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Learning OT Grammars of Syllable Structure 
 

Adam T. Wayment (awayment@jhu.edu) 
Department of Cognitive Science, Johns Hopkins University 

3400 N. Charles St. Baltimore, MD 21218 USA 
 
 

1. Introduction  
Optimality Theory (OT) (Prince & Smolensky 

1993) has been widely adopted in phonology and has also 
been successfully applied to syntax, semantics, and 
pragmatics.  One reason OT has been so rapidly accepted is 
that its initial presentation was closely tied to a 
connectionist realization (Blutner, et al. forthcoming).  
Goldwater and Johnson (2003) suggest that another reason 
for OT’s recent dominance is that there are algorithms for 
learning constraint rankings.  However, these elements of 
OT’s success  (learning algorithms and connectionist 
realizations) have not yet been unified in a connectionist 
network that learns constraint rankings.  

  A grammar in Optimality Theory is defined by a 
set of ranked violable constraints.  The function GEN takes 
a base form as input and generates an infinite set of 
candidates.  EVAL then selects the optimal realization from 
among these candidates, obeying the criterion that the 
ordering of constraints is strictly dominant.  Archangeli 
(1997) reviews how re-ranking a few violable constraints 
(ONSET, PEAK, NOCODA, *COMPLEX, FAITHC, AND FAITHV) 
accounts for a large number of the syllable structures 
attested in the languages of the world.  Within this domain 
of syllable structure, we explore the dilemma of learning a 
constraint ranking in a connectionist network.  The goal is 
to design a network that can learn the well-formedness of 
test syllables, based on positive training data generated from 
a particular ranking of the violable constraints. 

2. Fixed-Point Membership 
Now, let G be a harmonic grammar.  The task is to 

determine if an input form w is in L(G).  Define language 
membership as follows w ∈ L(G) iff EVAL( GEN(w) ) = w.  
In words, membership is equated with being a fixed-point of 
OT generation.  This concept of membership provides a 
powerful framework, in which recognition can be performed 
via a fixed point test on an input form.  

Translating this notion to a Harmonic Network—
where input is equivalent to clamping the initial activation 
state—if, after the network is allowed to harmonize, the 
input pattern is the same as the output pattern, then the input 
form is in the language of the harmonic grammar described 
by the weights of the network.  If however, the input and 
output pattern differ, then the input form is not in the 
language prescribed by the grammar because the more 
harmonic activation state corresponds to some other output 
form, so the form fails the fixed-point test.  Thus, learning 
well-formedness is tantamount to learning the identity map.  

Poverty of the stimulus issues bear heavily on this problem 
because we require that the identity map be learned from 
only positive data. 

3. Data, Representation, and Learning   
Sample data consists of valid phonetic 

combinations of consonants and vowels, e.g. for a CV 
language, [ba], [mi], and [po] may be present in the training.  
Network evaluation is determined by way of the well-
formedness scores of a random collection of test syllables of 
various structure (CV, CVC, CCV, etc.).  Only those 
syllables that are in the language of the net’s grammar will 
be fixed points, and all forms that are not in the language 
will not. 

We represent syllables in a fully connected-
symmetric network made by copying a set of fillers (one 
unit per consonant or vowel) for every role position (peak, 
onset, etc.).  We allow for complex onsets and codas, by 
placing multiple filler sets in a position. Thus, ‘tint’ =[tInt], 
is represented by activating the t unit in the Onset filler set, 
the I unit in the Nucleus filler set, the n unit on in the first 
coda filler set, and the t unit  in second coda filler set. 

We compare two different algorithms for learning 
the weights of the network: backpropagation through time 
and Boltzmann learning.  Preliminary experiments show 
that the first is unsuccessful at learning the elements in the 
complement of the training set are ungrammatical, whereas 
because of its negative phase of training, Boltzmann 
learning can learn the well-formedness of syllables. 
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