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Attention dynamics in multiple object tracking
Nisheeth Srivastava (nsrivastava@ucsd.edu)

Department of Psychology, UC San Diego
La Jolla, CA 92093 USA

Edward Vul (edwardvul@ucsd.edu)
Department of Psychology, UC San Diego
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Abstract

We present a computational model of multiple object track-
ing that makes trial-level predictions about the allocation of
visual attention and the resulting performance. This model
follows the intuition of allocated resources modulating spatial
resolution, but it implements it in a specific way that leads to
accurate predictions in multiple task manipulations. Experi-
ments on human subjects, guided by the model’s predictions,
demonstrate that observers tracking multiple objects use low-
level computations of target confusability to adjust the spatial
resolution at which the target needs to be tracked, and that the
resulting allocation closely approximates the rational solution.
Whereas earlier models of multiple object tracking have pre-
dicted the big picture relationship between stimulus complex-
ity and response accuracy, our approach makes accurate pre-
dictions of both the aggregate effect of target number and ve-
locity and of the variations in difficulty across individual trials
and targets arising from the idiosyncratic within-trial interac-
tions of targets and distractors.
Keywords: multiple object tracking; visual cognition; atten-
tion; hierarchical Bayesian models

Introduction
A wealth of multiple object tracking (Z. Pylyshyn & Storm,
1988) experiments have documented a rich set of phenom-
ena that have yet to be explained in a unified manner. Many
behavioral patterns of object tracking arise when the load
(the number of targets to be tracked) is constant: objects
are harder to track when they move faster (Alvarez & Fran-
coneri, 2007), are closer together (Franconeri, Lin, Pylyshyn,
Fisher, & Enns, 2008), have less reliable identifying features
(Makovski & Jiang, 2009), are intermixed among more dis-
tracters (Feria, 2012), or must be tracked for longer periods
of time. These effects can be explained by a simple ideal
observer model solving the tracking correspondence problem
under uncertainty (Vul, Frank, Alvarez, & Tenenbaum, 2009),
and reflect the information available for the task, rather than
the limitations of human cognitive resources. However, such
ideal observer models cannot account for a second class of
phenomena that arise when varying the number of targets to
be tracked: under fixed conditions, participants can only track
a small number of objects (Z. Pylyshyn & Storm, 1988), but
more can be tracked when they move slower (Alvarez & Fran-
coneri, 2007). These effects provide a glimpse at the limita-
tions and tradeoffs imposed by the cognitive machinery that
humans employ to track objects, and theories designed to cap-
ture these phenomena postulate either a limited pool of point-
ers to tracked objects (“slot” models (Luck & Vogel, 1997))
or a finite pool of resources that is spread thin when too many
objects must be tracked (Alvarez & Cavanagh, 2004) (“re-
source” models). To date, these models have been largely
descriptive and do not engage with the phenomena that arise
from the difficulty of solving the correspondence problem

under uncertainty. Our aim in this paper is to unify ideal
observer models of object tracking with cognitive resource
limitations and allocation to capture both classes of object
tracking phenomena, and more generally, to generate insights
about how cognitive constraints and low-level uncertainty are
coupled in human cognition.

We propose a hierarchical model of human performance
on the MOT task that uses recursive Bayesian estimation of
position coordinates to model the consequences of perceptual
uncertainty, and controls the effective length scales on which
these estimators work as a function of the amount of atten-
tion resource allocated to them by a higher-level controller.
Our model follows the phenomenological intuition that hu-
mans are able to make finer-grained judgments of relative po-
sition when they attend more to a particular location, and that
such targeted covert attention is a scarce resource - resolution
gain in the attended patch is bought at the expense of coarser-
grained resolution elsewhere. We demonstrate that adding a
hierarchical controller that assigns spatial resolution to each
of the lower-level trackers out of a common pool of attention
resource permits us to model MOT phenomena that reflect
flexible cognitive resources, e.g. the number of objects that
can be tracked, and the profile of most common errors made
by subjects. Furthermore, we show that people track differ-
ent targets with variable spatial precision over time, following
our models’ predictions of strategic and dynamic allocation
of cognitive resources, and that our model distinguishes be-
tween “dropping” and “swapping” errors (Drew, Horowitz, &
Vogel, 2013) in a novel behavioral characterization.

Overview of flexible-resolution spatial tracking
We work within the framework of rational analysis, wherein
models are strongly characterized by their computational
goals. Thus, our tracking model is based on a low-level con-
troller that iteratively solves the correspondence problem of
observed objects across the movie, and a higher-level con-
troller that allocates a finite resource that improves localiza-
tion precision. The overall outline of the model we use is
shown in graphical form in Figure 1b.

The computational goal of the lower-level controllers is to
estimate individual object positions with statistical optimal-
ity given the noise/uncertainty of localizing objects in indi-
vidual frames (Vul et al., 2009). This assumption is entirely
in line with existing ideas in Bayesian studies of visual per-
ception (Knill & Richards, 1996) and simply suggests that
the low-level controllers behave as ideal Bayesian observers.
We supplement this low-level controller with a finite resource
the allocation of which modulates the behavior of the ideal
observer by changing localization uncertainty.
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The finite “resource” in our model is based on the as-
sumption that humans can actively control the spatial resolu-
tion/uncertainty of individual percepts. Intuitively, if we want
to be able to make finer discriminations of spatial position for
an object, we will ‘attend’ to it more than if we were sim-
ply concerned with coarse estimates of its position relative to
other objects. We incorporate this intuition into a hierarchical
model of inference (as illustrated in Figure 1(b)), where low-
level percept-tracking controllers learn the dynamics of in-
dividual objects and emits bottom-up signals identifying the
likelihood of their tracking labels being lost, and a high-level
meta-cognitive module uses these signals to rationally allo-
cate attention to these controllers from a limited global pool,
with the constraint that greater attention allocation permits
finer spatial resolution. The top-down attention allocation, in
turn, determines the uncertainty associated with lower-level
position measurements.

The computational goal of the higher-level controller is to
greedily reduce correspondence uncertainty, constrained by
the total amount of attention resource available. While this is
certainly not the only possible goal for metacognitive atten-
tion dynamics, constrained greedy optimization is rational in
the context of dynamic resource allocation when the underly-
ing demand distribution is non-stationary.

Bayesian object tracking

We model individual object tracking as an ideal Bayesian ob-
server learning a linear dynamical system. Given a state equa-
tion,

xt+1 = Hxt +N (0,Q), (1)

and a measurement equation,

zt =Cxt +N (0,R), (2)

where Q is process noise, and R is measurement noise, we
implemented a Kalman filter that learns {H,C,Q,R} at ev-
ery time step using expectation-maximization based param-
eter estimation (Ghahramani & Hinton, 1996). This filter
serves as our perceptual ideal Bayesian observer for a sin-
gle moving object. It takes the two dimensional coordinates
as the state observation {x,y}, predicts the future value of the
latent state variable s, and thus generates predictions about
future coordinates x,y.

A model completely faithful to the computational require-
ments of the MOT task would explicitly solve the correspon-
dence problem: which observation should be associated with
which filter, as in (Vul et al., 2009). However, to account
for human behavior, a simplification is possible: rather than
solving the correspondence problem at every time step, we
can simply predict the ambiguity of correspondence at each
time-step, and swap labels accordingly. This approach per-
mits us to treat particle-filter bindings as known, instead of
unknown, by default at every iteration, which greatly reduces
the computational complexity of the model.

Rational attention allocation

The top-level attention model assumes that subjects possess a
fixed amount of total attention, which can be represented as
the scalar integer A. Following indexing-based ideas of object
tracking (Z. Pylyshyn, 1989), the model assigns indices p to
all objects on the screen; and the amount of attention assigned
to each object location at time t is a function at(p), where
∑

P
p at(p) = A.
In every iteration, the model first determines the list of

targets for which it will preferentially allocate attention1 by
propagating the list of particles marked as targets (henceforth,
the “target list”) forward across time.

At every time step, the model evaluates the potential con-
fusability of all targets based on the object states the low-level
Kalman filters. We approximate the probability of confusion
as a logistic sigmoid decreasing with the distance between
the target and its nearest distracter, but critically, this dis-
tance is scaled by the spatial resolution that each tracker’s
allocated attention resource permits it to have. These conver-
gent desiderata inform our formal definition of confusability
as,

c(p) = exp(−K×at−1(p)×d∗t (p)), (3)

where, K is a scaling parameter, and d∗t (p) = mindt(p), and
dt(p) is the estimated distance at model iteration t between p
and all distracters if p is a target or between p and all targets
if p is a distracter.

If a target is easily confusable with a distracter and vice
versa, the two will swap target/distracter labels with a prob-
ability determined by the magnitude of their confusability.
Once all possible swaps have been resolved, the particle pos-
sesses a new list of targets (which could be the same as the
old list if no swaps occurred).

Since the model’s current top-level attention allocation to
all trackers is based on the previous iteration’s distance esti-
mates, it now determines a new attention allocation for each
of A ‘units’ of attention. Each unit is assigned to an object
p by sampling an object index from a mixture model: With
probability τ an object index is sampled from a distribution
obtained by normalizing the confusability of all objects, and
with probability 1−τ an object index is sampled from the tar-
gets with probability proportional to their confusability. The
parameter τ controls the extent of inhibition of distracter par-
ticles. A value of 1 would mean that the model treats targets
and distracters equally while dividing up attention. A value
of 0 would mean that the model ignores all distracters and
attends only to the targets2.

1While earlier indexing-based models of MOT have tried to re-
tain the individual identities of each of the target particles, empirical
results (Z. Pylyshyn, 2004) show that humans find it much easier to
track target/non-target compared to tracking numbered target iden-
tities across the same trial duration. In light of this observation, we
use a binary target/non-target identification for all particles.

2A very rough grid search in parameter space suggested that
a useful value of τ would be 0.4; this is the value we have used
throughout our experiments.
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Figure 1: (a) Schematic representation of a typical multiple object tracking (MOT) task. (b) Graphical description of a hier-
archical model for tracking N objects simultaneously. The lower level state estimate s is computed using a bank of Kalman
filters which predict particle locations with an accuracy that is influenced by their spatial resolution. (c) The scale of spatial
resolution for a filter at any time step is determined by the attention allocated to it by the top-level model of attention dynamics.
This model obtains information about the confusability of tracking targets from the filter predictions and rationally allocates
attention to minimize overall confusability constrained by its attention budget.

Finally, reflecting sensitivity to cognitive processing costs,
we assumed the model would possess some degree of inertia
to changing its attention allocation, so that,

at(p) = λat−1(p)+(1−λ)ât(p), (4)

where ât is the allocation computed for the present iteration
as above.

Experiment design

The basic MOT task is illustrated in Figure 1a. After initial
presentation of 12 objects, k of which were red (targets) and
the rest (distracters) blue at the beginning of each trial, the
subject presses a key to set them in motion. The objects all
turn blue and move on the screen following the dynamics out-
lined in Equation 5. After 5 seconds, the objects stop moving
and one of them, sampled from among the set of targets and
set of distracters with equal probability, turns red. The sub-
ject must indicate, by pressing ‘y’ or ‘n’, if the red object was
red at the beginning of the trial too.

Participants were allowed to practice the task they were to
perform until they verified that they understood the objective
and were accustomed to the keyboard controls. Practice data
was discarded from subsequent analysis in all cases. All ex-
periments were IRB-approved and 50 undergraduate students
volunteered as subjects for course credit. Participants viewed
the MOT display on a 17-inch PC monitor, and used mouse
and keyboard for inputs.

Position and velocity for x and y of each object evolve in-
dependently according to an Ornstein-Uhlenbeck process:

xt = xt−1 + vt ,

vt = λvt−1− kxt−1 +wt ,

wt ∼ N(0,σw)

(5)

where x and v are the position and velocity at time t; λ is a
friction parameter constrained to be between 0 and 1; k is a
spring constant which pulls the particles mildly to the center
of the screen; and wt is random acceleration noise added at
each time point which is distributed as a zero-mean Gaussian
with standard deviation σw.

In two dimensions, this stochastic process describes a ran-
domly moving cloud of objects; the spring constant assures
that the objects will not drift off to infinity, and the friction pa-
rameter assures that they will not accelerate to infinity. Within
the range of parameters we consider, this process converges
to a stable distribution of positions and velocities.

Results
More targets become harder to track
We replicate the finding that object tracking becomes harder
both with increasing velocity of the particle swarm, and with
increasing number of targets (Alvarez & Franconeri, 2007).
Unlike the original experiment, where subjects were allowed
to adjust their own speed to what they felt was subjectively
comfortable, we used a 3-up-1-down staircase, varying the
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parameter σw from Equation 5 in steps of 0.5, thereby objec-
tively measuring a∼ 79% accuracy threshold for participants.
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Figure 2: The speed at which observers can maintain a partic-
ular accuracy threshold decreases as the number of objects to
be tracked increases both for Left: 14 human subjects tested
using a 3 up-1 down staircase experiment varying object ve-
locity and Right: simulations of our model performing the
same staircase task.

Results for 14 subjects are shown in Figure 2a and qualita-
tively match those from (Alvarez & Franconeri, 2007). An in
silico replication of this experiment using a same-sized agent
pool yields identical results, shown in figure 2b, demonstrat-
ing that our model replicates aggregate human performance
limitations arising out of both increasing velocity and target
count. This overall pattern of behavior cannot be captured by
a simple ideal observer without a constrained resource.

Predicting individual trial errors
While replicating aggregate predictions forms a useful base-
line for assessing model validity, our model provides perfor-
mance predictions for individual MOT trials, thereby provid-
ing a way to examine the limitations that humans face in do-
ing this task at a much finer resolution. Pursuant to our in-
terest in limitations to MOT performance, we are interested
more in examining if our model gets the same trials wrong
as humans. An algorithm that has difficulty solving the same
MOT trials that humans find difficult to solve is more interest-
ing from a scientific standpoint than one that merely captures
overall performance trends.

We conducted this analysis in the form of a binary classi-
fication study - using multiple (N=11) simulations of model
performance on an individual trial as a predictor for human
performance. Perfect correlation between human and model
predictions would equivalent to perfect binary classification
of human errors/non-errors using model predictions. As il-
lustrated in Figure 3, our model outperforms a static spatial
tracking model on two comprehensive criteria of classifica-
tion performance: F-measure and area under the ROC curve.
We obtained the ROC for our analysis by varying the thresh-
old count of number of times the model got a trial correct (out
of N) for us to label it positive between 1 and 11. The F-score
reported is from the middle of the ROC, corresponding to a
threshold count of 6.

In a separate experiment, we asked 22 students to perform
the MOT task on 150 pre-set trials, with object velocity set
at the average of our earlier sample. We then used classifi-
cation with 20-fold cross-validation to calculate how well the
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Figure 3: Treating model performance (correct/incorrect) per
trial as a binary classifier of human performance shows that
attention-gated spatial tracking predicts trial-level human ac-
curacy better than static spatial interference based models, (a)
with a considerably greater F-measure and (b) higher area un-
der the ROC curve. Not only does our model make mistakes
on the same trials as humans do, it also makes substantially
the same mistakes that humans do, both for (c) trials where
humans mistakenly identify a distractor is a target and (d) tri-
als where they mistakenly identify a target as a distractor.

performance of half the subjects on a trial predicted that of
the other half, thereby obtaining a theoretical upper bound
on classification performance (illustrated in Figure 3a). This
upper bound places the extent of improvement in within-trial
prediction performance engendered by our model in proper
perspective - our model is clearly a considerable improve-
ment over the static case.

Finally, since our model simulates objects movements
throughout the trial, it generates predictions for which ob-
jects it considers to be targets at the end of each simulation
run. By measuring the congruence of these final target sets
predicted by the model with the frequency with which hu-
mans made mistakes on probed objects, we can get a sense
for whether the model makes the same mistakes the humans
did, not just mistakes on the same trials the humans did. Pan-
els (c)-(d) in Figure 3 present quantitative evidence for con-
gruence between human and model errors. In both figures,
the x-axis plots the probability rank with which the model as-
signs a probed object to the target set, measured across 11
simulation runs; the y-axis counts the number of times the
probed object occurred in all error trials across 30 subjects.
For false negative trials, where humans, when probed with a
target, said that it wasn’t, panel (c) shows that the targets that
humans mistook for distractors were less likely to be mem-
bers of the model’s target set. For false positive trials, where
humans, when probed with a distractor, said it was a target,
panel (d) shows that such distractors were more likely to be
members of the target set in our simulation runs.
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Assessing meta-cognitive attention control

The model we have proposed augments flexibility in spa-
tial resolution to existing Bayesian accounts of multiple ob-
ject tracking, and our simulation experiments show that it
does indeed improve trial-level predictions. Here we further
test some more specific predictions of the strategic-allocation
MOT model: does precision of tracking follow the predic-
tions our model makes about allocated resources? and does
the model distinguish between qualitatively different types of
target-identification errors?

Crowded locations are tracked better The key non-trivial
prediction of our strategic allocation model of multiple object
tracking is that subjects will localize easily confusable objects
with greater precision, because they will selectively attend to
them more to resolve the possible ambiguity. In contrast, a
bottom-up theory of tracking would predict no relationship
between crowding and localization error - location errors in
such models would reflect either constant perceptual uncer-
tainty or might even increase for more confusable objects due
to crowding (Whitney & Levi, 2011).

We directly tested this prediction by making a simple ma-
nipulation to the basic design. We interleaved trials probing
the identity of one of 4 targets with ones wherein, once the
dots stop moving, one of them disappears, and participants
were prompted to click on its latest position using a mouse.
Participants were instructed to focus on getting the probe tri-
als correct, and respond on the location trials as best they
could. This was done to ensure that subjects did not stop
attending to targets in order to focus more generally on the
entire viewing area to better minimize location errors. We fur-
ther expect that the randomly interleaved presentation of both
types of trials (controlled by a Bernoulli parameter p = 0.5)
also dissuaded such task switching.

Unlike in the other experiments, where trials were gen-
erated de novo for each participant, all 29 participants
saw the same 150 pre-selected trials in this experiment.
These trials were selected to hold the distance between the
probed/disappearing particle and its nearest neighbor fixed at
five separate values, 30 trials per distance value.

While the data are noisy, the results in Figure 4a, plotting
the localization error (in pixels) that subjects make against
the category of trial (sorted by distance to nearest neighbor),
show a clear trend favoring our hypothesis (ρ = 0.91, p =
0.03), and supporting related observations from (Iordanescu,
Grabowecky, & Suzuki, 2009). Objects that disappeared in
crowded locations were localized with greater precision than
objects in less crowded locations. This empirical result sup-
ports our work’s basic assumption - that rational attention al-
location influences MOT performance via flexibility in spatial
resolution.

Drop/swap predictions People do not always track all of
the objects they were asked to, with errors arising from
swapped labels between targets and distracters, instead, they
sometimes simply drop a target and stop tracking it (Drew et
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Figure 4: Indirect measurements supporting the role of
metacognitive attention dynamics in the MOT task. Left:
Subjects were more precise in localizing objects that were in
crowded locations than those that were more isolated. Right:
The model’s overall confusability load was significantly (p =
0.0017) higher at peak confusability in ‘drop’ trials than in
‘swap’ trials as measured behaviorally, suggesting that ‘drop-
ping’ could be a rational response in such situations. All error
bars represent ±1 s.e.m.

al., 2013). For our purposes, swaps are erroneous identifi-
cations of target-distracter labels, as uncovered in the probe
trials. Drops are erroneous identifications that participants
knew would likely be erroneous before responding because
they knew they had dropped a target. Therefore, we can es-
timate whether a given error was a swap or a drop by asking
participants if they were surprised by the error. When an error
arises from a participant swapping the probed target for a dis-
tracter, or vice versa, they would be surprised when told that
they are wrong. Conversely, participants who knew that they
had dropped one or more targets would express little surprise
at being wrong.

We attempted to elicit precisely this information in a third
experiment. The protocol for this study followed the same
staircase design used in the first experiment; we collected data
only for 14 subjects and with trials involving 4 targets amidst
8 distracters. Also, every time a subject responded incorrectly
to the probed particle, they were required to indicate with a
keypress whether they were surprised at being wrong before
proceeding to the next trial.

Even though our model does not include an explicit mecha-
nism for dropping targets, it is possible to construct hypothe-
ses about situations within trials that would promote drops,
and operationalize them testably. In particular, we expect that
subjects would drop objects from the target list if their atten-
tion resources were over-stretched, causing irreducible con-
fusability among objects. In our model the overall demand
for attention might exceed capacity if there are many poten-
tially confusable targets. Therefore, sensitivity to the drop-
swap distinction in our model would predict that the cumula-
tive confusability of all the targets would be larger at critical
points in the trial for instances where errors would occur due
to drops than for instances where errors would occur due to
swaps. This prediction is borne out in our data, as shown in
Figure 4b, where we show that the critical3 confusability for

3Since errors in MOT happen at critical junctures, and cannot be
characterized by statistics averaged across the trial, we have used the
largest value of confusability obtained within a trial as our definition
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trials labeled as ‘drop’ errors from our behavioral characteri-
zation is consistently higher than for trials labeled as ‘swap’
errors.

Discussion

Patterns of aggregate behavior in multiple object tracking as
a function of the average speed and spacing of objects, the
duration of tracking, and the number of distractors can be
explained by an ideal observer iteratively solving the corre-
spondence problem (Vul et al., 2009). However, such ideal
observers cannot capture the critical effects of tracking load –
how many targets must be tracked – indicating that some sort
of cognitive resource constraints limit human performance.
We combined these two features to model human object
tracking performance as Bayesian ideal tracking with a re-
source constraint, and showed that such an agent exhibits the
same tradeoffs between speed and number of targets tracked
as people. We go further to show that this limited resource
is not allocated to targets according to a fixed, static divi-
sion, but is instead allocated strategically depending on the
prospective costs and benefits of possible allocations.

Strategic, dynamic allocation of cognitive resources can
better predict across-trial variation in performance. Further-
more, such strategic meta-cognitive allocation accounts for
differences between trials when targets are dropped from con-
sideration, rather than merely mis-associated and swapped
with distracters, differences that we were able to behaviorally
elicit using a novel experimental manipulation. Finally, the
specific combination of our presumed resource (spatial reso-
lution – potentially mediated by attention), and our dynamic
allocation policy, predicts that variation in the precision of
position estimates for individual targets (localization errors
increase for less crowded objects), and we show that this
holds for human observers. Together, these results represent
proof-of-concept for how we can capture the interaction be-
tween bottom-up uncertainty and human cognitive resources
using task-sensitive meta-cognitive policies: in multiple ob-
ject tracking, spatial resolution is allocated to reduce uncer-
tainty for the correspondence problem.

Since our computational model is strongly predicated upon
the ability of observers to consistently index objects, it fails in
the same directions as indexing theory, e.g. it cannot explain
why humans find it easier to differentiate targets from distrac-
tors than to identify which target is which (Z. W. Pylyshyn,
2006). Future work could replace our indexing assumption
with more realistic models of generating attention foci given
visual stimulus (Trommershäuser, Maloney, & Landy, 2003)
to accommodate these results.
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