_ids

Reads a tab-delimited data file with a header column containing IDs.

See Also: read_file_data

void read_file_data_ids(
 FILE *fd,
 double **data,
 char **ids,
 int ncols);

Parameter Description

fd
a file pointer to the file

data
a matrix of doubles used to store the data

ids
the string array used to store ids

ncols
the number of columns in the file

123

Discussion

Just as the read_file_data function, this function stores the data in the
file in a 2-dimensional array of doubles. In addition, the first column is
assumed to contain data ids which are stored in a separate string array.

read_file_with_headers

Reads a tab-delimited data file with both a header column containing
IDs and a header row containing sample names.

See Also: read_file_data, read_file_data_ids

void read_file_with_headers(
 FILE *fd,
 double **data,
 char **samples,
 char **ids,
 int ncols);

Parameter Description

fd
a file pointer to the file

data
a matrix of doubles used to store the data

samples
a string array used to store sample names

ids
the string array used to store ids

ncols
the number of columns in the file

Discussion

124

Just as the read_file_data function, this function stores the data in the
file in a 2-dimensional array of doubles. In addition, the first column is
assumed to contain data ids which are stored in a separate string array.
Also, the first row is assumed to contain sample names, which are
stored in a separate string array.

select_kth_smallest

Selects the k-th smallest value in a double array.

double select_kth_smallest(
 unsigned long k,
 unsigned long n,
 double arr[]);

Parameter Description

k
n

the length of the array
arr

the array

function result
the k-th smallest value

Discussion

Returns the k-th smallest value in the array arr[0..n-1]. The input array
will be rearranged to have this value in location arr[k-2],with all
smaller elements moved to arr[0..k-2] (in arbitrary order) and all large
elements in arr[k..n-1] (also in arbitrary order). from "Numerical
Recipes in C", pg. 342

125

sort

Sorts an array arr[0..n-1] into ascending numerical order.

void sort(
 unsigned long n,
 double arr[]);

Parameter Description

n
the size of the array

arr
the array to sort

Discussion

Uses the Quicksort algorithm and replaces the input array with its
sorted rearrangement.

variance

Calculates the variance of an array.

double variance(
 double *data,
 int n);

Parameter Description

data
the array

n
the size of the array

126

function result
the variance

#defines

MAXLENGTH

Default length for allocating new strings.
SWAP

Swaps the location of two values.

MAXLENGTH

Default length for allocating new strings.

#define MAXLENGTH 3000

SWAP

Swaps the location of two values.

#define SWAP(a,b) temp=(a);(a)=(b);(b)=temp;

127

QPACA

edu.ucsf.qpaca
QPACA (Quantitative Pathway Analysis in Cancer) provides the classes necessary
to model pathways (edu.ucsf.qpaca.pathway) as well as the classes necessary for
pathway input/output (edu.ucsf.qpaca.parser).

Pathway Modeling

edu.ucsf.qpaca.
pathway

Models a pathway and any associated data.

edu.ucsf.qpaca.
pathway.
algorithm

Implements several graph-based algorithms for pathway model navigation.

Pathway I/O

edu.ucsf.qpaca.
parser

Handles input/output of pathway information from the QPACA pathway model.

edu.ucsf.qpaca.
parser.util

Supports the QPACA parser classes by defining language constants and providing
parsing utility methods.

128

Package edu.ucsf.qpaca

QPACA (Quantitative Pathway Analysis in Cancer) provides the classes necessary to model pathways
(edu.ucsf.qpaca.pathway) as well as the classes necessary for pathway input/output (edu.ucsf.qpaca.
parser).

See:
 Description

Class Summary

FileUploadBean A Java Bean that handles uploading files from a web page.

PathwayAnalysis Runs the QPACA Pathway Analysis Tools within Magellan.

Package edu.ucsf.qpaca Description

QPACA (Quantitative Pathway Analysis in Cancer) provides the classes necessary to model pathways
(edu.ucsf.qpaca.pathway) as well as the classes necessary for pathway input/output (edu.ucsf.qpaca.
parser). This package includes two top-level classes used to implement the Magellan-based user interface.
QPACA uses the following publicly available java libraries:

● OpenJGraph 0.9.2
● batik 1.6
● junit 3.8.1

Additionally, the user interface is dependent on edu.ucsf.Magellan and the Apache Tomcat java servlet
container.

129

Package edu.ucsf.qpaca.pathway

Models a pathway and any associated data.

See:
 Description

Interface Summary

PathwayComponent The base class for all pathway components, which specifies methods for getting
and setting the various common attributes.

Class Summary

Pathway A biological pathway represented as a directed graph.

PathwayAssembly An collection of objects in a pathway that can be found at a PathwayVertex.

PathwayData Container for data values that are used to color pathways.

PathwayEdge An edge in a pathway.

PathwayElement An element of a pathway.

PathwayFactory The factory for creating Vertices and Edges in a Pathway class.

PathwaySVG Handles manipulation and coloring (by data value) of SVG files generated by
GraphViz.

PathwayUtil Static utility methods for manipulating data values.

PathwayVertex A vertex in a pathway.

Package edu.ucsf.qpaca.pathway Description

Models a pathway and any associated data. The pathway model is based the on the OpenJGraph library,
which provides classes for the creation and manipulation of graphs. At the root of the model is the
PathwayComponent interface, which defines the base unit of each pathway model component. The model
itself is composed of nodes (PathwayVertex) and edges (PathwayEdge) which belong to a pathway
(Pathway). Each node can represent either a physical entity (PathwayAssembly or PathwayElement) or an
event. Event nodes can also contain event modifier entities (either PathwayAssemblies or
PathwayElements). Each PathwayAssembly is composed of one or many PathwayElements or other
PathwayAssemblies. PathwayAssemblies can represent groups of PathwayElements that either act at the
same node (but independently) or form a complex (with physical interactions).

130

In addition, this package also contains classes for manipulating data and pathway images (PathwayData
and PathwaySVG). Finally, several classes (PathwayUtil, PathwayFactory, WeakPathway) include
methods to facilitate use of the pathway model.

131

Package edu.ucsf.qpaca.pathway.algorithm

Implements several graph-based algorithms for pathway model navigation.

See:
 Description

Class Summary

PathwayMinimumSpanningTree
A concrete implementation of the minimum spanning tree
algorithm using Kruskal's method specifically geared to Pathway
objects.

ShortestPathAlgorithm Abstract class for implementing the shortest path algorithm.

ShortestPathDijkstraAlgorithm A concrete implementation of ShortestPathAlgorithm using
Dijkstra's method.

Package edu.ucsf.qpaca.pathway.algorithm Description

Implements several graph-based algorithms for pathway model navigation.

132

Package edu.ucsf.qpaca.parser

Handles input/output of pathway information from the QPACA pathway model.

See:
 Description

Class Summary

MapBioPAXtoQPACA Maps between BioPAX keywords and QPACA keywords.

MapKGMLtoQPACA Maps between KEGG KGML keywords and QPACA keywords.

ParseQPACALanguage Creates QPACA pathways from files written in the QPACA Pathway
language.

PathwayToDot Translates Pathways into GraphViz .dot files.

TestBioPaxUtil Tests the BioPaxUtil Class.

TestKGMLParsing Tests the KGML-QPACA mapper.

TestKGMLUtil Tests the KGMLUtil Class.

TestParsing Tests the BioPAX-QPACA mapper.

TestPathLang Tests the QPACA language parser.

Package edu.ucsf.qpaca.parser Description

Handles input/output of pathway information from the QPACA pathway model. ParseQPACALanguage
parses the QPACA file format. MapBioPAXtoQPACA and MapKGMLtoQPACA parse BioPAX and
KGML formats, respectively. PathwayToDot creates dot format files for parsing by the Graphviz graph
visualization program.

133

Package edu.ucsf.qpaca.parser.util

Supports the QPACA parser classes by defining language constants and providing parsing utility methods.

See:
 Description

Class Summary

BioPaxConstants BioPAX Constants.

BioPaxUtil BioPax Utility Class.

KGMLConstants KGML Constants.

KGMLUtil KEGG KGML Utility Class.

OwlConstants OWL (Web Ontology Language) Constants.

QPACAConstants QPACA Constants.

QPACAUtil QPACA Pathway language Utility Class.

RdfConstants RDF (Resource Description Framework) Constants.

RdfQuery Enables XPath-"lite" Queries on RDF Documents.

RdfUtil Misc RDF Utilities.

Exception Summary

BioPaxException Exception thrown to indicate a syntax error in a BioPAX file.

KGMLException Exception thrown to indicate a syntax error in a KGML file.

QPACAException Exception thrown to indicate a syntax error in a QPACA file.

Package edu.ucsf.qpaca.parser.util Description

Supports the QPACA parser classes by defining language constants and providing parsing utility methods.
Each file format throws it's own type of exception. Constants are defined in the Constants classes and
utility methods in the Util classes. In addition, RdfConstants, RdfQuery, and RdfUtil enable more
straightforward parsing of the XML-based formats.

134

135

edu.ucsf.qpaca
Class FileUploadBean

java.lang.Object

 edu.ucsf.qpaca.FileUploadBean

public class FileUploadBean

extends java.lang.Object

A Java Bean that handles uploading files from a web page.

Constructor Summary

FileUploadBean()

Method Summary

 void doUpload(javax.servlet.http.HttpServletRequest request)
 Uploads the file specified on the HTML input page.

 java.
lang.

String
[]

getAllFieldValues(java.lang.String fieldName)
 Returns an array of String objects containing all of the values the given parameter has,
or null if the parameter does not exist.

 java.
lang.

String

getContentType()
 Retrieves the content type of the uploaded file.

 java.
util.
Map

getFields()
 Retrieves the HTML input form's input elements.

 java.
lang.

String

getFieldValue(java.lang.String fieldName)
 Retrieves the value of an HTML input element

 java.
lang.

String

getFilename()
 Retrieves the filename of the uploaded file.

136

 java.
lang.

String

getFilepath()
 Retrieves the complete filepath on the client side of the uploaded file.

 void setSavePath(java.lang.String savePath)
 Sets the location that the file should be stored in on the server.

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll,
toString, wait, wait, wait

Constructor Detail

FileUploadBean

public FileUploadBean()

Method Detail

doUpload

public void doUpload(javax.servlet.http.HttpServletRequest request)
 throws java.io.IOException

Uploads the file specified on the HTML input page. First extracts the field names and values
from the HTML form. Then extracts the uploaded file and saves it to the directory specfified by
the savePath and assigns the file's name, path, contentType to the filename, filepath and
contentType fields.

Parameters:
request - the HTTP request that is needed to process the extracted HTML forms's
element names-values and the uploaded file.

Throws:
java.io.IOException

getAllFieldValues

public java.lang.String[] getAllFieldValues(java.lang.String fieldName)

137

Returns an array of String objects containing all of the values the given parameter has, or null
if the parameter does not exist.

Parameters:
fieldName - name of the input element

Returns:
values of the input element

getContentType

public java.lang.String getContentType()

Retrieves the content type of the uploaded file.

Returns:
the content type

getFields

public java.util.Map getFields()

Retrieves the HTML input form's input elements.

Returns:
the input elements

getFieldValue

public java.lang.String getFieldValue(java.lang.String fieldName)

Retrieves the value of an HTML input element

Parameters:
fieldName - name of the input element

Returns:
value of the input element

138

getFilename

public java.lang.String getFilename()

Retrieves the filename of the uploaded file.

Returns:
the filename

getFilepath

public java.lang.String getFilepath()

Retrieves the complete filepath on the client side of the uploaded file.

Returns:
the filepath

setSavePath

public void setSavePath(java.lang.String savePath)

Sets the location that the file should be stored in on the server.

Parameters:
savePath - server file location

139

edu.ucsf.qpaca
Class PathwayAnalysis

java.lang.Object

 edu.ucsf.Magellan.AnalysisThread

 edu.ucsf.qpaca.PathwayAnalysis

All Implemented Interfaces:
java.lang.Runnable

public class PathwayAnalysis

extends edu.ucsf.Magellan.AnalysisThread

Runs the QPACA Pathway Analysis Tools within Magellan. Handles creation of output directories and
manages any errors generated during analysis.

Field Summary

Fields inherited from class edu.ucsf.Magellan.AnalysisThread

Analysis, application, running, sessionID

Constructor Summary

PathwayAnalysis(edu.ucsf.Magellan.AnalysisInfo analysis, java.lang.

String sessionID, javax.servlet.ServletContext application, javax.
servlet.ServletRequest request, Pathway path)
 Initializes a new PathwayAnalysis thread given the provided parameters

PathwayAnalysis(edu.ucsf.Magellan.AnalysisInfo analysis, java.lang.

String sessionID, java.lang.String filepath, java.lang.
String annottype, java.lang.String pathAnnotType, Pathway path)
 Initializes a new PathwayAnalysis thread given the provided parameters

Method Summary

140

 boolean deleteDir(java.io.File dir)
 Deletes all files and subdirectories under dir.

 void run()
 Runs the analysis.

 void writeLog(java.io.File log, java.lang.String analysisType,

edu.ucsf.Magellan.DataType dt)
 Writes out a log file detailing all of the analysis parameters.

Methods inherited from class edu.ucsf.Magellan.AnalysisThread

isRunning, setRunning

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll,
toString, wait, wait, wait

Constructor Detail

PathwayAnalysis

public PathwayAnalysis(edu.ucsf.Magellan.AnalysisInfo analysis,
 java.lang.String sessionID,
 javax.servlet.ServletContext application,
 javax.servlet.ServletRequest request,
 Pathway path)

Initializes a new PathwayAnalysis thread given the provided parameters

Parameters:
analysis - the AnalysisInfo object storing the analysis parameters
sessionID - the session identifier
application - the ServletContext for this instance of PathwayAnalysis
request - the client request information for this instance of PathwayAnalysis
path - the pathway to analyze

PathwayAnalysis

public PathwayAnalysis(edu.ucsf.Magellan.AnalysisInfo analysis,
 java.lang.String sessionID,

141

 java.lang.String filepath,
 java.lang.String annottype,
 java.lang.String pathAnnotType,
 Pathway path)

Initializes a new PathwayAnalysis thread given the provided parameters

Parameters:
analysis - the AnalysisInfo object storing the analysis parameters
sessionID - the session identifier
filepath - the data file path
annottype - the annotation type for the data
pathAnnotType - the matching annotation type in the pathway
path - the pathway to analyze

Method Detail

deleteDir

public boolean deleteDir(java.io.File dir)

Deletes all files and subdirectories under dir.

Parameters:
dir - the directory to delete

Returns:
true if all deletions successful, false otherwise.

run

public void run()

Runs the analysis.

Specified by:
run in interface java.lang.Runnable

Overrides:
run in class edu.ucsf.Magellan.AnalysisThread

142

writeLog

public void writeLog(java.io.File log,
 java.lang.String analysisType,
 edu.ucsf.Magellan.DataType dt)
 throws java.io.IOException

Writes out a log file detailing all of the analysis parameters.

Parameters:
log - the file
analysisType - the type of analysis performed
dt - the data type used in the analysis

Throws:
java.io.IOException - If any problems with file access occur.

143

edu.ucsf.qpaca.pathway
Interface PathwayComponent

All Known Implementing Classes:
Pathway, PathwayAssembly, PathwayEdge, PathwayElement, PathwayVertex

public interface PathwayComponent

The base class for all pathway components, which specifies methods for getting and setting the various
common attributes.

Method Summary

 java.
lang.

Object

getAttribute(java.lang.String type)
 Returns the attribute mapped to the specified attribute type.

 java.
util.Map

getAttributes()
 Returns the attributes of this Element.

 java.
lang.

String

getID()
 Returns the ID of this PathwayComponent.

 boolean hasAttribute(java.lang.String type)
 Tests to see if this PathwayComponent has this type of attribute.

 java.
lang.

Object

removeAttribute(java.lang.String key)
 Removes a specific attribute.

 void setAttribute(java.lang.String key, java.lang.Object value)
 Creates a new attribute.

Method Detail

getAttribute

java.lang.Object getAttribute(java.lang.String type)

144

Returns the attribute mapped to the specified attribute type.

Parameters:
type - the attribute type

Returns:
the attribute specified by the type

getAttributes

java.util.Map getAttributes()

Returns the attributes of this Element.

Returns:
the attributes

getID

java.lang.String getID()

Returns the ID of this PathwayComponent.

Returns:
the ID

hasAttribute

boolean hasAttribute(java.lang.String type)

Tests to see if this PathwayComponent has this type of attribute.

Parameters:
type - the attribute type

Returns:
true if this type of attribute exists;

145

removeAttribute

java.lang.Object removeAttribute(java.lang.String key)

Removes a specific attribute.

Parameters:
key - the attribute type

setAttribute

void setAttribute(java.lang.String key,
 java.lang.Object value)

Creates a new attribute.

Parameters:
key - the attribute type
value - the attribute

146

edu.ucsf.qpaca.pathway
Class Pathway

java.lang.Object

 salvo.jesus.graph.GraphImpl

 salvo.jesus.graph.DirectedGraphImpl

 edu.ucsf.qpaca.pathway.Pathway

All Implemented Interfaces:
PathwayComponent, java.io.Serializable, salvo.jesus.graph.DirectedGraph, salvo.jesus.graph.Graph, salvo.jesus.
graph.WeightedGraph

public class Pathway

extends salvo.jesus.graph.DirectedGraphImpl
implements salvo.jesus.graph.WeightedGraph, PathwayComponent, java.io.Serializable

A biological pathway represented as a directed graph.

See Also:
Serialized Form

Field Summary

protected
 java.
util.

HashMap

attributes
 A HashMap of attributes.

Fields inherited from class salvo.jesus.graph.GraphImpl

factory, traversal

Constructor Summary

Pathway()
 Constructs a new, empty pathway.

Method Summary

 void addEdge(PathwayEdge pe)
 Adds a previously created edge.

147

file:///Volumes/KiKi/barbara/dev/QPACA/doc/serialized-form.html#edu.ucsf.qpaca.pathway.Pathway

 salvo.jesus.
graph.

WeightedEdge

addEdge(salvo.jesus.graph.Vertex v1, salvo.jesus.graph.Vertex v2,

double weight)
 Convenience method to add a WeightedEdge with a specified weight into the
WeightedGraph.

 PathwayEdge addEdge(salvo.jesus.graph.Vertex v1, salvo.jesus.graph.Vertex v2,

int newType)
 Adds a new edge connecting vertex v1 and vertex v2.

 PathwayEdge addEdge(salvo.jesus.graph.Vertex source, salvo.jesus.graph.

Vertex sink, int newType, double newWeight)
 Adds a PathwayEdge with a specific weight to the Pathway.

 java.util.Set getAssemblies(java.util.Set vertices)
 Retrieves all Assemblies represented by the specified Vertices

 java.lang.
Object

getAttribute(java.lang.String type)
 Returns the attribute mapped to the specified attribute type.

 java.util.Map getAttributes()
 Returns the attributes of this Pathway.

 salvo.jesus.
graph.Vertex

getClosest(salvo.jesus.graph.Vertex v)
 Determines the Vertex that is 'closest' to the Vertex specified.

 PathwayElement getElement(java.lang.String input, java.lang.String inputType)
 Retrieves the PathwayElement represented by the input:inputType

 java.util.Set getElements()
 Retrieves all PathwayElements in this pathway

 java.util.Set getElements(java.util.Set vertices)
 Retrieves all PathwayElements represented by the specified Vertices.

 java.lang.
String

getID()
 Returns the unique ID of this PathwayComponent.

 java.util.List getPath(salvo.jesus.graph.Vertex v1, salvo.jesus.graph.Vertex v2)
 Retrieves the shortest path from Vertex v1 to Vertex v2.

 PathwayVertex getVertex(java.lang.String input, java.lang.String inputType)
 Retrieves the Vertex containing the PathwayElement represented by the input:inputType

 PathwayVertex getVertexByID(java.lang.String id)
 Retrieves the Vertex with the specified ID.

 java.util.Set getVertexSet(PathwayElement elem)
 Retrieves all Vertices containing the specified PathwayElement.

 java.util.Set getVertexSet(java.lang.String input, java.lang.String inputType)
 Retrieves all Vertices containing the PathwayElement represented by the input:inputType

 boolean hasAttribute(java.lang.String type)
 Tests to see if this PathwayComponent has the specified type of attribute.

 salvo.jesus.
graph.

WeightedGraph

minimumSpanningTree()
 Determine a minimum spanning tree for the weighted graph.

 java.util.Set nConnected(salvo.jesus.graph.Vertex startVertex, int n, int dir)
 Retrieves all vertices that are within n steps from the starting Vertex

 int pathEffect(java.util.List path)
 Retrieves the overall effect of the specified path based on PathwayEdge types.

148

 java.lang.
Object

removeAttribute(java.lang.String key)
 Removes a specific attribute

 void setAttribute(java.lang.String key, java.lang.Object value)
 Creates a new attribute

 void setMinimumSpanningTreeAlgorithm(PathwayMinimumSpanningTree algo)
 Sets the algorithm used to determine the minimum spanning tree.

 void setShortestPathAlgorithm(ShortestPathAlgorithm algo)
 Sets the algorithm used to determine the shortest path spanning tree.

 salvo.jesus.
graph.

WeightedGraph

shortestPath(salvo.jesus.graph.Vertex vertex)
 Determine a shortest path spanning tree for the weighted graph.

Methods inherited from class salvo.jesus.graph.DirectedGraphImpl

getEdge, getIncomingAdjacentVertices, getIncomingEdges,
getOutgoingAdjacentVertices, getOutgoingEdges, isCycle, isPath

Methods inherited from class salvo.jesus.graph.GraphImpl

add, addEdge, addEdge, addGraphAddEdgeListener, addGraphAddVertexListener,
addGraphRemoveEdgeListener, addGraphRemoveVertexListener, addListener,
cloneVertices, containsEdge, containsVertex, forgetConnectedSets,
getAdjacentVertices, getAdjacentVertices, getConnectedSet, getConnectedSet,
getDegree, getDegree, getEdges, getEdgesCount, getEdgeSet, getGraphFactory,
getTraversal, getVertexSet, getVertices, getVerticesCount, getVerticesIterator,
isConnected, remove, removeEdge, removeEdges, removeGraphAddEdgeListener,
removeGraphAddVertexListener, removeGraphRemoveEdgeListener,
removeGraphRemoveVertexListener, removeListener, setGraphFactory, setTraversal,
toString, traverse

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait

Methods inherited from interface salvo.jesus.graph.Graph

add, addEdge, addEdge, addGraphAddEdgeListener, addGraphAddVertexListener,
addGraphRemoveEdgeListener, addGraphRemoveVertexListener, addListener,
cloneVertices, getAdjacentVertices, getAdjacentVertices, getConnectedSet,
getConnectedSet, getDegree, getDegree, getEdges, getEdgesCount, getEdgeSet,
getGraphFactory, getTraversal, getVertexSet, getVertices, getVerticesCount,
getVerticesIterator, isConnected, remove, removeEdge, removeEdges,
removeGraphAddEdgeListener, removeGraphAddVertexListener,
removeGraphRemoveEdgeListener, removeGraphRemoveVertexListener, removeListener,
setGraphFactory, setTraversal, traverse

Field Detail

attributes

protected java.util.HashMap attributes

149

A HashMap of attributes.

Constructor Detail

Pathway

public Pathway()

Constructs a new, empty pathway.

Method Detail

addEdge

public void addEdge(PathwayEdge pe)

 throws java.lang.Exception

Adds a previously created edge. Calls DirectedGraphImpl.addEdge(edge).

Parameters:
pe - the edge to add

Throws:
java.lang.Exception

addEdge

public salvo.jesus.graph.WeightedEdge addEdge(salvo.jesus.graph.Vertex v1,
 salvo.jesus.graph.Vertex v2,
 double weight)
 throws java.lang.Exception

Convenience method to add a WeightedEdge with a specified weight into the WeightedGraph. The default addEdge
(v1, v2) will add a WeightedEdge with weight=1.0, after which you can call setWeight() to specify the weight.

Specified by:
addEdge in interface salvo.jesus.graph.WeightedGraph

Returns:
the new WeightedEdge

Throws:
java.lang.Exception

addEdge

150

public PathwayEdge addEdge(salvo.jesus.graph.Vertex v1,

 salvo.jesus.graph.Vertex v2,
 int newType)
 throws java.lang.Exception

Adds a new edge connecting vertex v1 and vertex v2. Calls DirectedGraphImpl.addEdge(v1,v2) and
sets the type of the edge to newType and the weight to 1.0.

Parameters:
v1 - Vertex that will be the source of the PathwayEdge
v2 - Vertex that will be the sink of the PathwayEdge
newType - the type of the new PathwayEdge

Returns:
the new PathwayEdge

Throws:
java.lang.Exception

addEdge

public PathwayEdge addEdge(salvo.jesus.graph.Vertex source,

 salvo.jesus.graph.Vertex sink,
 int newType,
 double newWeight)
 throws java.lang.Exception

Adds a PathwayEdge with a specific weight to the Pathway. Calls DirectedGraphImpl.addEdge(v1,v2)
and sets the type of the edge to newType and the weight to newWeight.

Parameters:
source - Vertex that will be the source of the Edge
sink - Vertex that will be the sink of the Edge
newType - the type of the Edge
newWeight - the weight of the Edge

Returns:
the new PathwayEdge

Throws:
java.lang.Exception

getAssemblies

public java.util.Set getAssemblies(java.util.Set vertices)

Retrieves all Assemblies represented by the specified Vertices

Parameters:
vertices - a Set of vertices

Returns:
a List of PathwayElements

151

getAttribute

public java.lang.Object getAttribute(java.lang.String type)

Returns the attribute mapped to the specified attribute type.

Specified by:
getAttribute in interface PathwayComponent

Parameters:
type - the attribute type

Returns:
the attribute specified by the type

getAttributes

public java.util.Map getAttributes()

Returns the attributes of this Pathway.

Specified by:
getAttributes in interface PathwayComponent

Returns:
the attributes

getClosest

public salvo.jesus.graph.Vertex getClosest(salvo.jesus.graph.Vertex v)

Determines the Vertex that is 'closest' to the Vertex specified. The definition of the closest vertex in this context is
a vertex that is directly adjacent to Vertex v where the edge has the least weight.

Specified by:
getClosest in interface salvo.jesus.graph.WeightedGraph

Parameters:
v - the starting vertex

Returns:
the Vertex closes to v.

getElement

public PathwayElement getElement(java.lang.String input,

152

 java.lang.String inputType)

Retrieves the PathwayElement represented by the input:inputType

Parameters:
input - the input value
inputType - the input type

Returns:
a PathwayVertex, or null if no such Vertex found.

getElements

public java.util.Set getElements()

Retrieves all PathwayElements in this pathway

Returns:
a Set of all PathwayElements

getElements

public java.util.Set getElements(java.util.Set vertices)

Retrieves all PathwayElements represented by the specified Vertices.

Parameters:
vertices - a Set of vertices

Returns:
a List of PathwayElements

getID

public java.lang.String getID()

Returns the unique ID of this PathwayComponent. Since pathways do not have IDs, returns null

Specified by:
getID in interface PathwayComponent

Returns:
null

153

getPath

public java.util.List getPath(salvo.jesus.graph.Vertex v1,
 salvo.jesus.graph.Vertex v2)

Retrieves the shortest path from Vertex v1 to Vertex v2. Uses the shortest path spanning tree determined by
shortestpath.

Parameters:
v1 - start Vertex
v2 - end Vertex

Returns:
a list of the edges of the shortest path from v1 to v2

getVertex

public PathwayVertex getVertex(java.lang.String input,

 java.lang.String inputType)

Retrieves the Vertex containing the PathwayElement represented by the input:inputType

Parameters:
input - the input value
inputType - the input type

Returns:
a PathwayVertex, or null if no such Vertex found

getVertexByID

public PathwayVertex getVertexByID(java.lang.String id)

Retrieves the Vertex with the specified ID.

Parameters:
id - the ID of the desired Vertex

Returns:
the PathwayVertex with the specified ID

getVertexSet

public java.util.Set getVertexSet(PathwayElement elem)

Retrieves all Vertices containing the specified PathwayElement.

154

Parameters:
elem - the input PathwayElement

Returns:
a PathwayVertex

getVertexSet

public java.util.Set getVertexSet(java.lang.String input,
 java.lang.String inputType)

Retrieves all Vertices containing the PathwayElement represented by the input:inputType

Parameters:
input - the input value
inputType - the input type

Returns:
a PathwayVertex

hasAttribute

public boolean hasAttribute(java.lang.String type)

Tests to see if this PathwayComponent has the specified type of attribute.

Specified by:
hasAttribute in interface PathwayComponent

Parameters:
type - the attribute type

Returns:
true if this type of attribute exists

minimumSpanningTree

public salvo.jesus.graph.WeightedGraph minimumSpanningTree()

Determine a minimum spanning tree for the weighted graph. There is no guarantee that the same method call will
result in the same result, as long as it satisifies the property of a minimum spanning tree.

Specified by:
minimumSpanningTree in interface salvo.jesus.graph.WeightedGraph

Returns:
Subgraph connecting all the Vertices such that the sum of the weights of the Edges is at least as small as
the sum of the weights of any other collection of Edges connecting all the Vertices.

155

nConnected

public java.util.Set nConnected(salvo.jesus.graph.Vertex startVertex,
 int n,
 int dir)

Retrieves all vertices that are within n steps from the starting Vertex

Parameters:
startVertex - the start Vertex
n - number of steps from the start Vertex
dir - the direction to search (1=downstream, -1=upstream, 0=both)

Returns:
a Set of vertices that are n-connected to the start Vertex

pathEffect

public int pathEffect(java.util.List path)

Retrieves the overall effect of the specified path based on PathwayEdge types.

Parameters:
path - a list of Pathway edges defining a path

Returns:
1 if the overall effect is positive, -1 if negative

removeAttribute

public java.lang.Object removeAttribute(java.lang.String key)

Removes a specific attribute

Specified by:
removeAttribute in interface PathwayComponent

Parameters:
key - the attribute type

setAttribute

public void setAttribute(java.lang.String key,
 java.lang.Object value)

156

Creates a new attribute

Specified by:
setAttribute in interface PathwayComponent

Parameters:
key - the attribute type
value - the attribute

setMinimumSpanningTreeAlgorithm

public void setMinimumSpanningTreeAlgorithm(PathwayMinimumSpanningTree algo)

Sets the algorithm used to determine the minimum spanning tree.

setShortestPathAlgorithm

public void setShortestPathAlgorithm(ShortestPathAlgorithm algo)

Sets the algorithm used to determine the shortest path spanning tree.

shortestPath

public salvo.jesus.graph.WeightedGraph shortestPath(salvo.jesus.graph.Vertex vertex)

Determine a shortest path spanning tree for the weighted graph. Shortest path spanning tree need not be unique.
Therefore, there is no guarantee that calling this method twice for the same weighted graph will return exactly the
same shortest path spanning tree, unless there is only one shortest path spanning tree.

Also note that the graph returned by this method is a new instance of WeightedGraph. However, its vertices and
edges will be the same instance as those of this WeightedGraph. Therefore, do not modify the contents of the
returned WeightedGraph such that any of its vertices or edges are removed.

Specified by:
shortestPath in interface salvo.jesus.graph.WeightedGraph

Parameters:
vertex - The Vertex in the weighted graph that we want to get the shortest paths to all other vertices.

Returns:
Shortest spanning subgraph from the vertex parameter to all other vertices that are in the same connected
set as the vertex.

157

edu.ucsf.qpaca.pathway
Class PathwayAssembly

java.lang.Object

 java.util.AbstractCollection<E>

 java.util.AbstractList<E>

 java.util.ArrayList

 edu.ucsf.qpaca.pathway.PathwayAssembly

All Implemented Interfaces:
PathwayComponent, java.io.Serializable, java.lang.Cloneable, java.lang.Comparable, java.lang.
Iterable, java.util.Collection, java.util.List, java.util.RandomAccess

public class PathwayAssembly

extends java.util.ArrayList
implements java.io.Serializable, PathwayComponent, java.lang.Comparable

An collection of objects in a pathway that can be found at a PathwayVertex.

See Also:
Serialized Form

Field Summary

protected
 java.
util.

HashMap

attributes
 A hashtable of attributes.

protected
 java.
lang.

String

id
 The unique id of the PathwayAssembly.

158

file:///Volumes/KiKi/barbara/dev/QPACA/doc/serialized-form.html#edu.ucsf.qpaca.pathway.PathwayAssembly

protected
 java.
lang.

String

type
 The type of PathwayAssembly.

Fields inherited from class java.util.AbstractList

modCount

Constructor Summary

PathwayAssembly()
 Constructs a new, empty PathwayAssembly.

PathwayAssembly(java.lang.String newType, java.lang.String newID)
 Constructs a new PathwayAssembly object of the specified type.

PathwayAssembly(java.lang.String newType, java.lang.String newID,

java.util.List l)
 Constructs a new PathwayAssembly object of the specified type with the specified list of
PathwayElements.

PathwayAssembly(java.lang.String newType, java.lang.String newID,

java.util.List l, java.util.Map newAttributes)
 Constructs a new PathwayAssembly object of the specified type with the specified list of
PathwayElements and attributes.

Method Summary

 int compareTo(java.lang.Object o)
 Compares this PathwayAssembly to another Object.

 java.
lang.

Object

getAttribute(java.lang.String type)
 Returns the attribute mapped to the specified attribute type.

 java.
util.Map

getAttributes()
 Returns the attributes of this PathwayAssembly.

 java.
lang.

String

getID()
 Returns the unique ID.

 java.
lang.

String

getType()
 Returns the type.

 boolean hasAttribute(java.lang.String type)
 Tests to see if this PathwayComponent has this particular type of attribute.

 java.
lang.

Object

removeAttribute(java.lang.String key)
 Removes a specific attribute.

159

 void setAttribute(java.lang.String key, java.lang.Object value)
 Creates a new attribute.

 void setType(java.lang.String newType)
 Sets the type.

 java.
lang.

String

toString()
 Returns a String representation of this PathwayAssembly.

Methods inherited from class java.util.ArrayList

add, add, addAll, addAll, clear, clone, contains, ensureCapacity,
get, indexOf, isEmpty, lastIndexOf, remove, remove, removeRange, set,
size, toArray, toArray, trimToSize

Methods inherited from class java.util.AbstractList

equals, hashCode, iterator, listIterator, listIterator, subList

Methods inherited from class java.util.AbstractCollection

containsAll, removeAll, retainAll

Methods inherited from class java.lang.Object

finalize, getClass, notify, notifyAll, wait, wait, wait

Methods inherited from interface java.util.List

containsAll, equals, hashCode, iterator, listIterator, listIterator,
removeAll, retainAll, subList

Field Detail

attributes

protected java.util.HashMap attributes

A hashtable of attributes.

id

160

protected java.lang.String id

The unique id of the PathwayAssembly.

type

protected java.lang.String type

The type of PathwayAssembly. Indicates whether it's a set of aliases or a compound.

Constructor Detail

PathwayAssembly

public PathwayAssembly()

Constructs a new, empty PathwayAssembly.

PathwayAssembly

public PathwayAssembly(java.lang.String newType,
 java.lang.String newID)

Constructs a new PathwayAssembly object of the specified type.

Parameters:
newType - the type of this PathwayAssembly
newID - this PathwayAssembly's ID

PathwayAssembly

public PathwayAssembly(java.lang.String newType,
 java.lang.String newID,
 java.util.List l)

161

Constructs a new PathwayAssembly object of the specified type with the specified list of
PathwayElements.

Parameters:
newType - the type of this PathwayAssembly
newID - this PathwayAssembly's ID
l - a List of PathwayElements that this PathwayAssembly contains

PathwayAssembly

public PathwayAssembly(java.lang.String newType,
 java.lang.String newID,
 java.util.List l,
 java.util.Map newAttributes)

Constructs a new PathwayAssembly object of the specified type with the specified list of
PathwayElements and attributes.

Parameters:
newType - the type of this PathwayAssembly
newID - this PathwayAssembly's ID
l - a List of PathwayElements that this PathwayAssembly contains
newAttributes - this PathwayAssembly's attributes

Method Detail

compareTo

public int compareTo(java.lang.Object o)

Compares this PathwayAssembly to another Object. If the Object is another PathwayAssembly,
returns 0 if the two Assemblies have identical types and ids.

Specified by:
compareTo in interface java.lang.Comparable

Returns:
the value 0 if the argument is an equivalent PathwayAssembly

Throws:
java.lang.ClassCastException - if the argument is not a valid
PathwayAssembly

162

getAttribute

public java.lang.Object getAttribute(java.lang.String type)

Returns the attribute mapped to the specified attribute type.

Specified by:
getAttribute in interface PathwayComponent

Parameters:
type - the attribute type

Returns:
the attribute specified by the type

getAttributes

public java.util.Map getAttributes()

Returns the attributes of this PathwayAssembly.

Specified by:
getAttributes in interface PathwayComponent

Returns:
the attributes

getID

public java.lang.String getID()

Returns the unique ID.

Specified by:
getID in interface PathwayComponent

Returns:
the type

163

getType

public java.lang.String getType()

Returns the type.

Returns:
the type

hasAttribute

public boolean hasAttribute(java.lang.String type)

Tests to see if this PathwayComponent has this particular type of attribute.

Specified by:
hasAttribute in interface PathwayComponent

Parameters:
type - the attribute type

Returns:
true if this type of attribute exists;

removeAttribute

public java.lang.Object removeAttribute(java.lang.String key)

Removes a specific attribute.

Specified by:
removeAttribute in interface PathwayComponent

Parameters:
key - the attribute type

setAttribute

public void setAttribute(java.lang.String key,

164

 java.lang.Object value)

Creates a new attribute.

Specified by:
setAttribute in interface PathwayComponent

Parameters:
key - the attribute type
value - the attribute

setType

public void setType(java.lang.String newType)

Sets the type.

Parameters:
newType -

toString

public java.lang.String toString()

Returns a String representation of this PathwayAssembly.

Overrides:
toString in class java.util.AbstractCollection

Returns:
type.id and a list of objects contained in the Assembly

165

edu.ucsf.qpaca.pathway
Class PathwayData

java.lang.Object

 edu.ucsf.qpaca.pathway.PathwayData

public class PathwayData

extends java.lang.Object

Container for data values that are used to color pathways. Includes methods for some basic types of data
manipulation.

Constructor Summary

PathwayData()
 Creates an empty dataset.

PathwayData(java.io.File datafile, java.io.File annotFile, java.lang.

String annotType, boolean logValues, double percentile, java.lang.
String dupmethod, boolean calcRatios, double missingValueThreshold,
double percAllowedMissing)
 Creates a new PathwayData object using the specified dataset.

Method Summary

protected
 double

calculateColor(double value)
 Calculates the color value for a particular data value.

protected
 double

calculateColor(double value, double dMax, double dMin,

double dMid)
 Calculates the color value for a particular data value given a defined data value
range.

 Pathway colorByCorrelation(Pathway path, java.lang.

String pathAnnotType)
 Colors a pathway based on the correlations.

166

 Pathway colorByPvalue(Pathway path, int pValueIndex, java.lang.

String pathAnnotType, java.lang.String title)

 Pathway colorBySample(Pathway path, int sampleIndex, java.lang.

String pathAnnotType)
 Colors a pathway based on the sample values for the given sample index.

 Pathway colorBySample(Pathway path, java.lang.

String pathAnnotType)
 Colors a pathway based on the sample values for the first sample index.

 int createDataFiles(Pathway path, java.lang.

String pathAnnotType, java.lang.String filepath, java.
lang.String fileroot)
 Creates the pathway subset files for this dataset, given a pathway.

 boolean generateCorrelationData()
 Calculates the correlations of each gene to the gene with the specified
correlationID.

 java.util.
Map

getCorrelationData()

 java.lang.
String

getCorrelationID()
 Returns the annotation ID used to calculate correlations.

 double getDataMax()
 Returns the largest data value in this dataset.

 double getDataMin()
 Returns the smallest data value in this dataset.

 java.util.
List

getSamplenames()
 Returns the samplenames.

 int getSize()
 Returns the number of data values in this dataset.

 boolean isEmpty()
 Returns true if this dataset contains no values.

static void main(java.lang.String[] args)
 This method allows for testing the class on the command line.

 void readDataFile(java.io.File datafile, java.io.

File annotFile, java.lang.String annotType,
boolean logValues, double maxPercentile, java.lang.
String dupmethod, boolean calcRatios,
double missingValueThreshold, double percAllowedMissing)
 Reads in a datafile.

 boolean setCorrelationID(java.lang.String id)
 Sets the annotation ID for which to calculate correlations.

167

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll,
toString, wait, wait, wait

Constructor Detail

PathwayData

public PathwayData()

Creates an empty dataset.

PathwayData

public PathwayData(java.io.File datafile,
 java.io.File annotFile,
 java.lang.String annotType,
 boolean logValues,
 double percentile,
 java.lang.String dupmethod,
 boolean calcRatios,
 double missingValueThreshold,
 double percAllowedMissing)
 throws java.io.FileNotFoundException,
 java.io.IOException

Creates a new PathwayData object using the specified dataset. The dataset must be contained in
a datafile with the following characteristics:

�❍ rows contain genes genes
�❍ columns contain samples
�❍ the first column contains gene identifiers
�❍ the first row contains the sample names
�❍ missing data is identified using the empty string or "NA"

Any additional gene annotations must be contained in a separate annotation file with the
following characteristics:

�❍ the first column contains gene identifiers
�❍ additional columns contain the different gene annotations
�❍ annotation types are listed in the first row

Parameters:
datafile - the data file
annotFile - the annotation file

168

annotType - the annotation type in the annotation file that corresponds to
an annotation type in the Pathway.
logValues - true if the datafile contains log values, false otherwise
percentile - the percentile of the max/min threshold at which color is
most intense
dupmethod - method used to resolve duplicates
calcRatios - if true, the values in the file need to have ratios calculated
missingValueThreshold - the minimum threshold for valid data values
percAllowedMissing - the percent of data values allowed to be missing
for the gene to be considered not missing

Throws:
FileNotFoundException
java.io.IOException

Method Detail

calculateColor

protected double calculateColor(double value)

Calculates the color value for a particular data value.

Parameters:
value - the data value

Returns:
the color value

calculateColor

protected double calculateColor(double value,
 double dMax,
 double dMin,
 double dMid)

Calculates the color value for a particular data value given a defined data value range.

Parameters:
value - the data value
dMax - the largest data value
dMin - the smallest data value
dMid - the data value that represents 0

169

colorByCorrelation

public Pathway colorByCorrelation(Pathway path,

 java.lang.String pathAnnotType)

Colors a pathway based on the correlations.

Parameters:
path - the pathway to color
pathAnnotType - the annotation type of the pathway elements

Returns:
the colored pathway

colorByPvalue

public Pathway colorByPvalue(Pathway path,

 int pValueIndex,
 java.lang.String pathAnnotType,
 java.lang.String title)

colorBySample

public Pathway colorBySample(Pathway path,

 int sampleIndex,
 java.lang.String pathAnnotType)

Colors a pathway based on the sample values for the given sample index.

Parameters:
path - the pathway to color
sampleIndex - the index of the sample to use for coloring
pathAnnotType - the annotation type of the pathway elements

Returns:
the colored pathway

colorBySample

170

public Pathway colorBySample(Pathway path,

 java.lang.String pathAnnotType)

Colors a pathway based on the sample values for the first sample index.

Parameters:
path - the pathway to color
pathAnnotType - the annotation type of the pathway elements

Returns:
the colored pathway

createDataFiles

public int createDataFiles(Pathway path,

 java.lang.String pathAnnotType,
 java.lang.String filepath,
 java.lang.String fileroot)
 throws java.io.IOException

Creates the pathway subset files for this dataset, given a pathway.

Parameters:
path - the Pathway for which to create the datafiles

Returns:
the number of data rows in the pathway subset file

Throws:
java.io.IOException

generateCorrelationData

public boolean generateCorrelationData()

Calculates the correlations of each gene to the gene with the specified correlationID.

Returns:
true if the correlation ID exists, false otherwise

171

getCorrelationData

public java.util.Map getCorrelationData()

getCorrelationID

public java.lang.String getCorrelationID()

Returns the annotation ID used to calculate correlations.

Returns:
the annotation ID

getDataMax

public double getDataMax()

Returns the largest data value in this dataset.

Returns:
the maximum value

getDataMin

public double getDataMin()

Returns the smallest data value in this dataset.

Returns:
the minimum value

getSamplenames

172

public java.util.List getSamplenames()

Returns the samplenames.

Returns:
a List containing the samplenames.

getSize

public int getSize()

Returns the number of data values in this dataset.

Returns:
size

isEmpty

public boolean isEmpty()

Returns true if this dataset contains no values.

Returns:
true if this dataset contains no values.

main

public static void main(java.lang.String[] args)
 throws java.lang.Exception

This method allows for testing the class on the command line. arguments to pass in:
datafilename, annotfilename, annotType, logValues, maxPercentile, dupmethod, correlationID

Throws:
java.lang.Exception

173

readDataFile

public void readDataFile(java.io.File datafile,
 java.io.File annotFile,
 java.lang.String annotType,
 boolean logValues,
 double maxPercentile,
 java.lang.String dupmethod,
 boolean calcRatios,
 double missingValueThreshold,
 double percAllowedMissing)
 throws java.io.FileNotFoundException,
 java.io.IOException

Reads in a datafile.

Parameters:
datafile - the File to import.
annotFile - the File containing gene annotations of the data
annotType - which annotation in the annotation file corresponds the gene annotation
in the pathway
logValues - true if the datafile contains log values, false otherwise
maxPercentile - the data percentile at which the color is most intense
dupmethod - method used to resolve duplicates
calcRatios - if true, the values in the file need to have ratios calculated
missingValueThreshold - the minimum threshold for valid data values
percAllowedMissing - the percent of data values allowed to be missing for the
gene to be represented

Throws:
java.io.FileNotFoundException - if the file cannot be found
java.io.IOException - if the file cannot be read

setCorrelationID

public boolean setCorrelationID(java.lang.String id)

Sets the annotation ID for which to calculate correlations.

Parameters:
id - The annotation ID

Returns:
true if the ID exists in the dataset, false otherwise.

174

175

edu.ucsf.qpaca.pathway
Class PathwayEdge

java.lang.Object

 salvo.jesus.graph.EdgeImpl

 salvo.jesus.graph.DirectedWeightedEdgeImpl

 edu.ucsf.qpaca.pathway.PathwayEdge

All Implemented Interfaces:
PathwayComponent, java.io.Serializable, salvo.jesus.graph.DirectedEdge, salvo.jesus.graph.
DirectedWeightedEdge, salvo.jesus.graph.Edge, salvo.jesus.graph.GraphComponent, salvo.jesus.
graph.LabeledEdge, salvo.jesus.graph.LabeledGraphComponent, salvo.jesus.graph.
WeightedEdge

public class PathwayEdge

extends salvo.jesus.graph.DirectedWeightedEdgeImpl
implements PathwayComponent, java.io.Serializable

An edge in a pathway.

See Also:
Serialized Form

Field Summary

static int ACTIVATION_TYPE
 PathwayEdge type: activation.

protected
 java.
util.

HashMap

attributes
 attributes describing this edge

static int INHIBITION_TYPE
 PathwayEdge type: inhibition.

176

file:///Volumes/KiKi/barbara/dev/QPACA/doc/serialized-form.html#edu.ucsf.qpaca.pathway.PathwayEdge

static int NEUTRAL_TYPE
 PathwayEdge type: neutral.

protected
 int

type
 PathwayEdges can be either positive (ACTIVATION_TYPE), negative
(INHIBITION_TYPE) or neutral (NEUTRAL_TYPE).

Fields inherited from class salvo.jesus.graph.EdgeImpl

str, vertexA, vertexB

Fields inherited from interface salvo.jesus.graph.DirectedEdge

DIRECTION_A_TO_B, DIRECTION_B_TO_A, NODIRECTION

Constructor Summary

PathwayEdge(salvo.jesus.graph.Vertex sourceVertex, salvo.jesus.graph.

Vertex sinkVertex)
 Creates a PathwayEdge object whose origin and destination vertices are specified by the method
parameters.

PathwayEdge(salvo.jesus.graph.Vertex sourceVertex, salvo.jesus.graph.

Vertex sinkVertex, double weight)
 Creates a PathwayEdge object whose source and sink vertices and weight are specified by the
parameters.

PathwayEdge(salvo.jesus.graph.Vertex sourceVertex, salvo.jesus.graph.

Vertex sinkVertex, int type)
 Creates a PathwayEdge object whose origin and destination vertices are specified by the method
parameters.

Method Summary

protected
 java.
lang.

Object

clone()
 Creates a clone of this Edge.

 java.
lang.

Object

getAttribute(java.lang.String type)
 Returns the attribute mapped to the specified attribute type.

 java.
util.Map

getAttributes()
 Returns the attributes of this Edge.

 java.
lang.

String

getID()
 Returns the ID of this PathwayComponent.

 int getType()
 Returns the type of the edge.

177

 boolean hasAttribute(java.lang.String type)
 Tests to see if this PathwayComponent has this particular type of attribute.

 java.
lang.

Object

removeAttribute(java.lang.String key)
 Removes a particular attribute.

 void setAttribute(java.lang.String key, java.lang.Object value)
 Creates a new attribute.

 void setType(int type)
 Sets the type of the edge.

 java.
lang.

String

toString()
 Returns a String representation of the Edge, using the the toString() methods of
Vertex.

Methods inherited from class salvo.jesus.graph.DirectedWeightedEdgeImpl

getDirection, getSink, getSource, getWeight, setWeight

Methods inherited from class salvo.jesus.graph.EdgeImpl

getLabel, getOppositeVertex, getVertexA, getVertexB, hasLabel,
isFollowVertexLabel, setFollowVertexLabel, setLabel

Methods inherited from class java.lang.Object

equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait,
wait

Methods inherited from interface salvo.jesus.graph.Edge

getOppositeVertex, getVertexA, getVertexB

Methods inherited from interface salvo.jesus.graph.LabeledEdge

isFollowVertexLabel, setFollowVertexLabel

Methods inherited from interface salvo.jesus.graph.LabeledGraphComponent

getLabel, hasLabel, setLabel

Methods inherited from interface salvo.jesus.graph.Edge

getOppositeVertex, getVertexA, getVertexB

Methods inherited from interface salvo.jesus.graph.LabeledEdge

isFollowVertexLabel, setFollowVertexLabel

178

Methods inherited from interface salvo.jesus.graph.LabeledGraphComponent

getLabel, hasLabel, setLabel

Field Detail

ACTIVATION_TYPE

public static final int ACTIVATION_TYPE

PathwayEdge type: activation.

See Also:
Constant Field Values

attributes

protected java.util.HashMap attributes

attributes describing this edge

INHIBITION_TYPE

public static final int INHIBITION_TYPE

PathwayEdge type: inhibition.

See Also:
Constant Field Values

NEUTRAL_TYPE

179

file:///Volumes/KiKi/barbara/dev/QPACA/doc/constant-values.html#edu.ucsf.qpaca.pathway.PathwayEdge.ACTIVATION_TYPE
file:///Volumes/KiKi/barbara/dev/QPACA/doc/constant-values.html#edu.ucsf.qpaca.pathway.PathwayEdge.INHIBITION_TYPE

public static final int NEUTRAL_TYPE

PathwayEdge type: neutral.

See Also:
Constant Field Values

type

protected int type

PathwayEdges can be either positive (ACTIVATION_TYPE), negative (INHIBITION_TYPE)
or neutral (NEUTRAL_TYPE).

Constructor Detail

PathwayEdge

public PathwayEdge(salvo.jesus.graph.Vertex sourceVertex,
 salvo.jesus.graph.Vertex sinkVertex)

Creates a PathwayEdge object whose origin and destination vertices are specified by the method
parameters.

Parameters:
sourceVertex -
sinkVertex -

PathwayEdge

public PathwayEdge(salvo.jesus.graph.Vertex sourceVertex,
 salvo.jesus.graph.Vertex sinkVertex,
 double weight)

Creates a PathwayEdge object whose source and sink vertices and weight are specified by the
parameters.

Parameters:

180

file:///Volumes/KiKi/barbara/dev/QPACA/doc/constant-values.html#edu.ucsf.qpaca.pathway.PathwayEdge.NEUTRAL_TYPE

sourceVertex -
sinkVertex -
weight -

PathwayEdge

public PathwayEdge(salvo.jesus.graph.Vertex sourceVertex,
 salvo.jesus.graph.Vertex sinkVertex,
 int type)

Creates a PathwayEdge object whose origin and destination vertices are specified by the method
parameters.

Parameters:
sourceVertex -
sinkVertex -
type -

Method Detail

clone

protected java.lang.Object clone()

Creates a clone of this Edge. This calls the Edge constructor, thereby creating a new instance of
Edge. However, the vertices in both endpoints of the Edge are not cloned.

Overrides:
clone in class salvo.jesus.graph.EdgeImpl

Returns:
A clone of an instance of Edge.

getAttribute

public java.lang.Object getAttribute(java.lang.String type)

Returns the attribute mapped to the specified attribute type.

Specified by:

181

getAttribute in interface PathwayComponent

Parameters:
type - the attribute type

Returns:
the attribute specified by the type

getAttributes

public java.util.Map getAttributes()

Returns the attributes of this Edge.

Specified by:
getAttributes in interface PathwayComponent

Returns:
the attributes

getID

public java.lang.String getID()

Returns the ID of this PathwayComponent. In this case...return null since PathwayEdges do
not have IDs.

Specified by:
getID in interface PathwayComponent

Returns:
null

getType

public int getType()

Returns the type of the edge.

Returns:
the type

182

hasAttribute

public boolean hasAttribute(java.lang.String type)

Tests to see if this PathwayComponent has this particular type of attribute.

Specified by:
hasAttribute in interface PathwayComponent

Parameters:
type - the attribute type

Returns:
true if this type of attribute exists;

removeAttribute

public java.lang.Object removeAttribute(java.lang.String key)

Removes a particular attribute.

Specified by:
removeAttribute in interface PathwayComponent

Parameters:
key - the attribute type

setAttribute

public void setAttribute(java.lang.String key,
 java.lang.Object value)

Creates a new attribute.

Specified by:
setAttribute in interface PathwayComponent

Parameters:
key - the attribute type
value - the attribute

183

setType

public void setType(int type)

Sets the type of the edge.

Parameters:
type - the new type

toString

public java.lang.String toString()

Returns a String representation of the Edge, using the the toString() methods of Vertex.
Activation edges are represented as "-->"; inhibition edges are represented as "--|", and neutral
edges are represented as "---".

Overrides:
toString in class salvo.jesus.graph.DirectedWeightedEdgeImpl

Returns:
The String representation of the Edge

See Also:
Vertex

184

edu.ucsf.qpaca.pathway
Class PathwayElement

java.lang.Object

 edu.ucsf.qpaca.pathway.PathwayElement

All Implemented Interfaces:
PathwayComponent, java.io.Serializable, java.lang.Comparable

public class PathwayElement

extends java.lang.Object
implements PathwayComponent, java.lang.Comparable, java.io.Serializable

An element of a pathway. PathwayElements are the smallest unit in a pathway and may represents both
any subprocess of the pathway (such as another pathway) and, more importantly, any physical object that
participates in the pathway.

See Also:
Serialized Form

Field Summary

protected
 java.
util.

HashMap

attributes
 A hashtable of attributes.

protected
 java.
lang.

String

id
 the unique id

protected
 java.
lang.

String

type
 the type of this element.

Constructor Summary

185

file:///Volumes/KiKi/barbara/dev/QPACA/doc/serialized-form.html#edu.ucsf.qpaca.pathway.PathwayElement

PathwayElement()
 Constructs a new, empty element.

PathwayElement(java.lang.String newType, java.lang.String newID)
 Constructs a new Element object with the specified name and type.

Method Summary

 int compareTo(java.lang.Object o)
 Compares this Element to another Object.

 java.
lang.

Object

getAttribute(java.lang.String type)
 Returns the attribute mapped to the specified attribute type.

 java.
util.Map

getAttributes()
 Returns the attributes of this Element.

 java.
lang.

String

getID()
 Returns this element's value.

 java.
lang.

String

getType()
 Returns this element's type.

 boolean hasAttribute(java.lang.String type)
 Tests to see if this PathwayComponent has this type of attribute.

 java.
lang.

Object

removeAttribute(java.lang.String key)
 Removes a particular attribute

 void setAttribute(java.lang.String key, java.lang.Object value)
 Creates a new attribute

 void setType(java.lang.String newType)
 Sets this element's type.

 java.
lang.

String

toString()
 Returns the name of this element.

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait,
wait, wait

Field Detail

attributes

186

protected java.util.HashMap attributes

A hashtable of attributes.

id

protected java.lang.String id

the unique id

type

protected java.lang.String type

the type of this element. Such as "protein", "DNA", "small molecule", "process".

Constructor Detail

PathwayElement

public PathwayElement()

Constructs a new, empty element.

PathwayElement

public PathwayElement(java.lang.String newType,
 java.lang.String newID)

Constructs a new Element object with the specified name and type.

Parameters:
newType - the type of this element

187

newID - the ID of this element

Method Detail

compareTo

public int compareTo(java.lang.Object o)

Compares this Element to another Object. If the Object is another Element, returns 0 if the two
Elements have identical types and ids.

Specified by:
compareTo in interface java.lang.Comparable

Returns:
the value 0 if the argument is an equivalent Element

Throws:
java.lang.ClassCastException - if the argument is not a valid Element

getAttribute

public java.lang.Object getAttribute(java.lang.String type)

Returns the attribute mapped to the specified attribute type.

Specified by:
getAttribute in interface PathwayComponent

Parameters:
type - the attribute type

Returns:
the attribute specified by the type

getAttributes

public java.util.Map getAttributes()

Returns the attributes of this Element.

Specified by:

188

getAttributes in interface PathwayComponent

Returns:
the attributes

getID

public java.lang.String getID()

Returns this element's value.

Specified by:
getID in interface PathwayComponent

Returns:
the value

getType

public java.lang.String getType()

Returns this element's type.

Returns:
the type

hasAttribute

public boolean hasAttribute(java.lang.String type)

Tests to see if this PathwayComponent has this type of attribute.

Specified by:
hasAttribute in interface PathwayComponent

Parameters:
type - the attribute type

Returns:
true if this type of attribute exists;

189

removeAttribute

public java.lang.Object removeAttribute(java.lang.String key)

Removes a particular attribute

Specified by:
removeAttribute in interface PathwayComponent

Parameters:
key - the attribute type

setAttribute

public void setAttribute(java.lang.String key,
 java.lang.Object value)

Creates a new attribute

Specified by:
setAttribute in interface PathwayComponent

Parameters:
key - the attribute type
value - the attribute

setType

public void setType(java.lang.String newType)

Sets this element's type.

Parameters:
newType -

toString

190

public java.lang.String toString()

Returns the name of this element. If it does not have a specified name, returns the ID.

Overrides:
toString in class java.lang.Object

Returns:
the "name" attribute or, if no name exists, the ID attribute

191

edu.ucsf.qpaca.pathway
Class PathwayFactory

java.lang.Object

 edu.ucsf.qpaca.pathway.PathwayFactory

All Implemented Interfaces:
java.io.Serializable, salvo.jesus.graph.GraphFactory

public class PathwayFactory

extends java.lang.Object
implements salvo.jesus.graph.GraphFactory

The factory for creating Vertices and Edges in a Pathway class.

See Also:
Serialized Form

Constructor Summary

PathwayFactory()

Method Summary

 salvo.
jesus.
graph.
Edge

createEdge(salvo.jesus.graph.Vertex v1, salvo.jesus.graph.

Vertex v2)

 salvo.
jesus.
graph.
Vertex

createVertex()

Methods inherited from class java.lang.Object

192

file:///Volumes/KiKi/barbara/dev/QPACA/doc/serialized-form.html#edu.ucsf.qpaca.pathway.PathwayFactory

clone, equals, finalize, getClass, hashCode, notify, notifyAll,
toString, wait, wait, wait

Constructor Detail

PathwayFactory

public PathwayFactory()

Method Detail

createEdge

public salvo.jesus.graph.Edge createEdge(salvo.jesus.graph.Vertex v1,
 salvo.jesus.graph.Vertex v2)

Specified by:
createEdge in interface salvo.jesus.graph.GraphFactory

createVertex

public salvo.jesus.graph.Vertex createVertex()

Specified by:
createVertex in interface salvo.jesus.graph.GraphFactory

193

edu.ucsf.qpaca.pathway
Class PathwaySVG

java.lang.Object

 edu.ucsf.qpaca.pathway.PathwaySVG

public class PathwaySVG

extends java.lang.Object

Handles manipulation and coloring (by data value) of SVG files generated by GraphViz.

Constructor Summary

PathwaySVG()

PathwaySVG(java.lang.String uri)

PathwaySVG(java.lang.String uri, java.io.File datafile, java.io.File annotFile,

java.lang.String annotType, boolean logValues, double percentile, java.lang.
String dupmethod, boolean calcRatios, double missingValueThreshold,
double percAllowedMissing)
 Creates a new PathwaySVG object with the specified SVG file and dataset.

Method Summary

protected
 double

calculateColor(double value)

protected
 double

calculateColor(double value, double dMax, double dMin, double dMid)

 org.w3c.
dom.svg.

SVGDocument

color(java.util.Map dataForColoring, int index, java.lang.

String titleString, double dMax, double dMin, double dMid, java.lang.
String corrID)
 Colors the svg document based on values in at a specific index in the data list

 org.w3c.
dom.svg.

SVGDocument

colorByCorrelation()

 org.w3c.
dom.svg.

SVGDocument

colorBySample(int sampleIndex)

 boolean generateCorrelationData()

194

 java.lang.
String

getCorrelationID()

 double getDataMax()

 double getDataMin()

 org.w3c.
dom.svg.

SVGDocument

getDocument()

 boolean isTweaked()

static void main(java.lang.String[] args)
 This method allows for testing the class on the command line.

 void readDataFile(java.io.File datafile, java.io.File annotFile, java.lang.

String annotType, boolean logValues, double maxPercentile, java.lang.
String dupmethod, boolean calcRatios, double missingValueThreshold,
double percAllowedMissing)
 Reads in a datafile that will be used in generating colored images.

 boolean setCorrelationID(java.lang.String id)

 void setDocument(java.lang.String uri)

 void tweak(java.lang.String hreftag)
 Takes the svg file output by dot and separates the rectangles.

static void writeSVGFile(org.w3c.dom.svg.SVGDocument doc, java.lang.String filename)
 Writes out the SVG document.

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait,
wait, wait

Constructor Detail

PathwaySVG

public PathwaySVG()

PathwaySVG

public PathwaySVG(java.lang.String uri)
 throws java.io.IOException

Parameters:

195

uri - the svg document URI
Throws:

java.io.IOException

PathwaySVG

public PathwaySVG(java.lang.String uri,
 java.io.File datafile,
 java.io.File annotFile,
 java.lang.String annotType,
 boolean logValues,
 double percentile,
 java.lang.String dupmethod,
 boolean calcRatios,
 double missingValueThreshold,
 double percAllowedMissing)
 throws java.io.FileNotFoundException,
 java.io.IOException

Creates a new PathwaySVG object with the specified SVG file and dataset. The data is contained a datafile (with
genes in rows and samples in columns). Gene identifiers must be located in the first column. Missing data in the file
is identified using the empty string or "NA". Gene annotations are in a corresponding annotation file, which also
contains identifiers in the first column. The annotation type and list of samples further describe the data set.

Parameters:
uri - the svg document URI
datafile - the data file
annotFile - the annotation file
annotType - the annotation type that corresponds to the annotation type in the svg document hrefs.
logValues - true if the datafile contains log values, false otherwise
percentile - the percentile of the max/min threshold at which color is most intense
dupmethod - method used to resolve duplicates
calcRatios - if true, the values in the file need to have ratios calculated
missingValueThreshold - the minimum threshold for valid data values
percAllowedMissing - the percent of data values allowed to be missing for the gene to be represented

Throws:
FileNotFoundException
java.io.IOException

Method Detail

calculateColor

protected double calculateColor(double value)

calculateColor

protected double calculateColor(double value,
 double dMax,
 double dMin,

196

 double dMid)

color

public org.w3c.dom.svg.SVGDocument color(java.util.Map dataForColoring,
 int index,
 java.lang.String titleString,
 double dMax,
 double dMin,
 double dMid,
 java.lang.String corrID)

Colors the svg document based on values in at a specific index in the data list

Parameters:
dataForColoring - dataset
index - index of sample color
titleString - title of the svg plot
dMax - data maximum
dMin - data minimum
dMid - data midpoint
corrID - ID of correlation gene

colorByCorrelation

public org.w3c.dom.svg.SVGDocument colorByCorrelation()

colorBySample

public org.w3c.dom.svg.SVGDocument colorBySample(int sampleIndex)

generateCorrelationData

public boolean generateCorrelationData()

getCorrelationID

public java.lang.String getCorrelationID()

197

getDataMax

public double getDataMax()

getDataMin

public double getDataMin()

getDocument

public org.w3c.dom.svg.SVGDocument getDocument()

isTweaked

public boolean isTweaked()

main

public static void main(java.lang.String[] args)
 throws java.lang.Exception

This method allows for testing the class on the command line. args to pass in: svgfilename, datafilename,
annotfilename,

Throws:
java.lang.Exception

readDataFile

public void readDataFile(java.io.File datafile,
 java.io.File annotFile,
 java.lang.String annotType,
 boolean logValues,
 double maxPercentile,
 java.lang.String dupmethod,
 boolean calcRatios,
 double missingValueThreshold,
 double percAllowedMissing)

198

 throws java.io.FileNotFoundException,
 java.io.IOException

Reads in a datafile that will be used in generating colored images.

Parameters:
datafile - the File to import.
annotFile - the File containing gene annotations of the data
annotType - which annotation in the annotation file corresponds the gene annotation in the SVG file
logValues - true if the datafile contains log values, false otherwise
maxPercentile - the data percentile at which the color is most intense
dupmethod - method used to resolve duplicates
calcRatios - if true, the values in the file need to have ratios calculated
missingValueThreshold - the minimum threshold for valid data values
percAllowedMissing - the percent of data values allowed to be missing for the gene to be represented

Throws:
java.io.FileNotFoundException - if the file cannot be found
java.io.IOException - if the file cannot be read

setCorrelationID

public boolean setCorrelationID(java.lang.String id)

setDocument

public void setDocument(java.lang.String uri)
 throws java.io.IOException

Throws:
java.io.IOException

tweak

public void tweak(java.lang.String hreftag)

Takes the svg file output by dot and separates the rectangles.

Parameters:
hreftag - The portion of the href tag that starts the gene id section.

writeSVGFile

public static void writeSVGFile(org.w3c.dom.svg.SVGDocument doc,

199

 java.lang.String filename)
 throws javax.xml.transform.TransformerConfigurationException,
 javax.xml.transform.TransformerException

Writes out the SVG document.

Parameters:
filename - the name of the output file

Throws:
javax.xml.transform.TransformerConfigurationException
javax.xml.transform.TransformerException

200

edu.ucsf.qpaca.pathway
Class PathwayUtil

java.lang.Object

 edu.ucsf.qpaca.pathway.PathwayUtil

public class PathwayUtil

extends java.lang.Object

Static utility methods for manipulating data values.

Constructor Summary

PathwayUtil()

Method Summary

static java.
lang.Object

arrayExpand(java.lang.Object a, int newLength)
 Resizes an array.

static java.
util.List

indexOfNA(double[] values)
 Determines the index of all "NaN" values in an array of doubles.

static java.
lang.String

joinDoubleArray(double[] tojoin, java.lang.String token)
 Join the values in an array of values into a string with the specified separator
token.

static double mean(double[] values)
 Determines the mean of the values in a double array.

static double pearsons(double[] data1, double[] data2, int n)
 Calculates the pearson's correlation coefficient between two arrays data
values of the length: data1 and data2 derived from "Numerical Recipes in C", pg
638-639

static double randomizedSelect(double[] array, int begin, int end,

int k)
 Selects the kth largest element from an array.

201

static double
[]

removeIndices(double[] values, java.util.Set indices)
 Removes the specified set of indices from an array of doubles.

static double
[]

removeNA(double[] values)
 removes the NaN values from an array of doubles.

static java.
util.List

removeNA(java.util.List values)
 removes the NaN values from an List

static java.
lang.String[]

removeNA(java.lang.String[] values)
 removes the null values from an array of Strings.

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll,
toString, wait, wait, wait

Constructor Detail

PathwayUtil

public PathwayUtil()

Method Detail

arrayExpand

public static java.lang.Object arrayExpand(java.lang.Object a,
 int newLength)

Resizes an array.

Parameters:
a - the array to resize
newLength - the length of the new array (if newLength < a.length, newLength is set
to length+length/2).

Returns:
the new array or null if a was not an array.

indexOfNA

202

public static java.util.List indexOfNA(double[] values)

Determines the index of all "NaN" values in an array of doubles.

Parameters:
values - the array

Returns:
a List of indices in the array

joinDoubleArray

public static java.lang.String joinDoubleArray(double[] tojoin,
 java.lang.String token)

Join the values in an array of values into a string with the specified separator token.

Parameters:
tojoin - the array
token - the string separator

Returns:
the resulting string representation of the array

mean

public static double mean(double[] values)

Determines the mean of the values in a double array. If there are NaN values in the array, they
are removed first and the mean is calculated without them.

Parameters:
values - an array of doubles

Returns:
the mean of the values

pearsons

public static double pearsons(double[] data1,

203

 double[] data2,
 int n)

Calculates the pearson's correlation coefficient between two arrays data values of the length:
data1 and data2 derived from "Numerical Recipes in C", pg 638-639

Parameters:
data1 - an array
data2 - a second array
n - the length of the two arrays

Returns:
the pearson's correlation coefficient

randomizedSelect

public static double randomizedSelect(double[] array,
 int begin,
 int end,
 int k)
 throws java.lang.IllegalArgumentException

Selects the kth largest element from an array. To calculate the median, set k=(end-begin)/2

Parameters:
array - the array to search
begin - index of the first element in the array
end - index of the last element in the array
k - the index to select

Throws:
java.lang.IllegalArgumentException

removeIndices

public static double[] removeIndices(double[] values,
 java.util.Set indices)

Removes the specified set of indices from an array of doubles.

Parameters:
values - the array
indices - the indicies in the array to remove

Returns:

204

the modified array

removeNA

public static double[] removeNA(double[] values)

removes the NaN values from an array of doubles.

Parameters:
values - the array to process

Returns:
the new double array

removeNA

public static java.util.List removeNA(java.util.List values)

removes the NaN values from an List
Parameters:

values - the List to process
Returns:

the new List

removeNA

public static java.lang.String[] removeNA(java.lang.String[] values)

removes the null values from an array of Strings.

Parameters:
values - the array to process

Returns:
the new String array

205

edu.ucsf.qpaca.pathway
Class PathwayVertex

java.lang.Object

 salvo.jesus.graph.VertexImpl

 edu.ucsf.qpaca.pathway.PathwayVertex

All Implemented Interfaces:
PathwayComponent, java.io.Serializable, java.lang.Comparable, salvo.jesus.graph.
GraphComponent, salvo.jesus.graph.LabeledGraphComponent, salvo.jesus.graph.Vertex

public class PathwayVertex

extends salvo.jesus.graph.VertexImpl
implements PathwayComponent, java.lang.Comparable, java.io.Serializable

A vertex in a pathway. This class encapsulates an object that the vertex will represent. Hence, a
PathwayVertex can represent any object that extends java.lang.Object by simply calling setObject() or
specifying the object in the constructor.

See Also:
Serialized Form

Field Summary

protected
 java.
util.

HashMap

attributes

Fields inherited from class salvo.jesus.graph.VertexImpl

object

Constructor Summary

206

file:///Volumes/KiKi/barbara/dev/QPACA/doc/serialized-form.html#edu.ucsf.qpaca.pathway.PathwayVertex

PathwayVertex()
 Creates an empty PathwayVertex

PathwayVertex(java.lang.Object newobject)
 Creates a new PathwayVertex that contains a specified object.

PathwayVertex(java.lang.Object newobject, java.lang.String newType)
 Creates a new PathwayVertex object that contains a specific object with a specific type.

PathwayVertex(java.lang.Object newobject, java.lang.String newType,

java.util.Map newAttributes)
 Creates a new PathwayVertex object that contains a specific object with a specific type and
attributes.

PathwayVertex(java.lang.Object newobject, java.lang.String newType,

java.util.Map newAttributes, java.lang.String newID)
 Creates a new PathwayVertex object that contains a specific object with a specific type, attributes,
and id.

PathwayVertex(java.lang.Object newobject, java.lang.String newType,

java.lang.String newID)
 Creates a new PathwayVertex object that contains a specific object with a specific type and id.

PathwayVertex(java.lang.String newType)
 Creates an empty PathwayVertex with the specified type.

PathwayVertex(java.lang.String newType, java.lang.String newID)
 Creates an empty PathwayVertex with the specified type and id.

Method Summary

 int compareTo(java.lang.Object o)
 Compares this PathwayVertex to another Object.

 java.
lang.

Object

getAttribute(java.lang.String type)
 Returns the attribute mapped to the specified attribute type.

 java.
util.Map

getAttributes()
 Returns the attributes of this Vertex.

 java.
util.Set

getElements()
 Retrieves a List of all PathwayElements within this Vertex

 java.
lang.

String

getID()
 Returns the ID of this PathwayComponent.

 java.
lang.

String

getType()
 Returns the type of this PathwayVertex.

 boolean hasAttribute(java.lang.String type)
 Tests to see if this PathwayComponent has this type of attribute.

207

 boolean hasObject()
 Tests to see if this PathwayVertex contains an object.

 boolean hasType()
 Tests to see if this PathwayVertex has a type.

 java.
lang.

Object

removeAttribute(java.lang.String key)
 Removes the specified attribute.

 void setAttribute(java.lang.String key, java.lang.Object value)
 Creates a new attribute.

 java.
lang.

String

toString()
 Creates a string representation of this PathwayVertex: id:type:object

Methods inherited from class salvo.jesus.graph.VertexImpl

getLabel, getObject, hasLabel, setLabel, setObject

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait,
wait, wait

Field Detail

attributes

protected java.util.HashMap attributes

Constructor Detail

PathwayVertex

public PathwayVertex()

Creates an empty PathwayVertex

PathwayVertex

208

public PathwayVertex(java.lang.Object newobject)

Creates a new PathwayVertex that contains a specified object.

Parameters:
newobject -

PathwayVertex

public PathwayVertex(java.lang.Object newobject,
 java.lang.String newType)

Creates a new PathwayVertex object that contains a specific object with a specific type.

Parameters:
newobject - the object that the PathwayVertex will encapsulate
newType - the new type

PathwayVertex

public PathwayVertex(java.lang.Object newobject,
 java.lang.String newType,
 java.util.Map newAttributes)

Creates a new PathwayVertex object that contains a specific object with a specific type and
attributes.

Parameters:
newobject - the object that the PathwayVertex will encapsulate
newType - the new type

PathwayVertex

public PathwayVertex(java.lang.Object newobject,
 java.lang.String newType,
 java.util.Map newAttributes,
 java.lang.String newID)

209

Creates a new PathwayVertex object that contains a specific object with a specific type,
attributes, and id.

Parameters:
newobject - the object that the PathwayVertex will encapsulate
newType - the new type

PathwayVertex

public PathwayVertex(java.lang.Object newobject,
 java.lang.String newType,
 java.lang.String newID)

Creates a new PathwayVertex object that contains a specific object with a specific type and id.

Parameters:
newobject - the object that the PathwayVertex will encapsulate
newType - the new type

PathwayVertex

public PathwayVertex(java.lang.String newType)

Creates an empty PathwayVertex with the specified type.

Parameters:
newType - this vertex's type

PathwayVertex

public PathwayVertex(java.lang.String newType,
 java.lang.String newID)

Creates an empty PathwayVertex with the specified type and id.

210

Parameters:
newType - this vertex's type
newID - this vertex's id

Method Detail

compareTo

public int compareTo(java.lang.Object o)

Compares this PathwayVertex to another Object. If the Object is another PathwayVertex, returns
0 if the corresponding Assemblies and types are equivalent.

Specified by:
compareTo in interface java.lang.Comparable

Parameters:
o - the object to be tested.

Returns:
0 if the argument is an equivalent PathwayVertex, 1 otherwise

Throws:
java.lang.ClassCastException - if the argument is not a valid
PathwayVertex

getAttribute

public java.lang.Object getAttribute(java.lang.String type)

Returns the attribute mapped to the specified attribute type.

Specified by:
getAttribute in interface PathwayComponent

Parameters:
type - the attribute type

Returns:
the attribute specified by the type

getAttributes

public java.util.Map getAttributes()

211

Returns the attributes of this Vertex.

Specified by:
getAttributes in interface PathwayComponent

Returns:
the attributes

getElements

public java.util.Set getElements()

Retrieves a List of all PathwayElements within this Vertex

Returns:
a List of PathwayElements

getID

public java.lang.String getID()

Returns the ID of this PathwayComponent.

Specified by:
getID in interface PathwayComponent

Returns:
the ID

getType

public java.lang.String getType()

Returns the type of this PathwayVertex.

Returns:
a String representing the type.

212

hasAttribute

public boolean hasAttribute(java.lang.String type)

Tests to see if this PathwayComponent has this type of attribute.

Specified by:
hasAttribute in interface PathwayComponent

Parameters:
type - the attribute type

Returns:
true if this type of attribute exists;

hasObject

public boolean hasObject()

Tests to see if this PathwayVertex contains an object.

Returns:
true if the object exists;

hasType

public boolean hasType()

Tests to see if this PathwayVertex has a type.

Returns:
true if it has a type.

removeAttribute

213

public java.lang.Object removeAttribute(java.lang.String key)

Removes the specified attribute.

Specified by:
removeAttribute in interface PathwayComponent

Parameters:
key - the attribute type

setAttribute

public void setAttribute(java.lang.String key,
 java.lang.Object value)

Creates a new attribute.

Specified by:
setAttribute in interface PathwayComponent

Parameters:
key - the attribute type
value - the attribute

toString

public java.lang.String toString()

Creates a string representation of this PathwayVertex: id:type:object

Overrides:
toString in class salvo.jesus.graph.VertexImpl

Returns:
String representation

214

edu.ucsf.qpaca.pathway.algorithm
Class PathwayMinimumSpanningTree

java.lang.Object

 edu.ucsf.qpaca.pathway.algorithm.PathwayMinimumSpanningTree

All Implemented Interfaces:
java.io.Serializable

public class PathwayMinimumSpanningTree

extends java.lang.Object
implements java.io.Serializable

A concrete implementation of the minimum spanning tree algorithm using Kruskal's method specifically
geared to Pathway objects.

See Also:
Serialized Form

Constructor Summary

PathwayMinimumSpanningTree(Pathway path)
 Creates an instance of PathwayMinimumSpanningTree

Method Summary

 salvo.jesus.
graph.

WeightedGraph

minimumSpanningTree()
 Determine the minimum spanning tree of a pathway using Kruskal's method.

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll,
toString, wait, wait, wait

215

file:///Volumes/KiKi/barbara/dev/QPACA/doc/serialized-form.html#edu.ucsf.qpaca.pathway.algorithm.PathwayMinimumSpanningTree

Constructor Detail

PathwayMinimumSpanningTree

public PathwayMinimumSpanningTree(Pathway path)

Creates an instance of PathwayMinimumSpanningTree

Parameters:
path - The Pathway where the minimum spanning tree will be determined.

Method Detail

minimumSpanningTree

public salvo.jesus.graph.WeightedGraph minimumSpanningTree()

Determine the minimum spanning tree of a pathway using Kruskal's method.

216

edu.ucsf.qpaca.pathway.algorithm
Class ShortestPathAlgorithm

java.lang.Object

 edu.ucsf.qpaca.pathway.algorithm.ShortestPathAlgorithm

All Implemented Interfaces:
java.io.Serializable

Direct Known Subclasses:
ShortestPathDijkstraAlgorithm

public abstract class ShortestPathAlgorithm

extends java.lang.Object
implements java.io.Serializable

Abstract class for implementing the shortest path algorithm. Concrete subclasses must never modify the graph when it is computing the
shortestpath.

See Also:
Serialized Form

Constructor Summary

ShortestPathAlgorithm(Pathway path)

Method Summary

abstract
 salvo.jesus.

graph.
WeightedGraph

shortestPath(salvo.jesus.graph.Vertex from)
 Abstract method to be implemented by subclasses to determine a shortest path spanning tree from a given
vertex in the form of a graph.

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait,
wait

Constructor Detail

ShortestPathAlgorithm

public ShortestPathAlgorithm(Pathway path)

217

file:///Volumes/KiKi/barbara/dev/QPACA/doc/serialized-form.html#edu.ucsf.qpaca.pathway.algorithm.ShortestPathAlgorithm

Method Detail

shortestPath

public abstract salvo.jesus.graph.WeightedGraph shortestPath(salvo.jesus.graph.Vertex from)

Abstract method to be implemented by subclasses to determine a shortest path spanning tree from a given vertex in the form
of a graph.

Returns:
A new Pathway that represents the shortest path spanning tree of the original Pathway. Do not modify the contents
of the returned Pathway.

218

edu.ucsf.qpaca.pathway.algorithm
Class ShortestPathDijkstraAlgorithm

java.lang.Object

 edu.ucsf.qpaca.pathway.algorithm.ShortestPathAlgorithm

 edu.ucsf.qpaca.pathway.algorithm.ShortestPathDijkstraAlgorithm

All Implemented Interfaces:
java.io.Serializable

public class ShortestPathDijkstraAlgorithm

extends ShortestPathAlgorithm

A concrete implementation of ShortestPathAlgorithm using Dijkstra's method.

See Also:
Serialized Form

Constructor Summary

ShortestPathDijkstraAlgorithm(Pathway path, salvo.jesus.util.

HeapNodeComparator comparator)
 Creates an instance of ShortestPathDijkstraAlgorithm.

Method Summary

 salvo.jesus.
graph.

WeightedGraph

shortestPath(salvo.jesus.graph.Vertex from)
 Determines the shortest path from a given vertex to all other vertices that are in the same
connected set as the given vertex in the weighted graph using Dijkstra's algorithm.

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait,
wait, wait

Constructor Detail

ShortestPathDijkstraAlgorithm

219

file:///Volumes/KiKi/barbara/dev/QPACA/doc/serialized-form.html#edu.ucsf.qpaca.pathway.algorithm.ShortestPathDijkstraAlgorithm

public ShortestPathDijkstraAlgorithm(Pathway path,

 salvo.jesus.util.HeapNodeComparator comparator)

Creates an instance of ShortestPathDijkstraAlgorithm.

Parameters:
path - The Pathway where a shortest path spanning tree will be determined.
comparator - The HeapNodeComparator to be used to compare priorities of objects in the fringe/heap.

Method Detail

shortestPath

public salvo.jesus.graph.WeightedGraph shortestPath(salvo.jesus.graph.Vertex from)

Determines the shortest path from a given vertex to all other vertices that are in the same connected set as the
given vertex in the weighted graph using Dijkstra's algorithm.

Specified by:
shortestPath in class ShortestPathAlgorithm

Parameters:
from - The Vertex from where we want to obtain the shortest path to all other vertices.

Returns:
A Pathway comprising of the shortest path spanning tree.

220

edu.ucsf.qpaca.parser
Class MapBioPAXtoQPACA

java.lang.Object

 edu.ucsf.qpaca.parser.MapBioPAXtoQPACA

public class MapBioPAXtoQPACA

extends java.lang.Object

Maps between BioPAX keywords and QPACA keywords.

Field Summary

static java.
lang.String

BIOPAX_EDGE_TYPE_ATTRIBUTE
 Pathway Attribute: BioPAX Edge Type.

static java.
lang.String

BIOPAX_ID_ATTRIBUTE
 Pathway Attribute: BioPAX ID.

static java.
lang.String

BIOPAX_NAME_ATTRIBUTE
 Pathway Attribute: BioPAX Name.

static java.
lang.String

BIOPAX_NODE_TYPE_ATTRIBUTE
 Pathway Attribute: BioPAX Node Type.

static java.
lang.String

COFACTOR
 Pathway Edge Attribute: COFACTOR

static java.
lang.String

CONTAINS
 Pathway Edge Attribute: CONTAINS

static java.
lang.String

CONTROLLED
 Pathway Edge Attribute: CONTROLLED

static java.
lang.String

CONTROLLER
 Pathway Edge Attribute: CONTROLLER

static java.
lang.String

LEFT
 Pathway Edge Attribute: LEFT

221

static java.
lang.String

PARTICIPANT
 Pathway Edge Attribute: PARTICIPANT

static java.
lang.String

RIGHT
 Pathway Edge Attribute: RIGHT

Constructor Summary

MapBioPAXtoQPACA(BioPaxUtil bpUtil, Pathway path)
 Initializes the mapping.

Method Summary

 void doMapping()
 Executes the Mapping.

 java.
util.

ArrayList

getWarningList()
 Retrieves a list of all exceptions and warnings encountered during execution.

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll,
toString, wait, wait, wait

Field Detail

BIOPAX_EDGE_TYPE_ATTRIBUTE

public static final java.lang.String BIOPAX_EDGE_TYPE_ATTRIBUTE

Pathway Attribute: BioPAX Edge Type.

See Also:
Constant Field Values

BIOPAX_ID_ATTRIBUTE

public static final java.lang.String BIOPAX_ID_ATTRIBUTE

Pathway Attribute: BioPAX ID.

222

file:///Volumes/KiKi/barbara/dev/QPACA/doc/constant-values.html#edu.ucsf.qpaca.parser.MapBioPAXtoQPACA.BIOPAX_EDGE_TYPE_ATTRIBUTE

See Also:
Constant Field Values

BIOPAX_NAME_ATTRIBUTE

public static final java.lang.String BIOPAX_NAME_ATTRIBUTE

Pathway Attribute: BioPAX Name.

See Also:
Constant Field Values

BIOPAX_NODE_TYPE_ATTRIBUTE

public static final java.lang.String BIOPAX_NODE_TYPE_ATTRIBUTE

Pathway Attribute: BioPAX Node Type.

See Also:
Constant Field Values

COFACTOR

public static final java.lang.String COFACTOR

Pathway Edge Attribute: COFACTOR

See Also:
Constant Field Values

CONTAINS

223

file:///Volumes/KiKi/barbara/dev/QPACA/doc/constant-values.html#edu.ucsf.qpaca.parser.MapBioPAXtoQPACA.BIOPAX_ID_ATTRIBUTE
file:///Volumes/KiKi/barbara/dev/QPACA/doc/constant-values.html#edu.ucsf.qpaca.parser.MapBioPAXtoQPACA.BIOPAX_NAME_ATTRIBUTE
file:///Volumes/KiKi/barbara/dev/QPACA/doc/constant-values.html#edu.ucsf.qpaca.parser.MapBioPAXtoQPACA.BIOPAX_NODE_TYPE_ATTRIBUTE
file:///Volumes/KiKi/barbara/dev/QPACA/doc/constant-values.html#edu.ucsf.qpaca.parser.MapBioPAXtoQPACA.COFACTOR

public static final java.lang.String CONTAINS

Pathway Edge Attribute: CONTAINS

See Also:
Constant Field Values

CONTROLLED

public static final java.lang.String CONTROLLED

Pathway Edge Attribute: CONTROLLED

See Also:
Constant Field Values

CONTROLLER

public static final java.lang.String CONTROLLER

Pathway Edge Attribute: CONTROLLER

See Also:
Constant Field Values

LEFT

public static final java.lang.String LEFT

Pathway Edge Attribute: LEFT

See Also:
Constant Field Values

224

file:///Volumes/KiKi/barbara/dev/QPACA/doc/constant-values.html#edu.ucsf.qpaca.parser.MapBioPAXtoQPACA.CONTAINS
file:///Volumes/KiKi/barbara/dev/QPACA/doc/constant-values.html#edu.ucsf.qpaca.parser.MapBioPAXtoQPACA.CONTROLLED
file:///Volumes/KiKi/barbara/dev/QPACA/doc/constant-values.html#edu.ucsf.qpaca.parser.MapBioPAXtoQPACA.CONTROLLER
file:///Volumes/KiKi/barbara/dev/QPACA/doc/constant-values.html#edu.ucsf.qpaca.parser.MapBioPAXtoQPACA.LEFT

PARTICIPANT

public static final java.lang.String PARTICIPANT

Pathway Edge Attribute: PARTICIPANT

See Also:
Constant Field Values

RIGHT

public static final java.lang.String RIGHT

Pathway Edge Attribute: RIGHT

See Also:
Constant Field Values

Constructor Detail

MapBioPAXtoQPACA

public MapBioPAXtoQPACA(BioPaxUtil bpUtil,

 Pathway path)

Initializes the mapping.

Parameters:
bpUtil - BioPAX Utility Class
path - Pathway Object

Method Detail

doMapping

public void doMapping()

225

file:///Volumes/KiKi/barbara/dev/QPACA/doc/constant-values.html#edu.ucsf.qpaca.parser.MapBioPAXtoQPACA.PARTICIPANT
file:///Volumes/KiKi/barbara/dev/QPACA/doc/constant-values.html#edu.ucsf.qpaca.parser.MapBioPAXtoQPACA.RIGHT

 throws org.jdom.JDOMException,
 java.lang.Exception

Executes the Mapping.

Throws:
org.jdom.JDOMException - Error Parsing XML via JDOM.
java.lang.Exception

getWarningList

public java.util.ArrayList getWarningList()

Retrieves a list of all exceptions and warnings encountered during execution.

Returns:
ArrayList of String Objects.

226

edu.ucsf.qpaca.parser
Class MapKGMLtoQPACA

java.lang.Object

 edu.ucsf.qpaca.parser.MapKGMLtoQPACA

public class MapKGMLtoQPACA

extends java.lang.Object

Maps between KEGG KGML keywords and QPACA keywords.

Constructor Summary

MapKGMLtoQPACA(KGMLUtil kgmlUtil, Pathway path)
 Initializes the mapping.

Method Summary

 void doMapping()
 Executes the Mapping.

 java.
util.

ArrayList

getWarningList()
 Retrieves a list of all exceptions and warnings encountered during execution.

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll,
toString, wait, wait, wait

Constructor Detail

MapKGMLtoQPACA

227

public MapKGMLtoQPACA(KGMLUtil kgmlUtil,

 Pathway path)

Initializes the mapping.

Parameters:
kgmlUtil - KGML Utility Class.
path - Pathway Object.

Method Detail

doMapping

public void doMapping()
 throws org.jdom.JDOMException,
 java.lang.Exception

Executes the Mapping.

Throws:
org.jdom.JDOMException - Error Parsing XML via JDOM.
java.lang.Exception

getWarningList

public java.util.ArrayList getWarningList()

Retrieves a list of all exceptions and warnings encountered during execution.

Returns:
ArrayList of String Objects.

228

edu.ucsf.qpaca.parser
Class ParseQPACALanguage

java.lang.Object

 edu.ucsf.qpaca.parser.ParseQPACALanguage

public class ParseQPACALanguage

extends java.lang.Object

Creates QPACA pathways from files written in the QPACA Pathway language.

Constructor Summary

ParseQPACALanguage(java.io.Reader reader)
 Initializes the parser.

Method Summary

 Pathway getPathway()
 Retrieves the Pathway.

 java.
lang.

String

getPathwayID()
 Retrieves the pathway name.

 java.
lang.

String

getPathwayLabel()
 Retrieves the pathway label.

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll,
toString, wait, wait, wait

Constructor Detail

229

ParseQPACALanguage

public ParseQPACALanguage(java.io.Reader reader)
 throws java.io.IOException,
 java.lang.Exception

Initializes the parser.

Parameters:
reader - Reader Object.

Throws:
java.io.IOException - Input/Output Error.
java.lang.Exception

Method Detail

getPathway

public Pathway getPathway()

Retrieves the Pathway.

Returns:
Pathway

getPathwayID

public java.lang.String getPathwayID()

Retrieves the pathway name.

Returns:
pathway name

getPathwayLabel

public java.lang.String getPathwayLabel()

230

Retrieves the pathway label.

Returns:
pathway label

231

edu.ucsf.qpaca.parser
Class PathwayToDot

java.lang.Object

 edu.ucsf.qpaca.parser.PathwayToDot

public class PathwayToDot

extends java.lang.Object

Translates Pathways into GraphViz .dot files.

Constructor Summary

PathwayToDot()
 Default Constructor

Method Summary

 void createDotFile(Pathway path, java.lang.String fileName, java.

lang.String linkID, java.lang.String linkBase)
 Creates a GraphViz .dot file.

protected
 java.

util.List

writeAssemblies(java.util.Set assemblies, java.io.

FileWriter out, java.lang.String linkID, java.lang.
String linkBase)
 Writes out QPACA PathwayAssemblies, delegating the task to writeElement or
writeRecord as necessary.

protected
 void

writeAttributes(java.util.Map atts, java.io.FileWriter out)
 Writes out label or name attributes.

protected
 void

writeHeader(java.io.FileWriter out)
 Writes out the header of the GraphViz file.

232

protected
 java.

util.List

writeNodes(java.util.Set vertices, Pathway path, java.io.

FileWriter out, java.lang.String linkID, java.lang.
String linkBase)
 Writes out QPACA PathwayVertices, specifically handles the those of the
QPACAConstants.EVENT type, delegating the task of writing out the other Vertices to
writeAssemblies after extracting lists of PathwayAssemblies.

protected
 void

writeRecord(PathwayAssembly a, java.io.FileWriter out, java.

lang.String linkID, java.lang.String linkBase)
 Writes out a GraphViz Record, which represents a collection of PathwayElements
found at the same node (stored as a PathwayAssembly of type QPACAConstants.ALIAS
or QPACAConstants.FAMILY).

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll,
toString, wait, wait, wait

Constructor Detail

PathwayToDot

public PathwayToDot()

Default Constructor

Method Detail

createDotFile

public void createDotFile(Pathway path,

 java.lang.String fileName,
 java.lang.String linkID,
 java.lang.String linkBase)

Creates a GraphViz .dot file.

Parameters:
path - the pathway to output
fileName - the output file
linkID - attribute from which to create link
linkBase - base of href link string

233

writeAssemblies

protected java.util.List writeAssemblies(java.util.Set assemblies,
 java.io.FileWriter out,
 java.lang.String linkID,
 java.lang.String linkBase)
 throws java.io.IOException

Writes out QPACA PathwayAssemblies, delegating the task to writeElement or writeRecord as
necessary.

Parameters:
assemblies - all of the PathwayAssemblies
out - the output FileWriter
linkID - id of the element in the database link
linkBase - the base URL of the database link

Throws:
java.io.IOException - if the file cannot be accessed.

writeAttributes

protected void writeAttributes(java.util.Map atts,
 java.io.FileWriter out)
 throws java.io.IOException

Writes out label or name attributes. Attributes for all PathwayComponents are handled the same
way.

Parameters:
out - the output FileWriter
atts - the attributes

Throws:
java.io.IOException - if the file cannot be accessed.

writeHeader

protected void writeHeader(java.io.FileWriter out)
 throws java.io.IOException

234

Writes out the header of the GraphViz file.

Parameters:
out - the output FileWriter

Throws:
java.io.IOException - if the file cannot be accessed.

writeNodes

protected java.util.List writeNodes(java.util.Set vertices,
 Pathway path,

 java.io.FileWriter out,
 java.lang.String linkID,
 java.lang.String linkBase)
 throws java.io.IOException

Writes out QPACA PathwayVertices, specifically handles the those of the QPACAConstants.
EVENT type, delegating the task of writing out the other Vertices to writeAssemblies after
extracting lists of PathwayAssemblies.

Parameters:
vertices - all of the PathwayVertices
path - the pathway
out - the output FileWriter
linkID - id of the element in the database link
linkBase - the base URL of the database link

Throws:
java.io.IOException - if the file cannot be accessed.

writeRecord

protected void writeRecord(PathwayAssembly a,

 java.io.FileWriter out,
 java.lang.String linkID,
 java.lang.String linkBase)
 throws java.io.IOException

Writes out a GraphViz Record, which represents a collection of PathwayElements found at the
same node (stored as a PathwayAssembly of type QPACAConstants.ALIAS or
QPACAConstants.FAMILY).

Parameters:

235

a - the PathwayAssembly
out - the output FileWriter
linkID - id of the element in the database link
linkBase - the base URL of the database link

Throws:
java.io.IOException - if the file cannot be accessed.

236

edu.ucsf.qpaca.parser
Class TestBioPaxUtil

java.lang.Object

 junit.framework.Assert

 junit.framework.TestCase

 edu.ucsf.qpaca.parser.TestBioPaxUtil

All Implemented Interfaces:
junit.framework.Test

public class TestBioPaxUtil

extends junit.framework.TestCase

Tests the BioPaxUtil Class.

Constructor Summary

TestBioPaxUtil()

Method Summary

 void testUtil()
 Tests the BioPAX Utility Class using a sample biopax file located at sampleData/
biopax_sample1.owl

Methods inherited from class junit.framework.TestCase

countTestCases, createResult, getName, run, run, runBare, runTest,
setName, setUp, tearDown, toString

Methods inherited from class junit.framework.Assert

237

assertEquals, assertEquals, assertEquals, assertEquals, assertEquals,
assertEquals, assertEquals, assertEquals, assertEquals, assertEquals,
assertEquals, assertEquals, assertEquals, assertEquals, assertEquals,
assertEquals, assertEquals, assertEquals, assertEquals, assertEquals,
assertFalse, assertFalse, assertNotNull, assertNotNull,
assertNotSame, assertNotSame, assertNull, assertNull, assertSame,
assertSame, assertTrue, assertTrue, fail, fail

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait,
wait, wait

Constructor Detail

TestBioPaxUtil

public TestBioPaxUtil()

Method Detail

testUtil

public void testUtil()
 throws java.lang.Exception

Tests the BioPAX Utility Class using a sample biopax file located at sampleData/
biopax_sample1.owl

Throws:
java.lang.Exception - All Exceptions.

238

edu.ucsf.qpaca.parser
Class TestKGMLParsing

java.lang.Object

 junit.framework.Assert

 junit.framework.TestCase

 edu.ucsf.qpaca.parser.TestKGMLParsing

All Implemented Interfaces:
junit.framework.Test

public class TestKGMLParsing

extends junit.framework.TestCase

Tests the KGML-QPACA mapper.

Constructor Summary

TestKGMLParsing()

Method Summary

 void testMapper1()
 Tests the KGML mapper using a sample KGML file located at sampleData/hsa00062.
xml

Methods inherited from class junit.framework.TestCase

countTestCases, createResult, getName, run, run, runBare, runTest,
setName, setUp, tearDown, toString

Methods inherited from class junit.framework.Assert

239

assertEquals, assertEquals, assertEquals, assertEquals, assertEquals,
assertEquals, assertEquals, assertEquals, assertEquals, assertEquals,
assertEquals, assertEquals, assertEquals, assertEquals, assertEquals,
assertEquals, assertEquals, assertEquals, assertEquals, assertEquals,
assertFalse, assertFalse, assertNotNull, assertNotNull,
assertNotSame, assertNotSame, assertNull, assertNull, assertSame,
assertSame, assertTrue, assertTrue, fail, fail

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait,
wait, wait

Constructor Detail

TestKGMLParsing

public TestKGMLParsing()

Method Detail

testMapper1

public void testMapper1()
 throws java.lang.Exception

Tests the KGML mapper using a sample KGML file located at sampleData/hsa00062.xml

Throws:
java.lang.Exception

240

edu.ucsf.qpaca.parser
Class TestKGMLUtil

java.lang.Object

 junit.framework.Assert

 junit.framework.TestCase

 edu.ucsf.qpaca.parser.TestKGMLUtil

All Implemented Interfaces:
junit.framework.Test

public class TestKGMLUtil

extends junit.framework.TestCase

Tests the KGMLUtil Class.

Constructor Summary

TestKGMLUtil()

Method Summary

 void testUtil()
 Tests the KGML Utility Class using a sample KGML file located at sampleData/
hsa00190.xml

Methods inherited from class junit.framework.TestCase

countTestCases, createResult, getName, run, run, runBare, runTest,
setName, setUp, tearDown, toString

Methods inherited from class junit.framework.Assert

241

assertEquals, assertEquals, assertEquals, assertEquals, assertEquals,
assertEquals, assertEquals, assertEquals, assertEquals, assertEquals,
assertEquals, assertEquals, assertEquals, assertEquals, assertEquals,
assertEquals, assertEquals, assertEquals, assertEquals, assertEquals,
assertFalse, assertFalse, assertNotNull, assertNotNull,
assertNotSame, assertNotSame, assertNull, assertNull, assertSame,
assertSame, assertTrue, assertTrue, fail, fail

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait,
wait, wait

Constructor Detail

TestKGMLUtil

public TestKGMLUtil()

Method Detail

testUtil

public void testUtil()
 throws java.lang.Exception

Tests the KGML Utility Class using a sample KGML file located at sampleData/hsa00190.xml

Throws:
java.lang.Exception - All Exceptions.

242

edu.ucsf.qpaca.parser
Class TestParsing

java.lang.Object

 junit.framework.Assert

 junit.framework.TestCase

 edu.ucsf.qpaca.parser.TestParsing

All Implemented Interfaces:
junit.framework.Test

public class TestParsing

extends junit.framework.TestCase

Tests the BioPAX-QPACA mapper.

Constructor Summary

TestParsing()

Method Summary

 void testComplexMapping()
 Tests that we can map BioPAX Complexes Correctly.

 void testMapper1()
 Tests the Mapper on a valid BioPAX file located at sampleData/biopax_sample1.owl

Methods inherited from class junit.framework.TestCase

countTestCases, createResult, getName, run, run, runBare, runTest,
setName, setUp, tearDown, toString

Methods inherited from class junit.framework.Assert

243

assertEquals, assertEquals, assertEquals, assertEquals, assertEquals,
assertEquals, assertEquals, assertEquals, assertEquals, assertEquals,
assertEquals, assertEquals, assertEquals, assertEquals, assertEquals,
assertEquals, assertEquals, assertEquals, assertEquals, assertEquals,
assertFalse, assertFalse, assertNotNull, assertNotNull,
assertNotSame, assertNotSame, assertNull, assertNull, assertSame,
assertSame, assertTrue, assertTrue, fail, fail

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait,
wait, wait

Constructor Detail

TestParsing

public TestParsing()

Method Detail

testComplexMapping

public void testComplexMapping()
 throws java.lang.Exception

Tests that we can map BioPAX Complexes Correctly.

Throws:
java.lang.Exception - All Exceptions.

testMapper1

public void testMapper1()
 throws java.lang.Exception

Tests the Mapper on a valid BioPAX file located at sampleData/biopax_sample1.owl

Throws:

244

java.lang.Exception - All Exceptions.

245

edu.ucsf.qpaca.parser
Class TestPathLang

java.lang.Object

 junit.framework.Assert

 junit.framework.TestCase

 edu.ucsf.qpaca.parser.TestPathLang

All Implemented Interfaces:
junit.framework.Test

public class TestPathLang

extends junit.framework.TestCase

Tests the QPACA language parser.

Constructor Summary

TestPathLang()

Method Summary

 void testUtil()
 Tests the QPACA language parser using a valid QPACA file located at sampleData/
RTK.current.qpaca

Methods inherited from class junit.framework.TestCase

countTestCases, createResult, getName, run, run, runBare, runTest,
setName, setUp, tearDown, toString

Methods inherited from class junit.framework.Assert

246

assertEquals, assertEquals, assertEquals, assertEquals, assertEquals,
assertEquals, assertEquals, assertEquals, assertEquals, assertEquals,
assertEquals, assertEquals, assertEquals, assertEquals, assertEquals,
assertEquals, assertEquals, assertEquals, assertEquals, assertEquals,
assertFalse, assertFalse, assertNotNull, assertNotNull,
assertNotSame, assertNotSame, assertNull, assertNull, assertSame,
assertSame, assertTrue, assertTrue, fail, fail

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait,
wait, wait

Constructor Detail

TestPathLang

public TestPathLang()

Method Detail

testUtil

public void testUtil()
 throws java.lang.Exception

Tests the QPACA language parser using a valid QPACA file located at sampleData/RTK.current.
qpaca

Throws:
java.lang.Exception - All Exceptions.

247

edu.ucsf.qpaca.parser.util
Class BioPaxConstants

java.lang.Object

 edu.ucsf.qpaca.parser.util.BioPaxConstants

public class BioPaxConstants

extends java.lang.Object

BioPAX Constants.

Field Summary

static java.
lang.String

BIOCHEMICAL_REACTION
 BioPAX Class: biochemicalReaction

static org.
jdom.

Namespace

BIOPAX_LEVEL_1_NAMESPACE
 BioPAX Level 1 Namespace.

static java.
lang.String

BIOPAX_LEVEL_1_NAMESPACE_URI
 BioPAX Level 1 Namespace URI.

static org.
jdom.

Namespace

BIOPAX_LEVEL_2_NAMESPACE
 BioPAX Level 2 Namespace.

static java.
lang.String

BIOPAX_LEVEL_2_NAMESPACE_URI
 BioPAX Level 2 Namespace URI.

static java.
lang.String

BIOPAX_NAMESPACE_PREFIX
 BioPAX Namespace Prefix.

static java.
lang.String

CATALYSIS
 BioPAX Class: catalysis

static java.
lang.String

COMPLEX
 BioPAX Class: complex.

static java.
lang.String

COMPLEX_ASSEMBLY
 BioPAX Class: complexAssembly

248

static java.
lang.String

CONTROL
 BioPAX Class: control

static java.
lang.String

CONTROL_TYPE_ACTIVATION
 Control Type: ACTIVATION

static java.
lang.String

CONTROL_TYPE_ACTIVATION_ALLOSTERIC
 Control Type: ACTIVATION-ALLOSTERIC

static java.
lang.String

CONTROL_TYPE_ACTIVATION_NONALLOSTERIC
 Control Type: ACTIVATION-NONALLOSTERIC

static java.
lang.String

CONTROL_TYPE_ACTIVATION_UNKMECH
 Control Type: ACTIVATION-UNKMECH

static java.
lang.String

CONTROL_TYPE_INHIBITION
 Control Type: INHIBITION

static java.
lang.String

CONTROL_TYPE_INHIBITION_ALLOSTERIC
 Control Type: INHIBITION-ALLOSTERIC

static java.
lang.String

CONTROL_TYPE_INHIBITION_COMPETITIVE
 Control Type: INHIBITION-COMPETITIVE

static java.
lang.String

CONTROL_TYPE_INHIBITION_IRREVERSIBLE
 Control Type: INHIBITION-IRREVERSIBLE

static java.
lang.String

CONTROL_TYPE_INHIBITION_NONCOMPETITIVE
 Conrol Type: INHIBITION-NONCOMPETITIVE

static java.
lang.String

CONTROL_TYPE_INHIBITION_OTHER
 Control Type: INHIBITION-OTHER

static java.
lang.String

CONTROL_TYPE_INHIBITION_UNCOMPETITIVE
 Control Type: INHIBITION-UNCOMPETITIVE

static java.
lang.String

CONTROL_TYPE_INHIBITION_UNKMECH
 Control Type: INHIBITION-UNKMECH

static java.
lang.String

CONVERSION
 BioPAX Class: conversion

static java.
lang.String

DNA
 BioPAX Class: dna

static java.
lang.String

INTERACTION
 BioPAX Class: interaction.

static java.
lang.String

MODULATION
 BioPAX Class: modulation

static java.
lang.String

PATHWAY
 BioPAX Class: pathway

static java.
lang.String

PHYSICAL_ENTITY
 BioPAX Class: physicalEntity.

249

static java.
lang.String

PHYSICAL_INTERACTION
 BioPAX Class: physicalInteraction.

static java.
lang.String

PROTEIN
 BioPAX Class: protein

static java.
lang.String

RNA
 BioPAX Class: rna

static java.
lang.String

SMALL_MOLECULE
 BioPAX Class: smallMolecule.

static java.
lang.String

TRANSPORT
 BioPAX Class: transport

static java.
lang.String

TRANSPORT_WITH_BIOCHEMICAL_REACTION
 BioPAX Class: transportWithBiochemicalReaction

static java.
lang.String

UXREF
 BioPAX Class: UnificationXref

Constructor Summary

BioPaxConstants()
 Constructor.

Method Summary

 java.util.Set getInteractionSet()
 Gets a Set of all Interaction Entity Names.

 java.util.Set getPhysicalEntitySet()
 Gets a Set of all Physical Entity Names

static boolean isActivation(java.lang.String controlType)

 boolean isControlInteraction(java.lang.String elementName)
 Determines if the Specified Element is of type: control.

 boolean isConversionInteraction(java.lang.String elementName)
 Determines if the Specified Element is of type: conversion.

static boolean isInhibition(java.lang.String controlType)

 boolean isInteraction(java.lang.String elementName)
 Determines if the Specified Element is of type: interaction.

 boolean isPathway(java.lang.String elementName)
 Determines if the Specified Element is of type: pathway.

 boolean isPhysicalEntity(java.lang.String elementName)
 Determines if the Specified Element is of type: physical entity.

250

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll,
toString, wait, wait, wait

Field Detail

BIOCHEMICAL_REACTION

public static final java.lang.String BIOCHEMICAL_REACTION

BioPAX Class: biochemicalReaction

See Also:
Constant Field Values

BIOPAX_LEVEL_1_NAMESPACE

public static final org.jdom.Namespace BIOPAX_LEVEL_1_NAMESPACE

BioPAX Level 1 Namespace.

BIOPAX_LEVEL_1_NAMESPACE_URI

public static final java.lang.String BIOPAX_LEVEL_1_NAMESPACE_URI

BioPAX Level 1 Namespace URI.

See Also:
Constant Field Values

BIOPAX_LEVEL_2_NAMESPACE

public static final org.jdom.Namespace BIOPAX_LEVEL_2_NAMESPACE

251

file:///Volumes/KiKi/barbara/dev/QPACA/doc/constant-values.html#edu.ucsf.qpaca.parser.util.BioPaxConstants.BIOCHEMICAL_REACTION
file:///Volumes/KiKi/barbara/dev/QPACA/doc/constant-values.html#edu.ucsf.qpaca.parser.util.BioPaxConstants.BIOPAX_LEVEL_1_NAMESPACE_URI

BioPAX Level 2 Namespace.

BIOPAX_LEVEL_2_NAMESPACE_URI

public static final java.lang.String BIOPAX_LEVEL_2_NAMESPACE_URI

BioPAX Level 2 Namespace URI.

See Also:
Constant Field Values

BIOPAX_NAMESPACE_PREFIX

public static final java.lang.String BIOPAX_NAMESPACE_PREFIX

BioPAX Namespace Prefix.

See Also:
Constant Field Values

CATALYSIS

public static final java.lang.String CATALYSIS

BioPAX Class: catalysis

See Also:
Constant Field Values

COMPLEX

public static final java.lang.String COMPLEX

BioPAX Class: complex.

252

file:///Volumes/KiKi/barbara/dev/QPACA/doc/constant-values.html#edu.ucsf.qpaca.parser.util.BioPaxConstants.BIOPAX_LEVEL_2_NAMESPACE_URI
file:///Volumes/KiKi/barbara/dev/QPACA/doc/constant-values.html#edu.ucsf.qpaca.parser.util.BioPaxConstants.BIOPAX_NAMESPACE_PREFIX
file:///Volumes/KiKi/barbara/dev/QPACA/doc/constant-values.html#edu.ucsf.qpaca.parser.util.BioPaxConstants.CATALYSIS

See Also:
Constant Field Values

COMPLEX_ASSEMBLY

public static final java.lang.String COMPLEX_ASSEMBLY

BioPAX Class: complexAssembly

See Also:
Constant Field Values

CONTROL

public static final java.lang.String CONTROL

BioPAX Class: control

See Also:
Constant Field Values

CONTROL_TYPE_ACTIVATION

public static final java.lang.String CONTROL_TYPE_ACTIVATION

Control Type: ACTIVATION

See Also:
Constant Field Values

CONTROL_TYPE_ACTIVATION_ALLOSTERIC

public static final java.lang.String CONTROL_TYPE_ACTIVATION_ALLOSTERIC

253

file:///Volumes/KiKi/barbara/dev/QPACA/doc/constant-values.html#edu.ucsf.qpaca.parser.util.BioPaxConstants.COMPLEX
file:///Volumes/KiKi/barbara/dev/QPACA/doc/constant-values.html#edu.ucsf.qpaca.parser.util.BioPaxConstants.COMPLEX_ASSEMBLY
file:///Volumes/KiKi/barbara/dev/QPACA/doc/constant-values.html#edu.ucsf.qpaca.parser.util.BioPaxConstants.CONTROL
file:///Volumes/KiKi/barbara/dev/QPACA/doc/constant-values.html#edu.ucsf.qpaca.parser.util.BioPaxConstants.CONTROL_TYPE_ACTIVATION

Control Type: ACTIVATION-ALLOSTERIC

See Also:
Constant Field Values

CONTROL_TYPE_ACTIVATION_NONALLOSTERIC

public static final java.lang.String CONTROL_TYPE_ACTIVATION_NONALLOSTERIC

Control Type: ACTIVATION-NONALLOSTERIC

See Also:
Constant Field Values

CONTROL_TYPE_ACTIVATION_UNKMECH

public static final java.lang.String CONTROL_TYPE_ACTIVATION_UNKMECH

Control Type: ACTIVATION-UNKMECH

See Also:
Constant Field Values

CONTROL_TYPE_INHIBITION

public static final java.lang.String CONTROL_TYPE_INHIBITION

Control Type: INHIBITION

See Also:
Constant Field Values

CONTROL_TYPE_INHIBITION_ALLOSTERIC

254

file:///Volumes/KiKi/barbara/dev/QPACA/doc/constant-values.html#edu.ucsf.qpaca.parser.util.BioPaxConstants.CONTROL_TYPE_ACTIVATION_ALLOSTERIC
file:///Volumes/KiKi/barbara/dev/QPACA/doc/constant-values.html#edu.ucsf.qpaca.parser.util.BioPaxConstants.CONTROL_TYPE_ACTIVATION_NONALLOSTERIC
file:///Volumes/KiKi/barbara/dev/QPACA/doc/constant-values.html#edu.ucsf.qpaca.parser.util.BioPaxConstants.CONTROL_TYPE_ACTIVATION_UNKMECH
file:///Volumes/KiKi/barbara/dev/QPACA/doc/constant-values.html#edu.ucsf.qpaca.parser.util.BioPaxConstants.CONTROL_TYPE_INHIBITION

public static final java.lang.String CONTROL_TYPE_INHIBITION_ALLOSTERIC

Control Type: INHIBITION-ALLOSTERIC

See Also:
Constant Field Values

CONTROL_TYPE_INHIBITION_COMPETITIVE

public static final java.lang.String CONTROL_TYPE_INHIBITION_COMPETITIVE

Control Type: INHIBITION-COMPETITIVE

See Also:
Constant Field Values

CONTROL_TYPE_INHIBITION_IRREVERSIBLE

public static final java.lang.String CONTROL_TYPE_INHIBITION_IRREVERSIBLE

Control Type: INHIBITION-IRREVERSIBLE

See Also:
Constant Field Values

CONTROL_TYPE_INHIBITION_NONCOMPETITIVE

public static final java.lang.String CONTROL_TYPE_INHIBITION_NONCOMPETITIVE

Conrol Type: INHIBITION-NONCOMPETITIVE

See Also:
Constant Field Values

255

file:///Volumes/KiKi/barbara/dev/QPACA/doc/constant-values.html#edu.ucsf.qpaca.parser.util.BioPaxConstants.CONTROL_TYPE_INHIBITION_ALLOSTERIC
file:///Volumes/KiKi/barbara/dev/QPACA/doc/constant-values.html#edu.ucsf.qpaca.parser.util.BioPaxConstants.CONTROL_TYPE_INHIBITION_COMPETITIVE
file:///Volumes/KiKi/barbara/dev/QPACA/doc/constant-values.html#edu.ucsf.qpaca.parser.util.BioPaxConstants.CONTROL_TYPE_INHIBITION_IRREVERSIBLE
file:///Volumes/KiKi/barbara/dev/QPACA/doc/constant-values.html#edu.ucsf.qpaca.parser.util.BioPaxConstants.CONTROL_TYPE_INHIBITION_NONCOMPETITIVE

CONTROL_TYPE_INHIBITION_OTHER

public static final java.lang.String CONTROL_TYPE_INHIBITION_OTHER

Control Type: INHIBITION-OTHER

See Also:
Constant Field Values

CONTROL_TYPE_INHIBITION_UNCOMPETITIVE

public static final java.lang.String CONTROL_TYPE_INHIBITION_UNCOMPETITIVE

Control Type: INHIBITION-UNCOMPETITIVE

See Also:
Constant Field Values

CONTROL_TYPE_INHIBITION_UNKMECH

public static final java.lang.String CONTROL_TYPE_INHIBITION_UNKMECH

Control Type: INHIBITION-UNKMECH

See Also:
Constant Field Values

CONVERSION

public static final java.lang.String CONVERSION

BioPAX Class: conversion

See Also:
Constant Field Values

256

file:///Volumes/KiKi/barbara/dev/QPACA/doc/constant-values.html#edu.ucsf.qpaca.parser.util.BioPaxConstants.CONTROL_TYPE_INHIBITION_OTHER
file:///Volumes/KiKi/barbara/dev/QPACA/doc/constant-values.html#edu.ucsf.qpaca.parser.util.BioPaxConstants.CONTROL_TYPE_INHIBITION_UNCOMPETITIVE
file:///Volumes/KiKi/barbara/dev/QPACA/doc/constant-values.html#edu.ucsf.qpaca.parser.util.BioPaxConstants.CONTROL_TYPE_INHIBITION_UNKMECH
file:///Volumes/KiKi/barbara/dev/QPACA/doc/constant-values.html#edu.ucsf.qpaca.parser.util.BioPaxConstants.CONVERSION

DNA

public static final java.lang.String DNA

BioPAX Class: dna

See Also:
Constant Field Values

INTERACTION

public static final java.lang.String INTERACTION

BioPAX Class: interaction.

See Also:
Constant Field Values

MODULATION

public static final java.lang.String MODULATION

BioPAX Class: modulation

See Also:
Constant Field Values

PATHWAY

public static final java.lang.String PATHWAY

BioPAX Class: pathway

See Also:

257

file:///Volumes/KiKi/barbara/dev/QPACA/doc/constant-values.html#edu.ucsf.qpaca.parser.util.BioPaxConstants.DNA
file:///Volumes/KiKi/barbara/dev/QPACA/doc/constant-values.html#edu.ucsf.qpaca.parser.util.BioPaxConstants.INTERACTION
file:///Volumes/KiKi/barbara/dev/QPACA/doc/constant-values.html#edu.ucsf.qpaca.parser.util.BioPaxConstants.MODULATION

Constant Field Values

PHYSICAL_ENTITY

public static final java.lang.String PHYSICAL_ENTITY

BioPAX Class: physicalEntity.

See Also:
Constant Field Values

PHYSICAL_INTERACTION

public static final java.lang.String PHYSICAL_INTERACTION

BioPAX Class: physicalInteraction.

See Also:
Constant Field Values

PROTEIN

public static final java.lang.String PROTEIN

BioPAX Class: protein

See Also:
Constant Field Values

RNA

public static final java.lang.String RNA

BioPAX Class: rna

258

file:///Volumes/KiKi/barbara/dev/QPACA/doc/constant-values.html#edu.ucsf.qpaca.parser.util.BioPaxConstants.PATHWAY
file:///Volumes/KiKi/barbara/dev/QPACA/doc/constant-values.html#edu.ucsf.qpaca.parser.util.BioPaxConstants.PHYSICAL_ENTITY
file:///Volumes/KiKi/barbara/dev/QPACA/doc/constant-values.html#edu.ucsf.qpaca.parser.util.BioPaxConstants.PHYSICAL_INTERACTION
file:///Volumes/KiKi/barbara/dev/QPACA/doc/constant-values.html#edu.ucsf.qpaca.parser.util.BioPaxConstants.PROTEIN

See Also:
Constant Field Values

SMALL_MOLECULE

public static final java.lang.String SMALL_MOLECULE

BioPAX Class: smallMolecule.

See Also:
Constant Field Values

TRANSPORT

public static final java.lang.String TRANSPORT

BioPAX Class: transport

See Also:
Constant Field Values

TRANSPORT_WITH_BIOCHEMICAL_REACTION

public static final java.lang.String TRANSPORT_WITH_BIOCHEMICAL_REACTION

BioPAX Class: transportWithBiochemicalReaction

See Also:
Constant Field Values

UXREF

public static final java.lang.String UXREF

259

file:///Volumes/KiKi/barbara/dev/QPACA/doc/constant-values.html#edu.ucsf.qpaca.parser.util.BioPaxConstants.RNA
file:///Volumes/KiKi/barbara/dev/QPACA/doc/constant-values.html#edu.ucsf.qpaca.parser.util.BioPaxConstants.SMALL_MOLECULE
file:///Volumes/KiKi/barbara/dev/QPACA/doc/constant-values.html#edu.ucsf.qpaca.parser.util.BioPaxConstants.TRANSPORT
file:///Volumes/KiKi/barbara/dev/QPACA/doc/constant-values.html#edu.ucsf.qpaca.parser.util.BioPaxConstants.TRANSPORT_WITH_BIOCHEMICAL_REACTION

BioPAX Class: UnificationXref

See Also:
Constant Field Values

Constructor Detail

BioPaxConstants

public BioPaxConstants()

Constructor.

Method Detail

getInteractionSet

public java.util.Set getInteractionSet()

Gets a Set of all Interaction Entity Names.

Returns:
Set of Strings.

getPhysicalEntitySet

public java.util.Set getPhysicalEntitySet()

Gets a Set of all Physical Entity Names

Returns:
Set of Strings

isActivation

public static boolean isActivation(java.lang.String controlType)

260

file:///Volumes/KiKi/barbara/dev/QPACA/doc/constant-values.html#edu.ucsf.qpaca.parser.util.BioPaxConstants.UXREF

isControlInteraction

public boolean isControlInteraction(java.lang.String elementName)

Determines if the Specified Element is of type: control.

Parameters:
elementName - Element Name.

Returns:
boolean value.

isConversionInteraction

public boolean isConversionInteraction(java.lang.String elementName)

Determines if the Specified Element is of type: conversion.

Parameters:
elementName - Element Name.

Returns:
boolean value.

isInhibition

public static boolean isInhibition(java.lang.String controlType)

isInteraction

public boolean isInteraction(java.lang.String elementName)

Determines if the Specified Element is of type: interaction.

Parameters:
elementName - Element Name.

Returns:

261

boolean value.

isPathway

public boolean isPathway(java.lang.String elementName)

Determines if the Specified Element is of type: pathway.

Parameters:
elementName - Element Name.

Returns:
boolean value.

isPhysicalEntity

public boolean isPhysicalEntity(java.lang.String elementName)

Determines if the Specified Element is of type: physical entity.

Parameters:
elementName - Element Name.

Returns:
boolean value.

262

edu.ucsf.qpaca.parser.util
Class BioPaxUtil

java.lang.Object

 edu.ucsf.qpaca.parser.util.BioPaxUtil

public class BioPaxUtil

extends java.lang.Object

BioPax Utility Class.

Constructor Summary

BioPaxUtil(java.io.Reader reader)
 Constructor.

Method Summary

 java.
util.

ArrayList

getComplexList()
 Gets List of PhysicalEntity/complex Resources.

 java.
util.

ArrayList

getInteractionList()
 Gets List of Interaction Resources.

 java.
util.

ArrayList

getPathwayList()
 Gets list of Pathway Resources.

 java.
util.

ArrayList

getPhysicalEntityList()
 Gets List of Physical Entity Resources.

 java.
util.

HashMap

getRdfResourceMap()
 Gets HashMap of All RDF Resources, keyed by RDF ID.

 org.
jdom.

Element

getRootElement()
 Gets the Root Element of the BioPAX Tree.

263

 java.
util.

ArrayList

getTopLevelComponentList()
 Gets a List of all Pathways, Interactions, and Physical Entities.

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll,
toString, wait, wait, wait

Constructor Detail

BioPaxUtil

public BioPaxUtil(java.io.Reader reader)
 throws java.io.IOException,
 org.jdom.JDOMException,
 BioPaxException

Constructor.

Parameters:
reader - Reader Object.

Throws:
java.io.IOException - Input/Output Error.
org.jdom.JDOMException - XML Error.
BioPaxException

Method Detail

getComplexList

public java.util.ArrayList getComplexList()

Gets List of PhysicalEntity/complex Resources.

Returns:
ArrayList of JDOM Element Objects.

getInteractionList

264

public java.util.ArrayList getInteractionList()

Gets List of Interaction Resources.

Returns:
ArrayList of JDOM Element Objects.

getPathwayList

public java.util.ArrayList getPathwayList()

Gets list of Pathway Resources.

Returns:
ArrayList of JDOM Element Objects.

getPhysicalEntityList

public java.util.ArrayList getPhysicalEntityList()

Gets List of Physical Entity Resources.

Returns:
ArrayList of JDOM Element Objects.

getRdfResourceMap

public java.util.HashMap getRdfResourceMap()

Gets HashMap of All RDF Resources, keyed by RDF ID.

Returns:
HashMap of All RDF Resources, keyed by RDF ID.

265

getRootElement

public org.jdom.Element getRootElement()

Gets the Root Element of the BioPAX Tree.

Returns:
JDOM Element Object.

getTopLevelComponentList

public java.util.ArrayList getTopLevelComponentList()

Gets a List of all Pathways, Interactions, and Physical Entities.

Returns:
ArrayList of JDOM Element Objects.

266

edu.ucsf.qpaca.parser.util
Class KGMLConstants

java.lang.Object

 edu.ucsf.qpaca.parser.util.KGMLConstants

public class KGMLConstants

extends java.lang.Object

KGML Constants.

Field Summary

static java.
lang.String

ACTIVATION
 relation subtype: activation

static java.
lang.String

BINDING_ASSOCIATION
 relation subtype: binding/association

static java.
lang.String

COMPLEX
 entry type: complex of gene products

static java.
lang.String

COMPOUND
 relation subtype: compound

static java.
lang.String

DEPHOSPHORYLATION
 relation subtype: dephosphorylation

static java.
lang.String

DISSOCIATION
 relation subtype: dissociation

static java.
lang.String

ECREL
 relationship type: enzyme-enzyme.

static java.
lang.String

ENZYME
 entry type: enzyme.

static java.
lang.String

EXPRESSION
 relation subtype: expression

267

static java.
lang.String

GENE
 entry type: gene

static java.
lang.String

GEREL
 relationship type: gene expression (transcription factor-gene)

static java.
lang.String

GLYCOSYLATION
 relation subtype: glycosylation

static java.
lang.String

HIDDEN_COMPOUND
 relation subtype: hidden compound

static java.
lang.String

INDIRECT_EFFECT
 Conrol Type: indirect effect

static java.
lang.String

INHIBITION
 relation subtype: inhibition

static java.
lang.String

IRREVERSIBLE
 reaction type: irreversible

static java.
lang.String

MAPLINK
 relationship type: link to another pathway

static java.
lang.String

METHYLATION
 relation subtype: methylation

static java.
lang.String

ORTHOLOG
 entry type: ortholog.

static java.
lang.String

PATHWAY
 entry type: linked pathway.

static java.
lang.String

PCREL
 relationship type: protein-compound

static java.
lang.String

PHOSPHORYLATION
 relation subtype: phosphorylation

static java.
lang.String

PPREL
 relationship type: protein-protein.

static java.
lang.String

REPRESSION
 relation subtype: repression

static java.
lang.String

REVERSIBLE
 reaction type: reversible

static java.
lang.String

SMALL_MOLECULE
 entry type: chemical compound

static java.
lang.String

STATE_CHANGE
 relation subtype: state change

static java.
lang.String

UBIQUINATION
 relation subtype: ubiquination

268

Constructor Summary

KGMLConstants()
 Initializes the constants.

Method Summary

static boolean isActivation(java.lang.String subtype)
 Determines if an interaction is of an activation type

static boolean isInhibition(java.lang.String subtype)
 Determines if an interaction is of an inhibition type

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll,
toString, wait, wait, wait

Field Detail

ACTIVATION

public static final java.lang.String ACTIVATION

relation subtype: activation

See Also:
Constant Field Values

BINDING_ASSOCIATION

public static final java.lang.String BINDING_ASSOCIATION

relation subtype: binding/association

See Also:
Constant Field Values

269

file:///Volumes/KiKi/barbara/dev/QPACA/doc/constant-values.html#edu.ucsf.qpaca.parser.util.KGMLConstants.ACTIVATION
file:///Volumes/KiKi/barbara/dev/QPACA/doc/constant-values.html#edu.ucsf.qpaca.parser.util.KGMLConstants.BINDING_ASSOCIATION

COMPLEX

public static final java.lang.String COMPLEX

entry type: complex of gene products

See Also:
Constant Field Values

COMPOUND

public static final java.lang.String COMPOUND

relation subtype: compound

See Also:
Constant Field Values

DEPHOSPHORYLATION

public static final java.lang.String DEPHOSPHORYLATION

relation subtype: dephosphorylation

See Also:
Constant Field Values

DISSOCIATION

public static final java.lang.String DISSOCIATION

relation subtype: dissociation

270

file:///Volumes/KiKi/barbara/dev/QPACA/doc/constant-values.html#edu.ucsf.qpaca.parser.util.KGMLConstants.COMPLEX
file:///Volumes/KiKi/barbara/dev/QPACA/doc/constant-values.html#edu.ucsf.qpaca.parser.util.KGMLConstants.COMPOUND
file:///Volumes/KiKi/barbara/dev/QPACA/doc/constant-values.html#edu.ucsf.qpaca.parser.util.KGMLConstants.DEPHOSPHORYLATION

See Also:
Constant Field Values

ECREL

public static final java.lang.String ECREL

relationship type: enzyme-enzyme.

See Also:
Constant Field Values

ENZYME

public static final java.lang.String ENZYME

entry type: enzyme.

See Also:
Constant Field Values

EXPRESSION

public static final java.lang.String EXPRESSION

relation subtype: expression

See Also:
Constant Field Values

GENE

public static final java.lang.String GENE

271

file:///Volumes/KiKi/barbara/dev/QPACA/doc/constant-values.html#edu.ucsf.qpaca.parser.util.KGMLConstants.DISSOCIATION
file:///Volumes/KiKi/barbara/dev/QPACA/doc/constant-values.html#edu.ucsf.qpaca.parser.util.KGMLConstants.ECREL
file:///Volumes/KiKi/barbara/dev/QPACA/doc/constant-values.html#edu.ucsf.qpaca.parser.util.KGMLConstants.ENZYME
file:///Volumes/KiKi/barbara/dev/QPACA/doc/constant-values.html#edu.ucsf.qpaca.parser.util.KGMLConstants.EXPRESSION

entry type: gene

See Also:
Constant Field Values

GEREL

public static final java.lang.String GEREL

relationship type: gene expression (transcription factor-gene)

See Also:
Constant Field Values

GLYCOSYLATION

public static final java.lang.String GLYCOSYLATION

relation subtype: glycosylation

See Also:
Constant Field Values

HIDDEN_COMPOUND

public static final java.lang.String HIDDEN_COMPOUND

relation subtype: hidden compound

See Also:
Constant Field Values

272

file:///Volumes/KiKi/barbara/dev/QPACA/doc/constant-values.html#edu.ucsf.qpaca.parser.util.KGMLConstants.GENE
file:///Volumes/KiKi/barbara/dev/QPACA/doc/constant-values.html#edu.ucsf.qpaca.parser.util.KGMLConstants.GEREL
file:///Volumes/KiKi/barbara/dev/QPACA/doc/constant-values.html#edu.ucsf.qpaca.parser.util.KGMLConstants.GLYCOSYLATION
file:///Volumes/KiKi/barbara/dev/QPACA/doc/constant-values.html#edu.ucsf.qpaca.parser.util.KGMLConstants.HIDDEN_COMPOUND

INDIRECT_EFFECT

public static final java.lang.String INDIRECT_EFFECT

Conrol Type: indirect effect

See Also:
Constant Field Values

INHIBITION

public static final java.lang.String INHIBITION

relation subtype: inhibition

See Also:
Constant Field Values

IRREVERSIBLE

public static final java.lang.String IRREVERSIBLE

reaction type: irreversible

See Also:
Constant Field Values

MAPLINK

public static final java.lang.String MAPLINK

relationship type: link to another pathway

See Also:

273

file:///Volumes/KiKi/barbara/dev/QPACA/doc/constant-values.html#edu.ucsf.qpaca.parser.util.KGMLConstants.INDIRECT_EFFECT
file:///Volumes/KiKi/barbara/dev/QPACA/doc/constant-values.html#edu.ucsf.qpaca.parser.util.KGMLConstants.INHIBITION
file:///Volumes/KiKi/barbara/dev/QPACA/doc/constant-values.html#edu.ucsf.qpaca.parser.util.KGMLConstants.IRREVERSIBLE

Constant Field Values

METHYLATION

public static final java.lang.String METHYLATION

relation subtype: methylation

See Also:
Constant Field Values

ORTHOLOG

public static final java.lang.String ORTHOLOG

entry type: ortholog.

See Also:
Constant Field Values

PATHWAY

public static final java.lang.String PATHWAY

entry type: linked pathway.

See Also:
Constant Field Values

PCREL

public static final java.lang.String PCREL

274

file:///Volumes/KiKi/barbara/dev/QPACA/doc/constant-values.html#edu.ucsf.qpaca.parser.util.KGMLConstants.MAPLINK
file:///Volumes/KiKi/barbara/dev/QPACA/doc/constant-values.html#edu.ucsf.qpaca.parser.util.KGMLConstants.METHYLATION
file:///Volumes/KiKi/barbara/dev/QPACA/doc/constant-values.html#edu.ucsf.qpaca.parser.util.KGMLConstants.ORTHOLOG
file:///Volumes/KiKi/barbara/dev/QPACA/doc/constant-values.html#edu.ucsf.qpaca.parser.util.KGMLConstants.PATHWAY

relationship type: protein-compound

See Also:
Constant Field Values

PHOSPHORYLATION

public static final java.lang.String PHOSPHORYLATION

relation subtype: phosphorylation

See Also:
Constant Field Values

PPREL

public static final java.lang.String PPREL

relationship type: protein-protein.

See Also:
Constant Field Values

REPRESSION

public static final java.lang.String REPRESSION

relation subtype: repression

See Also:
Constant Field Values

275

file:///Volumes/KiKi/barbara/dev/QPACA/doc/constant-values.html#edu.ucsf.qpaca.parser.util.KGMLConstants.PCREL
file:///Volumes/KiKi/barbara/dev/QPACA/doc/constant-values.html#edu.ucsf.qpaca.parser.util.KGMLConstants.PHOSPHORYLATION
file:///Volumes/KiKi/barbara/dev/QPACA/doc/constant-values.html#edu.ucsf.qpaca.parser.util.KGMLConstants.PPREL
file:///Volumes/KiKi/barbara/dev/QPACA/doc/constant-values.html#edu.ucsf.qpaca.parser.util.KGMLConstants.REPRESSION

REVERSIBLE

public static final java.lang.String REVERSIBLE

reaction type: reversible

See Also:
Constant Field Values

SMALL_MOLECULE

public static final java.lang.String SMALL_MOLECULE

entry type: chemical compound

See Also:
Constant Field Values

STATE_CHANGE

public static final java.lang.String STATE_CHANGE

relation subtype: state change

See Also:
Constant Field Values

UBIQUINATION

public static final java.lang.String UBIQUINATION

relation subtype: ubiquination

See Also:
Constant Field Values

276

file:///Volumes/KiKi/barbara/dev/QPACA/doc/constant-values.html#edu.ucsf.qpaca.parser.util.KGMLConstants.REVERSIBLE
file:///Volumes/KiKi/barbara/dev/QPACA/doc/constant-values.html#edu.ucsf.qpaca.parser.util.KGMLConstants.SMALL_MOLECULE
file:///Volumes/KiKi/barbara/dev/QPACA/doc/constant-values.html#edu.ucsf.qpaca.parser.util.KGMLConstants.STATE_CHANGE
file:///Volumes/KiKi/barbara/dev/QPACA/doc/constant-values.html#edu.ucsf.qpaca.parser.util.KGMLConstants.UBIQUINATION

Constructor Detail

KGMLConstants

public KGMLConstants()

Initializes the constants.

Method Detail

isActivation

public static boolean isActivation(java.lang.String subtype)

Determines if an interaction is of an activation type

Parameters:
subtype - the type of interaction to evaluate

Returns:
true if the subtype represents activation, false otherwise.

isInhibition

public static boolean isInhibition(java.lang.String subtype)

Determines if an interaction is of an inhibition type

Parameters:
subtype - the type of interaction to evaluate

Returns:
true if the subtype represents inhibition, false otherwise.

277

edu.ucsf.qpaca.parser.util
Class KGMLUtil

java.lang.Object

 edu.ucsf.qpaca.parser.util.KGMLUtil

public class KGMLUtil

extends java.lang.Object

KEGG KGML Utility Class.

Constructor Summary

KGMLUtil(java.io.Reader reader)
 Loads the KGML file.

Method Summary

 java.
util.

HashMap

getAllEntriesMap()
 Retrieves a list of all entries.

 java.
util.

TreeMap

getComplexMap()
 Retrieves a list of complexes.

 java.
util.

HashMap

getEntityMap()
 Retrieves a list of Entities.

 java.
lang.

String

getPathwayID()
 Retrieves the pathway name.

 java.
lang.

String

getPathwayLabel()
 Retrieves the pathway label.

 java.
util.

ArrayList

getReactionList()
 Retrieves a list of Reactions.

278

 java.
util.

ArrayList

getRelationList()
 Retrieves a list of Relations.

 org.
jdom.

Element

getRootElement()
 Retrieves the Root Element of the KGML Tree.

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll,
toString, wait, wait, wait

Constructor Detail

KGMLUtil

public KGMLUtil(java.io.Reader reader)
 throws java.io.IOException,
 org.jdom.JDOMException,
 java.lang.Exception

Loads the KGML file.

Parameters:
reader - Reader Object.

Throws:
java.io.IOException - Input/Output Error.
org.jdom.JDOMException - XML Error.
java.lang.Exception

Method Detail

getAllEntriesMap

public java.util.HashMap getAllEntriesMap()

Retrieves a list of all entries.

Returns:
ArrayList of JDOM Element Objects.

279

getComplexMap

public java.util.TreeMap getComplexMap()

Retrieves a list of complexes.

Returns:
ArrayList of JDOM Element Objects.

getEntityMap

public java.util.HashMap getEntityMap()

Retrieves a list of Entities.

Returns:
ArrayList of JDOM Element Objects.

getPathwayID

public java.lang.String getPathwayID()

Retrieves the pathway name.

Returns:
pathway name

getPathwayLabel

public java.lang.String getPathwayLabel()

Retrieves the pathway label.

Returns:

280

pathway label

getReactionList

public java.util.ArrayList getReactionList()

Retrieves a list of Reactions.

Returns:
ArrayList of JDOM Element Objects.

getRelationList

public java.util.ArrayList getRelationList()

Retrieves a list of Relations.

Returns:
ArrayList of JDOM Element Objects.

getRootElement

public org.jdom.Element getRootElement()

Retrieves the Root Element of the KGML Tree.

Returns:
JDOM Element Object.

281

edu.ucsf.qpaca.parser.util
Class OwlConstants

java.lang.Object

 edu.ucsf.qpaca.parser.util.OwlConstants

public class OwlConstants

extends java.lang.Object

OWL (Web Ontology Language) Constants.

Field Summary

static java.
lang.String

OWL_IMPORTS_ELEMENT
 OWL Imports Element Name

static org.
jdom.

Namespace

OWL_NAMESPACE
 RDF Namespace Object.

static java.
lang.String

OWL_NAMESPACE_PREFIX
 OWL Namespace Prefix

static java.
lang.String

OWL_NAMESPACE_URI
 OWL Namespace URI.

static java.
lang.String

OWL_ONTOLOGY_ELEMENT
 OWL Ontology Element

Constructor Summary

OwlConstants()

Method Summary

Methods inherited from class java.lang.Object

282

clone, equals, finalize, getClass, hashCode, notify, notifyAll,
toString, wait, wait, wait

Field Detail

OWL_IMPORTS_ELEMENT

public static final java.lang.String OWL_IMPORTS_ELEMENT

OWL Imports Element Name

See Also:
Constant Field Values

OWL_NAMESPACE

public static final org.jdom.Namespace OWL_NAMESPACE

RDF Namespace Object.

OWL_NAMESPACE_PREFIX

public static final java.lang.String OWL_NAMESPACE_PREFIX

OWL Namespace Prefix

See Also:
Constant Field Values

OWL_NAMESPACE_URI

public static final java.lang.String OWL_NAMESPACE_URI

283

file:///Volumes/KiKi/barbara/dev/QPACA/doc/constant-values.html#edu.ucsf.qpaca.parser.util.OwlConstants.OWL_IMPORTS_ELEMENT
file:///Volumes/KiKi/barbara/dev/QPACA/doc/constant-values.html#edu.ucsf.qpaca.parser.util.OwlConstants.OWL_NAMESPACE_PREFIX

OWL Namespace URI.

See Also:
Constant Field Values

OWL_ONTOLOGY_ELEMENT

public static final java.lang.String OWL_ONTOLOGY_ELEMENT

OWL Ontology Element

See Also:
Constant Field Values

Constructor Detail

OwlConstants

public OwlConstants()

284

file:///Volumes/KiKi/barbara/dev/QPACA/doc/constant-values.html#edu.ucsf.qpaca.parser.util.OwlConstants.OWL_NAMESPACE_URI
file:///Volumes/KiKi/barbara/dev/QPACA/doc/constant-values.html#edu.ucsf.qpaca.parser.util.OwlConstants.OWL_ONTOLOGY_ELEMENT

edu.ucsf.qpaca.parser.util
Class QPACAConstants

java.lang.Object

 edu.ucsf.qpaca.parser.util.QPACAConstants

public class QPACAConstants

extends java.lang.Object

QPACA Constants.

Field Summary

static java.
lang.String

ACTIVATION
 PathwayEdge type: activation.

static java.
lang.String

ALIAS
 PathwayAssembly type for families

static java.
lang.String

COMPLEX
 PathwayAssembly type for complexes

static java.
lang.String

COMPOUND
 PathwayAssembly type for complexes

static java.
lang.String

CONVERSION
 PathwayEdge type: conversion.

static java.
lang.String

DNA
 PathwayElement type: dna

static java.
lang.String

EVENT
 PathwayVertex type: event

static java.
lang.String

FAMILY
 PathwayAssembly type for families

static java.
lang.String

GENE_PRODUCT
 PathwayElement type: gene product

static java.
lang.String

INHIBITION
 PathwayEdge type: inhibition.

285

static java.
lang.String

PHYSICAL_ENTITY
 PathwayVertex type: physicalEntity

static java.
lang.String

PROCESS
 PathwayElement type: process

static java.
lang.String

PROTEIN
 PathwayElement type: protein

static java.
lang.String

RNA
 PathwayElement type: rna

static java.
lang.String

SINGLE
 PathwayAssembly type for assemblies containing a single item.

static java.
lang.String

SMALL_MOLECULE
 PathwayElement type: small molecule

Constructor Summary

QPACAConstants()
 Constructor.

Method Summary

static boolean isControlInteraction(java.lang.String type)
 Determines if the type specifies a control interaction

static boolean isConversionlInteraction(java.lang.String type)
 Determines if the type specifies a conversion interaction

static boolean isNotSmallMolecule(java.lang.String type)
 Determines if the type specifies a dna/rna/protein/gene_product PathwayElement

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll,
toString, wait, wait, wait

Field Detail

ACTIVATION

public static final java.lang.String ACTIVATION

PathwayEdge type: activation.

See Also:

286

Constant Field Values

ALIAS

public static final java.lang.String ALIAS

PathwayAssembly type for families

See Also:
Constant Field Values

COMPLEX

public static final java.lang.String COMPLEX

PathwayAssembly type for complexes

See Also:
Constant Field Values

COMPOUND

public static final java.lang.String COMPOUND

PathwayAssembly type for complexes

See Also:
Constant Field Values

CONVERSION

public static final java.lang.String CONVERSION

PathwayEdge type: conversion.

287

file:///Volumes/KiKi/barbara/dev/QPACA/doc/constant-values.html#edu.ucsf.qpaca.parser.util.QPACAConstants.ACTIVATION
file:///Volumes/KiKi/barbara/dev/QPACA/doc/constant-values.html#edu.ucsf.qpaca.parser.util.QPACAConstants.ALIAS
file:///Volumes/KiKi/barbara/dev/QPACA/doc/constant-values.html#edu.ucsf.qpaca.parser.util.QPACAConstants.COMPLEX
file:///Volumes/KiKi/barbara/dev/QPACA/doc/constant-values.html#edu.ucsf.qpaca.parser.util.QPACAConstants.COMPOUND

See Also:
Constant Field Values

DNA

public static final java.lang.String DNA

PathwayElement type: dna

See Also:
Constant Field Values

EVENT

public static final java.lang.String EVENT

PathwayVertex type: event

See Also:
Constant Field Values

FAMILY

public static final java.lang.String FAMILY

PathwayAssembly type for families

See Also:
Constant Field Values

GENE_PRODUCT

public static final java.lang.String GENE_PRODUCT

288

file:///Volumes/KiKi/barbara/dev/QPACA/doc/constant-values.html#edu.ucsf.qpaca.parser.util.QPACAConstants.CONVERSION
file:///Volumes/KiKi/barbara/dev/QPACA/doc/constant-values.html#edu.ucsf.qpaca.parser.util.QPACAConstants.DNA
file:///Volumes/KiKi/barbara/dev/QPACA/doc/constant-values.html#edu.ucsf.qpaca.parser.util.QPACAConstants.EVENT
file:///Volumes/KiKi/barbara/dev/QPACA/doc/constant-values.html#edu.ucsf.qpaca.parser.util.QPACAConstants.FAMILY

PathwayElement type: gene product

See Also:
Constant Field Values

INHIBITION

public static final java.lang.String INHIBITION

PathwayEdge type: inhibition.

See Also:
Constant Field Values

PHYSICAL_ENTITY

public static final java.lang.String PHYSICAL_ENTITY

PathwayVertex type: physicalEntity

See Also:
Constant Field Values

PROCESS

public static final java.lang.String PROCESS

PathwayElement type: process

See Also:
Constant Field Values

PROTEIN

289

file:///Volumes/KiKi/barbara/dev/QPACA/doc/constant-values.html#edu.ucsf.qpaca.parser.util.QPACAConstants.GENE_PRODUCT
file:///Volumes/KiKi/barbara/dev/QPACA/doc/constant-values.html#edu.ucsf.qpaca.parser.util.QPACAConstants.INHIBITION
file:///Volumes/KiKi/barbara/dev/QPACA/doc/constant-values.html#edu.ucsf.qpaca.parser.util.QPACAConstants.PHYSICAL_ENTITY
file:///Volumes/KiKi/barbara/dev/QPACA/doc/constant-values.html#edu.ucsf.qpaca.parser.util.QPACAConstants.PROCESS

public static final java.lang.String PROTEIN

PathwayElement type: protein

See Also:
Constant Field Values

RNA

public static final java.lang.String RNA

PathwayElement type: rna

See Also:
Constant Field Values

SINGLE

public static final java.lang.String SINGLE

PathwayAssembly type for assemblies containing a single item.

See Also:
Constant Field Values

SMALL_MOLECULE

public static final java.lang.String SMALL_MOLECULE

PathwayElement type: small molecule

See Also:
Constant Field Values

Constructor Detail

290

file:///Volumes/KiKi/barbara/dev/QPACA/doc/constant-values.html#edu.ucsf.qpaca.parser.util.QPACAConstants.PROTEIN
file:///Volumes/KiKi/barbara/dev/QPACA/doc/constant-values.html#edu.ucsf.qpaca.parser.util.QPACAConstants.RNA
file:///Volumes/KiKi/barbara/dev/QPACA/doc/constant-values.html#edu.ucsf.qpaca.parser.util.QPACAConstants.SINGLE
file:///Volumes/KiKi/barbara/dev/QPACA/doc/constant-values.html#edu.ucsf.qpaca.parser.util.QPACAConstants.SMALL_MOLECULE

QPACAConstants

public QPACAConstants()

Constructor.

Method Detail

isControlInteraction

public static final boolean isControlInteraction(java.lang.String type)

Determines if the type specifies a control interaction

Parameters:
type - type.

Returns:
boolean value.

isConversionlInteraction

public static final boolean isConversionlInteraction(java.lang.String type)

Determines if the type specifies a conversion interaction

Parameters:
type - type.

Returns:
boolean value.

isNotSmallMolecule

public static final boolean isNotSmallMolecule(java.lang.String type)

Determines if the type specifies a dna/rna/protein/gene_product PathwayElement

Parameters:
type - type.

291

Returns:
boolean value.

292

edu.ucsf.qpaca.parser.util
Class QPACAUtil

java.lang.Object

 edu.ucsf.qpaca.parser.util.QPACAUtil

public class QPACAUtil

extends java.lang.Object

QPACA Pathway language Utility Class.

Constructor Summary

QPACAUtil(java.io.Reader reader)
 Initializes the parser.

Method Summary

 java.
util.

HashMap

getAllEntriesMap()
 Retrieves a list of all entries.

 java.
util.

TreeMap

getComplexMap()
 Retrieves a list of complexes.

 java.
util.

HashMap

getEntityMap()
 Retrieves a list of Entities.

 Pathway getPathway()

 java.
lang.

String

getPathwayID()
 Retrieves the pathway name.

 java.
lang.

String

getPathwayLabel()
 Retrieves the pathway label.

293

 java.
util.

ArrayList

getRelationList()
 Retrieves a list of Relations.

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll,
toString, wait, wait, wait

Constructor Detail

QPACAUtil

public QPACAUtil(java.io.Reader reader)
 throws java.io.IOException,
 java.lang.Exception

Initializes the parser.

Parameters:
reader - Reader Object.

Throws:
java.io.IOException - Input/Output Error.
java.lang.Exception

Method Detail

getAllEntriesMap

public java.util.HashMap getAllEntriesMap()

Retrieves a list of all entries.

Returns:
ArrayList of JDOM Element Objects.

getComplexMap

public java.util.TreeMap getComplexMap()

294

Retrieves a list of complexes.

Returns:
ArrayList of JDOM Element Objects.

getEntityMap

public java.util.HashMap getEntityMap()

Retrieves a list of Entities.

Returns:
ArrayList of JDOM Element Objects.

getPathway

public Pathway getPathway()

getPathwayID

public java.lang.String getPathwayID()

Retrieves the pathway name.

Returns:
pathway name

getPathwayLabel

public java.lang.String getPathwayLabel()

Retrieves the pathway label.

295

Returns:
pathway label

getRelationList

public java.util.ArrayList getRelationList()

Retrieves a list of Relations.

Returns:
ArrayList of JDOM Element Objects.

296

edu.ucsf.qpaca.parser.util
Class RdfConstants

java.lang.Object

 edu.ucsf.qpaca.parser.util.RdfConstants

public class RdfConstants

extends java.lang.Object

RDF (Resource Description Framework) Constants.

Field Summary

static java.
lang.String

ABOUT_ATTRIBUTE
 RDF About Attribute

static java.
lang.String

DATATYPE_ATTRIBUTE
 RDF Datatype Attribute

static java.
lang.String

ID_ATTRIBUTE
 RDF ID Attribute

static org.
jdom.

Namespace

RDF_NAMESPACE
 RDF Namespace Object.

static java.
lang.String

RDF_NAMESPACE_PREFIX
 RDF Namespace Prefix

static java.
lang.String

RDF_NAMESPACE_URI
 RDF Namespace URI

static java.
lang.String

RDF_ROOT_NAME
 RDF Root Name.

static java.
lang.String

RESOURCE_ATTRIBUTE
 RDF Resource Attribute

Constructor Summary

297

RdfConstants()

Method Summary

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll,
toString, wait, wait, wait

Field Detail

ABOUT_ATTRIBUTE

public static final java.lang.String ABOUT_ATTRIBUTE

RDF About Attribute

See Also:
Constant Field Values

DATATYPE_ATTRIBUTE

public static final java.lang.String DATATYPE_ATTRIBUTE

RDF Datatype Attribute

See Also:
Constant Field Values

ID_ATTRIBUTE

public static final java.lang.String ID_ATTRIBUTE

RDF ID Attribute

298

file:///Volumes/KiKi/barbara/dev/QPACA/doc/constant-values.html#edu.ucsf.qpaca.parser.util.RdfConstants.ABOUT_ATTRIBUTE
file:///Volumes/KiKi/barbara/dev/QPACA/doc/constant-values.html#edu.ucsf.qpaca.parser.util.RdfConstants.DATATYPE_ATTRIBUTE

See Also:
Constant Field Values

RDF_NAMESPACE

public static final org.jdom.Namespace RDF_NAMESPACE

RDF Namespace Object.

RDF_NAMESPACE_PREFIX

public static final java.lang.String RDF_NAMESPACE_PREFIX

RDF Namespace Prefix

See Also:
Constant Field Values

RDF_NAMESPACE_URI

public static final java.lang.String RDF_NAMESPACE_URI

RDF Namespace URI

See Also:
Constant Field Values

RDF_ROOT_NAME

public static final java.lang.String RDF_ROOT_NAME

RDF Root Name.

299

file:///Volumes/KiKi/barbara/dev/QPACA/doc/constant-values.html#edu.ucsf.qpaca.parser.util.RdfConstants.ID_ATTRIBUTE
file:///Volumes/KiKi/barbara/dev/QPACA/doc/constant-values.html#edu.ucsf.qpaca.parser.util.RdfConstants.RDF_NAMESPACE_PREFIX
file:///Volumes/KiKi/barbara/dev/QPACA/doc/constant-values.html#edu.ucsf.qpaca.parser.util.RdfConstants.RDF_NAMESPACE_URI

See Also:
Constant Field Values

RESOURCE_ATTRIBUTE

public static final java.lang.String RESOURCE_ATTRIBUTE

RDF Resource Attribute

See Also:
Constant Field Values

Constructor Detail

RdfConstants

public RdfConstants()

300

file:///Volumes/KiKi/barbara/dev/QPACA/doc/constant-values.html#edu.ucsf.qpaca.parser.util.RdfConstants.RDF_ROOT_NAME
file:///Volumes/KiKi/barbara/dev/QPACA/doc/constant-values.html#edu.ucsf.qpaca.parser.util.RdfConstants.RESOURCE_ATTRIBUTE

edu.ucsf.qpaca.parser.util
Class RdfQuery

java.lang.Object

 edu.ucsf.qpaca.parser.util.RdfQuery

public class RdfQuery

extends java.lang.Object

Enables XPath-"lite" Queries on RDF Documents.

To make things really simple, this implementation ignore case, and ignores all Namespaces.

Constructor Summary

RdfQuery(java.util.HashMap rdfMap)
 A Hashmap of all XML Elements, keyed by RDF ID.

Method Summary

 org.
jdom.

Element

getNode(org.jdom.Element e, java.lang.String query)
 Gets First Node that match the XPath-"lite" Query.

 java.
util.

ArrayList

getNodes(org.jdom.Element e, java.lang.String query)
 Gets all Nodes that match the XPath-"lite" Query.

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll,
toString, wait, wait, wait

Constructor Detail

301

RdfQuery

public RdfQuery(java.util.HashMap rdfMap)

A Hashmap of all XML Elements, keyed by RDF ID.

Parameters:
rdfMap - HashMap of RDF ID to XML Element.

Method Detail

getNode

public org.jdom.Element getNode(org.jdom.Element e,
 java.lang.String query)

Gets First Node that match the XPath-"lite" Query.

Parameters:
e - Target Element.
query - XPath-"lite" Query.

Returns:
ArrayList of JDOM Elements, which match the query.

getNodes

public java.util.ArrayList getNodes(org.jdom.Element e,
 java.lang.String query)

Gets all Nodes that match the XPath-"lite" Query.

Parameters:
e - Target Element.
query - XPath-"lite" Query.

Returns:
ArrayList of JDOM Elements, which match the query.

302

edu.ucsf.qpaca.parser.util
Class RdfUtil

java.lang.Object

 edu.ucsf.qpaca.parser.util.RdfUtil

public class RdfUtil

extends java.lang.Object

Misc RDF Utilities.

Constructor Summary

RdfUtil()

Method Summary

static java.
lang.String

removeHashMark(java.lang.String referenceId)
 Strips out leading hash mark #, if necessary.

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll,
toString, wait, wait, wait

Constructor Detail

RdfUtil

public RdfUtil()

Method Detail

303

removeHashMark

public static java.lang.String removeHashMark(java.lang.String referenceId)

Strips out leading hash mark #, if necessary.

Parameters:
referenceId - String with leading hash mark.

Returns:
String without hashmark.

304

edu.ucsf.qpaca.parser.util
Class BioPaxException

java.lang.Object

 java.lang.Throwable

 java.lang.Exception

 edu.ucsf.qpaca.parser.util.BioPaxException

All Implemented Interfaces:
java.io.Serializable

public class BioPaxException

extends java.lang.Exception

Exception thrown to indicate a syntax error in a BioPAX file.

See Also:
Serialized Form

Constructor Summary

BioPaxException()

BioPaxException(java.lang.String msg)

Method Summary

Methods inherited from class java.lang.Throwable

fillInStackTrace, getCause, getLocalizedMessage, getMessage,
getStackTrace, initCause, printStackTrace, printStackTrace,
printStackTrace, setStackTrace, toString

305

file:///Volumes/KiKi/barbara/dev/QPACA/doc/serialized-form.html#edu.ucsf.qpaca.parser.util.BioPaxException

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait,
wait, wait

Constructor Detail

BioPaxException

public BioPaxException()

BioPaxException

public BioPaxException(java.lang.String msg)

306

edu.ucsf.qpaca.parser.util
Class KGMLException

java.lang.Object

 java.lang.Throwable

 java.lang.Exception

 edu.ucsf.qpaca.parser.util.KGMLException

All Implemented Interfaces:
java.io.Serializable

public class KGMLException

extends java.lang.Exception

Exception thrown to indicate a syntax error in a KGML file.

See Also:
Serialized Form

Constructor Summary

KGMLException()

KGMLException(java.lang.String msg)

Method Summary

Methods inherited from class java.lang.Throwable

fillInStackTrace, getCause, getLocalizedMessage, getMessage,
getStackTrace, initCause, printStackTrace, printStackTrace,
printStackTrace, setStackTrace, toString

307

file:///Volumes/KiKi/barbara/dev/QPACA/doc/serialized-form.html#edu.ucsf.qpaca.parser.util.KGMLException

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait,
wait, wait

Constructor Detail

KGMLException

public KGMLException()

KGMLException

public KGMLException(java.lang.String msg)

308

edu.ucsf.qpaca.parser.util
Class QPACAException

java.lang.Object

 java.lang.Throwable

 java.lang.Exception

 edu.ucsf.qpaca.parser.util.QPACAException

All Implemented Interfaces:
java.io.Serializable

public class QPACAException

extends java.lang.Exception

Exception thrown to indicate a syntax error in a QPACA file.

See Also:
Serialized Form

Constructor Summary

QPACAException()

QPACAException(java.lang.String msg)

Method Summary

Methods inherited from class java.lang.Throwable

fillInStackTrace, getCause, getLocalizedMessage, getMessage,
getStackTrace, initCause, printStackTrace, printStackTrace,
printStackTrace, setStackTrace, toString

309

file:///Volumes/KiKi/barbara/dev/QPACA/doc/serialized-form.html#edu.ucsf.qpaca.parser.util.QPACAException

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait,
wait, wait

Constructor Detail

QPACAException

public QPACAException()

QPACAException

public QPACAException(java.lang.String msg)

310

	UCSF Library Release

