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Obesity Modifies the Relationship Between Raltegravir
and Dolutegravir Hair Concentrations and Body Weight

Gain in Women Living with HIV

Cecile D. Lahiri,1 C. Christina Mehta,1 Craig Sykes,2 Sheri D. Weiser,3 Frank Palella,4 Jordan E. Lake,5

John W. Mellors,6 Deborah Gustafson,7 Audrey L. French,8 Adaora A. Adimora,9 Deborah Konkle-Parker,10

Anjali Sharma,11 Hector Bolivar,12 Seble G. Kassaye,13 Leah H. Rubin,14,15 Jessica A. Alvarez,16

Elizabeth T. Golub,15 Igho Ofotokun,1 and Anandi N. Sheth1

Abstract

Integrase strand-transfer inhibitors (INSTIs) are associated with weight gain in women living with HIV (WLH).
Relationships between drug exposure, baseline obesity, and INSTI-associated weight gain remain unclear. Data
from 2006 to 2016 were analyzed from virally suppressed WLH enrolled in the Women’s Interagency HIV
Study, who switched/added an INSTI to antiretroviral therapy: [raltegravir (RAL), dolutegravir (DTG), or
elvitegravir (EVG)]. Percent body weight change was calculated from weights obtained a median 6 months pre-
INSTI and 14 months post-INSTI initiation. Hair concentrations were measured with validated liquid
chromatography-mass spectrometry (MS)/MS assays. Baseline (preswitch) weight status evaluated obese (body
mass index, BMI, ‡30 kg/m2) versus nonobese (BMI <30 kg/m2). Mixed models examined the drug hair
concentration*baseline obesity status interaction for each INSTI. There were 169 WLH included: 53 (31%)
switched to RAL, 72 (43%) to DTG, and 44 (26%) to EVG. Women were median age 47–52 years, pre-
dominantly Non-Hispanic Black, median CD4 counts >500 cells/mm3, >75% with undetectable HIV-1 RNA.
Over *1 year, women experienced median increases in body weight: 1.71% (-1.78, 5.00) with RAL; 2.40%
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(-2.82, 6.50) with EVG; and 2.48% (-3.60, 7.88) with DTG. Baseline obesity status modified the relationship
between hair concentrations and percent weight change for DTG and RAL ( p’s < 0.05): higher DTG, yet lower
RAL concentrations were associated with greater weight gain among nonobese women. Additional pharma-
cologic assessments are needed to understand the role of drug exposure in INSTI-associated weight gain.

Keywords: HIV, women, weight gain, integrase inhibitors, pharmacology

Background

Integrase strand-transfer inhibitors (INSTIs) are

the mainstay of antiretroviral treatment (ART) for people
with HIV (PWH).1,2 INSTI use has been associated with body
weight gain, particularly among women living with HIV
(WLH),3–7 a group heavily impacted by the global AIDS
epidemic,8 but underrepresented in HIV research.9 Among
virologically suppressed PWH, body weight gain and obesity
have been linked to diabetes mellitus, cognitive impair-
ment,10 and a 1.5-fold increased odds of ART non-
adherence.11

Demographic and clinical characteristics associated with
INSTI-associated weight gain, including female sex,4,7,12

older age,4,13 and lower baseline body mass index (BMI),13,14

also play prominent roles in drug pharmacokinetics.15–18

However, the role of ART pharmacokinetics in INSTI-
associated weight gain remains unclear. Higher plasma
concentrations of efavirenz and dolutegravir (DTG) have
been associated with neuropsychiatric side effects,19–21 while
higher atazanavir concentrations have been associated with
hyperbilirubinemia22 and metabolic and renal disorders.23

However, plasma concentrations represent recent drug ex-
posure and are influenced by short-term adherence changes.24

Hair concentrations are measures of long-term ART adher-
ence and strong predictors of virological outcomes.25–27

Higher hair concentrations of tenofovir and emtricitabine in
the setting of HIV-1 pre-exposure prophylaxis were associ-
ated with creatinine clearance decline,28 illustrating the
utility of hair concentrations to predict toxicities.

Leveraging the Women’s Interagency HIV Study (WIHS)
cohort, we showed that WLH switching to or adding an IN-
STI [DTG, elvitegravir (EVG), or raltegravir (RAL)] to ART
experienced significantly greater gain in body weight and
other adiposity measures compared to women remaining on
non-INSTI regimens, and the magnitude was greater in
nonobese women (BMI <30 kg/m2).13 In this analysis, we
assessed the association between INSTI hair concentrations
and body weight change in WLH and the potentially modi-
fying effects of baseline obesity status.

Methodology

Study population

The study population consisted of WLH enrolled in
WIHS,29,30 a longitudinal cohort of WLH and at-risk HIV-
seronegative cis-gender women from 10 U.S. sites: San
Francisco, CA; Los Angeles, CA; Chicago, IL; Brooklyn, NY;
Bronx, NY; Washington, DC; Chapel Hill, NC; Miami, FL;
Birmingham, AL/Jackson, MS combined site; and Atlanta,
GA. WIHS participants underwent semiannual study visits
with clinical and medication histories, physical examinations,

and specimen collection. Hair specimens were collected at
each semiannual visit by uniformly trained research staff from
participants who reported ART use for ‡1 month.

Eligibility criteria included WLH with self-reported ART use
at five consecutive semiannual study visits who (1) switched
from non-INSTI ART [defined as regimens, including a nucle-
oside reverse transcriptase inhibitor backbone plus non-
nucleoside reverse transcriptase inhibitor (NNRTI), protease
inhibitor, and/or entry inhibitors] to regimens, including an IN-
STI (DTG, RAL, or EVG), or added an INSTI to existing ART;
(2) remained on same INSTI drug for ‡ two study visits; (3) were
not pregnant; (4) had HIV-1 RNA <200 copies/mL at each of
these visits; and (5) had hair collected in ‡1 postswitch/add visit.
Since advanced disease stage (low CD4 count and high HIV-1
RNA viral loads) has been strongly associated with weight gain
after ART initiation,10,31 we excluded ART-naive women. The
WIHS study protocol was approved by Institutional Review
Boards at each site; only de-identified data were used.

Definitions of outcome and covariates

Sociodemographic and clinical data collected from WIHS
visits occurring from 2006 to 2016 were used. The study visit
at which INSTI use was first reported was considered the
‘‘switch/add’’ visit. Each participant contributed data from
‡2 study visits: one visit occurring a median of 6 (Q1: 5,
Q3: 6) months preceding the switch/add visit (baseline) and
‡1 study visit occurring median 14 (12, 18) months after the
switch/add visit (postswitch/add). At each visit, body weight
(kilogram, kg) and height (meters, m) were measured using
standard methods.32 The primary outcome was percent body
weight change [(postswitch/add minus baseline)/baseline ·
100)] between visits.

BMI was calculated as weight (kg)/height (m).2 Baseline
obesity status, the modifier of interest, was defined as obese
(BMI ‡30 kg/m2) versus nonobese (BMI <30 kg/m2) based
on World Health Organization guidelines.33 We selected
additional covariates based on previous literature that sug-
gested they were important confounders on the relationship
between weight gain, ART pharmacokinetics, and/or hair
drug concentrations,4,7,12–18,34,35 including age, race/ethnicity
(Non-Hispanic Black vs. all other races/ethnicities), current
smoking (yes/no), education attained (>high school diploma
vs. less), annual income (0–$12,000, $12,001–$24,000, or
>$24,000), NNRTI exposure at baseline (yes/no), HIV-1
viral load (undetectable vs. detectable, but <200 copies/mL),
estimated glomerular filtration rate (eGFR) in mL/min using
the chronic kidney disease epidemiologic collaboration,
Chronic Kidney Disease Epidemiologic Collaboration,
equation,36 and self-reported hair bleaching.

Self-reported ART adherence was assessed in question-
naires where participants were asked how often over the last
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6 months, they took their antiretroviral therapy as prescribed
(summarized as ‡95% vs. <95%). No woman reported use of
tenofovir alafenamide (TAF) containing ART.

Hair collection, processing, and analysis

INSTI use was first reported in WIHS in 2007; therefore,
hair collected between 2007 and 2016 was used in these an-
alyses. Collection procedures were standardized: *10–20
strands of hair from the occipital region were cut close to the
scalp with the distal region labeled to denote directionality.
Hair was stored in foil within a plastic bag containing a des-
sicant at room temperature until analysis.37 To keep the time
period consistent between participants, one centimeter por-
tions of hair most proximal to the head (reflecting *1 month
of growth) were analyzed for INSTI concentrations.

The University of North Carolina School of Pharmacy
Clinical Pharmacology and Analytical Chemistry Labora-
tory, accredited by the College of American Pathologists
(CAP) and Clinical Laboratory Improvement Amendments
(CLIA), participates in the Clinical Pharmacoloogy Quality
Assurance program and performed all hair analyses. Analy-
tical methods for the measurement of hair DTG and RAL
have been previously published by our group.38,39 EVG hair
concentrations were determined by a validated liquid
chromatography-mass spectrometry method with stable iso-
topically labeled EVG-d6 as the internal standard. EVG was
extracted from hair strands by sonication and incubation in
methanol with 2% formic acid.

Following extraction, chromatographic separation was
achieved under gradient conditions on a Waters Atlantis T3
(50 · 2.1 mm, 3 mm) analytical column. Compounds were
detected on an AB Sciex API-5000 triple quadrupole mass
spectrometer with electrospray ionization in positive ion
mode. Calibration ranges were 5–10,000 pg/mL for DTG,

0.1–100 ng/mL for RAL, and 0.05–10 ng/mL for EVG. Hair
concentrations below the limit of detection were input as
lower limit of detection/2. Precision and accuracy criteria of
15% were met for calibration standards and quality control
samples for all three assays.

Statistical analyses

Analyses were stratified by INSTI (DTG, RAL, and EVG)
use. Demographic and clinical characteristics were summa-
rized with counts (and percents) and medians (Q1, Q3) for
categorical and continuous variables, respectively. For each
INSTI, unadjusted linear regression models were created with
compound symmetry covariance matrix for repeated mea-
sures. The dependent variable was percent body weight change
from baseline, and independent variables included INSTI hair
concentration, baseline obesity status, and INSTI hair con-
centration*obesity status. The interaction term with obesity
status was decided a priori based on earlier work that sug-
gested baseline BMI as an important modifier of INSTI ex-
posure on weight change outcomes.13 Additional covariates in
our adjusted models included undetectable HIV-1 viral load,
time since baseline, baseline: smoking status, NNRTI use,
education level, race/ethnicity, income, age, and eGFR. Ana-
lyses were performed using SAS v9.4 software (Cary, NC)
with alpha = 0.05. Model fit was assessed by residual plots.

Results

Demographic and clinical characteristics

One hundred sixty-nine WLH met eligibility criteria: 53
(31%) had switched to RAL, 72 (43%) to DTG, and 44 (26%) to
EVG. Women were middle aged (median age range 47.0–51.5
years) and predominantly Non-Hispanic Black, and majority
with education levels at or below high school diploma and

Table 1. Baseline Clinical and Demographic Characteristics Stratified by Integrase

Strand-Transfer Inhibitor Drug

Variable
RAL (n = 53) n (%)
or median (Q1, Q3)

DTG (n = 72) n (%)
or median (Q1, Q3)

EVG (n = 44) n (%)
or median (Q1, Q3)

Age, years 48.0 (42.0, 54.0) 51.5 (46.5, 57.0) 47.0 (39.5, 55.0)
Non-Hispanic Black 23 (43.4) 46 (63.9) 29 (65.9)
£High school education 35 (66.0) 44 (62.0) 25 (56.8)
Annual income

$0–$12,000 27 (50.9) 38 (53.5) 24 (54.4)
$12,001–24,000 12 (22.6) 16 (22.5) 12 (27.3)
>$24,000 14 (26.4) 17 (23.9) 8 (18.2)

Current smoker 11 (20.8) 23 (32.4) 19 (43.2)
CD4 count, cells/mm3 620 (449, 787) 691 (519, 869) 771 (630, 916)
Undetectable HIV RNA viral load 41 (77.4) 61 (84.7) 36 (81.8)
Time on ART, years 12.1 (10.2, 13.2) 10.9 (5.1, 17.0) 9.1 (6.2, 15.4)
‡95% ART adherence 46 (87) 63 (88) 37 (84)
NNRTI use at baseline 17 (32.1) 30 (41.7) 18 (40.9)
Obesity, BMI >30 kg/m2 18 (34.0) 31 (43.1) 27 (61.4)
BMI, kg/m2 28.5 (22.8, 31.7) 28.1 (24.1, 37.8) 31.3 (27.3, 38.0)
eGFR, mL/min 89.9 (69.9, 109.1) 79.9 (61.9, 103.4) 98.2 (81.4, 113.7)

Limit of detection for HIV RNA viral load was 80 cop/mL. ART adherence was self-reported adherence of taking HIV medications as
prescribed over the last 6 months, summarized as ‡95% versus <95%. Column percents may not total 100 due to rounding.

ART, antiretroviral therapy; BMI, body mass index; DTG, dolutegravir; eGFR, estimated glomerular filtration rate, calculated by Chronic
Kidney Disease Epidemiologic Collaboration (CKD-EPI) equation; EVG, elvitegravir; INSTI, integrase strand-transfer inhibitor; NNRTI,
non-nucleoside reverse transcriptase inhibitor; Q1, first quartile; Q3, third quartile; RAL, raltegravir.
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FIG. 1. Estimated percent body weight change by baseline obesity status and INSTI hair concentration. Model-adjusted
estimates of percent body weight change (y-axis) by baseline obesity status (grey line = nonobese; light grey line = obese)
and INSTI hair concentration (x-axis). Models were adjusted for baseline: age, race/ethnicity, education, income, smoking
status, non-nucleoside reverse transcriptase use, eGFR, undetectable HIV viral load, and time since baseline and were
created separately for (a) DTG; (b) RAL; and (c) EVG. DTG, dolutegravir; eGFR, estimated glomerular filtration rate;
EVG, elvitegravir; INSTI, Integrase strand-transfer inhibitor; RAL, raltegravir.

(continued) /
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annual incomes below $12,000. Overall, median CD4 lym-
phocyte counts were >500 cells/mm3, over three-quarters had
undetectable HIV-1 RNA (<80 copies/mL), median time on
ART was almost a decade, and over 80% reported ‡95% ART
adherence. No woman reported use of hair bleach during the
study. Baseline prevalence of obesity was high, ranging from
34% in the RAL group to 61% in the EVG group, Table 1.

Association between INSTI hair concentrations
and body weight gain

Women experienced a median (Q1, Q3) +1.71% (-1.68,
4.96) increase in body weight with RAL, 2.40% (-2.82, 6.50)
increase with EVG, and 2.48% (-3.60, 7.88) increase with
DTG after a median 1.13, 1.09, and 1.24 years, respectively.

In multivariable-adjusted linear models for DTG, there
was a significant interaction between obesity status and DTG
hair concentrations ( p = .0320). Higher DTG hair concen-
trations were positively associated with body weight gain in
nonobese women and inversely associated with body weight
gain in obese women, Figure 1a. Among nonobese women,
those with DTG hair concentrations in the highest quartile
experienced greater body weight gain than those with hair
concentrations in the lowest quartile: +6.3% versus +3.4%,
p = .0728. In obese women, there was no significant differ-
ence in body weight change between those with DTG hair
concentrations in the highest versus lowest quartile: +1.1%
versus +3.6%, p = .1888.

Significant interactions between obesity status and RAL
hair concentrations were observed ( p = .0401), but with op-
posite directionality: higher RAL hair concentrations were
inversely associated with body weight gain in nonobese
women, Figure 1b. Among nonobese women, those with
RAL hair concentrations in the highest quartile experienced

less body weight gain than those with hair concentrations in
the lowest quartile: +1.6% versus +4.0%, p = .0222. Among
obese women, there was no difference in body weight change
between those with RAL hair concentrations in the highest
versus lowest quartile: -1.9% versus -3.8%, p = .3113. No
association was found between EVG hair concentrations and
body weight change in either obese or nonobese women,
Figure 1c.

Discussion

This study evaluated the relationship between body weight
gain and INSTI drug exposure as measured by hair concen-
trations. In a diverse cohort of WLH who switched to INSTI-
based ART, we found that obesity modified the relationship
between INSTI drug exposure and body weight gain for DTG
and RAL, but not for EVG. Furthermore, we found that body
weight gain was associated with higher DTG hair concentra-
tions, but lower RAL hair concentrations in nonobese women.

In pharmacokinetic studies, obesity has been associated
with lower drug plasma concentrations for both RAL and
DTG, but not for EVG. While a population pharmacokinetic
study found no significant pharmacokinetic variability by
body weight for EVG or its co-administered booster, cobi-
cistat,40 Madelain et al. found that median RAL trough
concentrations (C12) were 44% lower for obese than non-
obese populations,17 and Zhang et al. found that female sex
and lower body weight were associated with higher plasma
DTG concentrations, either through effects on clearance or
bioavailability.41

To date, these weight-based differences in plasma drug
exposure for RAL and DTG were not deemed to be clinically
significant, as the primary outcome of interest was immuno-
virologic response rather than side effects or toxicity.

FIG. 1. (Continued).
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Nonetheless, our findings raise the possibility that higher
DTG drug exposure could contribute to body weight gain,
particularly in women with lower body weight before DTG
initiation, and reintroduce the question of whether weight-
based or sex-specific dosing for some ART may be warranted
if the therapeutic window is high.

Mechanisms to explain INSTI-associated weight gain re-
main unclear, and theories currently include proadipogenic
effects promoting mitochondrial dysfunction and insulin re-
sistance, interference with the melanocortin signaling system
resulting in appetite stimulation, as well as indirect effects
from preswitch anchor drugs such as efavirenz that suppress
weight.42 The gut-brain axis, a complex system of peripheral
appetite hormones and centrally mediated neuronal regula-
tion, is critical to body weight homeostasis and often per-
turbed in obese individuals.43

We were surprised to find that higher DTG concentrations,
but lower RAL concentrations were associated with body
weight gain in nonobese women. While the mechanisms driv-
ing body weight gain remain unknown, they could include
INSTI-specific concentration-dependent effects on metabolic
rate, adipocyte function, or appetite stimulation.44 For example,
higher RAL concentrations could be associated with appetite
suppression or increased metabolic rate, which could explain
the inverse relationship we see between RAL drug concentra-
tions and body weight gain. While available sociodemographic
and clinical characteristics of women switching to RAL and
DTG were similar, it is also possible that there were unmea-
sured confounders, given the observational study design.

Our study has several strengths, including the analysis of
data from a large well-characterized interval longitudinal
cohort with standardized data and specimen collection and
the use of hair ART concentrations, a robust measure of ad-
herence and drug exposure.26,28,37 However, our sample size
was relatively small and consisted only of U.S. women;
therefore, results may not be generalizable to men or the
global population of WLH. Due to the time period in
which this study was conducted, newer INSTIs such as
bictegravir and cabotegravir were not assessed. Finally,
while we did not measure hair concentrations of other
drugs that women may have been taking, none of the
women in our cohort reported TAF use, which limits po-
tential confounding of the relationship between drug ex-
posure and body weight gain.

To conclude, we found that obesity modifies the relation-
ship between drug exposure and body weight gain for RAL
and DTG in WLH. Additional larger pharmacokinetic studies
of these and other INSTIs are necessary, particularly in
women, to inform dosing strategies that maximize efficacy,
while minimizing side effects and toxicity.
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