
UC Santa Cruz
UC Santa Cruz Previously Published Works

Title
Validating Storage System Instrumentation

Permalink
https://escholarship.org/uc/item/4sv4k8tg

ISBN
9780769551029

Authors
Adams, Ian F
Storer, Mark W
Wildani, Avani
et al.

Publication Date
2013-08-01

DOI
10.1109/mascots.2013.73

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4sv4k8tg
https://escholarship.org/uc/item/4sv4k8tg#author
https://escholarship.org
http://www.cdlib.org/

Validating Storage System Instrumentation

Ian F. Adams*, Mark W. Storer†, Avani Wildani*, Ethan L. Miller*, Brian A. Madden*
*University of California, Santa Cruz †NetApp

Abstract—There is a large body of work—such as
system administration and intrusion detection—that relies
upon storage system logs and snapshots. These solutions
rely on accurate system records; however, little effort
has been made to verify the correctness of logging in-
strumentation and log reliability. We present a solution,
called ExDiff, that uses expectation differencing to validate
storage system logs. Our solution can identify development
errors such as the omission of a logging point and runtime
errors such as log crashes.

ExDiff uses metadata snapshots and activity logs to
predict the expected state of the system and compares
that with the system’s actual state. Mismatches between
the expected and actual metadata states can then be
used to highlight gaps in log coverage, as well as aid
in identifying specific types of missing entries. We show
that ExDiff provides valuable insight to system designers,
administrators and researchers by accurately identifying
gaps in log coverage, providing clues useful in isolating
specific types of missing log entries, and highlighting
potential misunderstandings in logged action.

I. I NTRODUCTION

Storage system activity logs are used in a number
of diverse areas, from system administration and design
to security auditing. Unfortunately, a latent problem in
such approaches is identifying thecoverageof the col-
lected logs; it is critical to know which events have been
captured and which have been omitted. With no form
of validation or understanding of a log’s coverage, it is
easy to form incorrect conclusions from log analysis.

For example, consider a system that silently drops
entries due to a logging-buffer overflow or logging-
process crash. A security or performance audit of the
system may mistakenly conclude that the system is
behaving correctly, as no warning messages have been
logged. Similarly, unless the developers who instru-
mented the system are present, it can be difficult to
identify precisely which activities are and are not being
captured. The latter can be a particularly vexing problem
for debugging a system, as well as for anyone trying to
analyze a system from captured traces.

To address this issue, we have developed a method-
ology we callExDiff, that usesexpectation differencing
to determine when the true state of a system diverges
from the expected state. ExDiff uses an initial file or
object-level metadata snapshot [5, 10] and an activity
log to derive theexpectedstate of a system. This ex-
pected state is compared to a second metadata snapshot
capturing the system’s currentreality. ExDiff uses the

resulting set of differences between the expected and
real state to identify logging omissions from crashed
logging processes or unrecorded system activities.

Using ExDiff, we can accomplish three key valida-
tion tasks. First, ExDiff can identify both when and for
how long a logger may have dropped entries. Second,
it can highlight when there may be activity that hasnot
been captured. Third, it can aid in identifying the spe-
cific actions, such as a file creation, that may have been
dropped from a log or not captured in the first place.
Note however, that ExDiff isnot a logging infrastructure
by design. As we discuss more in Section III, the capture
of metadata snapshots and logs is separate from ExDiff.

Using a variety of simulated workloads and snap-
shots, we demonstrate ExDiff’s ability to retroactively
identify periods where log entries are being dropped
but the underlying system is still functioning. We show
ExDiff can accurately identify gaps in logs with as many
as 500,000 actions. Additionally, we analyze how log
duration and the density of actions affect ExDiff’s ac-
curacy. We also detail how ExDiff can identify specific
types of dropped entries, such as an entry noting a
file permission change, and how the same issues that
influence accuracy in recognizing gaps in log coverage
can impact the ability to identify missing entries.

The remainder of the paper is organized as follows.
In Section II, we discuss background and related work
for ExDiff and provide further motivation. Section III
describes our workflow and methodology. We describe
our experimental methods and evaluation in Sections IV
and V and discuss future work directions in Section VI.
We conclude in Section VII.

II. BACKGROUND

In order to accurately present ExDiff, we begin
by detailing the terminology used in our discussions.
Following that, we present several use-case examples
to further motivate our work. Finally, we place ExDiff
in the context of existing work.
A. Terminology

In our discussion, we borrow terminology from
earlier work [4]. ExDiff works at the level of individual
files or objects. Each file hasmetadataassociated with
it, such as the time of last modification and user ID.
The set of all files that can be operated upon is the
corpus. The corpus exists on asystem, a combination
of hardware and software.

ExDiff uses two types of captured data: activity

traces and metadatasnapshots. An activity trace is a
log of events on the corpus. We use the terms log and
trace inter-changeably. Individual entries in a log come
from actions. Actions are atomic events on a single file,
such as a read. We assume logged actions accurately
reflect changes in the system. A snapshot is a view of
a corpus’s metadata at a single point in time.

Any action that is not logged is alog omission.
There are two types of omissions:missesanddrops. An
action that is not logged because it was never captured
is called a missed action. For example, a missing action
results from a developer failing to add a call to the
logging system. A dropped entry is where an action
that is normally logged does not produce a log entry. A
contiguous period of dropped entries is referred to as a
gap. For example, dropped entries and gaps can be the
result of a crashed logging process. A gapestimation
is a pair of timestamps predicting the start and end
times of a gap. When discussing gaps, it is important to
distinguish between wall-clock time and the number of
dropped entries; a gap in wall-clock time may involve
any number of actions.
B. Example Use-Cases

Log coverage verification is critical in a number of
areas. In this subsection we highlight a few key areas
where ExDiff can improve the confidence of results by
validating log correctness.

Intrusion Detection and Forensic Analysis:Intru-
sion detection systems often compare the state of the
system to a known “healthy” state, with mismatches
raising alarms [12]. In addition to providing log valida-
tion, ExDiff can assist in detecting alterations in either
the activity log or system metadata. By requiring an
intruder to alter multiple data sources, the difficulty of
silent intrusions increases dramatically. Similarly, the
field of forensic analysis depends heavily on the ability
to recreate activity accurately and detect when users
have attempted to cover their tracks

System Management:Log analysis is common in
storage system management [6]. ExDiff can identify
when and where logs may be suspect, leading to im-
proved analysis accuracy. For example, ExDiff can help
eliminate false positives where a system may have been
running correctly, but is dropping log entries. It can also
identify scenarios where problems exist in the logger
itself, as opposed to the system being logged.

Systems Research:Many traces and snapshots are
available to researchers. Unfortunately, it is often im-
possible to speak with the original source administrators
and architects to understand their coverage. This is par-
ticularly challenging for research into archival storage
systems where years of data may be required, along with
changing log formats with little or no documentation.
Using a combination of snapshots and trace logs, re-
searchers can use ExDiff to derive an understanding of
the log’s coverage without the need for expertise from

the original system developers. ExDiff can also validate
trace replays, by comparing the expected end state after
a trace replay with the actual replay result.
C. Related Work

To the best of our knowledge, there is no exist-
ing work aimed explicitly at verifying trace coverage
despite the number of utilities used to capture OS
behavior, such as strace [2] and ftrace [1]. TraceFS [7]
is a customizable tracing system existing in user-space
that intercepts calls to the file system and systems such
as Magpie [8], Stardust [19] and //TRACE [13] are
designed to gain end-to-end understanding of larger
systems. While these solutions are useful, none examine
the coverage of the captured data.

Audit log used in transactional database systems
share some similarity to ExDiff. A log can be replayed
to reproduce the current state of a system, and compared
to a running system for accuracy. Snodgrasset al. took
this idea a step further by including a hashing and
“notary” service to make log tampering evident, while
also validating the state of a system [18]. Similarly,
journaling filesystems use metadata journals to restore
a filesystem to a consistent state after a crash [17].
ExDiff differs as its goal is to identify gaps in coverage,
rather than validating or restoring the state of a running
system. However, techniques used in ExDiff could be
used to verify the correctness of a metadata journal.

Intrusion detection systems (IDS) also rely on com-
paring expected states to what is observed in a system.
Abadet al.’s work on log correlation for intrusion detec-
tion uses multiple logs in concert to identify anomalies
that may not be apparent from a single log [3]. While
different in detail, there are similarities in the high-level
approach of using multiple data sources in concert to
improve analysis. Tripwire detects modifications to a
file system by periodically comparing the current state
of a system to a database of file checksums [12]. I3FS
is a file system built around a Tripwire like integrity
checking system, but checks integrity on the fly, rather
than at administratively defined times [14]. Hobgoblin is
a language and interpreter that describes what properties
a file system should have, such as permissions for a
given user [15]. While ExDiff shares similarities in com-
paring an expected state to reality, I3FS, Tripwire and
Hobgoblin rely on static rules, rather than comparing
state estimated from log entries.

III. E XDIFF DESIGN

ExDiff operates at the level of file or object meta-
data. We do not consider the raw data, although ExD-
iff could be extended to incorporate data capture by
capturing content hashes. Note that while the overall
methodology is agnostic to the underlying trace and
snapshot capture methods, the data that comes from
these captures will be specific to individual systems.

There are four steps to ExDiff. The first isinput

Initial
Snapshot

Reality
Snapshot

Trace
Log

2) Expectation
Calculation

3) Diffing

Expected
Snapshot

Diff Entries

1)Input Capture

4) Analysis

Fig. 1: An overview of ExDiff’s workflow. Yellow entries are captured
data from input capture, while green (diff entries and expected
snapshot) are derived.

capture where an initial metadata snapshot is taken,
followed by activity tracing, and then areality snapshot
is captured. The second step isexpectation calculation,
where the initial snapshot and activity log are combined
to derive an expected snapshot. The third step,diffing, is
where the expected snapshot is compared to the reality
snapshot, generating a list of differences. The fourth
and final step isanalysis, where we utilize the list of
differences, the activity trace, and snapshots to analyze
log coverage. Figure 1 illustrates ExDiff’s workflow.

Input Capture: In the input capture step, the initial
metadata snapshot, activity log and reality snapshot are
gathered. Note that ExDiff itself does not capture the
data, but relies on data produced from other sources,e.g.
recursivels andstat. The initial snapshot is a picture
of the metadata state of the system immediately prior to
a trace log of actions. The reality snapshot captures the
state of the system at the end of a tracing period. While
both snapshots represent the ground truth of a system’s
state (we assume the file system metadata is correct), we
refer to them as the initial and reality snapshots to keep
them notationally distinct. The log must capture actions
betweenthe initial and reality snapshots. Note that more
than two snapshots can be captured, but ExDiff only
calculates coverage between pairs of snapshots.

For ExDiff to function, the captured data needs two
characteristics. First, one or more action entries in the
log should reflect changes to the system’s underlying
metadata. For example, if a snapshot captures a file’s
permissions and a logged action notes changes to that
file’s permissions, we can then use that entry to predict
the new state of that file’s permission metadata. Second,
in order to estimate gaps, we require one or more meta-
data timestamps that can be accurately (within some
bound) mapped to activity log entries. For example, a
read entry that can be mapped to a file’s ATIME.

With ExDiff, we avoid requiring specific snapshot or
log formats. While a rigid format may aid in automating
the process, it has two major pitfalls. First, standards
are notoriously difficult to be applied consistently, even
when they have been in existence for many years let
alone new ones being proposed to the community.
Second, requiring a standardized input distances humans
from the process. Wewant humans to be a part of the
ExDiff process as we want to identify where a human

Initial Snapshot

File Foo ATIME 0955

File Bar ATIME 1000

File Baz ATIME 0840

Expected Snapshot

File Foo ATIME 1125

File Bar ATIME 1000

File Baz ATIME 1240

READ Foo 1125

READ Baz 1240

Trace Log

Fig. 2: Expectation Calculation. In this example, the expected state
is derived by mapping file ATIME’s to read activities.

analyzer may be misunderstanding a log in addition to
identifying gaps and misses.

While some file systems automatically provide snap-
shots through versioning [11, 16], capturing snapshots
is not always atomic, such as a recursivels and
stat to capture metadata. Actions may continue to
mutate a system’s metadata state as a snapshot is
being captured, which in turn influences the diffing
and analysis steps in difficult to predict ways. In our
proof of concept, we assume snapshots are captured
atomically, though we describe a method for dealing
with non-atomic snapshots in future work in Section VI.
Metadata snapshot capture overhead is dependent on
system size, but the metadata itself is often quite small.
For example, a dataset we obtained from LANL had
over 112 million metadata entries, but consumed only
2 GB when compressed.

Expectation Calculation: ExDiff uses the activity
log to update the state of the initial snapshot and create
the expected snapshot, a prediction of the system’s
metadata state. As illustrated in Figure 2, this process
is straightforward: an action in a log may update one or
more parts of a file’s metadata. For example, in many
file systems, a data modification will update the change
time (CTIME), the modification time (MTIME) and the
file size metadata. How, and which, actions should be
mapped is specific to the snapshots and actions being
captured. Though this is human driven, and potentially
error prone, errors in mapping can be caught in the
diffing step and highlight misunderstandings of a trace’s
coverage and the semantics of its actions.

When deriving the expected snapshot,partial entries
may be created. A partial entry is created when attempt-
ing to map an activity to a file that is not known to exist
based on the log and expected state, so ExDiff populates
as much metadata as possible for that particular file.

Diffing: After the expected snapshot is created,
we compare it to the reality snapshot and collect the
differences between the two for analysis. As shown in
Figure 3, ExDiff does a file by file comparison of the
two snapshots, comparing each piece of metadata to
each other. Any time there is a mismatch, either from
a file being missing in one of the snapshots, or a piece
of metadata not matching as expected, we pull the files
out and create ametadata diff entry. Each diff entry
also tracks which metadata came from the expected
snapshot, and which came from the reality snapshot.

Each diff entry is categorized as one of three types,
summarized in Table I. Areality drop entry is where

Expected Snapshot

File Foo ATIME 1125

File Bar ATIME 1000

Reality Snapshot

File Foo ATIME 1200

File Bar ATIME 1000

File Baz ATIME 1130? Expectation Drop

MD Mismatch

Fig. 3: Diffing. File Foo’s expected ATIME does not match reality,
so an MD mismatch entry is produced. Similarly, Baz is not seen in
the expected snapshot, so an expectation drop entry is created. Bar
exists as expected, so produces no diff entry.

Diff Type Description
Reality drop File is in expected, but not reality snapshot
Expectation drop File is in reality, but not expected snapshot
MD mismatch File exists as predicted, but metadata does not match

TABLE I: Metadata diff entry types.

a file is found in the expected snapshot but is missing
from the reality snapshot. Anexpectation dropentry is
the reverse of the reality entry; a file exists in the reality
snapshot but is not in the expected. Ametadataor MD
mismatch, is where a file exists in both the reality and
expected snapshots, but one or more metadata fields do
not match.

Analysis: ExDiff now diverges into two distinct
types of analysis. The first is identifying gaps in log
coverage. The second focuses on classifying log omis-
sions to provide clues as to which specific actions were
omitted from the log.

Gap Identification:Given the requirement that at
least some logged actions update timestamps, ExDiff
can leverage mismatches between expected and reality
timestamps to identify gaps. When an action that up-
dates a timestamp is dropped from the log, it will lead to
an MD mismatch as the expected and reality snapshots
will not match on one or more timestamps. These
mismatched timestamps can be used to identify likely
log gaps. Consider the example shown in Figure 3. The
metadata mismatch notes that file Foo has an access
time of 1200, while the expected entry gave Foo an
access time of 1125. This tells ExDiff that an action
that occurred at 1200 was missed or dropped.

When identifying gaps, ExDiff pulls out all of
the diff entries that come from the reality snapshot
which have mismatched timestamps. A density based
clustering algorithm is then run to group timestamps
together based on their temporal distance; large numbers
of similar timestamps from diff entries are indicative of
a gap. After clustering, the earliest and latest timestamps
from each cluster are presented as a gap estimate.

We use DBSCAN (density based spatial cluster-
ing of applications with noise) for creating gap esti-
mates [9]. We chose DBSCAN due to its simplicity,
the fact that it does not require detailed knowledge of
the underlying data distribution, and its ability to deal
with noise data points. Its ability to automatically handle
noise is relevant because we have run into situations
where loggers periodically drop random individual en-
tries in addition to full coverage gaps.

DBSCAN has two parameters,N (neighborhood
size) andeps(shape parameter). Clusters are produced
when a datapoint has at leastN other datapoints within
a distance ofeps. Any datapoint that is withinepsof an
already identified cluster is merged into that cluster, and
all others are discarded as noise. As with most clustering
techniques, DBSCAN’s parameter choice can influence
its accuracy. We discuss how varying DBSCAN param-
eters influences gap identification in detail in Section V,
but relegate automating parameter choice to future work.

DBSCAN’s primary bottleneck is in its use of a
distance matrix, with a memory and run time overhead
of O(n2). With large datasets we can use DBSCAN with
a sliding window approach on the input timestamps. For
example, if we have a 30 day log of actions, but can
only fit one day’s worth of diffs into memory at a time,
we can use a 24 hour window, moving it 12 hours at a
time. The windowing will not impact estimate accuracy
unless a gap is longer than the window.

It is possible, however, tomask omissions, and
subsequently gaps. Consider a file with one timestamp
that is updated every time it is read or acted upon.
If the last action to a file is dropped, it will not be
reflected in the expected snapshot and will show up
as an MD mismatch entry. However, if another action
occurs after the dropped one, the expected and reality
comparison will not trigger any diffs, as the expected
and reality timestamps will match by both reflecting the
result of the second action. This same sort of masking
can occur with other metadata as well, for example
file permissions changes. We examine what influences
masking in greater detail in our evaluation in Section V.

Omissions Identification:In classification of omis-
sions, ExDiff examines the metadata diffs for clues
as to the specific types of actions that were omitted
(either a drop or a miss) in the log. The key to clas-
sifying an omission is recognizing itsdrop signature;
the set of diffs and mismatched metadata produced by
a particular omitted action. Signatures are specific to
both the snapshot metadata and the actions explicitly
captured in the trace, and thus may vary from system
to system. If one already has detailed knowledge of the
expected operations within the system (whether or not
they are captured in a given trace), and how they are
expected to modify metadata, signature identification
is straightforward. However, even if the details of the
underlying system are not perfectly understood, there
are many common operations that will leave predictable
signatures when missed, such as a delete which always
leaves a reality diff entry. Missed actions (those that
are not captured but otherwise modify metadata) still
generate diffs, which in the worst case still alerts the
analyzing party that their log is missing actions. Signa-
tures will vary depending on the underlying system and
trace methodology so we describe signatures specific to
our evaluation in Sections IV and V.

Field Name Description

BTIME File birth (creation) time
ATIME Last read time
MTIME Data modification time
CTIME Metadata change time
UID User ID
GID Group ID
Permissions Text string denoting permissions
Name Unique numeric identifier for the file
Size File size in bytes

TABLE II: Metadata tracked in our simulations.

IV. EXPERIMENTAL DESIGN

Workload and Snapshot Generation:We chose to
generate synthetic workloads and metadata for ExDiff’s
validation. We took this route for two reasons. First,
we require a variety of snapshots and workloads with
verifiable ground truth in order to check the accuracy of
our methods. With real world traces we ourselves would
not know their coverage, weakening our evaluation.
Second, we need the ability to fine tune the workload to
examine how various actions impact ExDiff’s accuracy.
With real world traces we would be limited to educated
guessing in how various workloads influence ExDiff.

Each file in our workload corpus has common,
POSIX-like metadata, described in Table II, and is
uniquely identified by its filename; in our simulations
this is a numeric identifier. Generated activity logs are
comprised of timestamped actions based on common,
POSIX commands. We summarize these actions in
Table III. Timestamps are integers, and all actions have a
unique timestamp. Currently, log timestamps and meta-
data trace timestamps match, though we discuss how to
address metadata and log time skew in Section VI.

Activity log entries consist of two elements: an
action, and a file to perform the action upon. Actions
are randomly picked based on experiment-specific pa-
rameters. Files are either picked randomly or selected
with locality, based on the experiment. We use random
picking as a control group as it is easy to understand and
analyze, while picking with locality is representative of
real workloads; people often work on specific subsets
of a storage system for varying amounts of time.

We simulate locality of access by dividing the corpus
into locality groups of a fixed size. When generating
the workload, a locality group is picked, and a tunable
number of actions, which we call the locality action
count occur within that locality group; each action is
applied to a file selected at random from the locality
group. This process is repeated until the action count is
reached, and then another locality group is picked.

The workloads we generate act on either a fixed
or dynamic corpus, depending on the needs of the
experiment. In a fixed corpus, all files are present prior
to the trace, and no files will be created or deleted. In a
dynamic corpus, files can be created and deleted during
the course of the trace.

Common Experimental Parameters: Unless oth-

erwise specified, we use a fixed corpus size of 100,000
files. We chose to do most (not all, however) of our
experiments without creating or deleting files as they
added book-keeping overhead to the experiments with-
out meaningfully influencing results specific to vali-
dating our log failure identification method. Omitted
CREATE actions make ExDiff’s job easier as it triggers
an unmaskable expectation drop entry.DELETE actions
provide no information either way about logger gaps
using our method, and when dropped will simply show
up as a reality drop entry.

To examine how the number of actions between
the initial and reality snapshots influences ExDiff’s
accuracy, every experiment is run with workload lengths
ranging from 50 to 500-thousand actions, respectively.
We refer to these as 50k through 500k workloads. This
models how increasing the duration between snapshots
might impact ExDiff. For each workload length, we
generate 10base workloads that each have 10 sets
of randomly generated gaps for a total of 100 runs,
with results averaged across all runs. In each workload,
an action is generated every 1 to 10 time units, with
the type of action selected based upon the experiment
specific parameters. Each base workload also has an
initial snapshot and reality snapshot associated with it.

For each action there is a 1 in 15,000 (.00006%)
chance of a gap occurring. This means a 50k length
workload averages 3 gaps per run, while a 500k length
workload averages 32 gaps. Each generated gap drops
between 100 and 1000 entries. We chose this rapid rate
of gap generation for two reasons. First, the number
of gaps has little impact on ExDiff’s ability to identify
gaps, rather as we discuss later, it is the number of
actions and masking that have influence. Second, this
allows us to stress test the cluster based approach
as larger numbers of gaps increase the likelihood of
estimations erroneously grouping distinct gaps.

For most experiments, we use fixed DBSCAN pa-
rameters, with anN value of 10 and aneps value of
1800 time units. TheN value is set low to encourage
aggressive clustering as a worst case scenario. The
eps value was chosen as a simple visual inspection
of the logs showed periods of no actions typically
between 1000 and 10000 time units. This is an intuitive
measure that could realistically be obtained withouta
priori knowledge of the gaps, and is far from perfect.
In section V we examine how varying the DBSCAN
parameters influences accuracy.

Metrics: Recall that a gap is a contiguous period of
dropped entries, and an estimate is the predicted start
and end of that gap. We use two metrics to evaluate
ExDiff’s ability to identify a gap: gap coverageand
estimate utilization. Gap coverage is the fraction of all
gap durations that are covered by one or more estimates.
For example, in Figure 4A, there are two gaps running
from times 0 to time 2 and 4 to 5, for a total gap length

Action Name Description Metadata Impact Notes Drop Signature

CREATE Creates new file in corpus Randomized, times initialized to create time Exp. drop
READ Read of a file Updates ATIME MD mis: ATIME mismatch
MODIFY Update of file data Changes MTIME, CTIME and size MD mis: MTIME,CTIME, size mismatch
DELETE Removes a file from the corpus - Rlty. drop
CHMOD Updates a file’s permissions Changes CTIME and permissions MD mis: CTIME, permissions mismatch
CHOWN Change the user ID of a file Changes CTIME and UID MD mis: CTIME, UID mismatch
CHGRP Change the user ID of a file Changes CTIME and GID MD mis: CTIME, GID mismatch
RENAME Change the file name Changes the file name to a new number Rlt and Exp drop simultaneously

TABLE III: Actions we simulate and their impact on metadata as well as theirdrop signature.

of 3. There is one estimate covering the earlier gap
entirely, and the latter gap is amissas no estimate covers
any portion. 2 of the 3 gaps’ time units are covered by
estimates, having a total gap coverage of 0.66.

Estimate utilization is the fraction of all estimates
combined that cover gap durations. For example, an
estimate of length 5 that completely covers a gap of
length 3 would have an estimate utilization of 0.6. We
call this anestimate overshootas the estimate is too
long. An estimate of length 1 that only covers a part of
a longer gap would still have a utilization of 1.0, but
the coverage for that individual gap would be below 1.0.
We call this second case anestimate undershootas the
estimated time is shorter than the actual gap. Figure 4 B
illustrate these concepts.

To provide greater granularity in our examination of
estimates, we also look at howoverfitor aggressivethey
are. The former, illustrated in Figure 4C, occurs when
multiple estimations cover a single gap. In other words
there are multiple undershooting estimates for a single
gap. The latter, illustrated in Figure 4D, is when a single
estimate covers multiple gaps. We also discuss whether
or not a gap has beenhit or missed. A gap hit occurs
when an estimate covers any portion of a gap, while a
gap miss is one that is not covered by any estimates.

In all cases, high values for both gap coverage and
estimate utilization are desired, as this means that gaps
and their duration are identified with high levels of
accuracy, with little or no under or overshot estimates. A
high gap coverage value with a low estimate utilization
value suggests large numbers of overshot or agressive
clusters. A low gap coverage with high estimate utiliza-
tion suggest gap misses and undershot estimates.

As mentioned in Section III, we are concerned with
masking, where later actions remove evidence of prior
gaps. For example, a dropped ATIME update would be
evident as a MD mismatch, but if a later ATIME update
that was not dropped overwrites that files ATIME, it is
not apparent that an entry was dropped. To examine
masking, any file that is acted on during a gap is
categorized as one of three types. First, anunmasked
file, is a file where no later actions cover up evidence
of a gap. The second is apartial mask where some, but
not all, evidence of the gap was overwritten. Atotal
mask is where all evidence of a prior gap has been
overwritten. Masking influences both gap identification
and omission analysis.

Aggressive Estimate

0 1 2 3 4 5 6 7 8 9

Time

Gap

Estimate

Gap Coverage 0.75
Estimate Utilization 0.6
Sum Gap Length(s) 4
Sum Estimate Lengths 5

Estimate Overshoot

Perfect Estimate

0 1 2 3 4 5 6 7 8 9

Time

Gap Gap

Estimate

Gap Coverage 0.66
Estimate Utilization 1.0
Sum Gap Length(s) 3
Sum Estimate Lengths 2

Gap Miss

0 1 2 3 4 5 6 7 8 9

Time

Gap

Estimate

Gap Coverage 0.5
Estimate Utilization 1.0
Sum Gap Length(s) 6
Sum Estimate Lengths 3

Estimate Overfitting

Estimate Estimate

0 1 2 3 4 5 6 7 8 9

Time

Gap Gap

Estimate

Gap Coverage 1.0
Estimate Utilization 0.8
Sum Gap Length(s) 4
Sum Estimate Lengths 5

A

B

C

D

Gap

Estimate

Estimate Undershoot

Fig. 4: These examples (A through D) illustrate our metrics and
terminology. The white rectangles are gaps and the shaded rectangles
are estimations. Gap coverage denotes the fraction of all gaps covered
by an estimate. Estimate utilization refers to the fraction ofestimates
that cover a gap. Bolded terms are used to discuss types of estimates.

V. EVALUATION

Our evaluation is broken up into two sections. First,
we quantitatively demonstrate ExDiff’s ability to au-
tomatically identify gaps in log coverage, and explore
what can influence its accuracy. Second, we provide
a qualitative discussion of omission classification and
what can influence its accuracy.

A. Identifying Logger Gaps
Proof of Concept: In this experiment, we run a

workload that has all actions described in Table III
including creates and deletes with the goal of demon-
strating ExDiff’s ability to identify gaps. We demon-
strate that ExDiff can accurately identify log gaps and
their duration with high estimate utilization and gap
coverage values. This initial experiment uses a dynamic
corpus as locality type accesses. Later experiments
utilize micro-analysis to explore the bounds of ExDiff’s
gap identification accuracy.

Using the action probabilities described in Table IV,
this workload uses locality group sizes of 25 with action
counts between 10 and 50. The initial corpus size is
100,000 files. We find that ExDiff is able to accurately
identify gaps with a gap coverage consistently around
97-98% for all lengths. Estimate utilized shows a slight
decrease in accuracy, and increase in variability as

Exp. Name Create Delete Rename Read Data Update Metadata Update

Simple 0 0 0 34 33 33
Reads+Meta 0 0 0 95 0 5
Read-Only 0 0 0 95 0 5
POC 5 2 3 45 35 10

TABLE IV: Base workload parameters. All experiments are small variations on these parameters, with the variations described in the body
text. Each number represents the percent chance of that eventbeing chosen when generating an action. Meta update refers to the chance of
picking a UID, GID or permissions change action. POC refers tothe proof of concept workload.

workload length increases, with a mean of 92% and
standard deviation around 10% at 500k actions. This is
because longer workloads have a higher likelihood of
gaps being close enough together to cause an aggressive
estimate. We omit the graph as all values are quite
consistent, making visual comparison difficult.

Corroborating this, we find that less than 15% of the
50k runs had aggressive estimates, and never more than
one, while over 25% of the 500k runs had aggressive
estimates, maxing out at 4. With the parameters we
used, we saw no over-fit estimates for any workload
length, and surprisingly we only entirely missed gaps
in less than 5% of the 500k length runs, and missed
zero gaps for any of the shorter workloads. This further
demonstrates ExDiff’s accuracy in gap identification.

Varying Timestamp Updates: In this set of experi-
ments, we explore how changing the number of distinct
timestamps influences ExDiff’s ability to produce ac-
curate gap estimates. First, we find that masking has a
strong effect on accuracy, and longer durations between
snapshots increase masking likelihoods. Second, larger
numbers of timestamps can markedly improve ExDiff’s
accuracy by reducing total masking.

The first experiment uses thesimple workload. In
this workload, we have a fixed size corpus of 100,000
files, and the workload picks each file to act on uni-
formly at random. Each action has an equal chance of
being a data modification, a read, or a metadata update
such as a permissions or GID/PID change.

As shown in the leftmost plot of Figure 5, there
is only a small decrease in accuracy as the workload
length increases. This is because we are uniformly
picking both files and actions, resulting in equal odds
of modifying the three timestamps in the file’s metadata
(CTIME, MTIME, and ATIME). This makes it difficult
for arbitrary gaps in coverage to be totally masked by
later actions overwriting timestamps, corroborated by
the very low amount of total masking illustrated in
Figure 6. We did see a small, but consistent amount
of aggressive estimates for the longer workloads. The
500k workload saw 50% of runs with at least one
aggressive estimate, 75% saw over two and maxed out at
five aggressive estimates per run. However, the number
markedly decreased with the shorter workloads, with the
50k workload only showing 5% of runs with one or two
aggressive estimates. We observed no overfit estimates
under this workload.

The next experiment used theread onlyworkload.

In the read only workload, all actions are reads, subse-
quently ATIME is the only timestamp updated. As we
show in the center plot of Figure 5, this has a strong
impact on the consistency and accuracy of our method
as the workload increases in size, because total masking
becomes much more prevalent as shown in the center
plot of Figure 6. This is due to only a single timestamp
being used and updated relatively more frequently.

The final experiment looks purely at timestamps
under thereads+metadataworkload to examine how
even a small chance of a second timestamp being
updated can influence gap estimates. In this workload,
each action has a 95% chance of being a read and
subsequent ATIME update, while the other 5% may be
a metadata action that updates CTIME. Interestingly,
even this relatively low chance of CTIME change has a
significant impact on masking relative to the read only
workload as shown in the center plot of Figure 6, and
subsequently has significantly higher gap coverage than
the read only workload as shown in the right plot of
Figure 5. Note that there is a significant increase in
coverage variability with a decrease in mean coverage
at the 500k length. While there is less masking than
the read-only workload, there is still quite a bit of
total masking occurring. As in prior tests, we saw
no overfitting estimates, and the number of aggressive
estimates decreased with workload size.

One thing to note across all the timestamp varying
experiments is that unless two gaps were covered by an
aggressive estimation, we never observed any estimate
overshoot a gap and completely subsume it. At most
they perfectly matched the end points of a gap. This is
because in our simulations we have perfect knowledge,
and the logger is either perfectly functioning, or not
at all, eliminating the possibility of extra diff entries
causing false positives or estimate overshooting.

Locality Influence: In our next set of experiments
we examine how spatial-temporal locality of access, in
contrast to purely random accesses, influences ExDiff.
Our experiments show that strong, focused locality
groups in a workload have little impact in recognizing a
gap occurred, but make accurately identifying duration
more difficult with wider variation in gap coverage.

For these experiments, we use a locality group size
of 25. For the weak locality workload, we use an
action count between 10 and 50. In thestrong locality
workload, the action count is picked between 100 and
200. Both workloads are otherwise identical to the

Files
 in G

aps

Unmaske
d

Part
. Mask

Tota
l Mask

0

5000

10000

15000

20000

C
o
u
n
t

Simple

Workload Length

50k
100k
250k
500k

Files
 in G

aps

Unmaske
d

Part
. Mask

Tota
l Mask

0

5000

10000

15000

20000

C
o
u
n
t

Read-Only

Files
 in G

aps

Unmaske
d

Part
. Mask

Tota
l Mask

0

5000

10000

15000

20000

C
o
u
n
t

Reads+Metadata

Fig. 6: Here we show how varying the number of timestamps being updated influences masking. Error bars are standard deviations.

Gap
 Cov

.
Est.

 Uti
l.

0.0

0.2

0.4

0.6

0.8

1.0

Fr
a
ct
io
n

Simple Workload

Workload Length

50k
100k
250k
500k

Gap
 Cov

.
Est.

 Uti
l.

0.0

0.2

0.4

0.6

0.8

1.0

Fr
a
ct
io
n

Read Only Workload

Gap
 Cov

.
Est.

 Uti
l.

0.0

0.2

0.4

0.6

0.8

1.0

Fr
a
ct
io
n

Reads+Metadata Workload

Fig. 5: A breakdown of how coverage and estimates are influenced
by varying timestamp updates. Error bars are standard deviations.
Note the read only workload leads to much higher variations ongap
coverage as workload length increases.

simple workload, where metadata update, data update,
and read actions are all equally likely.

In the weak locality workload we observe the same
trends and amount of masking as the simple workload
shown in Figure 5. Interestingly, the strong locality has
25% less partially masked and 25% more unmasked
files than the weak locality workload. This is because
fewer total files were accessed in the strong locality
test as more activities were done per locality group.
However, this means that within each locality group
there was a higher probability of actions temporally near
one another causing maskingwithin a gap which our
metric does not measure.

When examining gap coverage, shown in Figure 7,
we see that the strong locality test has a much greater
variation in its coverage and estimate utilization than
the weak locality. This is because with stronger locality,
we see maskingwithin a gap as described above,
which in turn leads to significant amounts of estimate
undershooting. This is reinforced when we see that in
both the strong and weak locality tests over 95% of
gaps were a part of at least one estimate, but coverage
noticeably decreases with workload length. We also
looked at the locality workloads under a reads+metadata
access pattern and found it followed the same trends as
shown in the initial reads+metadata workload.

Adding Noise: To explore how noise influences

Gap
 Cov

.
Est.

 Uti
l.

0.0

0.2

0.4

0.6

0.8

1.0

Fr
a
ct
io
n

Weak Locality

Workload Length

50k
100k
250k
500k

Gap
 Cov

.
Est.

 Uti
l.

0.0

0.2

0.4

0.6

0.8

1.0

Fr
a
ct
io
n

Strong Locality

Fig. 7: Gap coverage and estimate utilization under the locality work-
loads. Note strong locality has much greater variation in coverage.

ExDiff, we take the simple and read only workloads
and add noise in the form of randomly dropped entries
in addition to the full gaps. We show that small amounts
of noise do not seem to have a large impact on gap hit
and miss rates, but can have a very strong influence on
estimates as noise makes aggressive and overshooting
estimates more common.

All entries in the workload for these experiments
have a 1 in 1500 chance of being dropped. This can
influence ExDiff’s accuracy as there are now points that
may be erroneously considered a part of a gap, thus
changing the length of an estimation.

As we show in Figure 8, the gap coverage is not
appreciably different than the original baseline tests.
However, the estimations are significantly less accurate.
This is due to the fact that the noise makes it very easy
for a gap estimation to overestimate the duration. This
can be mitigated by tuning the DBSCAN parameters,
as we discuss in the next section. In terms of gap hits
and misses, as well as the incidence of aggressive and
over-fit clusters, there were no significant differences
from the simple, read-only and reads+metadata tests.
We omit the masking charts as they are not noticeably
different from the timestamp varying tests.

Varying DBSCAN Parameters: In this set of ex-
periments, we examine how sensitive our results are to
varying DBSCAN parameters. We see that gap coverage

Gap
 Cov

.
Est.

 Uti
l.

0.0

0.2

0.4

0.6

0.8

1.0

Fr
a
ct
io
n

Simple Noise

Workload Length

50k
100k
250k
500k

Gap
 Cov

.
Est.

 Uti
l.

0.0

0.2

0.4

0.6

0.8

1.0

Fr
a
ct
io
n

Read-Only Noise

Fig. 8: Coverage and estimate utilization under the noise workloads.
Note drastic increase in variability relative to the other workloads.

and estimate utilization is generally improved with
lower values ofN andeps in noisy environments.

We take the same parameters used for our tests
with noise, as these are a worst case scenario in terms
of difficulty for estimations; they are likely to lead to
significant overshoots estimations in failure durations.
We omit the graphs from the read-only noise workload
as their trends were similar.

The general trend we notice, illustrated in Figure 9 is
that smallerepsandN values tend to increase estimation
accuracy for our workloads, keeping in mind we are
micro-benchmarking. We see fewer aggressive clusters,
and contrary to our expectations, little impact on the
number of over-fit estimates. HigherN values tend to
increase how likely we are to miss a small gap that has
many masked entries, however. Higherepsvalues tend
to cause more aggressive estimations with estimates
merging distinct gaps. It is important to note that these
trends will not be universal across all workloads. For
example, we found an outlier case in the read-only noise
workload where increasing the value forN actually led
to a small increase in overfitting. This was because that
the noise was causing the density of the perceived gap
to be inconsistent.

Based on our observations, smaller parameters to
DBSCAN tend to improve ExDiffs estimate accuracy,
with the caveat that they be adjusted for the rate of
activity and potential masking in a given log. Second,
despite having a noticeable impact on gap coverage,
even widely varying parameters rarely miss a gap.
Third, while these trends in general hold, gaps may su-
perficially have multiple timestamp clusters of varying
density, leading to overfitting. Visualization may help in
some of these cases, as it is often readily apparent to
human observers when multiple overfit clusters are in
reality a single large cluster.

B. Omission Classification
We also explore how diff entries can help identify

the type of entries that may be missing or dropped from
a log. We begin by assuming we have perfect knowledge
of all possible activities in the system, and follow up
with a discussion on operating in a limited knowledge

environment. In both cases, we leave a quantitative
evaluation to future work, and focus on discussing issues
in identifying omitted entries.

Perfect Knowledge: The same set of actions and
signatures described in Table III are used in our discus-
sion. Note that we use signatures from our workloads
for illustrative purposes, and that signatures may vary
from system to system.

A perfect knowledge scenario is likely when logging
is included as a first class entity in a system. Even with
perfect knowledge, periodic validation of the logs and
metadata is useful in many scenarios, such as intrusion
detection and debugging.

Basic signature detection is a straightforward com-
parison of known signatures versus observed diff en-
tries. For example, a missing group ID change entry
leads to an MD mismatch entry, with the expected and
reality snapshots not matching on both the timestamp
and the GID fields. Similarly, a missing data update
action would cause an MD mismatch entry with mis-
matches on the MTIME, CTIME, and possibly the file
size. In short, in many cases a perfect signature match
can point to a specific omitted action.

Masking persists as an issue in the perfect knowl-
edge case, in addition to masking whole prior actions
it can cause a signature to be less clear. Consider
a dropped GID change entry, followed by dropped
dropped UID change entry. While the diffs may note
the mismatch between CTIME, GID and UID, ExDiff
loses information regarding the time of the GID change
entry.

Actions that change file identifiers (renames) can
make signatures ambiguous. A rename causes both
expectation and reality diff entries, as the missed rename
means in the expected a file will exist that doesn’t
match to a file in the reality snapshot, and vice versa.
Similarly, a dropped delete leads to a reality drop
entry, and a dropped create causes an expectation drop
which superficially overlaps with the signature from the
rename.

The ambiguities caused by a rename can be ad-
dressed by comparing reality diff entries to all files in
the reality snapshot. A match on a large fraction of fields
other than name may indicate what file it actually is/it
was renamed to. When this match is found, it can be
used to discard expectation drop entries that map to the
same file, as they are now known and can be removed
to prevent them being classified as another action.

Partial Knowledge: Partial knowledge is less
straightforward to work with as omitted actions may
be modifying metadata. Thus, the signatures of such
actions may be unknown. Despite this, ExDiff has
the ability to provide significant benefit. Unexpected
diffs are at the very least indicative that something
is omitted from the log. Further, actions that change

Gap C
ov.

Est.
 Util.

0.0

0.2

0.4

0.6

0.8

1.0

Fr
a
ct

io
n

Simple Noise Eps 600 N 5

Workload Length

50k
100k
250k
500k

Gap C
ov.

Est.
 Util.

0.0

0.2

0.4

0.6

0.8

1.0

Fr
a
ct

io
n

Simple Noise Eps 600 N 30

Gap C
ov.

Est.
 Util.

0.0

0.2

0.4

0.6

0.8

1.0

Fr
a
ct

io
n

Simple Noise Eps 3600 N 5

Gap C
ov.

Est.
 Util.

0.0

0.2

0.4

0.6

0.8

1.0

Fr
a
ct

io
n

Simple Noise Eps 3600 N 30

Fig. 9: Here we show how varying the parameters to DBSCAN influenced gap coverage and estimate utilization under the simple noise workload.
Note smaller parameter values tend to produce better results.

identifiers, add or remove files—such as creates, deletes,
and renames—will likely be obvious given the blatant
mismatch between the expected and reality snapshots.

VI. FUTURE WORK

We need to acquire verified, real-world workloads
in order to extensively understand the bounds of ExDiff
as logs scale up to millions of actions. Further, such
workloads would likely exhibit non-uniform file mod-
ifications; most “real-world” systems have a subset of
popular files that may change over time, providing us
greater insight in ExDiff’s behavior.

We also need to explore cases where log entries may
have inaccurate timestamps and semantic information.
For example, the clock used in generating log entries
may not perfectly match the timestamps used in the
metadata. ExDiff may be able to handle this case by
allowing for some “wiggle” room when creating diff
entries. An expected and reality snapshot’s timestamps
that nearly match may be considered close enough to
be considered a match.

Actions may continue to update metadata state as
the snapshot is being captured, so we need to investigate
ways to handle non-atomic snapshots. In this situation,
a diff entry may be produced even if the log is accurate.
One approach is to add an additional timestamp to
each file’s metadata when it is captured. In expectation
calculation, we can prevent actions made after metadata
capture from updating our expected state, thus prevent-
ing accidental diff entries from being produced.

Quantitative investigation of signature detection is
also needed. We wish to explore how different work-
loads and levels of information can change our ability to
accurately recognize what types of actions are missing
from the log. We could also examine reconstructing log
entries; certain signatures provide enough information
to re-create missing log entries.

VII. C ONCLUSION

We have explored the problem of identifying log
coverage; what is and is not being captured in a given
trace. To address this issue, we have developed ExDiff,
a methodology that uses a combination of activity logs
and metadata snapshots to validate log coverage. We
show that ExDiff can identify where a logger may

have dropped entries while the underlying system is
functioning. ExDiff’s accuracy is strongly influenced by
the number of actions that occur between snapshots, as
well as the number of timestamps that are available to
work with. We also discussed how ExDiff can provide
insight into specific actions that have been omitted
from a log, and in certain situations may be able to
reconstruct missing log entries.

REFERENCES

[1] ftrace. http://linux.die.net/man/1/ftrace.

[2] strace. http://linux.die.net/man/1/strace.

[3] A BAD , C. et al. Log correlation for intrustion detection: A
proof of concept. InACSAC 2003.

[4] A DAMS, I. F. et al. Analysis of workload behavior in scientific
and historical long-term data repositories.ACM TOS (8), 2
2012.

[5] AGRAWAL , N. et al. A five-year study of file-system metadata.
In FAST 2007.

[6] A NDERSON, E. et al. Hippodrome: running circles around
storage administration. InFAST 2002.

[7] A RANYA , A. et al. Tracefs: A file system to trace them all. In
FAST 2004.

[8] BARHAM , P. et al. Using Magpie for request extraction and
workload modeling. InOSDI 2004.

[9] ESTER, M. et al. A density-based algorithm for discovering
clusters in large spatial databases with noise. InKDDM 1996.

[10] GIBSON, T. et al. Long-term file activity and inter-reference
patterns. InCMG 1998.

[11] HITZ , D. et al. File system design for an NFS file server
appliance. InWinter USENIX 1994.

[12] K IM , G. H.,AND SPAFFORD, E. H. The design and implemen-
tation of Tripwire: A file system integrity checker. InComputer
and Communications Security 1994.

[13] MESNIER, M. P. et al. //TRACE: Parallel trace replay with
approximate causal events. InFAST 2007.

[14] PATIL , S.et al. I3FS: An in-kernel integrity checker and
intrusion detection file system. InLISA 2004.

[15] RICH, K., AND LEADLEY, S. Hobgoblin: A file and directory
auditor. InLISA 1991.

[16] SANTRY, D. S.et al. Deciding when to forget in the Elephant
file system. InSOSP 1999.

[17] SELTZER, M. et al. Journaling versus soft updates: Asyn-
chronous meta-data protection in file systems. InUSENIX 2000.

[18] SNODGRASS, R. T. et al. Tamper detection in audit logs. In
VLDB 2004(2004).

[19] THERESKA, E.et al. Stardust: Tracking activity in a distributed
storage system. InSIGMETRICS 2006.

