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A learning/recognition model (and instantiating program) is described which recursively 
combines the learning paradigms of conceptual clustering (Michalski, 1980) and learning­
from-examples to resolve the ambiguities of real-world recognition. The model is based on 
neurophysiological and psychological evidence that the visual system is analytic, hierarchical, 
and composed of a parallel/serial dichotomy (many, see conclusions by Crick, 1984). 
Emulating the experimental evidence, parallel processes in the model decompose the image 
into components and cluster the constituents in much the same way as the image processing 
technique known as moment analysis (Alt, 1962). Serial, attentive mechanisms then reassemble 
the decompositions by investigating spatial relationships between components. The use of 
attentive mechanisms extends the moment analysis technique to handle alterations in structure 
and solves the contention problem created by combining the two learning paradigms. The 
contention results from a disagreement between the teacher and the model on what constitutes 
the salient features at the highest level of the symbol. There are four cases ZBT must handle, 
two of which result from the disagreement with the teacher. The parallel/serial dichotomy 
represents a vertical/horizontal tradeoff between the invariant and variant features of a domain. 
The resultant learned hierarchy allows ZBT to recognize structural differences while avoiding 
problems of exponential growth. 

This research was supported in part by the office of Naval Research under grants N00014-84-K-0391 and 
N00014-85-K-0854, by the Army Research Institute under contract MDA903-85-C-0324, and by the National 
Science Foundation under grants IST-81-2-685 and IST-85-12419. 
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1.0 Introduction 

Machine recognition is difficult in simple image environments, but the problem is compounded 
in a real-world paradigm where objects undergo various types of transformations. The problem 
can be viewed as a comparison of similarities and differences from one viewing to the next. 
There are two important aspects to the problem. 

First is the difficulty of understanding the scanned raster data. This part of the problem can be 
simulated by pressing one's eye against a television screen and attempting to identify what is 
being viewed by interpreting the dots that compose the image. Viewed at a distance, the 
contents of the image, such as the call letters identifying the broadcast station, might be 
discernible, but at the closer viewpoint, things are confusing - the letters cannot be deciphered 
from the complexity of dots that compose them. 

A simple approach to this problem, as the previous statement implies, is to back away from the 
detail and focus attention on the larger, less detailed constructs. This seems to work for a 
human, but implementation in a machine vision system is problematic. How does a machine 
back away from the raster image it holds in memory? 

And, if a machine can be made to effectively back away from the image it is analyzing, how 
does it cope with the variability of a real-world domain, variability easily overlooked by a 
human viewer, but a formidable problem to the machine vision system. The difficulty is that, 
from one viewing to the next, various types of image alterations and interference can make 
visually identical objects, such as the call-letter characters, appear to be different, and different 
objects appear to be the same. The characters can vary in size, can be rotated, and can even be 
structurally altered by "snow" and other distortions of the image. This is the second part of the 
machine vision problem: despite variations in images the machine must identify the differences 
and similarities between objects such that the learned knowledge is predictive of the 
environment. 

Neurophysiological and psychological data suggest that biological vision systems solve these 
problems in an analytic, hierarchical fashion (Julesz, 1962, 1984, Crick, 1984, Moran & 
Desimone, 1985, Treisman, 1985). First, raster-like data, converted from continuous tone data 
by discrete elements in the back of the eye, is canonically decomposed or grouped in the early 
visual system according to fixed primitives such as: contrast, spatial orientation, and color 
(summarized in Van Essen & Maunsell, 1983). Then, in later processing stages, the features are 
reassociated to compose recognizable objects. Psychological experiments suggest that while 
decomposition is an effortless, parallel process (Julesz, 1984), the reassembly is a serial process 
requiring attentive resources (Treisman, 1985). 

This paper describes a learning, recognition model, ZBT, (and instantiating program) that 
achieves some success on simple, paradigmatic examples by emulating the accumulating 
neurophysiological and psychological evidence that the visual system is analytic, hierarchical, 
and composed of both parallel and serial processing elements (Crick, 1984). 

ZBT's processing begins with the least detailed level of the visual form and progresses to the 
most detailed level. At each level a two-step, matching process is invoked. In the first step, 
parallel processes select an aspect of the image and decompose it into meaningless, component 
blobs according to simple, fixed primitives. Other parallel mechanisms then compute features 
of the blobs that are invariant to the real-world transformations of translation, rotation, and 
scale and use these features to index into every level of the memory hierarchy simultaneously. 
This is a parallel memory match that isolates candidate recognitions. 
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In the second step, attention is focused serially on the spatial relationships between component 
blobs. This is the serial portion of the match where candidate recognitions are verified. 

ZBT' s two steps coincide with two different paradigmatic approaches to learning: conceptual 
clustering and learning from examples. The first step, clustering, is performed in the absence of 
environmental feedback to group data according to the invariant primitives. The second step is 
ZBT' s method of conforming to the environment's classifications which can conflict with the 
clustering process by negating their groupings. The conflict creates two ambiguous situations 
during the match process: objects can appear the same (to ZBT) but be different, or appear 
different and be classified the same. In reality, the ambiguities result from a mismatch of 
measures of similarity chosen by system and environment at the highest level of object 
recognition. 

One solution to the conflict is to reorganize memory but ZBT takes a different approach. ZBT 
attempts to resolve the conflict by searching for other levels of detail that might disambiguate. 
It does this by recursing on the level of detail where the conflict occurred. The recursive 
combination of the two steps creates an hierarchical memory organization where the vertical 
levels of the hierarchy represent increasing amounts of image detail and horizontal 
relationships within levels represent the spatial relationships between the features that compose 
a level. Indexing each level of detail in the hierarchy with the invariant measures helps ZBT 
avoid the problem of exponential growth frequently associated with the extension of learning 
systems. 

2.0 The Problem 

Briefly stated, the problem considered is the difficulty of learned object recognition that 
confronts biological vision systems which must cope with imperfect environments, and, thus, 
must cope with potentially infinite perceptual domains. The problem has been simulated in this 
research with the corresponding problem of recognizing binary, raster-scanned images under 
certain transformations. The following assumptions detail the research paradigm: 

(a) Input to the system is a series of images representing the target symbols to be 
learned/recognized. Presented singly, each image is a binary, raster array (bitmap) 
such as might result from scanning a continuous tone, or gray scale, drawing of the 
respective symbol1. The recognition problem is simulated in this work with the 
raster-scan problem because of the apparent correspondence between scanning 
technology and the earliest processes of biological vision systems. Scanning systems, 
typified by charge coupled devices (CCD), quantize reflected light, mapping light 
intensity onto a matrix of numerical values, where each location (pixel) represents 
the amount of light collected by a sensor in that respective area. In a similar way, 
sensing elements in the retina of the eye, innervated by different types and quantities 
of light, map the continuous light tones onto an array of discrete values. The problem 
has been somewhat simplified in this work by assuming that the continuous tone 
images are thresholded to produce binary arrays such that pixels are either 1 (on) or 
0 (off) representing background. 

(b) The system must be capable of incremental learning behavior (see Schlimmer & 
Fisher, 1986 for motivation). That is, it must base its responses on the incremental 
acquisition of knowledge. 

1 A future direction is to interface the system to a document scanner. For the present, however, the raster representations have been created by 

hand; placing 1 s for black and Os for white (background). 
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(c) The system must be easily extensible. In other words, the system must be capable of 
easily learning new symbols without increasing learning/recognition times 
exponentially. 

(d) The system should tolerate four possible real world image variations: 
1) Translation: A symbol's location in the image field can vary from one 

experience to another. 
2) Scaling: A symbol's size can also vary from experience to experience. 

(However it is assumed that the size should always be large compared to 
the resolution.) 

3) Rotation: 2-dimensional (2D) rotations of less than 45 degrees should not 
impede recognition. While biological vision systems seem to tolerate 
rotation, no psychological model explaining it or suggesting its limitations 
has yet to emerge. The assumption in this work is that some amount of 
rotation must be tolerated, but the difficulties of rotational confusion (e.g., 
rotate a "d" and it eventually becomes confused with a "p") must be 
avoided, thus rotations are limited to 45 degrees. 

4) Simple structural alterations: Variations in structural characteristics as 
might result from omissions (due to occluding noise or sloppy printing) 
are allowed. Figure 1 illustrates three symbols selected as typical of one 
type of structural alteration and used throughout the examples presented 
here to explain ZBT's operation. Objectl is a well-formed capital letter 
"A" composed of three straight-line strokes, labeled (for purposes of the 
discussion): left side, right side, and brace. Object2 is an alteration of 
Objectl in which the connection between the right end of the brace and 
the right side has been broken. Object3 is identical to Object2 except that 
the break between the brace and side is wider. 

(e) Optionally, each image (as input) can be accompanied by a label identifying the 
category assigned to the represented symbol. The category is the class, specified by 
the teacher or environment, that contains all of the forms assigned the same label. 
For example, Objectl, Object2, and Object3 of Figure 1 would, typically, all be 
labeled as members of Class A and Object4 would typically be labeled as a member · 
of Class Y. Labels, as defined by the teacher, are assumed to be consistent. 

(f) If a label does not accompany the input, the system should include, as part of its 
output, a statement specifying the class the current symbol it is perceived to be a 
member of. 

(g) The domain of symbols is not limited (except for practical limitations of 
implementation discussed later - see Appendix II). 

AAAY 
OBJECT1 OBJECT2 OBJECT3 OBJECT4 

Figure 1: Example Structures 

3.0 The Model - An Overview 
The goal of the research described here is an investigation of the role of attention in real-world, 
image recognition problems. The result has been an incremental learning/recognition theory, 
ZBT, and its program instantiation. The purpose of this paper is to describe the operation of the 
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ZBT model in detail. This will be done in a later section when the computations are delineated, 
but, first, an overview of the model's operation and its relevance to certain experimental data 
provide a perspective for the detail that follows. 

ZBT is based on a number of ideas which have been culled from the pertinent physiological 
and psychological data. These points are discussed later, but can be summarized as: 

• The visual system is modular; different areas of the visual system appear to analyze 
an image in different ways (summarized in VanEssen & Maunsell, 1983). 

•The information between modules is somehow reassociated to form a whole. 
•Some recognition processes are automatic and seem to operate in parallel (many 

including: Julesz, 1984). 
•Some recognition processes require attentive resources that appear to operate in a 

serial manner (ibid.). 
• Different levels of recognition detail can be brought to bear on an image at different 

times (see examples discussed later). 

Consistent with these points, ZBT can be characterized by the following two step process: 

1) Parallel decomposition of the current attentive area 
2) Serial focus of attention on the resultant components 

The two steps correspond to two different learning paradigms: conceptual clustering and 
learning from examples2. The conceptual clustering is embodied in parallel processes that 
cluster the data according to feature similarities perceived by the program. Unfortunately, as 
we'll see, the resultant grouping may not agree with the grouping preferred by the environment. 
In that case ZBT invokes the serial, attentive mechanisms to resolve the disagreement between 
the two modes of operation. 

The disagreement typically occurs at the highest or least detail level of the objects in question. 
By recursively combining the two learning paradigms, ZBT attempts to expose, and in turn 
learn, detail that will unambiguously identify the nature of the disagreement. That is, the 
recursive, two-step process, alternating between decomposition and attention to relationships 
between the components of the decomposition, zooms in on the detail that distinguishes one 
visual object from another. An example serves to illustrate. 

Working on one image at a time3, ZBT attempts to identify the symbol contained within each 
image4. To accomplish this, ZBT first isolates the object contained within the raster display of 
the current image. For example, when viewing an image of Objectl, ZBT first isolates the "A" 
form from the rest of the raster background. This form is the level of least detail associated 
with Objectl. This level is also the level of greatest aggregation since the components that 
define the object are aggregated into one composite structures. 

2 The input requirements dictate that ZBT can not always depend on environmental feedback, but it must also respond appropriately when it is 

available. Since the fundamental difference between the two learning paradigms is that the latter incorporates environmental feedback and the 

former does not, ZBT combines the two types of learning. The two paradigms are covered in a later discussion. 

3 Typically, ZBT's operation is studied on a sequence of images where a sequence can be 2 images or it can be hundreds. ZBT begins a 

sequence with no prior knowledge of previous experiences. As an incremental learning system, it builds its knowledge base incrementally with 

each image. ZBT's operation on a sequence will be explained later. 

4 As a conceptual clustering system ZBT stores its knowledge of an object whether or not the category of the object is provided with the image. 

5 Later, when more structural detail is required, ZBT will decompose Objectl into 3 constituent parts, however, at the highest level, ZBT 

ignores the 3 component strokes, focusing instead on the composite form. 

4 



ZBT next abstracts the experience of the composite form by computing certain values, called 
moment invariants, on the isolated raster array. These values represent the unique physical 
features of the raster form, invariant to the transformations of translation, scale, and rotation. 

Using the invariant values as indices (pointers), ZBT references memory. The mechanics of 
this are discussed later, but the essence is that the invariants serve to cluster, or group, 
abstracted experiences in memory locations on the basis of features that are independent of the 
stated transformations. Thus, the result of a memory reference in this example is a reminding of 
any previous experiences possessing physical features equivalent to the Objectl form, even if 
those previous experiences were translated, rotated, or scaled versions of the Objectl form. 

If no label is provided with the image, the results of the memory reference dictate that one of 
two possible actions should be undertaken 6: 

1) If no comparable experience is found in memory (i.e., in this example, if ZBT does 
not possess in memory an experience comparable to the least detail level of 
Objectl), then ZBT abstracts the current experience, stores it in memory, and 
indexes it (so that it can be referenced later). 

2) If a comparable experience is found, ZBT reports the category associated with the 
match as the likely category of the current experience. 

If, on the other hand, a label is provided as input, the situation can become confounded by two 
possible conflicts: 

3) The current experience can possess a label identical to a stored experience that is not 
physically similar to the current experience. This is comparable to saying that ZBT 
has experienced two physically different forms that have the same label. 

4) The current experience can remind ZBT of a previous, similar experience that 
possesses a label different from the current experience. This is comparable to 
assigning two different labels to a single experience. 

ZBT attempts to resolve these conflicts by looking for more detail in the present image to 
distinguish it from the conflict. It does this by first attending to spatial relationships and then 
recursing. Therefore, in this example, ZBT would decompose the top level form of Objectl 
into its three constituent parts, reference memory, and serially attend to the spatial relationships 
between them. If no physical aspect differentiating the current structure from the conflicting 
structure is found, ZBT would then choose one component (i.e., focus attention) and recurse. In 
this way, ZBT builds a memory hierarchy that represents different levels of image detail at 
each level of the hierarchy. Consistent with the evidential points, ZBT can, therefore, apply 
different levels of its recognition memory to different aspects of the visual scene. 

A more detailed example provides greater insight into ZBT' s operation, but first a more 
thorough discussion of the experimental data and other modeling attempts is presented. 

4.0 The Evidence: Psychological and Neurophysiological Contributions 

4.1 Image Decomposition and Features 

In the early visual system, physiologists have identified a modular organization, demarcated by 
the distinct elements of the physical world to which the modules are sensitive (see VanEssen & 
Maunsell, 1983, for a summary). Illustrative of this modularity are groups of cells that map the 
physical world in elementary detail by responding to very specific visual features (Hubel & 
Wiesel, 1962, 1968, and 1977, and Moran & Desimone, 1985). For example, researchers have 

6 The numbering coincides with four cases presented later. 
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identified cells in Area 17, the first visual area of the neocortex, that fire only in the presence of 
contrast lines possessing a specific orientation within the visual frame. Other cells have been 
found that map specific spatial frequencies and still other cells respond to other elementary 
aspects of the environment, such as motion and color. 

Compared to the early visual system, later stages of visual processing become progressively 
more abstract. In other words, as information moves through the visual system, specific image 
detail (e.g., location within the visual field) is discarded and increasingly more complex 
information replaces it (Bruce, Desimone, & Gross, 1981, and Perrett, Rolls, & Caan, 1982). 

Psychological evidence supporting canonical decomposition in the early visual system was first 
suggested by Beck (1967) who reported an apparent visual grouping based on three specific 
segregating features, or primitives: line orientation, contrast, and color. He found, for example, 
that subjects typically segregate one contrast area from another contrast area and tilted "T"s 
from straight "T" s. He contrasted those groupings with simple spatial relationships which his 
subjects did not easily distinguish, such as "T''s from "L"s. 

Since Beck, additional psychological evidence has been reported supporting an analytic visual 
system. Among others reporting such evidence are Julesz (1983) and Treisman (1982, 1983, 
Treisman & Gelade, 1980, Treisman & Schmidt, 1982, Treisman & Paterson, 1984) who have 
built more detailed cases for specific decomposition mechanisms. Additionally, both have 
demonstrated what appears to be a processing dichotomy that distinguishes the analytic 
portions of the visual system from attentive aspects of processing. 

4.2 Attention 

In Treisman' s visual search paradigm, non-saccadic1 reaction times are recorded as subjects 
attempt to determine if a specific target symbol is present in an image containing various 
distractor symbols. By comparing reaction times across many tasks, Treisman has 
demonstrated that when certain visual structures are unique in the image they consistently "pop. 
out" from other features. She argues that pop-outs are visual features or primitives of visual 
decomposition. Consistent with Beck's findings, Treisman's primitives include contrast, line 
orientation, and color. 

However, Treisman (1982) has gone beyond Beck to demonstrate a relationship between 
features and conjunctions of features. She has shown that, regardless of the type of target 
feature and the number of distractors present in the image, the time to recognize a "pop-out" is 
constant, while the time to recognize conjunctions of features is proportional to the number of 
distractors present. For example, Treisman reports that a red "P" will pop out from a field of 
blue "P"s, and a red "K" will pop out from a field of red "O"s, but identifying a red "L" among 
a field of red "T"s requires a search time proportional to the number of red "T''s present. This 
demonstrates the dichotomy that seems to exist in the visual system. Individual features can be 
effortlessly recognized (Julesz, 1975) but combinations of features require additional 
processing. 

Treisman and others (including: Julesz, 1962 and 1983) have proposed two visual processes to 
account for the data. According to Treisman, one visual process is preattentive, parallel, and 
feature based. The other is a serial focusing of attentive resources on combinations of features. 

7 Eye movement as a factor in focused attention is eliminated by limiting viewing times to 200 milliseconds or less. 
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The contrast between the parallel and serial resources is further demonstrated by another 
Treisman (1985) experiment where she found that portions of images can be camouflaged, or 
masked, preattentively by manipulating spatial structure. The camouflage is constructed by 
grouping objects on the basis of feature similarity to form a different level of detail or 
aggregation. The effect is to camouflage levels of perceptual detail. An example of this 
phenomenon is illustrated by the image recreated in Figure 2. When viewing that image in 
Treisman's paradigm, subjects consistently fail to report the existence of the "odd" itemss. 

666 ••• 666 
666 ••• 666 
666 ••• 666 

••• 666 -·· ••• 666 ••• ••• 666 -·· 
666 -·· 666 
666 o•• 666 
666 ••• 666 

Figure 2: 
A reproduction of a Treisman masking image 

The camouflage is only temporary, however, because if allowed to view the image for longer 
periods of time, the subjects eventually locate the masked items. The amount of time required 
to unmask a camouflaged object is proportional to the time it would take for a serial search of 
the major groups (9 in this case) and not proportional to the total number of objects contained 
in the image as it is when the grouping is not present (there are 81 objects in this example). 
That is, even with the grouping, the camouflage effect is not comprehensive because the 
masked objects will popout if the viewer is allowed to focus attention on the proper level of 
detail (aggregation). 

Treisman' s masking phenomenon seems similar to the real-life phenomenon of visual 
"mistaken identity." Examples of mistaken identity include the embarrassing experience of 
mistaking a stranger for a close acquaintance and the experience many have had of approaching 
the wrong car in a parking lot, intent on driving away in it as if it were their own. 

The commonality between Treisman 's observations and cases of mistaken identity is the 
apparent variability in the amount of information used to match the stored experience with the 

8 The phenomenon may not manifest itself during a leisurely viewing of the image reproduced here. The outline circle is often noticed quickly 

in a nonchalant atmosphere, however, much to the chagrin of the author, dozens of leisurely viewings can take place before a viewer realizes 

that the image has two masked objects. Example: the author noticed the outlined circle within seconds of the initial exposure, but the solid 

triangle was only discovered much later. 
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current image. In each case, the viewer eventually notices that there is a difference between the 
observed image and the matched image, but initially that detail is overlooked9. 

One explanation for these phenomena is the existence and use, during recognition, of more than 
one level of knowledge, where a "level" of knowledge denotes the amount of detail learned 
about an object. Treisman' s results and the examples suggest that the application of variable 
amounts or different types of knowledge involves the use of attention. 

5.0 Some Approaches to Modeling the Evidence 

ZBT builds on and extends some previous approaches to recognition. The following section 
presents a synopsis of the major modeling contributions to ZBT. 

5.1 Classifying Images 

One approach to image recognition is to view it as a pattern classification problem (Duda & 
Hart, 1973). In that paradigm, recognition is a search for functions capable of distinguishing 
one pattern from another. 

Initial classification attempts made use of match functions in the form of templates (there are 
many examples but Selfridge & Neisser, 1960 is interesting because the authors compare their 
model to emerging neurophysiological data). Template matching is deceptively simple. First, 
an exact copy of the target structure is formed, then an automaton is directed to search through 
the entire image for a match. The search takes place in the following manner. If an "A" is the 
target structure, a template composed of the exact pixel pattern of the "A" form to be searched 
for is first generated. This pattern of pixels is then compared, bit by bit, to the first bits in the 
image. If unsuccessful, the search proceeds by moving the template over one pixel location and 
attempting the match again. This process continues across and down the entire image until the 
pattern is encountered or the search runs out of image to compare. 

The obvious disadvantages of this technique are that search time increases with the size of the 
template, the size of the image, and the image resolution (this creates a significant paradox 
since higher resolution images are often required in order to distinguish essential image detail). 
Efficient search techniques (e.g. the Boyer & Moore search algorithm, 1977) and today's 
cheap, parallel processing hardware can largely negate these problems, but the real difficulties 
associated with matching techniques remain. They are not easily extended to handle new 
domains, especially domains including real-world problems such as those discussed earlier. 

Extension of a template system is straightforward in a limited domain of perfect data, but in the 
real world it is exponentially difficult. Every acceptable rotation of every target symbol 
requires another template; every possible change in scale requires another template; every pixel 
difference, in every structural alternative, must be accounted for with another matching 
template. The use of tri-state logic (i.e., on, off, and don't care) can diminish the significance of 
individual pixel changes, but the fact that each structural alternative can be rotated and scaled 
still means that an exponential number of templates are required. Despite this, and possibly 
demonstrating the overall dearth of comprehensive recognition capability, template matching 

9 It's not pertinent to this discussion, but mistaken identities differ from the Treisman masking experiments in that Treisman' s subjects are 

constrained by the viewing time. Mistaken identities appear to be more of a lazy recognition because viewing time is generally not constrained 

and yet the viewer chooses not to use everything he or she has learned about the target object, settling instead for a match with a different 

amount of detail. 
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was, until recently, the technique of choice for most OCR (optical character recognition) 
systems. Template matching is now being replaced by the technique of feature analysis. 

Feature analysis springs from attempts by researchers to discover dependable mathematical 
classifiers, a classification technique based on segmentation functions (see Grunland, 1978). To 
date, no single segmentation classifier, nor group of functions, has been found capable of 
identifying complex objects such as a tank or a face. There has, however, been some success 
identifying lower level components such as contrast edges, vectors, and arcs (see Pavlidis, 1978 
and Brady, 1982 for summaries). 

Feature analysis capitalizes on these small successes by combining the ability to identify low­
level features with the techniques of statistical decision theory (see Lewis, 1962 for comments 
and a brief summary). Labeled "statistical recognition" by some, the term "feature analysis" is 
used here to include the following steps: 

1) Various aspects of the image are enhanced or de-emphasized. Examples include 
thresholding, noise removal, edge separation, and edge enhancement. 

2) The image is decomposed, or segmented, into entities using various computational 
methods (see summaries of techniques by Rosenfield, 1978 and Brady, 1982). 

3) Descriptors are used to characterize the decomposed entities in terms of features or 
attributes. Descriptors and the corresponding attributes they describe are usually 
selected for their invariant qualities over certain classes of image manipulation (see 
Hu, 1962 for a discussion of algebraic invariants). 

4) The decomposed entities are classified, or grouped, by their feature descriptors (see 
Duda & Hart, 1973, and Fukanaga, 1972, for complete presentations of classification 
techniques). 

This approach has the following advantages over template matching: 

•Translational effects are negated by mapping image (raster) data onto a symbolic data 
base. 

• Scaling and rotation can also be negated by applying certain classification techniques· 
on the proper invariant descriptors (discriminate analysis is an example of such a 
technique). 

• Learning and extensibility are possible. 

5.2 Moment Analysis 

One type of feature analysis, which ZBT builds on, employs moments as the invariant feature 
descriptors. (Hu, 1962, discusses the theoretical underpinnings of moment analysis, their 
invariant qualities, and the computation of moments of gray scale images. Alt, 1962, covers 
moment analysis on alphabetic characters and presents experimental data showing the 
effectiveness of various orders of moments. Hall et al., 1975, 1976, Wong et al., 1976, and 
Dudani et al., 1977 cover the applicability of moment invariants to different domains.) 

The concept of a moment can be summarized as follows: the (p+q)th order moment on a 
continuous probability distribution function (pelf) f(x, y) is defined as the integral: 

Mpq = fJ XPyq f(x,y)dxdy where p,q = 0, 1,2, ... 

9 



Since our concern is scanned images, the formula can be rewritten as follows to reflect the fact 
that a raster matrix (i.e., the image format ZBT accepts as input) is a discrete version of a pdf: 

The equation appears formidable, but calculating these values for a raster matrix is not difficult, 
only tedious. In effect, computing a moment on a bitmap array means simply summing all the 
black (if white is ground) pixels in the pertinent portion of the matrix. If a computer is utilized 
and the computer is instructed in an algebraic computer language (such as FORTRAN, Pascal, 
or C), the calculations can be implemented by looping through the two dimensions that define 
the array and pe:rf orming the operation indicated for that order of moment. For example, if the 
moment being calculated is the Qth, the program simply loops through the entries of the matrix 
adding 1 to a sum every time an "on" pixel is encountered. The other order moments are 
calculated similarly, although there are algorithmic shortcuts that can be implemented. 

The meaning of a moment is not immediately obvious, therefore, a couple of examples will be 
covered to provide a feeling for what a moment computed on a raster array represents. 
Assuming that a single object or symbol is represented in a raster array (image), the first 
summation, or Qth order moment, is the count of pixels that constitutes the pattern or form of 
the object. That is, the Qth order moment represents the sum of pixels composing the object. For 
example, if the form in question is the "A" form of Objectl, the Qth order moment is computed 
by counting every pixel that makes up the "A" form10. Calculating the lst order moment 
identifies the center of gravity of the area summed by the Qth order and the 2nd order moment 
defines the moment of inertia. The latter is the theoretical tendency for the symbol to rotate 
about its center of gravityu. 

The actual interpretation of moments is less important than the following two significant 
points12: 

•The moment sequence, MP.q, uniquely defines f(x,y) and conversely, f(x,y) is 
uniquely determined by Mpq (see Hu, 1962 for a presentation of algebraic invariants, 
a description of The Uniqueness Theorem, and the correspondence of moments to 
the raster domain). 

• Normalizing and referencing the moment calculations to the center of gravity (i.e., 
forming the central moments) make the higher order moments invariant to various 
manipulations including: scale, translation, and rotation (see Hu, 1962 for the 
method of calculation, proofs of invariance, and a description of application to 
symbol recognition). 

Therefore, the technique of moment analysis works in this manner. First, the system is trained 
on the domain of objects by exposing the system, one at a time, to the raster representations of 

10 For the reader not familiar with raster representations, this number depends on the resolution of the scan. A typical value, assuming a 12 

point character and a scan resolution of 300 dots per inch, would be a value between 1000 and 2000. 

11 Assuming the presence of a gravitational field, if a weight is attached to the outer rim of a bicycle tire and the tire is suspended by the ends of 
its axle, the wheel will rotate until the weight lies at rest at the bottom of the circumference. In the same way, if a paper cutout equivalent to an 
object represented by a raster image is suspended by a frictionless device through its center of gravity it will rotate to equilibrium. The 2nd 

order moment predicts this tendency. 
12 These attributes do not hold for every pdf but do for the conditions under which ZBT works. 
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the symbols to be learned and the classes13 that the symbols belong to. As per the previous 
description, working on each image, the system must isolate the object from the background 
(i.e., segment the image), calculate the moments of the isolated area, and store the moments 
with the associated class. 

Later, after training, when exposed to a raster symbol, the system will follow the same 
procedure, however, in the absence of category information from the teacher, the system will 
look through its memory for a previous, similar experience by comparing the stored moments 
of each class with the newly calculated moments. A match indicates that the new experience is 
probably of the matched class. 

Alt (1962) demonstrated the usefulness of this approach by showing that it is possible to 
distinguish the standard 35 textual characters (26 alphabetic and 9 numeric) independent of 
translation, scale, rotation, certain affine mappings (i.e., those preserving x and y, that is, 
squeezing and stretching), changes in proportion, bending, and "reasonable" amounts of 
random noise. Other successful applications include: handprinted characters (Casey, 1970), and 
interpreting medical x-rays (Hall, Crawford, & Roberts, 1975). 

Despite the Uniqueness Theory moment analysis has limitations. For example, Lambert (1969) 
reported 95% accuracy distinguishing a set of printed characters but encountered greater 
difficulty when multiple fonts were learned. Hall, et al. (1976), Wong & Hall (1976), and 
Wong, Hall, & Rouge (197 6) reported some success utilizing the technique to match optical 
scenes with radar images but the domains were very limited. And, Dudani ( 1977) had similar 
problems with another complex, real-world domain, aircraft identification. The limitations 
reported by these authors are of two sorts: difficulties attributable to the technique of feature 
(moment) analysis and problems caused directly by limitations in the moments themselves. 

There are two weaknesses in the feature analysis technique: (a) segmentation difficulties, and 
(b) problems caused by structural modifications not invariant to the specified image alterations. 
Both difficulties should be anticipated. The Uniqueness Theorem prescribes that except for the 
specified invariant modifications (i.e., translation, scale, and rotation), different structural 
forms will have different moments associated with them. To understand the problem, consider 
a moment analysis system attempting to distinguish the forms of Objectl and Object2 (see 
Figure 1). Object2 is an incompletely formed version of Objectl that might result from sloppy 
printing or noise occluding the reading (scanning) process. The moments calculated for 
Objectl will not typically be the same as those calculated for Object2. Therefore, if the system 
has been trained on Objectl (i.e., exposed to the object and told that the respective class is A), 
then it is likely that an unlabeled occurrence of Object2 would not be associated with the same 
class as Objectl. Similarly, if the system is then exposed to an unlabeled Object3 (i.e., after 
learning that Objectl and Object2 are both members of Class A), it is unlikely that the system 
will associate the new object with either Objectl or Object2. In other words, training a moment 
analysis system to allow errors of omission (beyond a minor amount, see Alt, 1962) requires 
training the system on every minor, yet acceptable, change. This can be, at best, time 
consuming and, at worst, an exponential problem. 

A comparable difficulty exists if characters are not segmented consistently from one viewing to 
another or if segmentation does not present a complete character. The latter is illustrated by 
typical attempts to segment the letters "i" and "j". These are are seldom segmented as whole 
characters (i.e., dot and stroke together). This is because typical segmentation techniques make 

13 The class of the object can also be viewed as the value of the object or the response the system is supposed to use when the object is 

recognized. For example, when detecting an "A" fonn the system might respond by outputting the ASCII representation of an "A". This is a 

typical response of an OCR system. 
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use of low-level computations that make decomposition decisions on the basis of very local 
conditions. An example of such a process is a process called connectivity which simply isolates 
the areas of uniform intensity (e.g., all of the touching "on" pixels). Decomposition by 
connectivity will segment the dot of the "i" as one connected area and the main stroke of the 
character as another connected area. The problem is that if segmentation doesn't present the 
descriptor with the entire symbol, the two components must somehow be reassociated later. 
That puts a burden on the later stages of processing that was not intended to be part of feature 
analysis. 

The nature of moments themselves create two other types of difficulties. An analysis of Table 1 
(reproduced from Wong & Hall, 1978) reveals one type. That table contains the logarithms of 
the seven moments computed for three images - the original image and two possible 
transformations, one scaled and one rotated. Comparing the moments, one sees that the values 
do not match from one column to the next14. The variation is caused by the digital encoding of 
data. That is, a scaled or rotated image can vary from the original image in the number of and 
locations of pixels. The result is that, contrary to their advertised quality, moments do not 
necessarily match precisely from transformation to transformation, and, thus, a simple 
matching procedure is not possible. Moment analysis systems usually overcome this problem 
by employing correlation techniques to determine the closest match between new and stored 
experiences. (Moment correlation is not germane to this discussion because ZBT employs a 
different technique. However, the interested reader is referred to Wong & Hall, 1978 for a 
simple correlation procedure and Duda & Hart, 1973 for other approaches.) 

Original Image 
6.24993 
17.18015 
22.65516 
22.91954 
45.74918 
31.83071 
45.58951 

Scaled Image 
6.22637 
16.95439 
23.53142 
24.23687 
48.34990 
32.91619 
48.34356 

Table 1 

Rotated Image 
6.25346 
17.27091 
22.83652 
23.13025 
46.13627 
32.06803 
46.01707 

A comparison of the log values of invariant moments of three images - original, a version 
scaled by 2, and a rotated version (reproduced from Wong & Hall, 1978) 

Because the invariants are not precisely invariant, the opposite problem also exists. That is, 
because the system must accept some slack in the moments, it is difficult to distinguish a 
variation between moments of similar objects from the natural but close variation between two 
dissimilar objects. What's more, the problem is compounded as the recognition domain 
increases because as additional characters are added to the database, more variations in 
characters are learned and the individual features of dissimilar characters can overlap. For 
example, consider the difficulty of distinguishing characters with simple distinctions, such as 
"6" from "b" and "I" from "l ",across multiple fonts. The subtle distinctions between many 
versions of these characters begin to overlap and the discriminating categories begin to overlap. 
Therefore, the more the system learns, the more difficult recognition can become. 

14 These values were chosen as relatively indicative of the problem. The differences should not be taken literally since absolute values can 

vary from one domain to another depending on resolution. 
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In summary; moment analysis can perform usefully in certain domains but it does not appear to 
be universally adoptable. The basic limitation of moment analysis is that the technique places 
too much pressure on the moments to distinguish an object from every other one. Confusion 
between objects can result despite what appear to the human to be very simple differences 
between the two confused objects. 

ZBT extends the demonstrated capabilities of moment analysis and overcomes its weaknesses 
by augmenting it with a second step that focuses on structural detail. In the first part of the 
process, ZB T maps experiences into memory clusters invariant to scale, translation, and 
rotation. This much of ZBT's operation is similar to other moment analysis systems except that 
a simple match process is utilized instead of a more complex correlation procedure. That is, 
ZBT compares the moments of the current experience with those in memory and any stored 
experiences possessing moments within a definable range1.s of the newly calculated moments 
are candidate matches. If a candidate is unique then the category of the match is reported. If the 
candidate is not unique or if there are labeling mismatches, as mentioned earlier, then the 
second part of the ZBT process is required to resolve the problems caused by the limitations of 
clustering by moments. In the second part of the process, ZBT focuses on other aspects of the 
current experience, looking for structural detail in the image which can resolve the situation. 
The basis for the second step is best understood after looking at some other contributions to 
ZBT. 

5.4 Modeling Attention 

Recent theorists trace their roots to Julesz (1962) and Neisser (1967) who proposed a two-mode 
visual system: preattentive and attentive. Neisser further suggested that the system is an 
analytic one utilizing parallel processes to decompose the image along the distinct dimensions 
of color, movement, and contour. 

Building on Neisser's model, Treisman (1985) has suggested that the preattentive, parallel 
processes decompose the image into feature maps such that if a feature is unique to a map, it 
will "pop out". According to Treisman' s model, unique features will be processed effortlessly 
and in less time than conjunctions of features that require a serial search through the feature 
maps by attentive processes. Crick (1984) characterized this attentive process as a searchlight­
like selection process and proposed specific cell assemblies in the reticular complex of the 
thalamus that might represent features and conjunctions of features. In a related model, Koch 
and Ullman (1985) suggest that features are coalesced in a "saliency map" which tracks the 
highest frequencies of firing among all the various feature maps. A winner-take-all network 
then selects the highest of the high as the focus of attention. 

ZBT has a common basis with these models in the neurophysiological and psychological data. 
Additionally, it proposes a specific mechanism that details the use of attention in the handling 
of novel experiences and the reassembly of the decomposed features. Further, ZBT proposes a 
specific hierarchical structure to account for the varying levels of recognition detail apparent in 
the visual system. 

ZBT's hierarchy is similar to the hierarchical model of the visual system sketched out by Marr 
(1978, 1982). The initial step in Marr's model, computation of the primal sketch, relies on 
ordered stages of spatial primitives to describe different scales of spatial organization. In this 
way, Marr wished to account for varying levels of visual detail or he put it (Marr, 1978), 

15 Typically this range (slack value) is plus or minus 0.2% of the moment value. This range has been determined empirically for this scanning 

domain. As the resolution of the scanner or the size of the symbols to be recognized changes, the range must be adjusted proportionally. 
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"summarize lesser subparts of an object, leaving them unspecified until they are needed." Marr 
suggested the use of two types of spatial primitive: convolution and zero-crossing computation. 
The latter is the actual decomposition mechanism. The former is a method for isolating 
different levels of processing detail prior to decomposition. By convolving with different 
patterns, Marr believed he could control the level of organization detail exposed by 
decomposition 

Marr did not go far enough, however. He neither mentioned how the ordering should proceed, 
nor did he specify how to choose, from the infinite number of possible convolutions, the single 
convolution that would provide the appropriate amount of detail for each particular situation. 
Marr also failed to distinguish attentive from preattentive processes in his model. This is less of 
a concern than the previous points, however, since the primal sketch computation seems very 
much preattentive and other parts of the model (i.e., 21;J) and 2D computations) could be 
construed as serial. 

Building on Marr' s concepts, while remaining consistent with the neurophysiological and 
psychological data, ZBT proposes a specific use of decomposition and attention to enable ZBT 
to incrementally learn new experiences. ZBT's hierarchy is the result of combining a specific 
attentional mechanism with different learning mechanisms. The contribution to ZBT' s learning 
mechanisms comes primarily from the machine learning literature, however, the use of 
attention in learning has received very little study there. 

Something of an exception to that statement is the EPAM system (Feigenbaum & Simon, 1963, 
1964 ), an early example of visual learning. Although not intended as a model of attention, 
EPAM is pertinent to this discussion because of its selective use of features. 

EPAM was designed to model human performance on the nonsense syllable task made famous 
by Ebbinghaus (1913). There are two phases of operation. In the first phase, EPAM is 
presented with pairs of 3 character syllables until criterion is reached. In the second phase, 
EP AM is presented one sy Hable of a learned pair and it must determine the correct association. 
This would be a simple memorization task for a computer except that whole representations are· 
not learned by EP AM. Instead, it adds features to its discrimination net on the basis of what is 
already there. 

The features employed by EPAM are hand-coded to represent the domain of characters and fed 
to EP AM as input. This is comparable to an innate, feature-based decomposition by a visual 
system, except that the system's authors determine which features will be employed. The 
limitation of this feature-based system is that EP AM' s knowledge of structural relationships is 
limited to knowledge of the serial relationships between characters in the learned syllables. 

5.5 Learning Spatial Knowledge 

A more comprehensive spatial knowledge is employed by an unnamed collection of programs 
assembled by Winston (1975) to learn structural concepts from scenes of actual and "near­
miss" examples. The initial program, or step, in the process is a decomposition of the 3D scene 
based on Mahalaba's (1969) principles of vertex recognition. In the second step, a program by 
Guzman (1968) classifies regions by analyzing the intersections. Finally, a series of programs 
by Winston sort the classifications, group the objects, and look for structural differences 
between groups. The system employs concept descriptions which are described as hierarchies, 
or networks of nodes and arcs, where arcs are labeled with the nominal structural features it 
detects. By comparing the differences between networks, Winston's system learns which 
components comprise a concept (e.g., "arch"). 
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The structural similarity between an arch and an "A" suggests that Winston's programs might 
be adaptable to real-world character recognition. It might be possible, for example, for his 
programs to learn that an "A" belongs to Class A in the same way it learns characteristics of an 
"arch". Further, since Winston is capable of generalizing structural variances (e.g., the concept 
of an "arch" is independent of the form of the top portion of the "arch" structure), his programs 
might also be capable of generalizing on structural variances in "A''s (e.g., an "A" form belongs 
to Class A regardless of whether the middle brace joins the right side or not). To explore this 
possibility, consider the consequences of Winston's programs learning an "A" in light of the 
problems of real-world recognition. 

The initial stages of the programs (Mahalaba' s decomposition and Guzman's classification) 
map the 3D input data onto abstract data structures. This process negates the effects of 
translation, but unfortunately the representations rely on lengths of line sections to resolve z­
axis (i.e., the 3rd dimension) positions. That makes the system sensitive to scale. The problem 
could be eliminated for purposes of ZBT's problem domain (since ZBT's domain is only 2D) 
by eliminating the use of nominal terms related to size. Therefore, with a little modification the 
system can be made impervious to translation and scale. Rotation is a more difficult matter, 
however. 

Winston's system learns that an "arch" is composed of a brick "support-by" two bricks that 
must not "marry". In ZBT's real-world, recognition domain, an "A" cannot be represented 
comparably for a number of reasons. First, concepts such as "supported-by," "above," "left-of," 
and other references to direction or orientation are not rotation invariant. The problem is easily 
understood by considering the difficulty of recognizing an arch that has undergone a 45 degree 
rotation. If the memory representation that will be employed to match the visual experience 
describes an "arch" with orientation dependent terms such as those above, there is a match 
problem. In a rotated arch, the two component bricks really no longer "support" the third and 
the top brick is not necessarily "above" the left side brick. 

Another representational problem is that concepts such as "marry", that describe a meeting 
between two objects, do not contain the expressive power required to distinguish a structure, 
such as a Class A form, from other possibilities. For example, "marry" may be satisfactory to 
describe the single type of contact in Winston's domain, but it does not describe the two types 
of contact present in an "A". That is, if we label, for purposes of this discussion, the three 
component parts of the "A" as the left side, right side, and brace, then the two side components 
contact each other at their respective end-points and the end-points of the brace contact each 
side at some midpoint location on the sides. The term "marry" could be used to represent arch 
or triangle, but could not distinguish a triangle from an "A". 

Alternative structural concepts could be proposed to solve this representation problem. For 
example, two types of "marry" could be proposed. The first one, called "end-to-end", could be 
used to describe the relationship between the two sides of the "A" where their endpoints meet 
at the top. However, describing the brace-to-side relationship is more difficult. A second type 
of marry, called "end-to-midsection", could be postulated, but that does not describe which side 
component is involved. 

The problem is apparent if we try to represent the form in Figure 3 using the "end-to­
midsection" relation (assuming no other concepts are added to the representation). To represent 
this form, it is useful to distinguish the two "ends" of each component and each "end's" 
relationship with its specific partnef16. When two sibling components are related, as they are in 

16 Components at the same level of detail as the three components composing an "A" are called siblings throughout this discussion. 
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the case of this form or the forms in Class A, each component can be in a different relationship 
with the other component. That is, a "midsection" of the side of an "A" can contact an "end" of 
the brace (a characteristic of members of the A Class) or a "midsection" of the brace can 
contact an "end" of a side (a characteristic of the form in Figure 3). As will be discussed later, 
ZBT' s solution is to describe both aspects of the relation: the what and where. 

Figure 3: 
An alternative form using "end-to-face" 

There are other problems adopting Winston's approach to a real-world recognition domain. In 
Winston's system a human must specify the concepts (e.g., brick) which are in turn used 
internally to represent other learned concepts (e.g., arch). This is a twofold problem. First, 
human intervention creates a data entry problem. Second, the programs must be made aware of 
every potential concept, even if those concepts are otherwise unknown. This limits the number 
of objects that can be learned. For example, the programs must know about bricks even though 
bricks themselves might be unimportant except as components of the concept. ZB T represents 
objects hierarchically. At each level of detail it uses amorphous, unnamed entities (called blobs 
for purposes of discussion) to fill structural spots. Blobs go unnamed11 until the system receives 
feedback to indicate that a label should be associated. 

Another potential difficulty associated with Winston's system and not discussed by him, is that · 
of extensibility. A recognition in Winston's system requires a complete perusal of the data 
base. Like the template matching systems discussed earlier, there are an exponential number of 
variations of even a single character in the real-world problem domain. ZBT employs a multi­
level, hierarchical indexing scheme to alleviate this problem. Winston doesn't discuss this 
problem or the use of indices. 

5.6 Combining Two Learning Paradigms: Learning from Examples and Conceptual 
Clustering 

Contrasted with Winston's learning from examples system are conceptual clustering systems 
that do not utilize feedback - at least not overt feedback (i.e., obvious to the viewer). In the 
learning from examples paradigm the system receives teacher or environmental feedback 
designating the class of the viewed subject. A typical task for such a system is to associate the 
provided class information with the labeled object. In other words, the system attempts to 
group objects on the basis of the information provided by the teacher. 

17 Blobs are unnamed except for purposes of user tracking. That means that the program will generate random names and assign them to blobs 

so that users can distinguish one from another, but internally this is not necessary because the program only needs to identify a blob by its 

location in memory. As we '11 see the location in memory is defined by the moments of the blob. 
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A different approach to learning is taken by conceptual clustering systems (Michalski, 1980). 
The conceptual clustering task is to group attributes of objects without environmental feedback. 
This is a similarity based learning since the system attempts to maximize intracluster 
similarities and intercluster differences by internal standards which are generally based on 
some perceived similarity in the attributes (features) of the objects. 

Another learning approach, as yet undocumented, combines the two paradigms of conceptual 
clustering and learning from examples. During part of its existence such a system must operate 
in a supervised mode, receiving category information from its teacher, and learning how to 
respond to its environment. At other times, it must operate in the absence of feedback but 
nonetheless storing and classifying its experiences for retrieval at a later time. 

Combining the two paradigms is not just a matter of adding the two processing components. 
There is a problem of conflict created by the combination that this type of system must contend 
with. The problem is that environmental feedback may, at any time, negate the groupings 
created by conceptual clustering. For example, it is not unreasonable to hypothesize that this 
type of learning system, in the absence of feedback and based on structural similarities and 
differences, might group Objectl with (a comparably shaped) "triangle" form and group 
Object2 separately. Having formed that grouping, environmental feedback would likely 
indicate that Objectl and Object2 should have really been grouped together and that triangles 
are the separate class. The result would be a necessary reorganization of memory. 

This illustrates the potential contention between conceptual clustering and learning from 
examples. As a learning from examples system, the clustering results can be partially or 
completely negated by environmental feedback. The reason for the contention is that the 
similarity based clustering engine is grouping the objects on the basis of attributes not 
necessarily important to the environment. 

ZBT combines conceptual clustering with learning from examples. Conceptual clustering, the 
parallel, preattentive portion of the two-step process, decomposes the image and groups the 
experiences invariant to translation, scale, and rotation. The grouping allows ZBT to store 
experiences for future reference even when environmental feedback is not provided. 

Illustrative of the usefulness of the clustering process is a test performed on ZBT that showed 
the program capable of successfully distinguishing different fonts without labeling information. 
The test was conducted in this way. First, ZBT was exposed, one at a time, to the unlabeled 
characters of two different fonts and two transformed images of each of the font characters (one 
scaled and one rotated). Then ZBT was given the same untransformed characters and told what 
classes they belonged to. The internal groups formed by ZBT in the absence of the labeling 
information was completely consistent with the groups specified by the labels1s. In other words, 
the attributes utilized by ZBT adequately clustered the characters and their transformed 
versions according to the environment's choices despite the fact that category information was 
not initially provided. 

There are, however, other situations in which the clustering mechanisms do not adequately 
group the data. Quinlan (1986) observed that in a clustering system where internal metrics are 
employed to judge the quality of the fit there is a simple dichotomy relative to the ability of the 
attributes to segregate the data: attributes can adequately or inadequately distinguish objects 
within the object space. 

18 This is to be expected since it simply confirms the findings of a number of authors (including: Alt, 1962, and Lambert, 1969). 
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Contrasted with clustering systems are models such as ZBT that combine the two paradigms. 
When the two paradigms are combined the feedback creates four cases which ZBT must handle 
(the matrix of Table 2 summarizes): 

Case 1) Same category, same attributes. That is, the reminded experience has the same 
attributes and was assigned the same label as the new perception. The labeling is 
consistent with the attributes. 

Case 2) Different categories, different attributes. The category assigned to the remind 
differs from that provided with the new experience, but there is no conflict since the 
attributes indicate there should be a difference. The labeling is again consistent with 
the attributes. 

Case 3) Same category, different attributes. The new experience is perceived to have 
features different from the learned experience, but the teacher has indicated that they 
are really the same category. From ZBT's perspective the attributes are ambiguous 
because two categories exist with the same label; the attributes ambiguously 
distinguish the meaning provided by the environment. 

Case 4) Different categories, same attributes. The new experience and the reminded 
experience are perceived to have the same features (from ZBT' s point of view), but 
have been labeled differently. ZBT views this as a case of ambiguous labels because 
one experience has two meanings. 

Cases 1 and 2 correspond to Quinlan's definition of "adequate" since the attributes adequately 
segregate the objects. Cases 3 and 4 are examples of inadequate attributes, or conflicts between 
the grouping preferred by the conceptual clustering processes and the grouping preferred by the 
environment. 

Each of these conflicts could require a reorganization of memory, however ZB T attempts to 
resolve them by attending to previously undetected detail in the image, looking for some aspect 
that might distinguish the labeling conflict. By serially investigating the spatial relationships 
that define structures and recursing on components, ZBT's memory organization is less of a 
reorganization of the existing clusters and more of a hierarchical addition describing the detail 
of the object thus far attended to. The conflicts and how ZBT resolves them are detailed in the 
next section. 

SAME 
CATEGORY 

DIFFERENT 
CATEGORIES 

SAME 
ATIRIBUTES 

CONSISTENT 

AMBIGUOUS 
LABELING 

Table 2: 

DIFFERENT 
ATIRIBUTES 

AMBIGUOUS 
ATIRIBUTES 

CONSISTENT 

Comparing the retrieved memory experience (remind) and new experience by category 
and attributes. 
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6.0 ZBT: Learning Levels of Structural Detail by Recursive Direction of Attention 

The following section describes how ZBT handles the four cases by describing its operation on 
a series of images. The raster forms contained within the images were chosen to conform to 
certain processing limitations, which are discussed in Appendix II, and chosen to be 
representative of a kind of problem potentially encountered in a real-world recognition task. 

6.1 Description of the Example Images 

The recognition domain in these examples has been chosen from the standard alphabet of 
English/Latin characters and consists of the forms illustrated in Figure 1. Characters were 
chosen over other less-known symbols because they are more easily described in text and more 
familiar to the reader. Additionally, given the precedent of character recognition as an accepted 
research task, alphabetic characters serve as a base-level performance standard and departure 
point for ZBT's behavior. The latter is especially important because it means that ZBT can 
build on the performance of previous moment analysis systems by adopting that approach as 
part of its structure19. 

ZBT's handling of the four cases is illustrated with the following sequence of images: 

Illustrating Cases 1 and 2: 
Image 1) Objectl, labeled Class A 
Image 2) A translated and scaled Objectl, unlabeled 

Illustrating Case 3): 
Image 3) Object2, labeled Class A 
Image 4) Objectl, labeled Class A 
Image 5) Object3, unlabeled 

Illustrating Case 4): 
Image 6) Object4, labeled Class Y 

An example of ZBT's runtime output is included in Appendix I. 

6.2 System 0 peration 

ZBT can be summarized with the following functional flow: 

1) In parallel, decompose the current attentive area of the image into component 
blob(s) 
2) In parallel, compute invariants of the decomposed blob(s). 
3) In parallel, reference memory with the invariants of the blob(s) for similar 
experiences (reminds). 
4) If the reminds are unique, the recognition is complete 

else, (if there are two or more component blobs) serially investigate spatial 
relations of the component blobs and compare the relationships with those of the 
reminds. 

5) If the spatial relationships of the component blobs and those of the reminds match, 
and there is no label conflict, the recognition is complete 

else, recurse. 

19 This was demonstrated in tests previously described. 
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The following discussion elaborates this brief description. 

6.2.1 Cases 1 & 2: Attributes Are Adequate (Invariants Handle the Scale and Translation 
Problems) 

ZBT' s operation on the first two images illustrates high level decomposition and the usefulness 
of the invariant clustering. The detailed explanation of that operation will be presented, but first 
as a guide to what follows a summary is presented in outline form. 

The first image consists of Objectl, a raster representation of a well-formed "A", with an 
assigned Class of A. Encountering the first image, ZBT will: 

1) decompose, or segment, the image into a single blob form (i.e., isolate the object 
form within the raster image). 

2) compute the invariants (moments) of the component blob. 
3) use the invariants to index into memory for comparable experiences. 
4) find no similar experiences. 
5) store the new experience in memory. 

The second image also contains an Objectl form with an assigned Class of A, but this time the 
raster representation of the form has been physically relocated in the image (translated) and 
diminished in size (scaled) (see Figure 4). The result is an image of an "A" which is about 9% 
smaller than the original and centered at a higher location. Encountering this image, ZBT will: 

6) follow steps 1-3 as above. 
9) be reminded of the "A" experience encountered in Image 1. 

A A 
IMAGE 1 IMAGE 2 

Figure 4: 
Representation of the first two images presented to ZBT. Image 2 is a copy of Image 1 

translated and scaled. 

6.2.1.1 Image Decomposition and Invariant Calculation 

An image is composed of a raster form in some portion of the visual field. ZBT begins by 
identifying that form. It does that by decomposing the image to isolate the form from the rest of 
the field. The result is the outline form, or most abstract level of the structure. 

Recalling the television analogy presented earlier, the first decomposition is comparable to 
moving away from the television screen until image detail (such as the number of pixels 
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composing the symbol) is hidden and only shapes of information can be discerned. Therefore, 
the first decomposition of the first image isolates the "A" form of Objectl20. 

The decomposition processes by which the "A" form is isolated are low-level. The mechanisms 
do not have knowledge of the high-level "A" form. Unlike decomposition schemes which 
attempt to segment an image into human recognizable entities (i.e., the types of mathematical 
classification systems mentioned earlier), ZBT's mechanisms decompose an image into 
amorphous, unlabeled entities, generically called "blobs21." ZBT's blobs are isolated within the 
image by primitive decomposition techniques analogous to Julesz's (1983) textons of density, 
width, and length and consistent with other data including that from Hubel & Wiesel (1962) 
and Treisman (1982)22. 

As part of the decomposition process, ZBT computes the moments of the segmented blob. (The 
technique of calculating moments was described previously. For greater detail see Alt, 1962 
and Wong & Hall, 1978, who present very good descriptions of moment calculations.) The 
moments are used as indices to both store and retrieve experiences in memory. Since the 
moments are feature based, invariants cluster blobs in memory according to feature similarity. 
This clustering allows ZBT, in the absence of feedback, to quickly reference memory for 
previously experienced, comparable decompositions. The following discussion describes how 
grouping and retrieval take place. 

6.2.1.2 Clustering of Experiences and Reminding 

Computationally the moment invariants are treated as indices23, clustering the related 
experiences within the memory space according to invariant similarities in structure as defined 
by the moments themselves. This allows ZBT to reference memory without searching the entire 
contents. To illustrate, consider a hypothetical memory composed of two invariants indexing 
two learned experiences labeled Class E and Class F (see Figure 5). The two indices distinguish 
these experiences in the following manner. If a new blob experience results in a value of 12.5 
for Invariantl, then the 12.5 track in that group will be activated. Since this track connects both. 
the "E" and "F" experiences, the two learned experiences are not distinguished. However, if the 
new experience also has a value of 3.2 associated with Invariant2, then ZBT will only be 
reminded of the "E" experience since only that experience has those two indices uniquely in 
common. 

20 The results of the second decomposition will be covered later when ZBT finds it necessary to zoom on the greater detail of the three 

components that constitute the highest level fonn it has just isolated. 

21 The term "blob" was used because it is meant to represent a possibly meaningless, amorphous visual entity. An example of a meaningless 

entity is the grouping experienced by most viewers of the many "masking" examples presented by Treisman. The grouping that masks the 

lower-level objects is label-less. That is, the masking structures have not and need not be assigned a cognitive meaning. In the same way, an 

aggregation of features could be an apple, or it could be a feature of the apple which is salient to recognizing the apple but go unlabeled to the 

viewer. 

22 The actual mechanisms of decomposition are de-emphasized in the ZBT model. While the model assumes a decomposition consistent with 

the experimental results of Julesz, there is no evidence to support any specific decomposition mechanisms for those primitives. Therefore, the 

computational details of ZBT' s decomposition mechanisms are included in Appendix II for the interested reader but are not discussed in the 

main body. 

23 Thus, moment, invariant, and index are virtually synonymous tenns. The exception is that not all indices are invariants. Another type of 

index, the label index, is introduced later. When the term "index" is used it refers to invariant indices. When there is a possibility of confusion 

label indices will be identified explicitly. 
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Figure 5: 
Example memory illustrating the clustering of memory experiences by invariant indices. 

In general terms, an index is one of the computed moments and consists of a group of parallel 
tracks pointing into memory. Each track represents one value of the many that that particular 
index can have. A track, therefore, points to the locations that have that particular value for that 
particular index. 

When referencing memory, the invariant values activate one track within each of the indices. 
The intersection within memory of the values of the different indices is the memory location 
containing the stored experiences uniquely possessing those specific moments. If the invariants 
segregate the experiences completely, only one experience will be identified by each collection· 
of indices. That is, an experience composed of unique features (invariant to transformations of 
translation, scale, and rotation) will pop out in the fashion Treisman (1985) described. 

In the present example, after the invariants of the top level Objectl blob are computed, memory 
is referenced. If a similar experience (i.e. one with feature characteristics comparable to the 
top-level Objectl blob) had been previously experienced, the indices would point to the 
knowledge of that experience, but since this is the first experience, no comparable experiences 
exist (i.e., there are no experiences with the same invariants) and ZBT is not reminded of 
anything. Therefore, ZBT records the experience of the highest level blob of Objectl at the 
location in memory where all of the values of the blob's invariants intersect. ZBT also creates a 
label index (i.e., an index equal to the provided category label), points it at the same memory 
location, and creates a return pointer from the memory location to the index. This index differs 
from the invariant indices described earlier in that its value is the label itself and not a 
computed moment. The relevance of this index and the double ended pointer will be discussed 
later. 

Figure 6 summarizes the results of the first Objectl experience with a diagram of memory 
contents. Diagrammatically, a node (circle) represents a stored experience. A stored experience 
represents an abstraction of the original raster experience containing pointers which define a 
blob's relationships with its relatives. Stored experiences do not contain verbatim image data 
such as the original raster form which defined the blob. 
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Pointers are represented diagrammatically by arrows. There are four types of pointers used in 
ZBT. An experience is pointed to and points back to the label assigned by the environment. 
Bold font arrows represent label indices. Vertical pointers, represented in the diagrams with 
normal font arrows, indicate father/son relations (i.e., the relationships between different levels 
of detail). Horizontal pointers, also indicated with normal font arrows, represent sibling 
relationships or the relationships between components at the same level of detail. The 
significance of horizontal pointers will be illustrated later when ZBT zooms for detail. 

The three pointers discussed so far are usually double ended pointers. That means that these 
pointers can be traversed in both directions. For example, if provided the label of Class A by 
the environment, ZBT can identify all of the memory locations and thus all of the experiences 
associated with that category. In the same way, once ZBT has been reminded of a previous 
experience it can identify the associated label(s) by following the pointer(s) up the hierarchy. 

The fourth type of pointer is the single ended pointers used in Figure 6 to represent the 
invariants that point to the experience (for clarity, the indices have been omitted from later 
diagrams). In actuality, the indices do not point at the experience but point at the memory 
location that holds the experience. Thus, a memory location potentially represents a cluster of 
stored experiences where a cluster can consist of one or more abstracted experiences. Clusters 
(or memory locations) are indicated by dashed ellipses, except that, for clarity, memory 
locations are typically not distinguished from the experiences they hold unless it is important to 
do so. 

INDEX A INDEX 

Figure 6: 
Memory contents after the first 0 bjectl experience 

ZBT has now completed processing on Image 1 and begins on Image 2. It's encounter with the 
second image is handled in much the same way as the first image. The second image is 
decomposed to reveal the highest level blob of the scaled and translated Objectl. Invariants of 
the blob are computed and memory is referenced. The invariants of the new experience (i.e., 
the scaled and translated Objectl) are the same as the original24 (Hu,1962 and Alt 1962), 
therefore, when referencing memory ZBT is reminded of the first Objectl experience. 

ZBT has now resolved the second image. That is, it has matched the present experience with a 
known experience. If the present image was not accompanied by a label, ZBT would follow the 
double ended pointer from the remind (Objectl experience) to the associated label (Class A), 

24 The invariants are not necessarily equal, but the matching algorithms allow for the specified amount of slack in the manner described earlier. 
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report Class A as the likely category of the present experience, and terminate with memory 
unchanged. On the other hand, if a label is provided with an image, ZBT must take other 
actions. 

As previously mentioned, conforming to the category information provided by the environment 
causes a potential problem for ZBT. In the absence of feedback, ZBT could assume that the 
clustering mechanisms will group "A"s with "A"s, "Y"s with "Y"s, etc, but by conforming to 
the environment's classifications ZBT must assume that its clusters will not always be 
adequate. The relationship between Objectl, Object2, and Object3, as explained earlier, is an 
example of this problem. 

The possibility of a conflict forces ZBT to check for agreement between the labels of the 
respective experiences. Thus, after memory has been referenced, ZBT compares the label of the 
new experience (if provided), with the label associated with the reminding (if any). A match 
confirms the original clustering and a mismatch indicates an inadequacy of the clustering 
attributes. As previously discussed, there are two mismatch situations. They are reviewed again 
here prior to explaining how ZBT handles each one of them: 

Case 3: The current experience and the matched experience possess the same label, but 
appear different to ZBT (i.e., have different moments). For example, two 
seemingly different experiences, such as Objectl and Object2, are accompanied 
by the same label (Class A). 

Case 4: The current experience and the matched experience are labeled differently, but 
appear the same (i.e., have the same moments). An example, a common problem 
for many feature analysis programs but unusable here because of 
implementation constraints (see Appendix II), is the difficulty of distinguishing 
a "6" from a "b" across many fonts. Since ZBT is not capable of handling this 
example, another one will be used to illustrate Case 4. That one, a somewhat 
artificially induced example, utilizes Object4 (labeled Class Y). The artificial 
inducement is a minor modification to ZBT's moment comparison routine to 
allow the moments of Object4 to be accepted as equivalent to the Objectl 
experience2S. 

In both mismatch situations, the invariant measures of similarity at the highest level of the 
objects are unsatisfactory to group them in the classes the environment would prefer. ZBT 
handles both situations almost identically. It looks for another level of detail which might 
distinguish the experiences. 

The following discussion utilizes Images 3, 4, and 5 to illustrate how Case 3 is handled and 
then, Image 6 to illustrate how Case 3 differs from that of Case 4. In each section, as a guide to 
the detailed operation that is discussed there, ZBT's operation is summarized in outline form. 
Additionally, because ZBT's behavior builds on the knowledge accumulated during its 
experiences with Images 1 and 2, ZBT' s operation on the first image is recalled for comparison 
before outlining its operation on Images 3, 4, and 5. 

2S At first this appears to be an artificial exercise, but in reality the nature of invariant moments, as previously discussed, dictate that this is a 

very real situation. The nature of the minor modification to the matching routines shows just how real it is (see later footnote). 
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6.2.2 Case 3: Same Class, Different Attributes 

As previously described, encountering Image 1 (an image of Objectl labeled Class A), ZBT 
did the following: 

1) Decomposed the image into a single blob form. 
2) Computed the invariants (moments) of the component blob. 
3) Used the invariants to index into memory for comparable experiences. 
4) Found no similar experiences. 
5) Stored the new experience in memory and terminated. 

Encountering Image 3 (an image of Object2 labeled Class A), ZBT will: 

6) repeat steps 1-5 on the new image. 
11) discover that the label of the new experience is the same as a previous experience. 
12) (because the stored experience possessing the same label is not a remind of the 

current experience), decompose the current attended area (a single blob) into three 
component blobs. 

13) index memory with the three component blobs. 
14) find no similar experiences in memory. 
15) serially attend to each component and its spatial relationship to its siblings. 
16) Store the new experiences in memory. 

Encountering Image 4 (a repeat image of Objectl labeled Class A), ZBT will: 

16) repeat steps 1-3 on the new image. 
17) be reminded of the top-level Objectl experience. 
18) decompose the current attended area into three component blobs. 
19) index memory with the three blobs. · 
20) be reminded of the three decomposed blobs of Object2. 
21) serially attend to each component and compare sibling relationships to those of the 

experiences matched in memory. 
22) find a difference in a spatial relationship and take steps based on the difference it 

finds. 

ZBT's operation on Image 5 is comparable to what it does with Image 4, but since Image 5 will 
not be accompanied by a label the results are different. This is explained after ZB T's zooming 
behavior is illustrated with Images 3 and 4. 

6.2.2.1 The Object2 Experience 

ZBT proceeds on Image 3 in the same way it operated on Image 1 (an image of Objectl). 
Decomposition reveals the form that defines the highest level of Object2. Memory is 
referenced, but there are no reminds of this experience (because the moments of Object2 differ 
from those of Object!). ZBT stores the new experience in a unique memory location 
corresponding to the invariants calculated. Next, ZBT uses the label provided with the current 
image and references memory looking for experiences possessing the same label. ZBT 
discovers that the top-level Objectl experience was indexed by a Class A label. 

Since ZBT was not reminded of the stored experience that possesses the label identical with 
that of the current experience, ZBT has encountered an ambiguity of attributes. That is, the 
attributes indicate that two different perceptions have been encountered, but the experiences 
have been assigned the same category. That means that the features (attributes) appear to 
disagree with the provided label. ZBT must now look for something to differentiate the new 
experience from the stored experience. It begins by decomposing the top-level Object2 blob 
which it is currently viewing. 
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Decomposition of the current blob (i.e., the second decomposition of the image, see Appendix 
II for computational details) reveals three blobs (see Figure 7). The three blobs correspond to 
the strokes which compose the original, top-level blob. ZBT orders the component blobs by 
contrast for serial investigation (i.e. the one possessing the lowest contrast correlation, either 
increasing or decreasing, will be investigated first), computes the invariants associated with 
each blob, and simultaneously references memory with the invariants of the three blobs. 

Figure 7: 
The second decomposition of Object2. 

There are no reminds of the three components of Object2, therefore, ZBT records the new 
experiences of the three constituent blobs. It does this by placing them in memory as separate 
experiences according to their respective invariants (see Figure 8), connecting them with two­
way pointers to the higher level blob of which they are components, and interconnecting them 
with two-way, horizontal pointers to indicate their sibling relationships. 

A 

!\ 
e e 

I~ 
000 '\..__}' 1 LOCUS: 100 

DISTANCE' 1 ~ 
Figure 8: 

Memory contents after the Object2 experience. Horizontal relationships are indicated, 
but only the one spatial. relationship discussed in the text is shown. 
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ZBT then investigates the relationship each component has with each of its siblings. While 
many possible structural relationships are possible, ZBT has had success in this domain by 
comparing simple proximal associations between sibling blobs. ZBT' s proximal associations 
consist of the following information describing each relationship a blob has with a sibling: 

SIBLING: The sibling (identified by memory location) to which this relationship 
pertains. 

LOCUS: The point of focus of the relationship, identified as the spot on the blob closest 
to the pertinent sibling and normalized as a percentage of the length of the major 
axis of the blob. 

DISTANCE: The distance between the locus and the closest point on the sibling (again, 
normalized). 

The actual method of computing these values is not critical to ZBT's operation, but the details 
are included in Appendix III. 

In the present example, ZBT records for each component blob two relationships with each of 
its two siblings for a total of six recorded relationships. However, in order to avoid confusion, 
the following discussion and the associated diagrams focus on only the most pertinent of the six 
relationships, the one between the right end of the brace and the right side. As part of the 
information associated with the brace of Object2, ZBT records the following for the brace 
component (see Figure 8): 

SIBLING: right sideus 
LOCUS: 100 
DISTANCE: 10 

These data reflect the fact that the end of the brace (i.e., a location 100% of the way from the 
reference end) is close to but does not contact the right side. The distance separating the two is 
the span between the loci of the blob and its sibling, computed as a percent of the length of the 
blob. In this case, that distance is 10. 

At this point, ZBT has no comparable structural information for Objectl. Thus, it can go no 
further in its attempt to identify the difference between Objectl and Object2. 

6.2.2.2 The Second Objectl Experience 

ZBT's situation after its encounter with Image 3 can be summarized this way. It has knowledge 
of the top-level Objectl experience. It also has knowledge of the top-level Object2 experience 
and has zoomed to the spatial relationships that define the second level of detail within 
Object2. However, while processing the previous image, ZBT was unable to compare the 
newly decomposed, second level detail of Object2 with that of Objectl because it lacked the 
corresponding second level information of Objectl. The reason is that while processing the first 
images of Object!, its attention was not drawn to the lower level detail, thus it only recorded 
the top-level of Objectl. Now that the need for greater detail of Objectl has arisen, another 
Objectl experience (the next image in the sequence) will allow it to collect the information 
necessary to isolate the differences between the two objects. 

Encountering Image 4 (a second image of Object! labeled Class A), ZBT isolates the highest­
level of the Objectl form, references memory, and is reminded of the previous Object! 
experience. It then finds that the reminded experience shares its label with another experience 

26 As a reminder, the terms brace and side are used in this explanation as a matter of convenience for the reader. In the program, true to the 

definition of a blob, those entities are not labeled except by memory location. 
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and that the ambiguity between the two experiences hasn't been resolved yet. Therefore, ZBT 
"zooms" on Image 4 in another attempt to resolve the confusion. 

The highest level blob of Objectl is decomposed (revealing three constituent blobs), invariants 
of the three blobs are calculated, and memory is referenced for experiences comparable to the 
three blobs of level 2. ZBT detects three reminds corresponding to a match with each of the 
three constituent blobs21. 

This illustrates the multi-level indexing which allows ZBT to detect candidate recognitions 
anywhere in memory in a single reference. A memory reference is a one step process whereby 
any experiences stored at the intersection of the converging indices is a reminding of a similar 
previous experience. Although not apparent in this example, the fact that ZBT matched the 
three blobs composing the second level of detail of the two objects with the one step process is 
significant. The significance is illustrated by an example. Consider the situation after ZBT has 
experienced many different forms of Class A objects from many different fonts. At the second 
level of detail, all of these forms can vary considerably. Each of the three characteristic strokes 
can vary by thickness, length, curvature, etc .. The result is that within the second level of Class 
A, a large number of candidates could exist. Searching for the correct matches at that level 
could be an exponential problem except that ZBT's multi-level indexing scheme allows it to 
select the most likely candidate blobs at any level in a single step, regardless of the level of 
decomposition of the current object. 

Now that ZBT has been reminded of the second level of the Object2 experience, it must verify 
that this object is the conflicting one and compare sibling relationships to complete the match. 
It begins by looking from the reminds up the hierarchy (using the double-ended pointers) for 
the label associated with the reminds. When it finds that the reminds have the top-level of 
Object2 as an ancestor and that Object2's label is shared with Objectl, it knows it has matched 
both levels of the two experiences. However, since no difference has yet to be detected, ZBT 
must look further in the image. 

Successive decompositions have not isolated the differences between the two similarly labeled · 
experiences, therefore, as it did on the previous image, ZBT now serially inspects the current 
decomposition (i.e., the second decomposition of Objectl) for relationships which structurally 
define the higher level. It discovers the following relationship between the brace and the right 
leg: 

SIBLING: right leg 
LOCUS: 100 
DISTANCE: 0 

Comparing the spatial relationships of the reminds with those of the current blobs, ZBT finds a 
difference in the distance value (see Figure 9). ZBT has now detected the break in the "A" 
which distinguishes Objectl from Object2. 

27 This example assumes that the three component blobs of Objectl and Object2 are equivalent enough that one set will cause the reminding of 

the entire other set. As previously discussed, this may or may not be the case; one or more component blobs may not match. Therefore, ZBT 

actually employs a more complex matching technique when only a subset of the component set cause of reminding. The more complex 

situation has been avoided because it complicates the explanation and because in practice the simple case does occur. 
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Figure 9: 

Memory contents after the second 0 bjectl experience and prior to coalescing the two 
experiences. 
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Figure 10: 

Memory contents after coalescing the Objectl and Object2 experiences. 

Knowing (based on feedback) that it is supposed to act as if these structures are really the same, 
ZBT coalesces the two knowledge structures by recording the detected difference as a 
cumulative statistical value. That is, the two data structures are merged into one structure where 
the detected difference is represented as the maximum DISTANCE experienced and the 
standard deviation (SD) of the current DISTANCE (taking the old value as the average). Thus, 
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the second Objectl experience results in the following values for the critical relationship (see 
Figure 10): 

SIBLING: right side 
LOCUS: 100 
DISTANCE: 10 (sd = 5) 

6.2.2.3 The Object3 Experience (Handling Structural Variations) 

The next image in the sequence, Image 5, contains an unlabeled Object3 (i.e., a form identical 
to Object2 except containing a larger break between the brace and right side). Since this image 
is not accompanied by a label, ZBT must try to determine the class of the object it contains. 

Processing begins, as before, on the top-level which causes no remindings because its moments 
differ from those of Objectl and Object2. The second decomposition reveals three blobs that 
cause a reminding of the coalesced second level knowledge of Objectl and Object2. ZBT then 
checks the spatial relationships of the three constituent blobs and finds that there is a close 
match. Comparing sibling relationships, ZBT detects that the DISTANCE value of the 
pertinent relationship is different from the corresponding stored value. ZBT then compares the 
new DISTANCE with the stored value to see if it exceeds an allowable measure. It does this by 
summing the stored DISTANCE with the associated SD value. There are two possibilities ZBT 
must deal with. 

If the DISTANCE value of the current experience exceeds the sum (i.e., the break exceeds 15), 
ZBT will record the present experience in memory as a new experience and report that there is 
no known category for the present objectis. 

On the other hand, if the DISTANCE value is less than or equal to the summed value, ZBT will 
accept the current experience as a member of Class A. In this case, memory will be updated to 
reflect a new maximum value and associated standard deviation for the pertinent relationship. 
Consequently, the class of the remind is reported as the likely category of the current 
experience. ZBT determines the class by progressing up the hierarchy from the three matched 
blobs until it finds the associated label. 

6.2.3 Case 4: Different Class, Same Attributes 

Image 6, an image of Object4, helps to illustrate ZBT's handling of Case 4. In this example, 
Object4 will be perceived as identical to Objectl29 but the label included with Object4 will not 
match the reminded experience of Objectl. The conflict for ZBT in this case is that a category, 
as defined by the environment, has two different labels or meanings. Although conceptually 

28 ZBT actually reports that there was a close match to the A category, but this aspect of ZBT's operation has not received a great deal of 

attention. Work has instead focused on experimentally verifiable aspects of the model. The concept fonnation literature has not, as yet, 

addressed the specific concept fonnation task confronting ZBT. Previous experiments have largely concentrated on the perception of well­

fonnulated, natural concepts such as cups, bowls, birds, and animals (e.g., Labov, 1973). The statistical approach was incorporated into ZBT 

because of evidence presented by a number of researchers that subjects prefer an all-or-none concept formation strategy (e.g., Trabasso & 

Bower, 1968, and Bruner, Goodnow, & Austin, 1956) and that the natural categories formed by people do not seem to have fixed boundaries 

(McOoskey & Glucksberg, 1978). 
29 As previously mentioned, if the moments of two experiences are within 0.2% of each other they are considered identical. Operating with this 

criteria ZBT would normally segregate the Object! and Object4 experiences, however, by increasing the range to .31 % they overlap and Case 4 

can be demonstrated. Note that, Object! and Object4 were selected from one of the fonts in ZBT' s test repertoire. The close correspondence 

does not hold across other fonts in the repertoire. 
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different than Case 3, ZBT attempts to resolve this situation in a similar fashion. How it does 
this is outlined in the next section. 

6.2.3.1 The Object4 Experience 

Encountering Image 6 (an image of Object4 labeled Class Y), ZBT does the following: 

1) Decomposes the image into a single blob form. 
2) Computes the invariants (moments) of the component blob. 
3) Uses the invariants to index into memory for comparable experiences. 
4) Is reminded of an experience (i.e., the top-level of the Objectl experience). 
5) Stores the new experience in memory at the same location as the Objectl experience. 
6) Discovers that the label of the new experience is different from the remind. 
7) Decomposes the single blob into 3 component blobs. 
8) Computes the invariants of the component blobs. 
9) Indexes into memory with the 3 component blobs. 
10) Finds no similar experiences in memory. (It now has a difference between the two 

top-level experiences.) 
11) Stores the 3 new experiences in memory after serially attending to each component 

and its spatial relationship with its sibling. 

Notice that ZBT detected the difference between the two objects when referencing memory 
with the decomposed blobs of the second level of Object4. In the previous example, Case 3, 
ZBT had to compare spatial relationships of the components at that level in order to detect the 
difference. In most other regards ZBT' s activity on this example, and the resultant memory 
structures, are very similar to what has been described previously. Figure 11 summarizes the 
final memory structures (the broken ellipse clusters two experiences). 

Figure 11: 
Memory contents after Image 6 
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7.0 Summary, Discussion, and Future Directions 

Cases of mistaken identity and, possibly, identification of shadows, image outlines, and cartoon 
caricatures are examples of recognitions that occur without reference to every nuance of detail 
available in the stored (learned) image. Contrasted with these are recognitions that require 
greater attention to detail in order to distinguish structural similarities and differences that 
define whether objects are distinctly different from each other or simply structural alterations 
that belong to the same class. The ZBT incremental learning and recognition model proposes 
an hierarchical memory to account for this dual functionality. The hierarchy results from an 
recursive application of two learning paradigms: conceptual clustering and learning-from­
examples. The combination extends the image processing technique known as moment analysis 
to handle simple, structural transformations in a real-world, character recognition domain. 

ZBT' s hierarchical dichotomy corresponds to an apparent parallel/serial dichotomy in the 
human visual system (many references including Julesz, 1962 and Treisman, 1985). First, 
parallel ZBT processes decompose the image along dimensions of contrast and line orientation 
(consistent with psychological and neurophysiological evidence presented by many authors 
including Van Essen & Maunsell, 1983, Julesz, 1982, and Treisman, 1985). Then, 
corresponding to the serial portion of the dichotomy, ZBT serially attends to the spatial 
relationships between components to reassociate the decomposed constituents. 

A decomposition is a simple segmentation of the image into meaningless (unlabeled) blobs. 
Unlike classification schemes that attempt to decompose an image directly into cognitively 
identifiable objects, ZBT places less burden on the decomposition mechanisms by simply 
requiring consistent segmentation into unlabeled blobs. Thus, the decomposition mechanisms 
do not have to determine what is salient in the image. Saliency is specified by the environment 
and ZBT has to make the association. 

Blobs are stored in memory as abstracted experiences. ZBT abstracts the blob experiences by 
computing the moments of the original raster forms. The theory underlying ZBT does not 
propose that the visual system necessarily utilizes the technique of moment analysis, but it does 
propose that some type of innate mechanisms perform an abstraction of the data such that the · 
experiences can be clustered in memory invariant to some set of image transformations. In 
response to the problem paradigm stated here, ZBT utilizes moments because they are invariant 
to the transformations of translation, scale, and rotation. The actual invariants utilized by nature 
may be less than this. 

The invariants cluster blobs in memory on the basis of feature similarity. Thus, ZBT can 
acquire and retrieve experiences in the absence of environmental feedback. However, in the 
presence of feedback, ZBT's invariant measures of similarity may conflict with those of the 
teacher and negate the grouping. That is, combining conceptual clustering and learning from 
examples can cause a problem. The problem is a conflict or disagreement between the way the 
environment chooses to classify experiences and the attributes ZBT utilizes to cluster them. 
From ZBT's point of view, there are two types of conflict: a label can ambiguously represent 
two categories or a category can ambiguously have two labels. 

Instead of redoing its clusters to satisfy the environmental classifications, ZBT refines the 
approximately correct grouping by decomposing the current level and serially searching for 
variable structural information among the decomposed constituents. 

If the spatial relationships do not disambiguate the image, ZBT recursively zooms on 
constituent blobs until memory is matched or it exhausts zoom levels in the image. The 
recursive combination of conceptual clustering and learning from examples builds a is-a and 
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part-of hierarchy that distinguishes two types of visual feature. Vertically, levels of the 
hierarchy represent levels of feature detail that are invariant to the chosen transformations (i.e., 
translation, scale, rotation). Horizontally, the relationships represent features that are allowed to 
vary in the domain (i.e., spatial relationships). 

Viewed another way, a recognition in ZBT can be considered a two step search, first, acting 
like a moment analysis system, ZBT identifies candidate recognitions by matching invariant 
features. Then it verifies the candidates by re-associating the previously decomposed features. 
The recursive addition of the second part of the process overcomes the limitations of moment 
analysis discussed earlier, including: problems associated with segmentation, difficulties of 
matching variant structural alterations, and the dilemma of segregating overlapping dissimilar 
moments while matching moments of similar objects. 

7.1 Future Directions 

Interesting questions have come out of the work on ZBT. Initially, the issues were related to 
ZBT's organization and functioning. For example, in the early stages of development ZBT's 
decomposition mechanisms required a great deal of attention. The reason is that in order to 
implement a complete working model, some type of decomposition technique was required but 
the experimental literature does not support a specific computational implementation. There is 
experimental evidence suggesting specific types of decomposition (e.g., segmentations based 
on local density and line orientation - see the summary by VanEssen and Maunsell, 1983 and 
arguments presented by Julesz & Bergen, 1983 and Treisman, 1985), but no evidence 
suggesting how to obtain them. The computational method eventually chosen has proved 
adequate for the simple class of problems described here, but it will not allow ZBT to handle 
multiple aggregation problems like that illustrated in Treisman 's masking experiments. A more 
comprehensive decomposition approach has been proposed, but experimental evidence 
supporting it is currently scanty. Support for the new approach is being pursued in the literature 
and through the possible undertaking of new experiments. 

Another issue pointed out by experiments with ZBT concerns ZBT's concept formation 
capability. The difficulty is that psychologists have not yet tested the specific concept 
formation task that ZBT confronts (illustrated by the Objectl/Object2/0bject3 example 
presented earlier). There are significant questions related to this that affect the design of ZBT. 
For example, if a person (machine) has had a single experience with a particular object (e.g., 
Objectl) and if a second experience of the object includes a minor but definite alteration of the 
object's structure (e.g., Object2), is the new form recognized as equivalent to the original or 
must the system be told that a break is acceptable? In other words, as the structure of a definite 
object is varied, at what point does it cease to be the original object and take on a new identity? 
This question and related ones are currently being considered for experimental testing. 

As ZBT matured, attention turned to an exploration of its performance and limitations. There 
are two aspects of ZBT's performance to consider: its ability to handle invariant transformation 
and its ability to cope with variant transformations. 

There was a two-fold rationale for employing moments as the invariant indices. First, there is 
the opportunity to build on the success of documented moment analysis systems. As previously 
described, ZBT' s clustering appears to be equivalent to that reported for other moment analysis 
systems (specifically Alt, 1962 and Lambert, 1968), however, it is not known how ZBT will 
perform when a substantial number of objects have been learned. This continues to be tested 
with additional fonts of well-formed characters and their transformations. 

33 



The second rationale behind the use of moments was the need in ZBT to provide some type of 
invariance to image translation, rotation, and scale. As previously mentioned, the ZBT model 
does not propose that the visual system makes use of moments. It only proposes that there are 
some set of transformations which the visual system is invariant to. Moments are one specific 
computational technique for achieving that quality. Although moments may not be computed in 
the visual system, the work on ZBT has shown the usefulness of using moment-like invariant 
properties as indices into the knowledge base in order to simulate the pop-out quality. 

While investigation continues into ZBT's preattentive handling of invariant image qualities, 
work continues on its attentive aspects and their ability to resolve the variants aspects of image 
transformation. So far, ZBT has been tested on about six different examples of "broken" 
symbols. ZBT's success with these examples indicates that it does extend the capabilities of 
moment analysis, but, again, it is not known how well it will perform when a large number of 
such objects have been learned. Other aspects of attentive processing that need to be tested 
include: ZBT' s ability to handle multiple alterations per symbol and the specific spatial 
relationships required to resolve the possible structural alterations. 
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APPENDIX I: 

Runtime output of ZBT test 



zbttest Oct .. 20·87 13:43 

Top-Level 
* (date) 
Date Is: 9-18-87 14:34 

* (sup) 

Begin test of ZBT. 
Clear memory (C) or accumulate? c 
Look at a single lmage(I) or a sequence(S)? s 
Choose Images (C) or automatic selection (A)? c 
(Separate with spaces, end with ')CR')? (triangle1 triangle2 triangle1 triangle3) 

SUPERVISOR: 
Passing TRIANGLE1 to ZBT; image 1 in sequence with assigned label TRIANGLE. 
In cognitive terms this image can be roughly described as: 

A WELL FORMED TRIANGLE 

ZBT: 
Zooming on the initial or highest level (level 0) of the image. 

*""** Begin parallel operations""""" 
Decomposing level 0. 
Computing connectivity. 
Single blob detected. 
TRIANGLE1 decomposed into: BLOB-0 
Computing invariants of BLOB-0. 
Checking for reminds of BLOB-0. 
Experience BLOB-0 caused no reminding. 

"*""* Begin serial operations ""**" 
Only one sibling, no relationships to investigate, attend complete. 
Recording level 1. 
No similar memories exist; record this experience In unused memory area. 
Recording BLOB-0. 
Indexing BLOB-0 under label TRIANGLE. 
There were no reminds and no comparably labeled experiences. 
Therefore, there Is no conclusion concerning this Image; and no reason to zoom. 

SUPERVISOR: 
Passing TRIANGLE2 to ZBT; image 2 in sequence with assigned label TRIANGLE. 
In cognitive terms this image can be roughly described as: 

A TRIANGLE WITH A SMALL BREAK IN THE LOWER RIGHT CORNER 

ZBT: 
Zooming on the initial or highest level (level O) of the Image. 

*"""" Begin parallel operations ***** 
Decomposing level o. 
Computing connectivity. 
Single blob detected. 
TRIANGLE2 decomposed Into: BLOB-1 
Computing invariants of BLOB-1. 
Checking for reminds of BLOB-1. 
Experience BLOB-1 caused no reminding. 
BLOB-0 has also been Identified with this category. 
There are no reminds, that Is, the levels attended to so far do not 

index to a previously stored experience, however, there are experiences 
stored under the label TRIANGLE. 

This Is a conflict since similarly labeled experiences should 
cause similar reminds. 

Attempt to resolve the conflict by looking for previously unattended 
differences between the current Image and BLOB-0 

Only one sibling, no reason to attend. 
Recording level 1. 
No similar memories exist; record this experience in unused memory area. 
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Recording BLOB-1 . 
Indexing BLOB-1 under label TRIANGLE. 
Zooming on level 1. 

w ... Begin parallel operations **"** 
Decomposing level 2. 
Computing connectivity. 
Single blob detected. 
Same decomposition as previous level. 
Computing by projections. 
Searching for blobs which conform to the horizontal. 
Found the following horizontal blobs: BLOB-2 
Searching for blobs which conform to the vertical. 
None were found. 
Searching for blobs which conform to the diagonals. 
Found the following diagonal (lower-left to upper right) blobs: BLOB-3 
Found the following diagonal (lower-right to upper left) blobs: BLOB-4 
BLOB-1 decomposed into: BLOB-4 BLOB-3 BLOB-2 
Computing invariants of BLOB-4. 
Computing invariants of BLOB-3. 
Computing invariants of BLOB-2. 
Checking for reminds of BLOB-2. 
Experience BLOB-2 caused no reminding. 
Checking for reminds of BLOB-3. 
Experience BLOB-3 caused no reminding. 
Checking for reminds of BLOB-4. 
Experience BLOB-4 caused no reminding. 
There are no reminds, that Is, the levels attended to so far do not 

index to a previously stored experience, however, there are experiences 
stored under the label TRIANGLE. 

This is a conflict since similarly labeled experiences should 
cause similar reminds. 

Attempt to resolve the conflict by looking for previously unattended 
differences between the current image and BLOB-0 

Look for the structural differences at this level of zoom which 
can resolve the conflict. 

"""'" Begin serial operations "'*"" 
Looking for spatial relationships among siblings BLOB-2 BLOB-3 BLOB-4 
Attending to BLOB-2 and Its relationship to BLOB-3. 
Intersection relationship detected 
Locus points (relative to total length and measured from lower and left): 

BLOB-2 0.0 
BLOB-3 0.0 

Attending to BLOB-2 and its relationship to BLOB-4. 
Proximal relationship detected 
Distance = 2. O 
Locus points (relative to total length and measured from lower and left): 

BLOB-2 1.0 
BLOB-4 0.0 

Attending to BLOB-3 and Its relationship to BLOB-2. 
Intersection relationship detected 
Locus points (relative to total length and measured from lower and left): 

BLOB-3 0.0 
BLOB-2 0.0 

Attending to BLOB-3 and its relationship to BLOB-4. 
Intersection relationship detected 
Locus points (relative to total length and measured from lower and left): 

BLOB-3 1.0 
BLOB-4 1.0 

Attending to BLOB-4 and its relationship to BLOB-2. 
Proximal relatlonshfp detected 
Distance = 0.0 
Locus points (relative to total length and measured from lower and left): 

BLOB-4 0.0 
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BLOB-2 9.23077F-01 
Attending to BLOB-4 and its relationship to BLOB-3. 
Intersection relationship detected 
Locus points (relative to total length and measured from lower and left): 

BLOB-4 9.23077F-01 
BLOB-3 9.23077F-01 

Recording level 2. 
Ancestor to this level is BLOB-1. 
No similar memories exist; record this experience In unused memory area. 
Recording BLOB-2. 
Recording vertical links. 
Record pointer from BLOB-2 to ancestor BLOB-1. 
Record reverse pointer from ancestor BLOB-1 to BLOB-2. 

Recording horizontal links. 
No similar memories exist; record this experience In unused memory area. 
Recording BLOB-3. 
Recording vertical links. 
Record pointer from BLOB-3 to ancestor BLOB-1. 
Record reverse pointer from ancestor BLOB-1 to BLOB-3. 

Recording horizontal links. 
No similar memories exist; record this experience in unused memory area. 
Recording BLOB-4. 
Recording vertical links. 
Record pointer from BLOB-4 to ancestor BLOB-1. 
Record reverse pointer f rorn ancestor BLOB-1 to BLOB-4. 

Recording horizontal links. 
The zoom level for the current experience now exceeds the maximum stored 

level of the conflict. 
It doesn't make sense to zoom further on this image. 

SUPERVISOR: 
Passing TRIANGLE1 to ZBT; Image 3 in sequence with assigned label TRIANGLE. 
In cognitive terms this image can be roughly described as: 

A WELL FORMED TRIANGLE 

ZBT: 
Zooming on the initial or highest level (level 0) of the image . 

..... Begin parallel operations ..... 
Decomposing level 0. 
Computing connectivity. 
Single blob detected. 
TRIANGLE1 decomposed into: BLOB-5 
Computing Invariants of BLOB-5. 
Checking for reminds of BLOB-5. 
Experience BLOB-5 caused a reminding of BLOB-0. 
BLOB-1 has also been identified with this category. 
The current experience appears to be TRIANGLE, but there is a conflict since 
there is another experience in the same category . 

..... Begin serial operations ..... 
Only one sibling, no relationships to investigate, attend complete. 
Recording level 1. 
Zooming on level 1 . 

..... Begin parallel operations""""" 
Decomposing level 2. 
Computing connectivity. 
Single blob detected. 
Same decomposition as previous level. 
Computing by projections. 
Searching for blobs which conform to the horizontal. 
Found the following horizontal blobs: BLOB-6 
Searching for blobs which conform to the vertical. 
None were found. 
Searching for blobs which conform to the diagonals. 
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Found the following diagonal (lower-left to upper right) blobs: BLOB-7 
Found the following diagonal (lower-right to upper left) blobs: BLOB-8 
BLOB-5 decomposed into: BLOB-8 BLOB-7 BLOB-6 
Computing invariants of BLOB-8. 
Computing invariants of BLOB-7. 
Computing Invariants of BLOB-6. 
Checking for reminds of BLOB-6. 
Experience BLOB-6 caused a reminding of BLOB-2. 
Checking for reminds of BLOB-7. 
Experience BLOB-7 caused a reminding of BLOB-3. 
Checking for reminds of BLOB-8. 
Experience BLOB-8 caused a reminding of BLOB-4. 
There are no reminds, that Is, the levels attended to so far do not 

index to a previously stored experience, however, there are experiences 
stored under the label TRIANGLE. 

This is a conflict since similarly labeled experiences should 
cause similar reminds. 

Attempt to resolve the conflict by looking for previously unattended 
differences between the current image and BLOB-1 

Look for the structural differences at this level of zoom which 
can resolve the conflict. 

*** "* Begin serial operations ***"* 
Looking for spatial relationships among siblings BLOB-6 BLOB-7 BLOB-8 
Attending to BLOB-6 and its relationship to BLOB-7. 
Intersection relationship detected 
Locus points (relative to total length and measured from lower and left): 

BLOB-6 0.0 
BLOB-7 0.0 

Attending to BLOB-6 and its relationship to BLOB-8. 
Intersection relationship detected 
Locus points (relative to total length and measured from lower and left): 

BLOB-6 1.0 
BLOB-8 0.0 

Attending to BLOB-7 and its relationship to BLOB-6. 
Intersection relationship detected 
Locus points (relative to total length and measured from lower and left): 

BLOB-7 0.0 
BLOB-6 0.0 

Attending to BLOB-7 and its relationship to BLOB-8. 
Intersection relationship detected 
Locus points (relative to total length and measured from lower and left): 

BLOB-7 1.0 
BLOB-8 1.0 

Attending to BLOB-8 and its relationship to BLOB-6. 
Intersection relationship detected. 
Locus points (relative to total length and measured from lower and left): 

BLOB-8 0.0 
BLOB-6 9.23077F-01 

Attending to BLOB-8 and its relationship to BLOB-7. 
Intersection relationship detected 
Locus points (relative to total length and measured from lower and left): 

BLOB-8 9.23077F-01 
BLOB-7 9.23077F-01 

Recording level 2. 
Experience BLOB-5 caused a reminding of BLOB-0. 
Ancestor to this level is BLOB-0. 
Experience BLOB-6 caused a reminding of BLOB-2. 
Matched BLOB-6 to BLOB-2. 
Experience BLOB-7 caused a reminding of BLOB-3. 
Matched BLOB-7 to BLOB-3. 
Experience BLOB-8 caused a reminding of BLOB-4. 
A spatial structural difference has been detected In the 

BLOB-6/BLOB-8 relationship (compared to the previous BLOB-2/BLOB-4). 
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Distance relationships are different. 
Label TRIANGLE matches previous relationship. 
Category TRIANGLE must allow this difference. 
Recording wildcard for BLOB-2/BLOB-4 distance relationship. 
The image has been disambiguated. 

SUPERVISOR: 
Passing TRIANGLE3 to ZBT; image 4 in sequence with assigned label UNLABELED. 
In cognitive terms this image can be roughly described as: 

A TRIANGLE WITH A LARGE BREAK IN THE LOWER RIGHT CORNER 

ZBT: 
Zooming on the initial or highest level (level O) of the image . 

..... Begin parallel operations ..... 
Decomposing level o. 
Computing connectivity. 
Single blob detected. 
TRIANGLE1 decomposed into: BLOB-9 
Computing invariants of BLOB-9. 
Checking for reminds of BLOB-9. 
Experience BLOB-9 caused no reminding . 

..... Begin serial operations ..... 
Only one sibling, no relationships to investigate, attend complete. 
Recording level 1. 
This experience is unlabeled, therefore zoom for other detail 
that might provide a match. 

Zooming on level 1 . 
..... Begin parallel operations ..... 

Decomposing level 2. 
Computing connectivity. 
Single blob detected. 
Same decomposition as previous level. 
Computing by projections. 
Searching for blobs which conform to the horizontal. 
Found the following horizontal blobs: BLOB-10 
Searching for blobs which conform to the vertical. 
None were found. 
Searching for blobs which conform to the diagonals. 
Found the following diagonal (lower-left to upper right) blobs: BLOB-11 
Found the following diagonal (lower-right to upper left) blobs: BLOB-12 
BLOB-5 decomposed into: BLOB-12 BLOB-11 BLOB-10 
Computing invariants of BLOB-12. 
Computing invariants of BLOB-11. 
Computing invariants of BLOB-10. 
Checking for reminds of BLOB-1 o. 
Experience BLOB-10 caused a reminding of BLOB-2. 
Checking for reminds of BLOB-11. 
Experience BLOB-11 caused a reminding of BLOB-3. 
Checking for reminds of BLOB-12. 
Experience BLOB-12 caused a reminding of BLOB-4. 
Reminds have a common label of TRIANGLE. 
This appears to be a TRIANGLE. 
Look for the structural differences at this level of zoom which 

might resolve . 
..... Begin serial operations ..... 

Looking for spatial relationships among siblings BLOB-10 BLOB-11 BLOB-12 
Attending to BLOB-10 and Its relationship to BLOB-11. 
Intersection relationship detected 
Locus points (relative to total length and measured from lower and left): 

BLOB-10 0.0 
BLOB~11 0.0 

Attending to BLOB-10 and Its relationship to BLOB-12. 
Intersection relationship detected 
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Locus points (relative to total length and measured from lower and left): 
BLOB-10 1.0 
BLOB-12 0.0 

Attending to BLOB-11 and Its relationship to BLOB-1 O. 
Intersection relationship detected 
Locus points (relative to total length and measured from lower and left): 

BLOB-11 0.0 
BLOB-10 0.0 

Attending to BLOB-11 and its relationship to BLOB-12. 
Intersection relationship detected 
Locus points (relative to total length and measured from lower and left): 

BLOB-11 1.0 
BLOB-12 1.0 

Attending to BLOB-12 and its relationship to BLOB-1 O. 
Intersection relationship detected. 
Locus points (relative to total length and measured from lower and left): 

BLOB-12 0.0 
BLOB-10 9.23077F-01 

Attending to BLOB-12 and its relationship to BLOB-11. 
Intersection relationship detected 
Locus points (relative to total length and measured from lower and left): 

BLOB-12 9.23077F-01 
BLOB-11 9.23077F-01 

Recording level 2. 
Experience BLOB-9 caused a reminding of BLOB-0. 
Ancestor to this level Is BLOB-0. 
Experience BLOB-10 caused a reminding of BLOB-2. 
Matched BLOB-10 to BLOB-2. 
Experience BLOB-11 caused a reminding of BLOB-3. 
Matched BLOB-11 to BLOB-3. 
Experience BLOB-12 caused a reminding of BLOB-4. 
Wildcard match of BLOB-12 to BLOB-4. 
Ancestor of reminds is BLOB-1. 
Label of ancestor is TRIANGLE. 
This image must be a TRIANGLE. 
The Image has been disambiguated. 

SUPERVISOR: 
ZBT test complete. 
NIL 
• 

(dribble) 
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Computational Details of ZBT' s Segmentation Procedures 



Appendix II 

There are two mechanisms that make up a decomposition in ZBT. The first mechanism isolates 
a raster form from the surrounding background. This is necessary to identify which portion of 
the image the moments are to be calculated on and, thus, normalize the moments to that area 
(as opposed to unnormalized across the entire area). ZBT employs a simple connectivity 
analysis to accomplish this. That is, during the first part of decomposition, ZBT isolates 
connected areas of common pixel values. Since ZBT deals exclusively with binary images, that 
means that ZBT groups all of the on pixels (i.e., the black area) that are touching each other. 
Additionally, ZBT places a one pixel contrasting boundary around the area. This procedure is 
effectively a segmentation by simple contrast and not inconsistent with experimental evidence 
suggesting some type of decomposition by contrast in the visual system (e.g., Julesz's, 1983 
segregation based on local density of visual features). 

The second decomposition mechanism is consistent with other data suggesting the existence of 
primitives based on the orientation of spatial lines (many including: Hubel & Wiesel, 1962, 
Beck, 1967, Treisman, 1982, and Julesz, 1983). A decomposition by orientation is composed of 
the following steps: 

1) Calculate the projections. 
2) Group the projections. 
3) Find the boundary which encompasses the most pertinent group, thus, defining the 

segmented blob. 
4) Compute the invariants of the blob. 

A projection is a mapping from an n-dimensional space to an m-dimensional space. If n is 3 
and m is 2, the projection eliminates the depth information from a 3D image. This is a common 
computation in graphics applications. If n is 2 and mis 1, as it is when handling two­
dimensional images, the resultant vector contains the sums of black pixels counted through the 
respective discrete parallel lines. For example, the horizontal projection of a 5x5 matrix is 
calculated by counting across (in they direction1) the five edge (or x) elements (see Figure). 
Five sums or counts of black pixels result. From the vector, ZBT then computes the standard 
deviation of the sums and identifies the boundary locations. Boundaries are calculated in the 
following manner. A search begins at each end of the vector. It terminates when the first value . 
one standard deviation above noise level is encountered. When calculating a horizontal 
projection, these values define the horizontal boundaries (or x values of the blob; call them x1 
and x2). The vertical boundaries of a horizontal projection are found by searching along X1 and 
x2 in the original array until a black pixel is encountered. These then constitute they values. 
The boundaries define the blob coincident with the projection of that orientation. 

Figure: 
Horizontal projection on a 5x5 matrix 

Four types of blob are identified by ZBT. The four types correspond to the four directions: 
horizontal, vertical, lower-left to upper-right diagonal, and lower-right to upper-left diagonal. 
Vertical projections are computed in a fashion inversely comparable to the horizontal method. 
Diagonal strokes are somewhat more difficult, but are done in much the same way. Given the 
difficulty of computing the other, off-diagonal projections and the time to process (an 
important consideration when observing hundreds of tests) a decision was made to limit ZBT to 
the four projections mentioned. The only consequence of the limitation, observed so far, is that 
symbols, that will undergo a second level decomposition, must be chosen such that their 
components are formed on one of the four axes (i.e., curved components are not detected in the 

1 This usage of coordinates may be confusing to the reader because many are accustomed to x being the direction across and y the up and 

down direction. The reverse was utilized in this work to be consistent with a large portion of the graphics and image processing literature. 
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second decomposition)2. The projection method was not chosen arbitrarily. It was chosen to 
resemble cells discovered in the early visual system (Hubel & Wiesel, 1962). These cells fire 
only in the presence of lines of a specific spatial orientation. Additionally, these cells fire with 
a frequency proportional to the spatial frequency of the image lines. 

ZBT employs the two mechanisms in a sort of competition. Each mechanism is performed in 
parallel on each area of attention. The results of the two are compared with each other and with 
the previously chosen decomposition. ZBT prefers the decomposition with the fewest 
components as long as it does not match the previously selected segmentation. On the 
examples presented here, that means that connectivity will be chosen in the first decomposition 
of the image (since each image presented here is a single entity in the visual field) and the 
result will be a single segment containing all of the black pixels which define the top-level 
form. After the results of the second decomposition are compared, ZBT will choose the results 
of the decomposition by orientation since the segment formed by contrast is the same as the 
previously selected decomposition. Thus, the second decomposition on the image will reveal 
the three component blobs of the "A" (see Figure 7 in the main text) or the two components of 
the "T" or "V". 

2 This does not conflict with ZBT's ability to handle entire alphabets, as previously stated. Recall that the moments of the first decomposition 

of characters will segregate them adequately (Alt, 1962). The limitation of this implementation of projection calculation only manifests itself on 

the second decomposition. 
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Appendix III 

ZBT calculates the LOCUS and DISTANCE values for a blob and its sibling in the 
following fashion. Referencing the raster image, one of the projections composing the 
blob and one of the projections making up the sibling are selected (see Appendix II for 
a description of projections) as a candidate pair to represent the entire blob/sibling 
relationship. For each of these candidates the locus of each line and the distance 
between loci is calculated. 

The locus points of the two lines are determined by comparing the their endpoints (in 
terms of raster location) for intersection (see Pavlidis, 1982, page 329). If the lines are 
intersecting, the intersecting point that lies on the line of the blob becomes a candidate 
LOCUS and the point where the intersection occurs on the line of the sibling becomes 
the point of comparison for computing DISTANCE. 

If the lines are not intersecting then the imaginary points of intersection are determined. 
This is accomplished by extending both lines to the edge of the image and computing 
the intersecting point using the new endpoints (i.e., where the lines terminate at the 
edge of the drawing). Since it may only be necessary to extend one of the two lines to 
achieve an intersection, the imaginary point of intersection is compared to the natural 
endpoints of the two lines. If this point falls on either line then it is used for the locus of 
that particular line. 

If, on the other hand, the intersecting point is not on a line, the endpoint of the line 
closest to the point of intersection is selected. The closest endpoint is determined by 
comparing the natural endpoints to the imaginary point of intersection. The closest one 
is selected as the locus. 

The locus associated with the line of the blob is selected as the locus of this pair, but 
first each of the values are normalized as a percentage of the entire length of the line 
from the point of origin of the projection. This value is obtained by calculating the 
distances from the locus to the two endpoints. The ratio of the distance closest to the 
point of origin and the sum of the distances is recorded as a percentage value 
representing the candidate locus of the line. Once the two locus values have been 
determined the distance value of this pair is simply the distance between the two loci. 

The distance and locus values are computed for each of the blob/sibling line pairs. The 
pair with the smallest distance value (0 means intersecting) is selected to represent the 
blob/sibling relationship. The distance and locus of that pair is then recorded as 
DISTANCE and LOCUS respectively. 
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