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ARTICLE

Comprehensive transcriptomic analysis of cell lines
as models of primary tumors across 22 tumor
types
K. Yu 1,2, B. Chen 3,4, D. Aran 1, J. Charalel5, C. Yau6,7, D.M. Wolf7, L.J. van ‘t Veer 8, A.J. Butte 1,2,

T. Goldstein1 & M. Sirota1,2

Cancer cell lines are a cornerstone of cancer research but previous studies have shown that

not all cell lines are equal in their ability to model primary tumors. Here we present a

comprehensive pan-cancer analysis utilizing transcriptomic profiles from The Cancer Gen-

ome Atlas and the Cancer Cell Line Encyclopedia to evaluate cell lines as models of primary

tumors across 22 tumor types. We perform correlation analysis and gene set enrichment

analysis to understand the differences between cell lines and primary tumors. Additionally,

we classify cell lines into tumor subtypes in 9 tumor types. We present our pancreatic cancer

results as a case study and find that the commonly used cell line MIA PaCa-2 is tran-

scriptionally unrepresentative of primary pancreatic adenocarcinomas. Lastly, we propose a

new cell line panel, the TCGA-110-CL, for pan-cancer studies. This study provides a resource

to help researchers select more representative cell line models.
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Cancer cell lines are an integral part of cancer research and
are routinely used to study cancer biology and to screen
anti-tumor compounds. While they are relatively inex-

pensive and easy to grow under laboratory conditions, cell lines
have known limitations as preclinical models of cancer and many
promising candidate drug compounds have failed to show utility
among patient populations1,2. Prior studies in ovarian cancer3,
liver cancer4, and breast cancer5,6 have shown that cell lines differ
in their ability to represent the primary tumors they were derived
from, suggesting that using more appropriate cell lines for cancer
studies may increase the translatability of preclinical findings.
While these previous studies are valuable resources for
researchers studying select tumor types, there is a need for a
comprehensive pan-cancer analysis of cell lines and primary
tumors.

The generation of large public molecular data sets has allowed
researchers to investigate cancer biology at a scale that was
unheard of a decade ago. In particular, The Cancer Genome Atlas
(TCGA)7 research group has collected and characterized the
molecular profiles of tumors from over 11,000 patients across 33
different tumor types. They provide clinical, transcriptomic,
methylation, copy number, mutation, and proteomic data to
facilitate the in-depth interrogation of cancer biology at multiple
molecular and clinical levels. In addition, the Broad Institute’s
Cancer Cell Line Encyclopedia8 is another large-scale research
effort which characterized over 1000 human-derived cancer cell
lines across 36 tumor types and provides transcriptomic, copy
number, and mutation data.

Previous studies have integrated data from both of these data
sets to evaluate cell lines as models of specific tumor types. For
example, Domcke et al. focused primarily on copy number
alterations and mutation data to evaluate cell lines as models of
high-grade serous ovarian carcinomas (HGSOC)3. They created
a cell line suitability score using features of HGSOC and dis-
covered that the most commonly used cell lines do not seem to
resemble HGSOC tumors, and the cell lines most representative
of HGSOC have very few publications. Similarly, Chen et al.
compared hepatocellular carcinoma primary tumor samples to
cell lines using transcriptomic data and found that nearly half
of the hepatocellular carcinoma cell lines in CCLE do not
resemble their primary tumors4. In breast cancer, Jiang et al.
compared gene expression, copy number alterations, mutations,
and protein expression between cell lines and primary tumor
samples5. They created another cell line suitability score by
summing the correlations across all four molecular profiles,
although it is notable that only gene expression and copy
number alterations had a substantial effect on their score as
mutations and protein expression had extremely low correla-
tions across all cell lines (R < 0.1). In another breast cancer
study, Vincent et al. compared transcriptomic data between cell
lines and primary tumor samples and identified basal and
luminal cell lines that were most similar to their respective
breast cancer subtypes6. While these studies provide insight
into specific tumor types, here we hope to provide researchers
with a pan-cancer resource that is, to the best of our knowledge,
the most comprehensive to date. In addition, unlike previous
studies, we adjust for tumor purity which can be a significant
confounder in primary tumor transcriptomic data9.

Cancer is an incredibly heterogeneous disease that can often be
stratified into clinically relevant subtypes with different prognosis
and responses to treatments. While specific genomic alterations
or histological markers have been used to stratify tumors, gene
expression is commonly used to group tumors into molecular
subtypes10–12. Breast cancers, for example, can be divided into
five intrinsic molecular subtypes based on gene expression pro-
files with distinct clinical outcomes13. While much progress has

been made in separating primary tumors into biologically distinct
subtypes, few publications have attempted to apply these subtypes
to cell line models. Our study seeks to provide subtype classifi-
cations for cell lines to aid researchers interested in subtype-
specific studies or drug screens.

The National Cancer Institute’s NCI-60 cell lines are perhaps
the most well-studied human cancer cell lines, and have been in
use for nearly three decades by both academic and industrial
institutions for drug discovery and cancer biology research14.
The NCI-60 panel contains 60 human tumor cell lines repre-
senting nine human tumor types: leukemia, colon, lung, central
nervous system, renal, melanoma, ovarian, breast, and prostate.
Over 100,000 antitumor compounds have been screened using
this cell line panel, generating the largest cancer pharmacology
database worldwide. While this cell line panel has provided
valuable insight into mechanisms of drug response and cancer
biology, new large public molecular data sets allow us to compare
the NCI-60 cell lines to primary tumor samples and propose
more representative cell lines for an improved cancer cell
line panel.

In this study, we compared transcriptomic profiles from cell lines
and primary tumor samples across the 22 tumor types covered by
both TCGA and CCLE. We observed the confounding effect of
primary tumor sample purity in our analysis, and we adjusted for
purity in our correlation analysis and differential expression analysis
of cell lines and primary tumor samples. We found that cell-cycle-
related pathways are consistently upregulated in cell lines, while
immune pathways are consistently upregulated across the primary
tumor samples. Next, we classified cell lines into subtypes across
nine tumor types. We then present our analysis of pancreatic
adenocarcinoma (PAAD) cell lines and primary tumor samples and
show that we are able to identify a cell line that originated from a
different cell-type lineage compared with the primary tumor sam-
ples. Although only our PAAD analysis is presented in the main
text, we also analyzed the other 21 tumor types and present our
results as a web application and a resource to the cancer research
community (http://comphealth.ucsf.edu/TCGA110CL). Last, we
selected the cell lines that were the most correlated to their primary
tumor samples across 22 tumor types and propose a new cell line
panel, the TCGA-110-CL, as a more appropriate and comprehen-
sive panel for pan-cancer studies.

Results
Pan-cancer comparison of expression profiles. We compared
RNA-seq profiles from 8282 primary tumors from TCGA with
666 cell lines from CCLE across 22 overlapping tumor types
(Supplementary Data 1, 2). Primary tumors were used in all
tumor types except for SKCM, in which case the metastatic
tumors were included because the SKCM TCGA cohort was
primarily focused on metastatic tumors. We normalized counts
using the upper-quartile method and corrected for batch effects
related to different sequencing platforms using ComBat15 (Sup-
plementary Fig. 1). For each tumor type, we then adjusted for
tumor purity in the primary tumor samples and calculated cor-
relation coefficients between primary tumor samples and cell lines
using the 5000 most variable genes, as these genes are the most
likely to be biologically informative (see the Methods section). To
understand the biological processes captured by the 5000 most
variable genes, we performed gene ontology analysis on the top
10% of genes driving the correlations in each tumor type and
found that many developmental pathways were enriched (Sup-
plementary Data 3). This is consistent with the view that devel-
opmental pathways are often altered in cancer16–18. A full matrix
of the cell line and primary tumor correlations are provided in
Supplementary Data 4.
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The median correlation coefficients between cell lines and their
matched tumor samples were relatively consistent across tumor
types, from 0.66 in head and neck squamous cell carcinoma
(HNSC) to 0.49 in liver hepatocellular carcinoma (Fig. 1b).
Within tumor types, the correlation coefficient ranges were
largest in PAAD (0.29–0.76), LUSC (0.32–0.79), and LIHC
(0.26–0.72), which likely reflect the amount of heterogeneity
within each tumor type and suggest that some primary tumor
samples are well matched with cell lines, while others may lack
representative cell line models.

Our clustering analysis of cell line and primary tumors
correlation coefficients largely captures known biological

relationships between the tumor types (Fig. 1c). The first split
in our clustering analysis depicts the large difference between
hematopoietic tumor types and solid tumor types, previously
shown in other studies3. Within the solid tumor cluster, tumor
types from similar cell of origin generally clustered together, such
as ovarian serous cystadenocarcinoma (OV) and uterine corpus
endometrial carcinoma (UCEC), glioblastoma (GBM) and lower
grade glioma (LGG), and esophageal carcinoma (ESCA) and
HNSC. Interestingly, we observe that sometimes the highest
correlation coefficients are not necessarily between cell line and
primary tumor samples from the same tumor type. In fact, in 8/22
tumor types, primary tumor samples have higher correlation
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coefficients with other tumor cell lines than their own. These
tumor types are BLCA (highest correlation with HNSC), CHOL
(highest correlation with LIHC), ESCA (highest correlation with
HNSC), LGG (highest correlation with GBM), STAD (highest
correlation with COADREAD), LUSC (highest correlation with
HNSC), LUAD (highest correlation with PAAD), and UCEC
(highest correlation with OV). While this may indicate poor
differentiation in the cell lines or primary tumor sample or lack of
appropriate cell line models, many of these tumor types have
higher correlations with a related tumor type (e.g., LGG and
GBM, STAD and COADREAD, UCEC and OV, ESCA
and HNSC).

To verify that the results of our transcriptomic-based
correlation approach were consistent with previous publications,
we compared our cell line rankings for OV to the cell line
rankings in Domcke et al. which evaluated high-grade ovarian
cancer cell lines based on copy number alterations and selected
mutations (Supplementary Data 5)3. Our results were highly
correlated (Spearman’s rho= 0.59, p-value= 5.837e-05), which
suggests that our cell line rankings capture much of the same
information as more curated ranking methods that use genomic
alterations.

Tumor purity drives primary tumor and cell line differences.
To explore the differences between cell lines and primary tumor
samples, we initially performed our correlation and differential
gene expression analysis across all 22 tumor types, without
accounting for tumor purity of the primary tumor samples
(Fig. 2a). In our correlation analysis, we compared the cell line
correlations with primary tumor samples in the top quartile of
tumor purity to the cell line correlations with primary tumor
samples in the bottom quartile of tumor purity for the 20 solid
tumor types for which we have tumor purity information
(Fig. 2a). In 75% (15/20) of these tumor types, the cell lines were
significantly more correlated with primary tumor samples in the
top quartile of purity compared with the primary tumor samples
in the bottom quartile of purity, suggesting that the individual
correlation coefficients are reflecting, to a certain extent, the
amount of non-tumor cells present in the primary tumor sam-
ples. Similarly, we found a significant positive relationship (R=
0.17, p-value < 2.2e-16) between primary tumor sample purity
and the cell line-primary tumor correlation coefficients, sug-
gesting that tumor purity is a confounder in our correlation
analysis. Furthermore, when we performed Gene Set Enrichment
Analysis (GSEA) on the differential expression results using the
hallmark gene sets from the MSigDB Collections19 and the
hallmarks of cancer pathways20, we saw that the gene sets
involved in immune processes are consistently upregulated in
primary tumor samples, suggesting that the largest biological
signal from the TCGA samples can likely be attributed to the
immune cell infiltrate that are present in the primary tumor
samples and absent in the pure cell line populations (Supple-
mentary Fig. 2C).

After adjusting for primary tumor sample purity in our
correlation analysis, we confirmed that there was no longer a
significant positive relationship between primary tumor sample
purity and cell line-primary tumor correlation coefficients (R=
−0.02, p-value < 2.2e-16). In addition, we found that only one
tumor type (LGG) retained significantly higher correlations
between cell lines and the primary tumor samples in the top
quartile of purity compared with cell lines and primary tumor
samples in the bottom quartile of purity (Supplementary Fig. 2D).
We then performed differential expression analysis using tumor
purity as a covariate to explore differences in cancer cell biology,
while minimizing the influence of tumor infiltrating cells. The

number of differentially expressed genes ranged from 1157 in
esophageal carcinoma (ESCA) to 4076 in low-grade glioma
(LGG) (Supplementary Table 1). We identified 87 genes that were
upregulated in primary tumor samples across 20 of the tumor
types analyzed, and we found a significant number of interactions
among these genes (PPI enrichment p-value < 1.0e-16) (Fig. 2b).
This PPI network was enriched for genes in the immune response
pathway (false discovery rate= 5.51e-06), suggesting that we were
not fully able to remove the contribution of the immune infiltrate.
However, the GSEA results show a much weaker enrichment of
immunological pathways upregulated in the primary tumor
samples (Fig. 2c, d).

No individual genes were significantly upregulated in cell lines
across 90% of the tumor types analyzed. However, gene sets
involved in cell-cycle progression (e.g., E2F targets, G2M
checkpoint, and Myc targets) and genome instability were
significantly enriched in cell lines in our GSEA of MSigDB
Hallmark Gene Sets and the Hallmarks of Cancer pathways
(Fig. 2c, d). These results demonstrate how GSEA can be more
informative than analyzing individual upregulated genes alone. In
addition, the enrichment of proliferative gene sets in cell lines
across the tumor types suggests a common response to in vitro
culturing conditions.

Predicting subtypes in cancer cell lines. In order to predict the
subtype of individual cancer cell lines, we applied the Broad
Institute’s Nearest Template Prediction (NTP) method21, which
has previously been used to predict the subtypes of cancer cell
lines22. Briefly, this method involves generating gene templates
for each subtype by identifying genes that are upregulated in each
subtype compared with the other subtypes. The distances between
the sample to be classified and each subtype template is then
calculated, and the sample is predicted to belong to the subtype
with the smallest template distance (Fig. 3a).

Like Sveen et. al, we modified this method to create a classifier
that can be applied to cancer cell lines after training the classifier on
primary tumor samples22. We began with the 18 TCGA tumor
types for which we had subtype information from TCGA
publications23–39, and randomly divided these samples into training
sets (80%) and test sets (20%). After generating our initial subtype
templates using the training set of primary tumor samples, we
removed genes that are differentially expressed between primary
tumors and cell lines as we wanted to enrich our subtype templates
for genes that are consistent between primary tumors and cell line
models. We also filtered out genes that are not highly expressed in
at least a subset of the cell lines, as we wanted to retain genes that
are robust and informative in cell lines. This filtering step can also
enrich for cancer-intrinsic genes, since cell lines are pure
populations of cancer cells. To verify that our classifier is still able
to predict tumor subtypes after enriching for cell line relevant genes,
we applied the classifier to the test set of held out primary tumor
samples. Overall, 9/18 tumor types had a classification accuracy
greater than or equal to 80% in the test set. We then applied the
classifiers of these nine tumor types to their respective cell lines and
predicted the subtypes of the individual cell lines (Fig. 3b). While all
the primary tumor subtypes are predicted to be present in their
respective cell lines, the proportions of subtypes significantly differ
between primary tumors and cell lines in BRCA (chi-squared p-
value < 2.2e-16), LUAD (chi-squared p-value= 9.5e-4), and SKCM
(chi-squared p-value= 4.7e-5). This is likely because certain tumor
subtypes have a higher rate of cell line generation than others due to
their biology. We present the results of our cell line subtype
predictions in Supplementary Data 6. We also include the ranks of
each cell line compared with the primary tumors of the individual
subtypes.
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Case study: evaluating PAAD cell lines. PAAD is often diag-
nosed at an advanced stage, and is predicted to become the sec-
ond leading cause of cancer mortality by the year 2030. PAAD
tumors can be divided into basal or classical molecular
subtypes, with significantly lower survival associated with the
basal subtype40. We utilize these subtypes in our study of PAAD
presented here. While only the analysis for PAAD is shown,
analysis of the other tumor types are available in our web
application (http://comphealth.ucsf.edu/TCGA110CL). For each
tumor type, we adjusted for primary tumor purity and compared
the expression profiles of the primary tumor samples to the 932
cell line expression profiles in a correlation analysis. We included

tumor subtype predictions for the nine tumor types where the
prediction accuracy in the test set was greater ≥80%.

We compared the correlations between PAAD primary
tumor samples and all 932 cell lines grouped by cell line tissue
of origin (Fig. 4a). The PAAD primary tumor samples are most
correlated with cell lines originating from the pancreas, which
contains all the PAAD cell lines. The correlation coefficients
between PAAD primary tumor samples and cell lines from the
pancreas; however, are not significantly higher than the
correlation coefficients between PAAD primary tumor samples
and cell lines from the second most correlated tissue of origin,
the biliary tract. This suggests that pancreatic cell lines and
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biliary tract cell lines share a large amount of biology, perhaps
because of their ductal nature or close anatomical proximity.
We next compared individual PAAD cell lines to the PAAD
primary tumor samples (Fig. 4b). The median correlation
coefficients of the cell lines ranged from 0.67 to 0.49, suggesting
that some cell lines are less suitable as models of primary tumor
samples than others. Within the cell lines, however, the
standard deviations of the correlation coefficients are relatively
low (0.08–0.03). This suggests that between cell line differences
are larger than within cell line differences, the latter of which
reflects the variability of the primary tumor samples. Interest-
ingly, we found that the cell line with the second lowest median
correlation, QGP1, is derived from a pancreatic neuroendocrine
tumor rather than a PAAD, and the cell line with the lowest
correlation, MIA PaCa-2, was derived from an adenocarcinoma
but has been shown to also express neuroendocrine differentia-
tion41. This suggests that our correlation approach is able to
distinguish between cell lines derived from different cell types
or cell lines that may not be representative of PAAD. Of
potential concern, the cell line with the lowest median
correlation coefficient, MIA PaCa-2, is commonly used as an
adenocarcinoma cell line model and has over 1000 PubMed
citations.

Next, we incorporated primary tumor subtype information
from Moffit et al., which classified the PAAD primary tumor
samples into two molecular subtypes40. We did not see strong
clustering by primary tumor subtypes in our primary tumor/cell
line correlation matrix (Fig. 4c). This suggests that our correlation
approach using the 5000 most variable genes, while useful in
showing global differences between cell lines and primary tumor
samples, may not be adequate for distinguishing between specific
tumor subtypes.

We then used the Nearest Template Prediction method to
predict the subtypes of the pancreatic cancer cell lines (Fig. 4d).
After deriving the subtype template genes from a training set
(80%) of the PAAD TCGA tumors and applying our filtering
criteria, we tested these subtype templates on a test set (20%) of
held out PAAD TCGA tumors. We achieved a classification
accuracy of 96% (Fig. 4d, top), suggesting that our classifier is able
to successfully predict pancreatic subtypes even after applying our
filtering criteria to enrich for cell line-relevant genes. We then
used our classifier to predict the subtypes of the PAAD cell lines.
In all, 15 cell lines were predicted to belong to the basal subtype,
10 cell lines were predicted to belong to the classical subtype, and
16 cell lines had an FDR > 0.05 and could not be assigned a
subtype (Fig. 3d, bottom). 15 PAAD cell lines in our study were
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also analyzed by the Moffit et al. publication40. Out of these 15
cell lines, 10 cell lines passed our subtype prediction FDR cutoff
of 0.05. While the Moffit et al. publication predicted all ten of
these cell lines to belong to the basal subtype, we predicted that
eight of these cell lines belong to the basal subtype and two belong
to the classical subtype. Interestingly, the two cell lines that we
predicted to belong to the classical subtype (CAPAN-1 and
HPAF-II) have been noted to produce high or moderate amounts
of mucin42,43, which the Moffit et. al paper found to be present in
increased levels in the classical subtype40. In addition, the
Collison et al. publication, whose classical subtype genes
significantly overlapped with the Moffit et al. classical subtype
genes (20/22), predicted that both CAPAN-1 and HPAF-II
belong to the classical subtype44. This suggests that these two
pancreatic cell lines may indeed reflect the classical subtype,
despite the Moffit et al. publication classifying them as basal40.

Correlations between the pancreatic cell lines and the primary
tumors in each individual subtype were also calculated (Supple-
mentary Fig. 4). The rankings of the pancreatic cell lines
compared with the primary tumors in the individual subtypes
were similar to the rankings of the pancreatic cell lines compared
with all of the pancreatic primary tumors, suggesting that global
differences between the samples outweigh the subtype-specific
differences for PAAD.

TCGA-110-CL: a comprehensive pan-cancer cell line panel. The
NCI-60 panel of human tumor cell lines has been used in cancer
research for almost 30 years to screen chemical compounds and
natural products. It contains cell lines from the following ten
tumor types: BRCA, COADREAD, GBM, KIRC, LAML, LUAD,
LUSC, OV, PRAD, and SKCM. We wanted to determine if the
NCI-60 panel could be improved by using cell lines with higher
correlations to their primary tumor samples. We analyzed the cell
lines that overlapped between the NCI-60 panel and the CCLE
database, and found that the cell lines in the NCI-60 panel did not
have the highest correlations with their primary tumor samples
based on gene expression profiles (Fig. 5a–c). We created an
improved NCI-60 panel by selecting the same number of cell lines
per tumor type as the original NCI-60 panel, but choosing the cell
lines with the highest correlations per tumor type. The correla-
tions in our improved NCI-60 panel were significantly higher
than the original NCI-60 panel, which suggests that the integra-
tion of primary tumor data can be used to guide cell line selection
for more representative models of cancer.

We furthermore propose a new expanded panel of cell lines,
which we name TCGA-110-CL, to be used as a pan-cancer
resource for cancer research and drug screening (Fig. 5d;
Supplementary Data 7). We selected the five cell lines with the
highest correlations to their primary tumor samples from each of
the 22 tumor types analyzed in this paper to generate our TCGA-
110-CL panel. For the nine tumor types for which we have tumor
subtype predictions of the cancer cell lines, we select the cell lines
with the highest correlation within each tumor subtype to
maximize the diversity of tumor subtypes within the panel. By
using TCGA primary tumor data to guide our cell line selection,
we hope that our new panel will be more comprehensive and
representative of primary tumor samples than the NCI-60 panel.

Discussion
While cell lines are commonly used as models of primary tumors in
cancer research, cell lines differ from primary tumors in biologically
significant ways and not all cell lines may be appropriate models for
their annotated tumor type. Previous studies of ovarian cancer,
breast cancer, and liver cancer have shown that the molecular
profiles of cell lines from the same tumor type can differ widely and

some cell lines more closely model their primary tumors than
others. In this study, we leveraged publicly available transcriptomic
data to perform a comprehensive pan-cancer analysis across 22
tumor types and provide a resource for researchers to select
appropriate cell lines for their tumor-specific studies.

Our analysis reveals that primary tumor and cell line corre-
lations did not vary widely across tumor types. Clustering
tumor types by correlations between primary tumor samples
and cell lines generally grouped similar tumor types together.
Of note, the primary tumor samples in 8/22 tumor types have
higher correlation coefficients with cell lines from other tumor
types than cell lines from their own tumor type. These tumor
types may contain poorly differentiated samples, which would
make it difficult to distinguish them from other tumor types
using transcriptomics alone.

We identified primary tumor sample purity as a significant
confounder in our correlation and differential expression analysis,
and show that we are largely able to remove the confounding
effect of tumor purity in our analysis. After correcting for primary
tumor purity, we found a significantly lower enrichment of
immune pathways among the primary tumor samples in our
GSEA analysis. We found that cell-cycle-related pathways are
consistently upregulated in cell lines across all tumor types,
perhaps reflecting in vitro culturing conditions.

In our case study comparing pancreatic cell lines to pancreatic
primary tumor samples, we found that the pancreatic cell lines
are more representative of pancreatic primary tumor samples
than cell lines from other tissues of origin. We also found a group
of cell lines with significantly lower correlations with the primary
tumors, suggesting that these cell lines may not be appropriate
models of primary PAAD tumors. Indeed, the pancreatic cancer
cell line with the worst median correlation was shown to express
neuroendocrine differentiation41, and the second lowest cell line
was derived from a neuroendocrine tumor rather than an ade-
nocarcinoma. Last, we predicted tumor subtypes for 60% of the
pancreatic cell lines, and predicted 15 basal subtype cell lines and
10 classical subtype cell lines to be present in the CCLE. While we
presented our analysis of pancreatic cancer here, we also analyzed
the other 21 tumor types and present the results in our web
application (http://comphealth.ucsf.edu/TCGA110CL).

Finally, we propose the TCGA-110-CL cell line panel as a
resource for pan-cancer studies. It encompasses 22 different
tumor types and contains the cell lines most correlated with their
primary tumor samples. Although some tumor types have higher
correlations than others, our aim was to propose a comprehensive
cell line panel and we did not set a correlation coefficient cutoff
for cell line inclusion. We hope that using more representative
cell lines in our pan-cancer panel will improve our ability to
translate cell line findings into patients.

There are several limitations of our study that should be
recognized. Although we were not able to match all of the cell
lines from CCLE to primary tumor samples in TCGA, we were
able to match a majority of the cell lines (71%) to a corresponding
primary tumor type, and we provide analysis for less common
tumor types whose cell lines have not been well studied. In
addition, although our cell line findings lack experimental vali-
dation, our findings were highly correlated to previous publica-
tions3, and we were able to identify a pancreatic cell line that was
derived from a neuroendocrine tumor rather than a PAAD. Last,
the focus of our study was on transcriptomics which is only one
potential metric for determining cell line suitability, depending on
the research question being asked. However, we believe this study
is a valuable general resource for researchers who can, for
example, use it to identify potentially problematic cell lines that
may not be representative of the primary tumors they are
studying.
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In future studies, we hope to integrate other types of molecular
data such as mutation, copy number alteration, and methylation
profiles to provide a multi-omic comparison of cell lines and
primary tumor samples. In particular, genomic alterations are
important for targeted therapies, which act on specific mutant

isoforms and we hope to incorporate this information in our
future cell line studies.

By leveraging expression profiles from thousands of primary
tumor and cell line samples, our study has created a compre-
hensive pan-cancer resource to aid researchers in selecting the
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most representative cell line models. We hope that using more
appropriate cell line models for cancer studies will allow the
research community to better understand cancer biology and
translate more in vitro findings into clinically relevant therapies.

Methods
Data collection and normalization. CCLE cell lines were manually matched to
TCGA tumor types using the CCLE Cell Line Annotations file
(CCLE_sample_info_file_2012–10–18.txt), which contains histological information
for each cell line. While 934 CCLE samples were available in the OSF open-access
repository, we were able to match ~70% of the samples (n= 679) to their respective
TCGA tumor type. We used these matched CCLE cell lines for comparison with
TCGA primary tumor samples. These samples encompass the following 22 tumor
types: BLCA, BRCA, CHOL, COADREAD, DLBC, ESCA, GBM, LGG, HNSC,
KIRC, LAML, LIHC, LUAD, LUSC, MESO, OV, PAAD, PRAD, SKCM, STAD,
THCA, and UCEC. For the correlation analysis based on cell line tissue of origin,
all 934 CCLE samples were used.

TCGA and CCLE RNA-seq samples for the 22 tumor types listed above were
downloaded from the Google Cloud Pilot RNA-Sequencing for CCLE and TCGA
project in the OSF open-access repository45 (https://osf.io/gqrz9/). This repository
contains 12,307 RNA-seq samples from both the CCLE and the TCGA databases,
which have been uniformly processed from raw data. Transcript alignment and
quantification were performed using kallisto (version 0.43.0), and both transcript
per million (TPM) values and transcript counts are available in the repository. The
transcript counts were downloaded and summarized to the gene level for this
analysis. We then performed upper-quartile normalization and the log transformed
data. Because two different sequencing platforms (GAII and HiSeq) were used by
TCGA to sequence five tumor types (UCEC, COADREAD, LAML, STAD, and
UCEC), we used ComBat to correct for these sequencing platform differences
(Supplementary Fig. 1).

We collected tumor purity estimates for all TCGA samples using the
ABSOLUTE46 method from the TCGA PanCan site (https://gdc.cancer.gov/about-
data/publications/pancanatlas). We then computed tumor purity using
ESTIMATE47 for all of the TCGA tumors and averaged the ABSOLUTE and
ESTIMATE values. The purity estimates using ABSOLUTE were highly correlated
with the purity estimates using ESTIMATE (Supplementary Fig. 2A).

Correlation analysis. We analyzed 18,151 protein-coding genes in our correlation
analysis. To correct for the heterogeneous cellular composition of the primary
tumor samples, we removed genes that have high correlations with tumor purity
(R >−0.4, adjusted p-value < 0.01), and adjusted for tumor purity in the primary
tumor samples using linear regression. For each tumor type, we then selected the
5000 most variable genes ranked by interquartile range (IQR) across the primary
tumor samples only. We decided to use 5000 genes based on previous studies4,
although we tried increasing the number of genes (10000 genes, all genes) and
found our results to be remarkably robust (Supplementary Fig. 3A, B). In addition,
we performed Gene Ontology analysis on the top 10% (500) of the genes with the
highest IQR to understand which biological processes are captured. The results of
the GO analysis are presented in Supplementary Data 3.

Differential expression and GSEA. We identified differentially expressed genes
using limma and voom with quantile normalization. We added tumor purity
estimates of the primary tumor samples as covariates, and we set the tumor purity
estimates of all the cell lines as 1. We considered a gene to be differentially
expressed if the FDR <0.01, and the absolute LFC >2.

For our GSEA analysis, we ranked our genes by their log fold-change values. We
then used the GSEAPreanked48 software with the classic setting, which was
recommended for RNA-seq data in the GSEA manual. The enrichment score (ES)
reflects the degree to which a gene set is overrepresented at the top or bottom of the
ranked list of genes. We downloaded the 50 Hallmark gene sets from the MSigDB
Collections19, and created our own gmx file for the Hallmarks of cancer pathways
using gene sets from the Oncology Models Forum20.

Tumor subtype analysis. We used the Broad Institute’s Nearest Template Pre-
diction (NTP)21 method for our subtype analysis. To generate the subtype tem-
plates for each tumor type, we collected subtype information from TCGA
publications. We then randomly split the TCGA samples into training (80%) and
test set (20%). We used the training set to generate the templates for the NTP
method by performing differential expression analysis between each subtype versus
all other subtypes with voom and quantile normalization. We selected template
genes that had LFC >1 and FDR <0.01 for each subtype. To enrich for cell line
relevant genes, we then removed genes that were differentially expressed between
cell lines and primary tumors with LFC >2 and genes that were not in the top 50%
of expression in at least two cell lines. Next, we used these filtered subtype tem-
plates to predict the subtypes of the primary tumors held out in the test set using
the NTP method. If the classification accuracy in the test set was ≥80%, we then
applied it to the cell lines to predict the cell line subtypes.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
All data used in this study are publicly available. The TCGA and CCLE RNA-seq count
matrixes were originally downloaded from the Google Cloud Pilot RNA-sequencing for
CCLE and TCGA open-access repository: https://osf.io/gqrz9. The normalized expression
data used in this study is available on SynapseSynpase (https://www.synapse.org)
under Synapse ID syn18685536. Tumor purity estimates for all TCGA samples using the
ABSOLUTE method were downloaded from the TCGA PanCanAtlas publications
website: https://gdc.cancer.gov/about-data/publications/pancanatlas. GSEA hallmark gene
sets were downloaded from the GSEA MSigDB Collections website: http://software.
broadinstitute.org/gsea/msigdb/collections.jsp. The hallmarks of cancer gene sets were
downloaded from the Oncology Model Fidelity Score GitHub page: https://github.com/
tedgoldstein/hallmarks.

Code availability
The code for normalization and comparing the TCGA and CCLE gene expression
profiles is available at https://github.com/katharineyu/TCGA_CCLE_paper.
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