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Abstract

Mismeasured time to event data used as a predictor in risk prediction models will lead to 

inaccurate predictions. This arises in the context of self-reported family history, a time to event 

predictor often measured with error, used in Mendelian risk prediction models. Using validation 

data, we propose a method to adjust for this type of error. We estimate the measurement error 

process using a nonparametric smoothed Kaplan-Meier estimator, and use Monte Carlo integration 

to implement the adjustment. We apply our method to simulated data in the context of both 

Mendelian and multivariate survival prediction models. Simulations are evaluated using measures 

of mean squared error of prediction (MSEP), area under the response operating characteristics 

curve (ROC-AUC), and the ratio of observed to expected number of events. These results show 
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that our method mitigates the effects of measurement error mainly by improving calibration and 

total accuracy. We illustrate our method in the context of Mendelian risk prediction models 

focusing on misreporting of breast cancer, fitting the measurement error model on data from the 

University of California at Irvine, and applying our method to counselees from the Cancer 

Genetics Network. We show that our method improves overall calibration, especially in low risk 

deciles.

Keywords

Survival Analysis; Mismeasured Covariates; Smoothed Kaplan-Meier Estimator; Carrier Status 
Prediction; Family History

1 Introduction

Measurement error in binary and continuous covariates has been studied extensively in the 

literature (Carroll et al., 2006, among others). The focus of this paper is on measurement 

error in time to event data which are used as predictors in an established risk prediction 

model. This work is motivated by Mendelian risk prediction models, which use Mendelian 

laws of inheritance to calculate the probability that an individual carries a cancer causing 

inherited mutation based on his/her family history. These models incorporate population 

parameters such as mutation prevalence, and penetrance (the probability of having a disease 

at a certain age given the person’s genotype) (Murphy and Mutalik, 1969). Several of these 

models are in wide clinical use. All these models currently assume that family history is 

error-free. However, in practice they often rely on self-reported family history, which is not 

always accurate. This trend is increasingly relevant as models are being moved into primary 

care setting and web-based patient-oriented tools. The accuracy of self-reported family 

history has been evaluated in several studies which show that sensitivity and specificity 

estimates for reported disease status vary by degree of relative and type of cancer. For 

example, for breast cancer in first-degree relatives, sensitivity estimates vary from 65% to 

95% while specificity estimates are usually around 98% − 99% (Mai et al., 2011; Ziogas and 

Anton-Culver, 2003).

More specifically, our interest is estimating risk of being a BRCA1/2 carrier for counselees 

(individuals seeking genetic counseling) in the Cancer Genetics Network (CGN). We 

estimate BRCA1/2 carrier risk using BRCAPRO (Berry et al., 1997; Parmigiani et al., 

1998), a Mendelian risk prediction model identifying individuals at high risk of breast and 

ovarian cancer. CGN consists of families with personal or family history of cancer, and 

includes 2,038 families with 34,310 relatives. However, only error-prone self-reported 

family history is available. In addition to misreported family history, this data set also 

contains BRCA1/2 testing results for each counselee, which allows us to evaluate model 

performance. We also have data from a validation study conducted at the University of 

California at Irvine (UCI) (Ziogas and Anton-Culver, 2003) evaluating misreporting of 

family history. This study includes 719 cancer affected individuals with either breast, 

ovarian, or colon cancer for whom both error-free and error-prone family history are 

available. Self completed (error-prone) reports were collected from patients, and verified 
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using medical records and death certificates. Using this validation study, we propose an 

approach to adjust for misreporting of family history, and apply our proposed adjustment to 

counselees in CGN.

Time to event data are coded by two variables; T indicating either time to event or censoring 

whichever occurs first, and δ indicating whether the event occurred. We focus on scenarios 

in which both T and δ are measured with error. Because of the relationship between T and δ, 

standard techniques adjusting for measurement error in binary or continuous covariates 

cannot be applied directly. Previous work in this setting has focused on measurement error in 

survival outcomes (Meier et al., 2003). Meier et al. consider a discrete setting in which 

subjects are tested at predetermined time points until the time of first observed failure. Using 

the sensitivity and specificity rates of failing, they develop a model for the measurement 

error process based on a validation data set, and incorporate this into an adjusted 

proportional hazards model. Their method cannot be extended to our setting for two reasons. 

The first, that our time to event data is not obtained by repeated testing, instead we look at 

scenarios for which the time to event data is measured with error at one time point. The 

second, that our interest is in time to event data used as predictors in an existing risk 

prediction model and not as outcomes. We are not aware of any literature directly applicable 

to our setting.

The effects of misreported family history on Mendelian risk prediction models have been 

examined by Katki (2006). Both errors in underreporting of disease status and rounding of 

age were considered, and it was shown that misreporting of family history, especially in 

disease status, leads to distortions in predictions. A model based on these inaccurately 

assessed predictors will not be well calibrated. Katki (2006) studies the effects of 

misreporting but does not propose a method to adjust for the distortions in predictions, 

which is the focus of this work. More recently, Daniels et al. (2014) observed an 

underestimation of BRCA1/2 carrier probabilities in women with high-grade serous ovarian 

cancer. We hypothesize that some of the underestimation could be due to misreporting of 

family history (Braun et al., 2014b), motivating the clinical need for this work.

Although our work is motivated by the setting of Mendelian risk prediction models, where 

the interest is in the prediction of a binary variable (mutation carrier status) based on time-

to-event data (family history), it is applicable to other scenarios, particularly in the context 

of survival prediction models where the interest is in the prediction of the probability of 

having an event by a given time based on time-to-event data. For example, suppose one is 

interested in predicting survival. In some disease settings, such as cancer, one possible 

predictor for survival is time to disease progression (TTP, the length of time until the disease 

starts to get worse or spread to other parts of the body), a time to event predictor. Suppose 

one has developed a model predicting survival based on error-free TTP. In practice, TTP in 

oncology clinical trials is often error-prone due to two main reasons; assessment of tumor 

size based on imaging varies by the observer and to a lesser extent the equipment, generating 

variation; and scans are taken at regularly scheduled intervals, generating rounding errors 

(Korn et al., 2010). Gray et al. (2009) evaluated measurement error in a similar endpoint, 

progression free survival (PFS, the length of time a patient lives with the disease but the 

disease does not get worse), by comparing PFS assessment by an independent review facility 
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(IRF) (which would be considered the error-free predictor) to an investigator-based local 

assessment (which would be considered the error-prone predictor). They conducted an 

independent review of trial E2100, an open-label multi-center, randomized, phase III trial 

conducted by the Eastern Cooperative Oncology Group (ECOG). They saw that for 6% of 

the patients a PFS event was only identified by IRF, and for 18.1% of the patients a PFS 

event was only identified by local review. 43.5% of patients had PFS events identified by 

both IRF and local review, and for those the date of PFS was the same for 54.5% of the 

patients and within 6 weeks for 70.4% of the patients.

In this context, suppose one has developed a model to predict survival based on IRF 

determined time to progression. In practice, one might want to use the prediction model to 

predict survival using as a covariate the time to progression determined by local review, and 

not by IRF, since local review might be the only feasible option. Another related example 

arises in the context of using time to event data on short-term outcomes as predictors for 

survival or for other long-term outcomes (Parast et al., 2012). If one has developed a model 

using error-free short term survival outcomes as predictors, but in practice these predictors 

are measured with error, our proposed method is again applicable.

It is important to note that our setting differs from typical measurement error settings 

involving error-prone covariates. In the typical setting, usually, only the error-prone 

covariate is observed in the main study, and the goal is to estimate the relationship between 

the outcome and the true covariate. In our setting, however, we have an already well-

established risk prediction model, for which the relationship between the outcome and the 

true covariate is known. The goal is to use this model to estimate the risk based on an error-

prone covariate. However, since the existing risk prediction model uses the relationship 

between the outcome and the true covariate, calculating the risk predictions based on the 

error-prone covariate will lead to biased results. In this work, we propose an approach to 

adjust for this bias.

Using a validation data set, we propose a nonparametric method to adjust for this type of 

measurement error, where the measurement error model is estimated by a conditional 

version of the kernel smoothed Kaplan-Meier estimator (Beran, 1981). This is presented in 

section 2. The proposed adjustment relies on two common assumptions that should be 

justified; the first that the measurement error model is transportable from the validation 

study to the main study, and the second of non-differential measurement error (surrogacy). 

In our motivating example, in the context of family history, both of these assumptions will 

likely hold. It is reasonable to assume that the mechanism driving the misreporting of family 

history in the validation study population would be the same as in the main study population. 

It is also reasonable to assume that the misreporting of family history is independent of the 

outcome (carrying a cancer causing inherited mutation). These assumptions are discussed in 

more detail in section 7.

We apply our proposed approach to Mendelian risk prediction models in section 3, and to 

other multivariate survival prediction models in section 4. Simulation results are presented in 

section 5. We illustrate our method using a data application in the context of Mendelian risk 

prediction models in section 6. The illustration focuses on misreporting of breast cancer, 
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fitting the measurement error model on data from UCI, and applying our method to 

counselees from the CGN. Finally, we summarize the main conclusions in section 7.

2 Proposed Method for Measurement Error Adjustment

Consider an outcome Y, and assume that time to event data are used as predictors in a model 

for Y. Specifically, let To be the true failure time, let C be the true right-censoring time, T = 

min(To, C) and δ = 1(To ≤ C). We denote the error-free predictor as H = (T, δ). We assume a 

model P(Y|H) has been previously developed using this error-free predictor. For example, Y 
= 1 if the counselee is a carrier of genetic variants that confer disease risk, and 0 otherwise, 

and To is their mother’s age at onset.

Now, suppose when implementing this model, the time to event data used as predictor has 

error. We denote this error-prone predictor as H* = (T*, δ*). In our context, it could be that 

the counselee doesn’t know that her/his relative had the disease, or she/he doesn’t know the 

correct age-at-onset. We also assume we have a validation study which includes both the 

error-free time to event data, H, and the error-prone time to event data, H*. We do not 

assume the validation data includes Y.

The available risk prediction model, P(Y|H), uses the error-free predictor, however, in 

practice, H* is available instead of H and our goal is to estimate P(Y|H*) for each new 

counselee. One could naively plug in H* into the established risk prediction model, however 

this will lead to biased results. Instead, we propose to rewrite P(Y|H*) by applying the law 

of total probability and Bayes rule, as follows:

P(Y |H∗) = ∫
H

P(Y , H |H∗)dH = ∫
H

P(Y |H, H∗)P(H |H∗)dH = ∫
H

P(Y |H)P(H |H∗)dH (1)

The last equality in Equation (1) follows from the non-differential measurement error (which 

is equivalent to surrogacy) assumption: we assume that H* is a surrogate for H; that is, H* 

contains no information on predicting Y in addition to the information already contained in 

H. This is plausible in many applications, including in Mendelian risk prediction models, 

when the probability of the outcome conditional on both the error-free and error-prone 

predictor is only influenced by the error-free predictor (i.e., carrier probability conditional 

on both the error-prone and true family history is only influenced by the true family history).

The risk prediction model, P(Y|H), is already developed, and we provide an estimator of the 

measurement error distribution, P(H|H*), by the validation data. This approach assumes that 

the measurement error model P(H|H*) is transportable, meaning that the measurement error 

distribution estimated in the validation study can be applied to the population of interest. For 

this to be true, the validation and the target population should be as similar as possible. One 

should give thought to the choice of an appropriate validation study when applying our 

proposed method, as will be further discussed in section 7.

We propose to model P(H|H*) using hazard functions and assuming conditional 

independence of event and censoring times given T*, δ*:
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P(T , δ |T∗, δ∗) = λ(T |T∗, δ∗)δS(T |T∗, δ∗)h(T |T∗, δ∗)1 − δG(T |T∗, δ∗) . (2)

Here λ and S are the conditional hazard and survival functions of the event time To given 

H*, and h and G are the conditional hazard and survival functions of the censoring time C 
given H*. These hazard and survival functions are estimated by the validation data. Thus, 

when implementing the adjustment based on Equation (1) for a given counselee, P(H|H*) is 

estimated by the validation data, a large study population that does not involve the 

counselee.

In the validation study, one could estimate the survival distribution P(T, δ|T*, δ*) 

parametrically (e.g. using a Weibull distribution), semi-parametrically (e.g. using a Cox 

model), or non-parametrically (e.g. using Kaplan-Meier estimators). In our implementations 

we have used the kernel smoothed Kaplan-Meier estimators with nearest neighborhoods 

(Beran, 1981), requiring no parametric assumptions on the hazard and survival functions 

involved. This approach is simple, flexible, and is applicable to any measurement error 

model.

More specifically, assume a validation study with n individuals, and for each individual i we 

observe Hi = (Ti, δi), where T i = min(T i
o, Ci) and δi = 1(T i

o ≤ Ci), and Hi
∗ = (T i

∗, δi
∗). Let 

Ni(t, l) = I(T i ≤ t, δi = 1, δi
∗ − l), l = 0, 1, and the at-risk process Xi(t, l) = I(T i ≥ t, δi

∗ = l), l = 0, 

1. We estimate the conditional survival function of the event time To given H* = (t*, l), i.e. 

S(·|t*, l), for any 0 < t* ≤ τ, τ > 0 a pre-specified constant, and l = 0, 1, by the following 

Beran (1981) estimator. Let nl = ∑i = 1
n I(δi

∗ = l), l = 0, 1. Define K as a known kernel 

function and {bnl} as sequences of positive constants tending to 0 as nl → ∞, l = 0, 1, i.e. 

bandwidth sequences. Then,

S(t | t∗, l) = ∏
s ≤ t

[1 − dΛ(s | t∗, l)] (3)

where

Λ(t | t∗, l) = ∫
0

t ∑i = 1
n W i(t

∗; bnl
, l)dNi(s, l)

∑i = 1
n W i(t

∗; bnl
, l)Xi(s, l)

(4)

and
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W i(t; bnl
, l) = I(δi

∗ = l)
K

t − Ti
∗

bnl

∑ j = 1
n I(δ j

∗ = l)K
t − T j

∗

bnl

. (5)

The estimators of the conditional hazard functions of the event time To given H* = (t*, l), 
i.e. λ̂ (· |t*, l), are defined as the consecutive differences of Λ̂ (· |t*, l). The conditional 

hazard and survival functions of the censoring distribution C given H*, i.e. h and G, are 

obtained in a similar manner, treating the censoring times as events and the event times as 

censoring. Thus, our proposed estimator of P(H|H*) is defined by P̂(H|H*) = λ̂(T|T*, 

δ*)δŜ(T|T*, δ*)ĥ(T|T*, δ*)1−δ Ĝ(T|T*,δ*). The proposed estimator will be consistent even 

when the n individuals consist of clustered data (as in the case of Mendelian risk prediction 

models). If one were to use a parametric approach to model P(H|H*), the dependence would 

need to be incorporated into the model (for example, using a copula or frailty model) which 

would require stronger assumptions.

While there is a relationship between T and δ, it is important to realize that when T contains 

measurement error, δ will not automatically be error-contaminated. The measurement error 

model, Equation (2), is stratified by δ* and estimate it separately for P(T, δ|T*, δ* = 0) and 

P(T, δ|T*, δ* = 1). By estimating the measurement error model conditional on T*, δ* we are 

able to account for the relationship between T, δ and T*, δ*.

After obtaining the estimator P̂(H|H*) defined above, we proceed to implementing the 

adjustment in Equation (1), which requires integration over all possible values of H. 

Depending on the data, integrating over all possible values of H might be computationally 

challenging. In these cases, we propose using Monte Carlo integration, and generating the 

Monte Carlo samples from P̂(H|H*). More specifically, given H* which is known, we 

sample B replicates of H: H(1), …, H(B), from P̂(H|H*); calculate P̂(Y|H(b)), b = 1, …, B; 

and the final proposed estimator of P(Y|H*) is given by: P(Y |H∗) = B−1∑b = 1
B P(Y |H(b)).

3 Mendelian Risk Prediction Models

Mendelian risk prediction models estimate the probability that a counselee carries an 

inherited susceptibility to a disease, based on information about his or her family history and 

are widely used in genetic counseling. Statistical software for evaluating these models is 

available as part of the BayesMendel R package (Chen et al., 2004), which includes 

BRCAPRO (Berry et al., 1997; Parmigiani et al., 1998), MMRPro a model identifying 

individuals at high risk of Lynch Syndrome, PancPRO a model identifying individuals at 

high risk of pancreatic cancer, and MelaPro a model identifying individuals at high risk of 

melanoma.

For the purpose of our discussion we consider a counselee who provides information on R 
members of his/her family, and focus on a single disease. Then, predictors are H = (H0, H1, 

Braun et al. Page 7

J Am Stat Assoc. Author manuscript; available in PMC 2019 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



…, HR). For family member i, Hi = (Ti, δi) and T i = min(T i
o, Ci) where T i

o is the age of 

disease diagnosis, Ci is the current age or age of death, and δi = 1(T i
o ≤ Ci), where i = 0 

indicates the counselee. Mendelian models aim to estimate the counselee’s carrier 

probability P(γ0|H), and γi = (γi1, …, γiM), where γim = 1 indicates carrying the genetic 

variants that confer disease risk for each individual i = 0, …, R at a gene m = 1, …, M, and 

γim = 0 otherwise. These models are based on known mutation prevalence, P(γ) and 

penetrance P(H|γ), where the penetrance is estimated from the literature and is a vector of 

discrete probabilities of disease conditional on carrier status, for ages=1, …, 110. Using 

Bayes rule and assuming conditional independence of family members’ phenotype given 

their genotypes, we can write the counselee’s carrier probability given his/her current 

disease status and his/her family history as follows:

P(γ0 |H0, H1, …, HR) =
P(γ0)∑γ1, …, γR

∏i = 1
R P(Hi | γi)P(γ1, …, γR | γ0)

∑γ0
P(γ0)∑γ1, …, γR

∏i = 1
R P(Hi | γi)P(γ1, …, γR | γ0)

. (6)

Note that unaffected family relatives are informative for the risk calculation, as the 

likelihood of being a carrier will decrease when unaffected members are present. These 

models are typically trained using validated family history H. For example, the current 

version of the BRCAPRO model assessed P(Hi|γi) via a meta-analysis of studies, the 

majority of which use family history information verified using medical records.

In practice, when these models are used clinically, the counselee provides his or her own 

recollection of the medical history of the family members. We refer to this as the reported 

history H*. While validation of this history is sometimes possible, the majority of clinical 

implementations need to provide a carrier probability using H* only. Normally, H* is simply 

plugged in P̂(γ0|H) instead of H. Our goal is to assess P(γ0|H*), addressing the 

measurement error present in H* for the counselee at hand, and at the same time leveraging 

the models that have been previously trained on validated data. Using Equation (1), this 

probability can be rewritten as follows:

P(γ0 |H∗) = ∫
H

P(γ0 |H)P(H |H∗)dH . (7)

P(γ0|H) is estimated based on Equation (6), and the details can be found in (Berry et al., 

1997; Parmigiani et al., 1998). The measurement error process, P(H|H*), is estimated by 

using kernel smoothed Kaplan-Meier estimators based on a validation study. More 

specifically, for a family of size R, P(H1, …, HR |H1
∗, …, HR

∗) = ∏i = 1
R P(Hi |Hi

∗), and 

P(Hi |Hi
∗) = λ(T i |T i

∗, δi
∗)

δi
S(T i |T i

∗, δi
∗)h(T i |T i

∗, δi
∗)

1 − δi
G(T i |T i

∗, δi
∗). λ̂, Ŝ, ĥ, Ĝ would be 

estimated based on a validation study (not including the counselee data). The validation data 

consists of independent families, each family consists of multiple relatives. Finally, the 

Braun et al. Page 8

J Am Stat Assoc. Author manuscript; available in PMC 2019 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



integration is implemented using a Monte Carlo integration, as described earlier, and the Hi 

are sampled independently for each relative.

4 Survival Prediction Models

The problem of measurement error in time to event data also arises in survival prediction 

models. We continue our discussion of a hypothetical example in the context of predicting 

survival using time to progression (TTP). Assuming a prediction model for survival using 

error-free TTP has been developed, one might be interested in applying it in an environment 

where only error-prone TTP is available. In this scenario, we let Ts = min(Ts
o, Cs) and 

δs = 1(Ts
o ≤ Cs), where Ts

o is the death time, andCs is the censoring time for death. We let 

T tt p = min(T tt p
o , Ctt p) and δt pp = 1(T tt p

o ≤ Ctt p), where T tt p
o  is the progression time, and Ctt p 

is the censoring time for progression. We let H = (Ttt p, δtt p) be error-free TTP, and 

H∗ = (T tt p
∗ , δtt p

∗ ) be error-prone TTP. The existing prediction model based on error-free TTP 

is P(Ts
o > t |H), while our application requires P(Ts

o > t |H∗). Using Equation (1) we can 

rewrite this probability as:

P(Ts
o > t |H∗) = ∫

H
P(Ts

o > t |H)P(H |H∗)dH . (8)

P(H|H*) would be estimated using validation data containing paired error-free TTP and 

error-prone TTP and will be based on Equation (2). Studies such as the one conducted by 

Gray et al. (2009), would be a good source of validation data, since they compared 

progression assessment conducted by IRF review (error-free TTP) to progression assessment 

conducted by local review (error-prone TTP).

5 Simulations

5.1 Mendelian Risk Prediction Models

We begin with simulations whose goal is to quantify the impact of adjusting for 

measurement error in the context of Mendelian risk prediction models. For each simulation 

scenario, we generated two data sets; the first (the measurement-error-estimation study) is 

used to model the measurement error distribution; the second (the model-evaluation study) is 

used to estimate the carrier probability of each counselee given their family history, and 

evaluate our method.

For our measurement-error-estimation study, we simulated 100,000 families with 5 members 

(mother, father, and three daughters). These simulations focus on one gene, BRCA1, and 

only on breast cancer. For the marginal carrier probability, P(γ = 1), we assumed the value 

0.006098, which is the estimated allele frequency of BRCA1 in the Ashkenazi Jewish 

population. We simulated error-free breast cancer failure times for each member based on 

fixed penetrance functions for P(H|γ), γ = 0, 1, the same used by BRCAPRO version 2.08. 

We simulated error-free censoring times from a truncated normal distribution with mean 55 
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and standard deviation 10 (truncated at 0 so that no ages are below 0). We used a large 

sample because the allele frequency for BRCA1 is low.

We considered two settings for the measurement error in disease status. The first using 

sensitivity= 0.954 and specificity=0.974, taken from Ziogas and Anton-Culver (2003), the 

second using sensitivity=0.649 and specificity=0.990, taken from Mai et al. (2011). We 

considered four settings for the measurement error in age. For the first three settings, we 

assume an additive classical model; T* = T + ε where ε ~ N(0, σ2), and either σ = 5, 3 or 1. 

For the fourth setting, we assume a multiplicative measurement error model, T* = TU, 

where U ~ exp(1). We estimate P(H|H*) using smoothed Kaplan-Meier with the nearest 

neighborhoods kernel using the prodlim R package (Gerds, 2015). We calculated the optimal 

bandwidths using the direct plug in approach proposed by Sheather and Jones (1991).

For our model-evaluation study, we generated 50,000 counselees, whose family history were 

generated in a similar manner. For each of the 50,000 families, we calculated carrier 

probability for the counselee based on family history using BRCAPRO for three estimators: 

a) based on the simulated error-free history P̂(γ0|H); b) based on the simulated error-prone 

history by naively replacing H by H*, denoted by P̃(γ0|H*), and c) using our proposed 

adjusted estimator P̂(γ0|H*) (Table 1). For our adjusted approach, we applied Monte Carlo 

integration by sampling 100 configurations of H from P̂(H|H*).

We used three different performance measures, which are standard in the risk prediction 

literature (Steyerberg et al., 2010), to evaluate the estimators introduced above. Calibration 

was evaluated by the ratio of observed to expected events (O/E) (a well calibrated model will 

have O/E close to 1), accuracy of prediction was evaluated by mean squared error of 

prediction (MSEP), and discrimination was evaluated by the area under the receiver 

operating characteristics curve (ROC-AUC). More specifically, O/E, can be written as: 

∑i = 1
n 1(γi = 1)/∑i = 1

n Pi, where P̂
i is replaced by each of the three predictive probabilities 

above, in turn. We define MSEP, as the mean of the squared differences between the P̂
i and 

the error-free predictions, or (1/n)∑i = 1
n {Pi − Pi(γ0 |H)}2. Therefore, MSEP based on the 

error-free data is always 0. We used the verification R package (Gilleland, 2009) which 

calculates ROC-AUC following the process outlined by Mason and Graham (2002).

Table 1 provides the results. In summary, the ratios of observed to expected events (O/E) 

based on the error-free family history are reasonably close to 1 in all the simulation settings. 

The O/E ratios based on the error-prone family history are lower than one, when using 

sensitivity=0.954 and specificity=0.974, and higher than one when using sensitivity=0.649 

and specificity=0.990, with the exception of the scenarios involving multiplicative error in 

age, for which the O/E is always less than one. A specificity of 0.974 implies that 2.6% of 

truly unaffected relatives are reported to be affected. The majority of relatives in these 

simulations are unaffected, therefore this specificity drives a large number of predictions to 

be higher than they should be, and the O/E to be less than 1. For lower sensitivity, the 

underreporting of disease drives the O/E to be greater than one, since the expected 

probabilities are lower. In all the settings, the proposed adjusted estimator improves the O/E 

substantially, and shifts it closer to 1. For example, in the first simulation scenario, the O/E 
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is 0.9773 based on error-free family history, 0.8190 based on error-prone family history, and 

0.9712 based on the adjustment. Thus, we are able to eliminate almost all the bias induced 

by errors in reported histories.

MSEP based on adjusting the error-prone data is lower than MSEP based on the error-prone 

data alone for all simulations, by an amount that varies but can be substantial. For example, 

in the first simulation scenario the square root of the MSEP multiplied by 1000, is 19.1351 

based on the error-prone family history, and 16.7405 based on the adjustment. ROC-AUC in 

all simulations are higher based on the error-free data compared to the error-prone data. In 

simulations involving additive error in age, ROC-AUC values are only slightly improved 

using our adjustment compared to the error-prone data alone. In some cases no improvement 

was observed. For example, in the first simulation scenario ROC-AUC was 0.8160 based on 

error-free family history, 0.8090 based on error-prone family history, and 0.8086 based on 

the adjustment. However, it is not in general the case that the adjustment improves 

calibration without affecting discrimination. To illustrate, we consider a scenario with 

multiplicative error in age, where the error in age is likely stronger than what should be 

expected in real genetic counseling applications. In this case, predictions are substantially 

reordered by our adjustment, and ROC-AUC is higher compared to the error-prone data 

alone. For example, in the fourth simulation scenario in Table 1, ROC-AUC was 0.8145 

based on error-free family history, 0.7185 based on error-prone family history, and 0.8020 

based on the adjustment.

Figure 1 compares the three predictions corresponding to the first row in Table 1, 

representing a simulation setting with sensitivity 0.954 and specificity 0.974. The first 

column on the left, shows predictions based on error-free family history compared to error-

prone family history. The majority of the families have carrier probabilities less than 0.2, 

therefore we present a close up of these families in the second row. There is more over-

reporting (in the plot these are individuals who are above the 45° line), due to the lower 

specificity. We have many individuals close to the 45° line, corresponding to simulated 

families for which error-prone and error-free family histories were very similar. The second 

column in the middle, shows predictions based on error-free family history compared to our 

adjustment. In families with high carrier probabilities, we see more individuals below the 

45° line, implying our adjustment method slightly over adjusts by shifting probabilities 

down. Even though this is the case, overall, model calibration is improved (Table 1). In the 

bottom row, for families with lower carrier probabilities, we see individuals both above and 

below the 45°. Thus, although it appears that our adjustment method over adjusts for some 

individuals, the overall O/E shows improvement in calibration. The third column on the 

right, shows predictions based on error-prone family history compared to our adjustment. 

We can see that especially in this simulation scenario (which has more over-reporting than 

underreporting of cancer), our adjustment shifts individuals’ carrier probabilities down. 

Additional analysis of a second simulation scenario, corresponding to the fifth row in Table 

1, representing a simulation setting with sensitivity 0.649 and specificity 0.990, can be found 

in Web Appendix A.

Overall, the proposed adjustment method improves MSEP and calibration in all scenarios, 

while ROC-AUC either remains the same or improves depending on the scenario.
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5.2 Survival Prediction Models

We also preformed simulations in the context of predicting survival based on TTP. For these 

simulations, we consider a hypothetical scenario in which one has developed a prediction 

model for survival using error-free TTP as a predictor. In reality, however, TTP is measured 

with error, as shown in the E2100 review conducted by Gray et al. (2009). Based on the 

results of this review, Korn et al. (2010), performed simulations to assess the potential bias 

of measurement error on the conclusions of a proportional hazards analysis in randomized 

trials. We followed a similar approach in generating the data for our simulations. Using the 

notation introduced in section 4, we let (Ts, δs) indicate the survival data, and (Ttt p, δtt p) 

indicate the TTP data. To mimic a plausible counseling scenario, the goal is to predict 

survival of a patient; P(Ts
o > t |T tt p

∗ , δtt p
∗ ), where t is fixed and equal for all patients and Ts

o is 

the time to death from either a progression event or the patient’s last visit to the clinician’s 

office.

Similarly to the Mendelian risk prediction model simulations of Section 5.1, we generated 

two types of study; the measurement-error-estimation study used to model the correct TTP 

given the error-prone TTP, and the model-evaluation study, used to estimate the survival 

probability for each individual given their TTP, and evaluate our method. In addition to 

these, we generated a third study type to train the prediction model for survival based on 

error-free TTP. In the Mendelian risk prediction model simulations, we used an existing risk 

prediction model (BRCAPRO). In this section, an existing model was not available and so 

we generated data to fit one. In each simulation run we generated all three study types anew.

We begin by describing the training data set and the fitting of the prediction model. We 

assume a scenario in which patients were followed for progression for a period of 25 

months. Some of these patients will have a progression event during this time interval, 

whereas others will be censored. We assume that censoring represents the patient’s last visit 

to the clinician’s office.

We generated survival data (Ts, δs) as well as error-free TTP data (Ttt p, δtt p) for 1,000 

patients. We began by generating progression event times (Ttt p) based on a Weibull 

distribution with shape parameter=1.456 and scale parameter=11.063 (based on E2100). We 

then generated censoring times (Ctt p) assuming a censoring distribution between 0 and 25 

months with density f (t) = 2(25 − t) / 625, resulting in approximately 55% censoring. 

Individuals who had a progression time smaller than their censoring time, were assumed to 

have a progression event at their progression time. The remainder were assumed to not have 

a progression event.

Next we generated survival. Survival, Ts, was measured from the time an individual either 

had a progression event or the individual’s last visit to the clinician’s office. To simplify our 

choice of scenarios, we first simulated δs from a Bernoulli distribution with the following 

probabilities; for those who had a progression event, we assumed that P(δs = 1|δtt p = 1) = 

0.5, for those who did not have a progression event, we assumed that P(δs = 1|δtt p = 0) = 

0.1. We generated Ts given the value of δs. To simplify model evaluation, we assumed that 

following a progression event or the last encounter, all individuals are followed for survival 
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until either death or the end of the follow-up period at time c > t. So for those who survive 

(δs = 0), we assigned them an observed time Ts = c months. For those who died (δs = 1) and 

had a progression event (δtt p = 1), we assigned them a survival time, Ts, by taking the 

absolute value of a random sample from a N(12, 52). For those who died and did not have a 

progression event (δt pp = 0), we assigned them a survival time, Ts, by taking the absolute 

value of a random sample from a N(48, 52). This generates a dependence between survival 

and TTP. We fit a prediction model P(Ts
o > t |T tt p, δtt p) for t = 60 using the kernel smoothed 

Kaplan-Meier estimators of the prodlim R package (Gerds, 2015) for δtt p = 0 and 1, 

separately. For these simulations 1,000 patients provide a large enough sample, since events 

are generated at a high rate (around 45%).

Moving to the measurement-error-estimation study, we generated error-free TTP, (Ttt p, 

δtt p), as well as error-prone TTP, (T tt p
∗ , δtt p

∗ ), for 1,000 individuals. We simulated error-free 

TTP as we did in the training data set. We then generated error-prone TTP conditional on the 

error-free TTP: we introduced error in TTP event indicators using various sensitivities and 

specificities (E2100 had 88% sensitivity and 64% specificity). We generated T tt p
∗  depending 

on δtt p and δtt p
∗  as follows. If δtt p = 1, δtt p

∗ = 1; 55% of the time we assumed complete 

agreement in the time of the event (based on E2100); T tt p
∗ = T tt p. For others, 35% were 

within 6 weeks of each other. Therefore, we used multiplicative measurement error with log-

normal distribution and standard deviation log(1.5) (Korn et al., 2010) to generate T tt p
∗ . If 

δtt p = 0, δtt p
∗ = 0, we assumed agreement in the time; T tt p

∗ = T tt p. If δtt p = 1, δtt p
∗ = 0, we 

assigned T tt p
∗  to be the simulated censoring time. If δtt p =0, δtt p

∗ = 1, we assigned T tt p
∗  to be 

the minimum of the simulated progression failure time and end of study (25 months). We 

obtained error-free and error-prone TTP, and fit the measurement error model, 

P(T tt p, δtt p |T tt p
∗ , δtt p

∗ ) using kernel smoothed Kaplan-Meier estimators based on each 

simulated data set.

Finally, for the model-evaluation study, we generated error-prone and error-free TTP as well 

as survival data, for 1,000 individuals as we did for the first two data sets. We preformed 

survival prediction calculations for each subject in this data set. We compared three different 

prediction calculations; the first using the error-free TTP as a covariate in the prediction 

model P(Ts
o > t |T tt p, δtt p), the second by naively replacing the error-free TTP by the error-

prone TTP as a covariate and calculating P
∼(Ts

o > t |T tt p
∗ , δtt p

∗ ), and the third using our 

measurement error adjustment P(Ts
o > t |T tt p

∗ , δtt p
∗ ). All the three predictions above were done 

for t = 60. Although we have a time to event outcome, predictions were calculated for a fixed 

t, and for model evaluation, ROC-AUC and calibration, we consider a dichotomized 

outcome, Y = 𝟙(Ts
o > t).

In addition, we compared our proposed method to an alternative approach of modeling the 

measurement error process, which considers event indicators but not time, that is 
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P(T tt p, δtt p |T tt p
∗ , δtt p

∗ ) = P(δtt p | δtt p
∗ ). We estimated P(δtt p | δtt p

∗ ), δtt p | δtt p
∗ = 0, 1 in the 

measurement-error-estimation study, and used it to adjust for measurement error as follows; 

P(Ts
o > t |T tt p

∗ , δtt p
∗ ) = ∑δtt p = 0, 1P(Ts

o > t |T tt p
∗ , δtt p)P(δtt p | δtt p

∗ ). We refer to this as the time 

independent adjustment.

We conducted simulations for various values of sensitivity and specificity, varying in 

increments of 0.1 from 0.1 to 1. Figure 2 summarizes the O/E for the four methods 

considered, across all choices of sensitivity and specificity. In summary, both the full 

adjustment and the time independent adjustment preform very well; the O/E ratios are very 

close to one and vary only slightly across sensitivity and specificity. As expected, the O/E 

ratios based on error-free covariates are even closer to one. The O/E ratios based on the 

error-prone covariates decrease as sensitivity increases, and increase as specificity increases. 

A low sensitivity corresponds to underreporting of events, corresponding to higher O/E 

ratios, whereas a low specificity corresponds to over-reporting of events, corresponding to 

lower O/E ratios. Thus, as sensitivity increases, O/E decreases; as specificity increases, O/E 

decreases.

The full adjustment preformed best in terms of MSEP compared to both no adjustment and 

the time independent adjustment (Figure 3), with the exception of a few scenarios with very 

high sensitivity and specificity. MSEP based on error-prone covariates decreases as 

sensitivity and specificity increase, that is, as we introduce less error MSE improves. For 

both adjustment methods, MSEP increases and then decreases as sensitivity increases, for 

lower specificities, while for higher specificities MSEP decreases as sensitivity increases.

In general, ROC-AUC was highest using the full adjustment method compared to both no 

adjustment and the time independent adjustment (Figure 4). ROC-AUC was largest based on 

the error-free covariates. In theory ROC-AUC based on the error-free covariates should be 

constant. Small variability in the ROC-AUC based on the error-free covariates was observed 

(green line in Figure 4) due to the variability in the data generation for each simulation 

scenario. ROC-AUC based on error-prone covariates increases as sensitivity and specificity 

increase, that is, as we introduce more error ROC-AUC decreases. For both adjustment 

methods, ROC-AUC decrease and then increase as sensitivity increases, for lower 

specificities, while for higher specificities ROC-AUC increases as sensitivity increases.

Overall, the full adjustment method preform best in terms of calibration, overall model 

accuracy, and discrimination.

6 Data Application

We illustrate our proposed method using a data application in the context of Mendelian risk 

prediction models focusing on misreporting of breast cancer. For the counselees, we used 

2,038 families from the CGN Model Evaluation Study. For these families only self-reported 

(misreported) family history is available therefore we are unable to estimate the extent of 

measurement error in the CGN data. 9.2% of the 34,310 relatives were reported to have 

breast-cancer. Our interest is in estimating the risk of being a BRCA1/2 carrier based on the 
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available misreported family history using our proposed adjustment, which we can compare 

to the genetic testing results for BRCA1/2 mutations which are known for all counselees.

We use data from UCI in order to estimate the measurement error process. Briefly, this study 

includes 719 participants who report family history on 1,521 female relatives, 19.3% of 

whom are reported to have breast-cancer. Cancer diagnosis and age of onset was verified 

using medical records and death certificates. Therefore, for these individuals we know both 

the error-prone and error-free family histories. Sensitivity and specificity for misreporting of 

breast cancer in this study are 80% and 97% respectively. Although specificity is high, even 

3% of unaffected relatives being reported as affected will have a larger impact, as the 

majority of the relatives are unaffected. Misreporting of age of diagnosis is less frequent, age 

of breast cancer was misreported for 3.1% of the relatives, with an average 4.5 years 

difference between the true and misreported ages, and age of ovarian cancer was misreported 

for 4.2% of the relatives, with an average 4.2 years difference between the true and 

misreported ages (more details presented in Web Appendix B).

We estimated the measurement error model in the UCI data as described earlier. The average 

family size in the UCI data is 2.11 relatives per family, therefore we fit a measurement error 

process on this entire population rather than stratifying by the degree of the relative (the 

proposed smoothed Kaplan Meier estimator will still be consistent under this setting). We 

then applied our proposed adjustment for BRCA1/2 carrier prediction, for each counselee in 

the CGN data. Additionally, we use BRCAPRO to estimate the probability of each counselee 

being a carrier for a mutation given her error-prone family history. Using the true BRCA1/2 

carrier status, we calculated O/E ratios, and ROC-AUC based on the error-prone family 

history as well as our proposed adjustment. MSEP as defined previously cannot be 

calculated since H is not observed, however, we can calculate the Brier score, which is 

defined as the mean of the squared differences between the P̂
i and the event indicator 𝟙(γ0i = 

1) as (1/n)∑i = 1
n {Pi − 𝟙(γ0i = 1)}2.

The UCI data contains a relatively small number of events, and therefore the kernel 

smoothed Kaplan-Meier was sensitive to bandwidth selection. Rather than estimating the 

optimal bandwidth using the direct plug in approach proposed by Sheather and Jones (1991), 

the bandwidths were selected so that calibration of the probability of being a BRCA, 

BRCA1, and BRCA2 carrier in the CGN dataset were closest to 1. Therefore, this example 

does not provide a completely independent validation of the calibration performance.

The respective O/E ratios of being a BRCA, BRCA1, and BRCA2 carrier are 1.007, 1.073, 

and 0.916 based on error-prone family history; and 0.976, 1.037, and 0.892 based on the 

adjustment. The respective Brier scores for being a BRCA, BRCA1, and BRCA2 carrier are 

0.141, 0.102, 0.058 based on error-prone family history; and 0.139, 0.102, and 0.057 based 

on the adjustment. The respective ROC-AUC for BRCA, BRCA1, and BRCA2 carriers are 

0.777, 0.791, and 0.725 based on the error-free family history; and 0.776, 0.787, and 0.722 

based on the adjustment.

Overall, the adjustment results in a slight improvement in Brier score but a slightly worse 

ROC-AUC. Even with the error-prone family history, the BRCAPRO model is well 
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calibrated overall for being a BRCA carrier, but not as well calibrated for a BRCA1 carrier 

or BRCA2 carrier separately. The adjustment improves BRCA1 calibration, while the 

calibration of BRCA2 is slightly worse.

In clinical applications, it is important for risk prediction models to preform well in low risk 

deciles, since insurance companies will often approve genetic testing only for individuals 

whose estimated carrier probability is above a cutoff which is relatively low, such as 5% or 

10%. Therefore, we further examined model calibration by looking at the O/E ratios of being 

a BRCA carrier, stratified by risk (Figure 5). Individuals were ordered by their probabilities 

of being a BRCA carrier based on the error-prone family history, and stratified into deciles. 

O/E ratios as well as 95% confidence intervals were calculated for each stratum. Using 

error-prone family history, the model is not well calibrated in the low risk deciles. The O/E 

ratio is greater than one in these deciles, implying that the model underestimates the risk for 

these individuals. Our proposed adjustment improves calibration in the low risk deciles by 

an extent which we expect will lead to better clinical decisions.

7 Discussion

In this paper we explore a method to adjust for measurement error in time to event data. 

Previous literature has focused on measurement error in survival outcomes, but not on 

measurement error in a time to event predictor. Our proposed method is applicable to both 

Mendelian risk prediction models and survival prediction models. Simulations studies in 

both of these settings show that, when implementing these models using error-prone time to 

event data, the models are miscalibrated. Our proposed adjustment improves model 

calibration and total accuracy across all simulation scenarios. Model discrimination either 

remains the same or is improved, depending on the amount of error introduced in the 

simulation setting.

In practice, different populations will have different amounts of measurement error. For 

example Mai et al. (2011) focused on general population and showed higher rates of 

misreporting compared to Ziogas and Anton-Culver (2003) whose study included only 

affected probands. It is important that the measurement error model be estimated in a 

population that is reflective of the population to which the final algorithm will ultimately be 

applied. In these settings we would recommend deploying our methods, as even a relatively 

small correction has the potential of providing clinically meaningful improvement, as seen 

in the CGN data illustration. Since insurance companies use a low cutoff to approve genetic 

testing, the improvement in calibration in the low risk deciles can have a direct impact, 

increasing the number of individuals being referred to genetic testing.

Existing software for Mendelian risk prediction models does not report the uncertainty in the 

estimated risk for an individual i. One approach to estimate the uncertainty for a new 

counselee i are the resampling procedures proposed by Parmigiani et al. (1998); Gorfine et 

al. (2013). These address the uncertainty about the model parameters (prevalence and 

penetrance) by drawing these parameters from a distribution, and for each draw calculating 

the counselee’s carrier probability. This approach can be extended to incorporate the 
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additional uncertainty due to the variability of the measurement error model estimates, by 

drawing this parameter from a distribution as well.

Our proposed method relies on two main assumptions. The first is non-differential 

measurement error, which is equivalent to assuming that H* is a surrogate for H. While this 

may be a reasonable assumption in the context of family history, there could be scenarios in 

which this assumption would be violated. The non-differential measurement error allows us 

to use an existing and reliable model for P(Y|H), which is a key component of our proposed 

methodology. Therefore the methods proposed in this paper would not be helpful if this 

assumption was violated. The second assumption is that the measurement error distribution, 

P(H|H*) is transportable from the validation study to the main study. This assumption should 

be given careful thought, as there may be scenarios for which it is violated. Ideally, we 

would have multiple validation studies and would be able to test this assumption. 

Unfortunately, validation studies assessing the accuracy of family history are costly and not 

widely conducted. Furthermore, data from these studies is not often publicly accessible.

In the context of the UCI validation study, we assume that the mechanisms driving the 

measurement error (recall error, being unaware of family history, etc), would be similar to 

the CGN population where we apply the correction. CGN contains probands with cancer 

and/or a family history of cancer. While the CGN data does contain unaffected probands 

(and the UCI contains only affected probands), both CGN and UCI are high risk 

populations, and it is reasonable to assume that the measurement error would be similar 

across the two populations. When applying this correction to the general population, using 

the UCI data to fit the measurement error model could be a limitation, as it may not 

represent error rates realistically. Studies such as the one conducted by Mai et al. (2011) can 

be used to estimate the measurement error model in the general population. We hope this 

work will motivate both additional research as well as data sharing and future collaborations, 

so that we can apply this correction to the general population

There may be scenarios for which P(H|H*) is not transportable, but it may be plausible to 

assume that P(δ|δ*) (PPV, NPV) is (that is, a measurement error process which does not 

depend on time). In such settings we recommend performing the adjustment by estimating 

the measurement error process P(δ|δ*). We illustrate this approach, referred to as time 

independent, in simulations, and show that even in simulations where the measurement error 

depends on time it performs quite well.

There may also be settings for which P(H|H*) is not transportable, yet P(H*|H) is. One key 

component of our adjustment is the estimation of P(H|H*) using a survival distribution. On 

the other hand, P(H*|H) cannot be estimated using standard survival analysis methodology. 

While T* and δ* are dependent, they are not dependent through the traditional censoring 

mechanism. Since both T* and δ* are error-prone, the familiar definitions for the survival 

time and censoring no longer hold. Therefore the likelihood for P(H*|H) is not available in 

standard form. Extending our proposed method to the setting in which P(H|H*) is not 

transportable, yet P(H*|H) is, would be more intensive in terms of calculations, it is an 

ongoing project and will be addressed in a separate communication.
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If the covariate distribution differs across the two population, then there could be settings in 

which one wouldn’t expect P(H|H*) to be transportable, however it may be plausible to 

assume that the model would be transportable if we condition on additional covariates (such 

as counselee’s age, race, education, income, etc). In such settings, we would recommend 

extending the measurement error process to incorporate these additional covariates. If 

several continuous covariates are being added, a semi-parametric modeling approach could 

be considered instead of the kernel smoothed Kaplan-Meier approach.

The conditional independence assumption used in Equation (2) means that for all t, within 

any subgroup of individuals defined by H*, the subjects who are censored at time t are 

representative, with respect to their survival experience, of all the subjects in that subgroup 

who are at risk at time t. In case one suspects that additional covariates (e.g. status of other 

diseases) should be included (beside H*) for this conditional independence assumption to 

hold, such covariates should be included in Equation (2) as well.

The simulations performed in this paper in the context of survival prediction, model survival 

using time to progression as a covariate. More generally, the method proposed in this paper 

can be used in any survival prediction model in which the time to event covariate is 

measured with error. For example, it can be used in the setting of estimating the probability 

of the counselee remaining free of disease until time t, P(To > t|H*). Mendelian models for 

P(To > t|H) were developed similarly to what is described above, and are also available as 

part of the BayesMendel R package. Using Equation (1), our proposed method can be 

implemented in this context: P(To > t|H*) = ∫H P(To > t|H)P(H|H*) dH.

The main advantage of the nonparametric kernel smoothed Kaplan-Meier estimators is not 

to require parametric assumptions on the form of the measurement error model. In 

simulations, with large number of events in the validation data, the estimator was robust to 

bandwidth selection in terms of calibration (Web Appendix C), and therefore optimal 

bandwidths were selected using the direct plug in approach proposed by Sheather and Jones 

(1991). However, when there are relatively few observed events in the validation data, as in 

the UCI data, the kernel smoothed Kaplan-Meier estimators might be sensitive to bandwidth 

selection. In this setting, the optimal bandwidth was selected based on the criterion that 

calibration of the probability of being a BRCA (BRCA1 or BRCA2) carrier in the CGN 

dataset be closest to 1. Alternatively, if the data allows, one could use a semi-parametric or 

parametric approach to model the measurement error process. This could be advantageous in 

terms of model performance, however, in our settings, since T and T* are highly correlated, 

a Cox proportional hazards model did not converge due to a monotone likelihood. If one 

considers a parametric model, one should be aware that observations in the setting of family 

data are dependent, and this dependence would need to be incorporated into the model.

The CGN Model Evaluation Study through which we illustrate our method has some 

limitations. First, it may not be representative of the measurement error patterns seen in 

unselected populations, as it consists mostly of families who self-select for genetic 

counseling. Second, the Mendelian risk prediction model we used for our analysis considers 

only one disease, whereas in real applications, Mendelian risk predication models include 

multiple diseases. An extension of this work to multiple diseases is presented elsewhere 
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(Braun et al., 2014a). Even with these limitations, we see that our proposed method 

improved calibration in the low risk deciles.

In addition, the UCI validation data used to estimate the measurement error model is 

relatively small. However, in simulations our proposed approach was robust to the validation 

study sample size, and performed well for sample size as low as N = 100 as long as the 

validation study includes both events and non-events (Web Appendix C). The total number 

of carriers in the CGN Model Evaluation Study is also relatively small. Efforts should be 

made to obtain larger model evaluation study, which could lead to substantial improvements 

to the current BRCAPRO carrier predictions using our proposed adjustment technique.

While in theory one could develop new risk prediction models based on error-prone family 

history, this is not optimal in the context of Mendelian risk prediction models. Mendelian 

risk prediction models are based on the estimation of two parameters; penetrance function 

and prevalence. The penetrance function is the probability that an individual is diagnosed 

with the disease at age t, t = 0, 1, …, 110, given the carrier status. Mendelian risk prediction 

models are not developed by fitting an outcome model conditional on family history, but 

rather by using Mendelian laws of inheritance, Bayes’ rule, and known mutation prevalence 

and penetrance function. Therefore, when we say the original model was developed based on 

true family history, we mean that the penetrance function estimates in the original model are 

based on true disease status and age. Studies estimating these penetrance function are based 

on individuals who undergo genetic testing and whose disease status and age is generally 

known with great accuracy (for example, based on medical records). They are not based on 

family histories, but rather based on individuals who are tested. Therefore, penetrance-

function estimate can be considered as being based on true disease status and age. Thus by 

using these estimates as parameters in the original models, we generate a model that applies 

to error-free family history.

Mendelian risk predictions models are based on published penetrance estimates and their 

meta-analysis, which leverages the extensive information available. Although error-prone 

penetrances could theoretically be estimated by estimating the penetrance based on family 

history; asking the proband to report their family history, and extrapolating the proband’s 

own genetic testing results to other family members (without testing the other family 

members), this is not done in practice, and is even less likely to be done in the future as 

genetic testing becomes more widely available. Estimating an error-prone penetrance would 

move modeling in the direction of using data of much lower quality. In addition, our 

proposed approach has the advantage of allowing the adjustment of misreporting of family 

history in some settings and not others. It also allows for population specific adjustments by 

estimating different measurement error processes targeting different populations, for 

example; elderly population, high risk, primary care clinic.

A recent study by Daniels et al. (2014) used BRCAPRO to calculate the risk for being a 

BRCA1/2 carrier in women with high-grade serous ovarian cancer, and showed that the risk 

is underestimated. In response to this study, we hypothesized that some of the 

underestimation could be due to misreporting of family history, and used a simplified 

version of the methods proposed in this paper to illustrate how adjusting for the misreporting 
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will lead to better calibrated predictions (Braun et al., 2014b). The underestimation of risk 

observed by Daniels et al. (2014) illustrates the clinical impact in using methods to adjust 

for misreporting in this setting.

The method proposed in this paper can be used to generalize the algorithms currently 

incorporated into the BayesMendel R package, and will be of direct clinical use. Self-

reported family history is often affected by inaccuracies which could lead to inappropriate 

care (Murff et al., 2004). Underreporting (false negatives) of cancer in the family gives rise 

to an underestimation of cancer risk, which can result in inadequate screening and 

substandard treatment (Murff et al., 2004). On the other hand, over-reporting (false 

positives) of cancer, gives rise to an overestimation of cancer risk, which can cause stress 

(Douglas et al., 1999), unnecessary procedures and unnecessary genetic testing (Kerr et al., 

1998; Sweet et al., 2002; Fry et al., 1999). For these reasons, we hope that the methods 

proposed in this paper will be of clinical significance.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
P(BRCA1) for simulated families based on error-free family history, error-prone family 

history, and the proposed adjustment. In red, a simulation setting with sensitivity 0.954 and 

specificity 0.974, classical additive model for error in age T* = T + ε where ε ~ N(0, 52), 

and the counselee is the mother. The bottom row is a close up version of the top row, 

focusing on counselees with carrier probabilities less than 0.2.
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Figure 2. 
O/E ratios for survival simulations under varying sensitivity and specificity rates.
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Figure 3. 
MSEP ∗ 1000 for survival simulations under varying sensitivity and specificity rates.
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Figure 4. 
ROC-AUC for survival simulations under varying sensitivity and specificity rates.
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Figure 5. 
Log of the observed over expected ratios and 95% bootstrap confidence intervals for being a 

BRCA carrier for counselees in CGN data set, stratified by risk deciles.
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