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ADAPTIVE RESONANCE THEORY: STABLE SELF-ORGANIZATION
OF NEURAL RECOGNITION CODES IN RESPONSE TO
ARBITRARY LISTS OF INPUT PATTERNS

Gail A. Carpentert and Stephen Grossbergt
Center for Adaptive Systems
Department of Mathematics

Boston University
Boston, Massachusetts 02215

1. SELF-ORGANIZATION OF NEURAL RECOGNITION CODES

A neural network, called an adaptive resonance theory (ART) architecture, for the
learning of recognition categories is described herein. Real-time network dynamics for this
model have been completely characterized through mathematical analysis and computer
simulations. The architecture self-organizes and self-stabilizes its recognition codes in re-
sponse to arbitrary orderings of arbitrarily many and arbitrarily complex binary input
patterns. Top-down attentional and matching mechanisms are critical in self-stabilizing
the code learning process. The architecture embodies a parallel search scheme which up-
dates itself adaptively as the learning process unfolds. After learning self-stabilizes, the
search process is automatically disengaged. Thereafter input patterns directly access their
recognition codes without any search. Thus recognition time does not grow as a function of
code complexity. A novel input pattern can directly access a category if it shares invariant
properties with the set of familiar exemplars of that category. These invariant properties
emerge in the form of learned critical feature patterns, or prototypes. The architecture
possesses a context-sensitive self-scaling property which enables its emergent critical fea-
ture patterns to form. They detect and remember statistically predictive configurations of

featural elements which are derived from the set of all input patterns that are ever experi-
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enced. Four types of attentional process—priming, gain control, vigilance, and intermodal
competition—are mechanistically characterized. Top-down priming and gain control are
needed for code matching and self-stabilization. Attentional vigilance determines how fine
the learned categories will be. If vigilance increases due to an environmental disconfirma-
tion, then the system automatically searches for and learns finer recognition categories. A
new nonlinear matching law (the 2/3 Rule) and new nonlinear associative laws (the Weber
Law Rule, the Associative Decay Rule, and the Template Learning Rule) are needed to
achieve these properties. All the rules describe emergent properties of parallel network
interactions. The architecture circumvents the noise, saturation, capacity, orthogonality,
and linear predictability constraints that limit the codes which can be stably learned by
aiternative recognition models. In addition, ART circuits have elsewhere been used to
analyse data about speech perception, word recognition and recall, visual perception, ol-
factory coding, evoked potentials, thalamocortical interactions, attentional modulation of
critical period termination, and amnesias (Banquet and Grossberg, 1986; Carpenter and
Grossberg, 1985a, 1985b, 1986a, 1986b, 1986c¢; Grossberg, 1976a, 1976b, 1978a, 1980,
1986a; Grossberg and Stone, 1986a, 1986b). In the following pages, we describe intuitively
some key properties of the model.

2. STABILITY-PLASTICITY DILEMMA:
MULTIPLE INTERACTING MEMORY SYSTEMS

An adequate self-organizing recognition system must be capable of plasticity in order to
learn about significant new events, yet it must also remain stable in response to irrelevant
or often repeated events. In order to prevent the relentless degradation of its learned codes
by the “blooming, buzzing confusion” of irrelevant experience, an ART system is sensitive
to novelty. It is capable of distinguishing between familiar and unfamiliar events, as well

as between expected and unexpected events.

Multiple interacting memory systems are needed to monitor and adaptively react to
the novelty of events. Within ART, interactions between two functionally complementary
subsystems are needed to process familiar and unfamiliar events. Familiar events are
processed within an attentional subsystem. This subsystem establishes ever more precise
internal representations of and responses to familiar events. It also builds up the learned
top-down expectations that help to stabilize the learned bottom-up codes of familiar events.
By itself, however, the attentional subsystem is unable simultaneously to maintain stable
representations of familiar categories and to create new categories for unfamiliar patterns.
An isolated attentional subsystem is either rigid and incapable of creating new categories
for unfamiliar patterns, or unstable and capable of ceaselessly recoding the categories of
46
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familiar patterns.

The second subsystem is an orienting subsystem that resets the attentional subsystem
when an unfamiliar event occurs. The orienting subsystem is essential for expressing
whether a novel pattern is familiar and well represented by an existing recognition code,
or unfamiliar and in need of a new recognition code. Figure 1 schematizes the architecture

that is analysed herein.

An ART system dynamically reorganizes its recognition codes to preserve its stability-
plasticity balance as its internal representations become increasingly complex and differen-
tiated through learning. By contrast, many classical adaptive pattern recognition systems
become unstable when they are confronted by complex input environments. Unlike many
alternative models the present model can deal with arbitrary combinations of binary in-
put patterns. In particular, it places no orthogonality or linear predictability constaints
upon its input patterns. The model computations remain sensitive no matter how many
input patterns are processed. The model does not require that very small, and thus noise-
degradable, increments in memory be made in order to avoid saturation of its cumulative
memory. The model can store arbitrarily many recognition categories in response to input
patterns that are defined on arbitrarily many input channels. Its memory matrices need
not be square, so that no restrictions on memory capacity are imposed by the number of
input channels. Finally, all the memory of the system can be devoted to stable recogni-
tion learning. It is not he case that the number of stable classifications is bounded by
some fraction of the number of input channels or patterns. Thus a primary goal of the
present article is to intuitively describe neural networks capable of self-stabilizing the self-
organization of their recognition codes in response to an arbitrarily complex environment

of input patterns.
Four properties are basic to the workings of the networks that we characterize herein.
A. Self-Scaling Computational Units: Critical Feature Patterns

Properly defining signal and noise in a self-organizing system raises a number of subtle
issues. Pattern context must enter the definition so that input features which are treated
as irrelevant noise when they are embedded in a given input pattern may be treated as
informative signals when they are embedded in a different input pattern. The system'’s
unique learning history must also enter the definition so that portions of an input pattern
which are treated as noise when they perturb a system at one stage of its self-organization
may be treated as signals when they perturb the same system at a different stage of its
self-organization. The present systems automatically self-scale their computational units

to embody context- and learning-dependent definitions of signal and noise.
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1. Anatomy of the attentional-orienting system: Two successive stages, F, and F,, of the
attentional subsystem encode patterns of activation in short term memory (STM). Bottom-
up and top-down pathways between F, and F; contain adaptive long term memory (LTM)
traces which multiply the signals in these pathways. The remainder of the circuit modulates
these STM and LTM processes. Modulation by gain control enables F, to distinguish
between bottom-up input patterns and top-down priming, or template, patterns, as well
as to match these bottom-up and top-down patterns. Gain control signals also enable F,
to react supraliminally to signals from F; while an input pattern is on. The orienting
subsystem generates a reset wave to F; when mismatches between bottom-up and top-
down patterns occur at F;. This reset wave selectively and enduringly inhibits active F,
cells until the input is shut off.
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One property of these self-scaling computational units is schematized in Figure 2. In
Figure 2a, each of the two input patterns is composed of three features. The patterns agree
at two of the three features. but disagree at the third feature. A mismatch of one out of
three features may be designated as informative by the system. When this occurs, these
mismatched features are treated as signals which can elicit learning of distinct recognition
codes for the two patterns. Moreover, the mismatched features, being informative, are

incorporated into these distinct recognition codes.

In Figure 2b, each of the two input patterns is composed of thirty-one features. The
patterns are constructed by adding identical subpatterns to the two patterns in Figure 2a.
Thus the input patterns in Figure 2b disagree at the same features as the input patterns
in Figure 2a. In the patterns of Figure 2b, however, this mismatch is less important, other
things being equal, than in the patterns of Figure 2a. Consequently, the system may treat
the mismatched features as noise. A single recognition code may be learned to represent
both of the input patterns in Figure 2b. The mismatched features would not be learned

as part of this recognition code because they are treated as noise.

The assertion that critical feature patterns are the computational units of the code
learning process summarizes this self-scaling property. The term critical feature indicates
that not all features are treated as signals by the system. The learned units are patterns
of critical features because the perceptual context in which the features are embedded
influences which features will be processed as signals and which features will be processed
as noise. Thus a feature may be a critical feature in one pattern (Figure 2a) and an

irrelevant noise element in a different pattern (Figure 2b).

The need to overcome the limitations of featural processing with some type of contex-
tually sensitive pattern processing has long been a central concern in the human pattern
recognition literature. Experimental studies have led to the general conclusions that “The
trace system which underlies the recognition of patterns can be characterized by a central
tendency and a bo-undary“ (Posner, 1973, p.54), and that “just listing features does not
go far enough in specifying the knowledge represented in a concept. People also know
something about the relations between the features of a concept, and about the variability
that is permissible on any feature” (Smith and Medin, 1981, p.83). We illustrate herein
how these properties may be achieved using self-scaling computational units such as critical

feature patterns.
B. Self-Adjusting Memory Search

No pre-wired search algorithm, such as a search tree, can maintain its efficiency as a
knowledge structure evolves due to learning in a unique input environment. A search order
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2. Self-scaling property discovers critical features in a context-sensitive way: (a) Two
input patterns of 3 features mismatch at 1 feature. When this mismatch is sufficient
to generate distinct recognition codes for the two patterns, the mismatched features are
encoded in LTM as part of the critical feature patterns of these recognition codes. (b)
Identical subpatterns are added to the two input patterns in (a). Although the new input
patterns mismatch at the same one feature, this mismatch may be treated as noise due
to the additional complexity of the two new patterns. Both patterns may thus learn to
activate the same recognition code. When this occurs, the mismatched feature is deleted
from LTM in the critical feature pattern of the code.

that may be optimal in one knowledge domain may become extremely inefficient as that

knowledge domain becomes more complex due to learning.

The ART system considered herein is capable of a paralle]l memory search that adap-
tively updates its search order to maintain efficiency as its recognition code becomes ar-
bitrarily complex due to learning. This self-adjusting search mechanism is part of the
network design whereby the learning process self-stabilizes by engaging the orienting sub-

system (Section 5).

None of these mechanisms s akin to the rules of a serial computer program. Instead, the
circuit architecture as a whole generates a self-adjusting search order and self-stabilization
as emergent properties that arise through system interactions. Once the ART architecture
is in place, a little randomness in the initial values of its memory traces, rather than
a carefully wired search tree, enables the search to carry on until the recognition code
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self-stabilizes.
C. Direct Access to Learned Codes

A hallmark of human recognition performance is the remarkable rapidity with which
familiar objects can be recognized. The existence of many learned recognition codes for
alternative experiences does not necessarily interfere with rapid recognition of an unam-
biguous familiar event. This type of rapid recognition is very difficult to understand using
models wherein trees or other serial algorithms need to be searched for longer and longer

periods as a learned recognition code becomes larger and larger.

In an ART model, as the learned code becomes globally self-consistent and predictively
accurate, the search mechanism is automatically disengaged. Subsequently, no matter how
large and complex the learned code may become, familiar input patterns directly access,
or activate, their learned code, or category. Unfamiliar patterns can also directly access
a learned category if they share invariant properties with the critical feature pattern of
the category. In this sense, the critical feature pattern acts as a prototype for the entire
category. As in human pattern recognition experiments, an input pattern that matches a
learned critical feature pattern may be better recognized than any of the input patterns
that gave rise to the critical feature pattern (Posner, 1973; Posner and Keele, 1968, 1970).

Unfamiliar input patterns which cannot stably access a learned category engage the
self-adjusting search process in order to discover a network substrate for a new recognition
category. After this new code is learned, the search process is automatically disengaged

and direct access ensues.
D. Environment as a Teacher: Modulation of Attentional Vigilance

Although an ART system self-organizes its recognition code, the environment can
also modulate the learning process and thereby carry out a teaching role. This teaching
role allows a system with a fixed set of feature detectors to function successfully in an
environment which imposes variable performance demands. Different environments may
demand either coarse discriminations or fine discriminations to be made among the same
set of objects. As Posner (1973, pp.53-54) has noted:

“If subjects are taught a tight concept, they tend to be very careful about classi-
fying any particular pattern as an instance of that concept. They tend to reject a
relatively small distortion of the prototype as an instance, and they rarely classify
a pattern as a member of the concept when it is not. On the other hand, subjects
learning high-variability concepts often falsely classify patterns as members of the

concept, but rarely reject a member of the concept incorrectly...The situation
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largely determines which type of learning will be superior.”

In an ART system, if an erroneous recognition is followed by negative reinforcement,
then the system becomes more vigilant. This change in vigilance may be interpreted as
a change in the system’s attentional state which increases its sensitivity to mismatches
between bottom-up input patterns and active top-down critical feature patterns. A vigi-
lance change alters the size of a single parameter in the network. The interactions within
the network respond to this parameter change by learning recognition codes that make
finer distinctions. In other words, if the network erroneously groups together some input
patterns, then negative reinforcement can help the network to learn the desired distinction
by making the system more vigilant. The system then behaves as if it has a better set of
feature detectors.

The ability of a vigilance change to alter the course of pattern recognition illustrates a
theme that is common to a variety of neural processes: a one-dimensional parameter change
that modulates a simple nonspecific neural process can have complex specific effects upon

high-dimensional neural information processing.

3. BOTTOM-UP ADAPTIVE FILTERING AND CONTRAST-
ENHANCEMENT IN SHORT TERM MEMORY

The remainder of the article intuitively summarizes key model properties. We begin
by considering the typical network reactions to a single input pattern I within a temporal
stream of input patterns. Each input pattern may be the output pattern of a preprocessing
stage. Different preprocessing is given, for example, to speech signals and to visual signals
before the outcome of such modality-specific preprocessing ever reaches the attentional
subsystem. The preprocessed input pattern I is received at the stage F; of an attentional
subsystem. Pattern I is transformed into a pattern X of activation across the nodes, or
abstract “feature detectors”, of F, (Figure 3). The transformed pattern X represents a
pattern in short term memory (STM). In F; each node whose activity is sufficiently large
generates excitatory signals along pathways to target nodes at the next processing stage
F,. A pattern X of STM activities across F; hereby elicits a pattern S of output signals
from F;. When a signal from a node in F, is carried along a pathway to F,, the signal is
multiplied, or gated, by the pathway’s long term memory (LTM) trace. The LTM gated
signal (ice., signal times LTM trace), not the signal alone, reaches the target node. Each
target node sums up all of its LTM gated signals. In this way, pattern S generates a pattern
T of LTM-gated and summed input signals to F, (Figure 4a). The transformation from S
to T is called an adaptive filter.
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3. Stages of bottom-up activation: The input pattern I generates a pattern of STM acti-
vation X across F,. Sufficiently active F| nodes emit bottom-up signals to F,. This signal
pattern S is gated by long term memory (LTM) traces within the F} — F, pathways. The
LTM gated signals are summed before activating their target nodes in F,. This LTM-gated
and summed signal pattern T generates a pattern of activation Y across F;. The nodes
in F; are denoted by 1, v,...,vm. The nodes in F, are denoted by Upa1, UM42,

The input to node v; is denoted by I,. The STM activity of node v, is denoted by :c, The
LTM trace of the pathway from v; to v; is denoted by z;;.
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The input pattern T to F, is quickly transformed by interactions among the nodes
of F;. These interactions contrast-enhance the input pattern T. The resulting pattern of
activation across F; is a new pattern Y. The contrast-enhanced pattern Y, rather than the

input pattern T, is stored in STM by F,.

A special case of this contrast-enhancement process is one in which F, chooses the
node which receives the largest input. The chosen node is the only one that can store
activity in STM. In general, the contrast enhancing transformation from T to Y enables
more than one node at a time to be active in STM. Such transformations are designed to
simultaneously represent in STM several groupings, or chunks, of an input pattern (Cohen
and Grossberg, 1986a, 1986b, 1986¢c; Grossberg, 1978a, 1986a). When F; is designed to
make a choice in STM, it selects that global grouping of the input pattern which is preferred
by the adaptive filter. This process automatically enables the network to partition all the
input patterns which are received by F; into disjoint sets of recognition categories, each

corresponding to a particular node (or “pointer,” or “index”) in F,.

All the LTM traces in the adaptive filter, and thus all learned past experiences of the
network, are used to determine the recognition code Y via the transformation I — X —
S — T — Y. However, only those nodes of F; which maintain stored activity in the
STM pattern Y can elicit new learning at contiguous LTM traces. Because the recognition
code Y is a more contrast-enhanced pattern than T, many F, nodes which receive positive
inputs (I — X — S — T) may not store any STM activity (T — Y). The LTM traces in
pathways leading to these nodes thus influence the recognition event but are not altered
by the recognition event. Some memories which influence the focus of attention are not

themselves attended.

4. TOP-DOWN TEMPLATE MATCHING
AND STABILIZATION OF CODE LEARNING

As soon as the bottom-up STM transformation X — Y takes place, the STM activities
Y in Fj elicit a top-down excitatory signal pattern U back to F, (Figure 4b). Only
sufficiently large STM activities in Y elicit signals in U along the feedback pathways F, —
F;. As in the bottom-up adaptive filter, the top-down signals U are also gated by LTM
traces and the LTM-gated signals are summed at F; nodes. The pattern U of output
signals from F, hereby generates a pattern V of LTM-gated and summed input signals
to F;. The transformation from U to V is thus also an adaptive filter. The pattern V is

called a top-down template, or learned ezpectation.

Two sources of input now perturb F,: the bottom-up input pattern I which gave rise

to the original activity pattern X, and the top-down template pattern V that resulted from
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4. Search for a correct Fj code: (a) The input pattern I generates the specific STM activity
pattern X at F, as it nonspecifically activates A. Pattern X both inhibits A and generates
the output signal pattern S. Signal pattern S is transformed into the input pattern T,
which activates the STM pattern Y across F;. (b) Pattern Y generates the top-down
signal pattern U which is transformed into the template pattern V. If V mismatches I
at F, then a new STM activity pattern X* is generated at F,. The reduction in total
STM activity which occurs when X is transformed into X* causes a decrease in the total
inhibition from F; to A. (¢) Then the input-driven activation of A can release a nonspecific
arousal wave to F,, which resets the STM pattern Y at F,. (d) After Y is inhibited, its
top-down template is eliminated, and X can be reinstated at F;,. Now X once again
generates input pattern T to F,, but since Y remains inhibited T can activate a different
STM pattern Y* at F,. If the top-down template due to Y* also mismatches I at F;, then
the rapid search for an appropriate F, code continues.
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activating X. The activity pattern X* across F, that is induced by I and V taken together
is typically different from the activity pattern X that was previously induced by I alone.
In particular, F, acts to match V against I. The result of this matching process determines

the future course of learning and recognition by the network.

The entire activation sequence
I-X—-S-2T-Y-sU-V-X* (1)

takes place very quickly relative to the rate with which the LTM traces in either the bottom-
up adaptive filter S — T or the top-down adaptive filter U — V can change. Even though
none of the LTM traces changes during such a short time, their prior learning strongly
influences the STM patterns Y and X* that evolve within the network by determining the
transformations S — T and U — V. We now discuss how a match or mismatch of ] and V
at F, regulates the course of learning in response to the pattern I, and in particular solves

the stability-plasticity dilemma (Section 2).

5. INTERACTIONS BETWEEN ATTENTIONAL AND ORIENTING
SUBSYSTEMS: STM RESET AND SEARCH

In Figure 4a, an input pattern I generates an STM activity pattern X across F,. The
input pattern I also excites the orienting subsystem A, but pattern X at F, inhibits A
before it can generate an output signal. Activity pattern X also elicits an output pattern
S which, via the bottom-up adaptive filter. instates an STM activity pattern Y across
F,. In Figure 4b, pattern Y reads a top-down template pattern V into F,. Template V
mismatches input I, thereby significantly inhibiting STM activity across F,. The amount
by which activity in X is attenuated to generate X* depends upon how much of the input
pattern I is encoded within the template pattern V.

When a mismatch attenuates STM activity across F,, the total size of the inhibitory
signal from F; to A is also attenuated. If the attenuation is sufficiently great, inhibition
from F, to A can no longer prevent the arousal source A from firing. Figure 4c depicts
how disinhibition of A releases an arousal burst to F; which equally, or nonspecifically,
excites all the F; cells. The cell populations of F; react to such an arousal signal in
a state-dependent fashion. In the special case that F; chooses a single population for
STM storage, the arousal burst selectively inhibits, or resets, the active population in F,.
This inhibition is long-lasting. One physiological design for F, processing which has these
properties is a gated dipole field (Grossberg, 1980, 1984a). A gated dipole field consists
of opponent processing channels which are gated by habituating chemical transmitters. A
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nonspecific arousal burst induces selective and enduring inhibition of active populations

within a gated dipole field.

In Figure 4c, inhibition of Y leads to removal of the top-down template V, and thereby
terminates the mismatch between [ and V. Input pattern I can thus reinstate the original
activity pattern X across F;, which again generates the output pattern S from F, and the
input pattern T to F,. Due to the enduring inhibition at F,, the input pattern T can no
longer activate the original pattern Y at F;. A new pattern Y* is thus generated at F,
by I (Figure 4d). Despite the fact that some F; nodes may remain inhibited by the STM
reset property, the new pattern Y*' may encode large STM activities. This is because level
F, is designed so that its total suprathreshold activity remains approximately constant,
or normalized, despite the fact that some of its nodes may remain inhibited by the STM
reset mechanism. This property is related to the limited capacity of STM. A physiological
process capable of achieving the STM normalization property is based upon on-center
off-surround feedback interactions among cells obeying membrane equations (Grossberg,
1980, 1983).

The new activity pattern Y' reads-out a new top-down template pattern V*. If a
mismatch again occurs at F,, the orienting subsystem is again engaged, thereby leading
to another arousal-mediated reset of STM at F,. In this way, a rapid series of STM
matching and reset events may occur. Such an STM matching and reset series controls the
system’s search of LTM by sequentially engaging the novelty-sensitive orienting subsystem.
Although STM is reset sequentially in time via this mismatch-mediated, self-terminating
LTM search process, the mechanisms which control the LTM search are all parallel network
interactions, rather than serial algorithms. Such a parallel search scheme continuously
adjusts itself to the system’s evolving LTM codes. In general, the spatial configuration of
LTM codes depends upon both the system’s initial configuration and its unique learning
history, and hence cannot be predicted a priori by a pre-wired search algorithm. Instead,
the mismatch-mediated engagement of the orienting subsystem realizes the type of self-
adjusting search that was described in Section 2B.

The mismatch-mediated search of LTM ends when an STM pattern across F; reads-
out a top-down template which matches I, to the degree of accuracy required by the level
of attentional vigilance, or which has not yet undergone any prior learning. In the latter
case, a new recognition category is then established as a bottom-up code and top-down

template are learned.

8. ATTENTIONAL GAIN CONTROL AND ATTENTIONAL PRIMING

Further properties of the top-down template matching process can be derived by con-
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sidering its role in the regulation of attentional priming. Consider, for example, a situation
in which F; is activated by a level other than F, before F, can be activated by a bottom-up
input (Figure 5a). In such a situation, F; can generate a top-down template V to F,. The
level F, is then primed, or sensitized, to receive a bottom-up input that may or may not
match the active expectancy. As depicted in Figure 5a, level F| can be primed to receive
a bottom-up input without necessarily eliciting suprathreshold output signals in response

to the priming expectancy.

On the other hand, an input pattern I must be able to generate a suprathreshold
activity pattern X even if no top-down expectancy is active across F, (Figures 4a and
5b). How does F; know that it should generate a suprathreshold reaction to a bottom-up
input pattern but not to a top-down input pattern? In both cases, excitatory input signals
stimulate F, cells. Some auxiliary mechanism must exist to distinguish between bottom-
up and top-down inputs. This auxiliary mechanism is called attentional gain control to
distinguish it from attentional priming by the top-down template itself (Figure 5a). While
F, is active, the attentional priming mechanism delivers ezeitatory specific learned template
patterns to F,. The attentional gain control mechanism has an inhibitory nonspecific
unlearned effect on the sensitivity with which F; responds to the template pattern, as well
as to other patterns received by F,. The attentional gain control process enables F; to tell
the difference between bottom-up and top-down signals.

7. MATCHING: THE 2/3 RULE

A rule for pattern matching at F,, called the 2/3 Rule, follows naturally from the
distinction between attentional gain control and attentional priming. It says that two
out of three signal sources must activate an F, node in order for that node to generate
suprathreshold output signals. In Figure 5a, during top-down processing, or priming, the
nodes of F; receive inputs from at most one of their three possible input sources. Hence
no cells in F, are supraliminally activated by the top-down template. In Figure 5b, during .
bottom-up processing, a suprathreshold node in F, is one which receives a specific input
from both the input pattern I and a nonspecific excitatory signal from the gain control
channel. In Figure 5¢, during the matching of simultaneous bottom-up and top-down
patterns, the nonspecific gain control signal to F; is inhibited by the top-down channel.
Nodes of F, which receive sufficiently large inputs from both the bottom-up and the top-
down signal patterns generate suprathreshold activities. Nodes which receive a bottom-up
input or a top-down input, but not both, cannot become suprathreshold: mismatched
inputs cannot generate suprathreshold activities. Attentional gain control thus leads to
a matching process whereby the addition of top-down excitatory inputs to F; can lead
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5. Matching by the 2/3 Rule: (a) A top-down template from F; inhibits the attentional
gain control source as it subliminally primes target F'; cells. (b) Only F; cells that receive
bottom-up inputs and gain control signals can become supraliminally active. (¢) When a
bottom-up input pattern and a top-down template are simultaneously active, only those
F; cells that receive inputs from both sources can become supraliminally active. (d)
Intermodality inhibition can shut off the F; gain control source and thereby prevent a
bottom-up input from supraliminally activating F,;. Similarly, disinhibition of the F, gain
control source by an “act of will” may enable a top-down prime to become supraliminal.

59



CARPENTER & GROSSBERG

to an overall decrease in F's STM activity (Figures 4a and 4b). Figure 5d shows how
competitive interactions across modalities can prevent F, from generating a supraliminal

reaction to bottom-up signals when attention shifts from one modality to another.

8. CONCLUDING REMARKS: SELF-STABILIZATION
AND UNITIZATION WITHIN ASSOCIATIVE NETWORKS

The qualitative properties discussed herein are elsewhere supplemented by a complete
set of mathematical theorems and many computer simulations (Carpenter and Grossberg,
1986a, 1986b, 1986¢c). Two main conclusions of our work are especially salient. First,
the code learning process is one of progressive refinement of distinctions. The distinctions
that emerge are the resultant of all the input patterns which the network ever experiences,
rather than of some preassigned features. Second, the matching process compares whole
patterns, not just separate features. It may happen that two different input patterns to
F, overlap a template at the same set of feature detectors, yet the network will reset the
F; node in response to one input but not the other. The degree of mismatch of template

pattern and input pattern as a whole determines whether coding or reset will occur.

Thus the learning of categorical invariants resolves two opposing tendencies. As cat-
egories grow larger, and hence code increasingly global invariants, the templates which
define themn become smaller, as they discover and base the code on sets of critical feature
patterns, or prototypes, rather than upon familiar pattern exemplars. This work shows
how these two opposing tendencies can be resolved within a self-organizing system, leading
to dynamic equilibration, or self-stabilization, of recognition categories in response to an
arbitrary list of arbitrarily many binary input patterns. This self-stabilization property is
of major importance for the further development of associative networks and the analysis

of cognitive recognition processes.

REFERENCES

Banquet, J.P., & Grossberg, S. (1986) Structure of event-related potentials during learning:

An experimental and theoretical analysis. Submitted for publication.

Carpenter, G.A., & Grossberg, S. (1985a) Category learning and adaptive pattern recog-
nition: A neural network model. Proceedings of the Third Army Conference on Applied
Mathematics and Computing, ARO Report 86-1, 37-56.

Carpenter, G.A., & Grossberg, S. (1985b) Neural dynamics of adaptive pattern recogni-
tion: Priming, search, attention, and category formation. Society for Neuroscience
Abstracts, 11, 1110.

60



CARPENTER & GROSSBERG

Carpenter, G.A., & Grossberg, S. (1986a) Neural dynamics of category learning and recog-
nition: Attention, memory consolidation, and amnesia. In J. Davis, R. Newburgh, and E.
Wegman (Eds.), Brain structure, learning, and memory. AAAS Symposium Series.

Carpenter, G.A ., & Grossberg, S. (1986b) Neural dynamics of category learning and recogni-
tion: Structural invariants, reinforcement, and evoked potentials. In M.L. Commons, S.M.
Kosslyn, and R.J. Herrnstein (Eds.), Pattern recognition and concepts in animals,

people, and machines. Hillsdale, NJ: Erlbaum.

Carpenter, G.A., & Grossberg, S. (1986¢c) A massively parallel architecture for a self-organ-
izing neural pattern recognition machine. Computer Vision, Graphiecs, and Image Process-
ing.

Cohen, M.A., & Grossberg, S. (1986a) Neural dynamics of speech and language coding:
Developmental programs, perceptual grouping, and competition for short term memory.

Human Neurobiology, 5, 1-22.
Cohen, M.A., & Grossberg, S. (1986b) Unitized recognition codes for parts and wholes: The

unique cue in configural discriminations. In M.L. Commons, S.M. Kosslyn, and R.J. Herrn-
stein (Eds.), Pattern recognition and concepts in animals, people, and machines.
Hillsdale, NJ: Erlbaum

Cohen, M.A., & Grossberg, S. (1986c) Adaptive tuning of unitized perceptual groupings:

Neural association, competition, and modulation.

Grossberg, S. (1976a) Adaptive pattern classification and universal recoding, I: Parallel de-

velopment and coding of neural feature detectors. Biological Cybernetics, 23, 121-134.

Grossberg, S. (1976b) Adaptive pattern classification and universal recoding, II: Feedback,
expectation, olfaction, and illusions. Biological Cybernetics, 23, 187-202.

Grossberg, S. (1978a) A theory of human memory: Self-organization and performance of
sensory-motor codes, maps, and plans. In R. Rosen and F. Snell (Eds.), Progress in
theoretical bioloﬁy, Vol.5, pp.233-374. New York: Academic Press.

Grossberg, S. (1980) How does a brain build a cognitive code? Psychological Review, 87,
1-51.

Grossberg, S. (1983) The quantized geometry of visual space: The coherent computation of
depth, form, and lightness. Behavioral Brain Sciences, 6, 625-692.

Grossberg, S. (1984a) Some psychophysiological and pharmacological correlates of a develop-
mental, cognitive and motivational theory. In R. Karrer, J. Cohen, and P. Tueting (Eds.),
Brain and information: Event related potentials, pp.58-151. New York: New York
Academy of Sciences.

61



CARPENTER & GROSSBERG

Grossberg, S. (1986a) The adaptive self-organization of serial order in behavior: Speech,
language, and motor control. In E.C. Schwab and H.C. Nusbaum (Eds.), Pattern recog-
nition by humans and machines, Vol.1. New York: Academic Press.

Grossberg, S., & Stone, G.O. (1986a) Neural dynamics of word recognition and recall: At-
tentional priming, learning, and resonance. Psychological Review, 93, 46-74.

Grossberg, S., & Stone, G.O. (1986b) Neural dynamics of attention switching and temporal

order information in short term memory, Memory and Cognition.
Posner, M.I. (1973) Cognition: an introduction. Glenview, IL: Scott, Foresman, and Co.

Posner, M.I., & Keele, S.W. (1968) On the genesis of abstract ideas. Journal of Experimental
Psychology, 77, 353-363.

Posner, M.I., & Keele, S.W. (1970) Retention of abstract ideas. Journal of Experimental
Psychology, 83, 304-308.

Smith, E.E., & Medin, D.L. (1981) Categories and concepts. Cambridge, MA: Harvard
University Press.

62



	cogsci_1986_45-62



