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Abstract

Extrapolating landscape regression models for use in assessing vector-borne disease risk and other applications requires
thoughtful evaluation of fundamental model choice issues. To examine implications of such choices, an analysis was
conducted to explore the extent to which disparate landscape models agree in their epidemiological and entomological risk
predictions when extrapolated to new regions. Agreement between six literature-drawn landscape models was examined
by comparing predicted county-level distributions of either Lyme disease or Ixodes scapularis vector using Spearman ranked
correlation. AUC analyses and multinomial logistic regression were used to assess the ability of these extrapolated
landscape models to predict observed national data. Three models based on measures of vegetation, habitat patch
characteristics, and herbaceous landcover emerged as effective predictors of observed disease and vector distribution. An
ensemble model containing these three models improved precision and predictive ability over individual models. A priori
assessment of qualitative model characteristics effectively identified models that subsequently emerged as better predictors
in quantitative analysis. Both a methodology for quantitative model comparison and a checklist for qualitative assessment
of candidate models for extrapolation are provided; both tools aim to improve collaboration between those producing
models and those interested in applying them to new areas and research questions.

Citation: Lorenz A, Dhingra R, Chang HH, Bisanzio D, Liu Y, et al. (2014) Inter-Model Comparison of the Landscape Determinants of Vector-Borne Disease:
Implications for Epidemiological and Entomological Risk Modeling. PLoS ONE 9(7): e103163. doi:10.1371/journal.pone.0103163

Editor: Simon Gubbins, The Pirbright Institute, United Kingdom

Received April 16, 2014; Accepted June 26, 2014; Published July 29, 2014

Copyright: � 2014 Lorenz et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Data Availability: The authors confirm that all data underlying the findings are fully available without restriction. All data sets used in this analysis are publicly
available at their source, in public repositories, as described in the manuscript and supporting information.

Funding: This work was supported in part by the CDC Climate and Health Program (award # 5 U01 EH000405), the Ecology of Infectious Disease program of the
National Science Foundation under Grant No. 0622743, the National Institute for Allergy and Infectious Disease (K01AI091864) and the Global Health Institute at
Emory University. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* Email: justin.remais@emory.edu

Introduction

A range of human and ecological risk assessment activities

involve applying quantitative knowledge—such as a model and its

parameters drawn from previous work—to a new research

question or analytical problem (conceptual extrapolation), or to

a new geographic region or time period (spatial or temporal

extrapolation). The resulting application outside the conceptual,

spatial or temporal domain of the original analysis is an

extrapolation, in one or more dimensions, that adds uncertainty

to the resulting risk estimates [1,2]. Examples of quantitative

information routinely drawn from previous work include mathe-

matical models and their parameters, dose-response functions, and

thresholds and other parameter estimates [1,3]. Common

applications of such information include health impact assessments

[4,5], ecological risk assessments [6,7], and risk mapping of disease

vectors [8,9].

With growing interest in quantifying shifts in the spatial

distribution of hazards, such as disease vector populations, in

response to environmental change, models and their associated

parameters that describe the environmental dependence of

hazards are needed [10–13]. In many cases, these are drawn

from previous work unrelated to environmental change, and this is

especially true for relationships between landscape characteristics

and infectious disease vectors, hosts, and reservoirs. Ecological

landscape regression models and their parameters are of increasing

relevance to, and are increasingly used by, public health risk

assessors who seek a quantitative understanding of the potential for

changes in the distribution, timing, and intensity of vector-borne

diseases under future environmental conditions [14–16]. Predic-

tions of future distributions of vectors, for instance, can aid in

identifying areas to target for future funding and intervention [17].

Applying models, and landscape models in particular, to

describe the distribution of important vector and reservoir species

to regions, times, and climates that fall outside the ranges in which

the original models were fit raises a unique set of model

extrapolation issues surrounding the choice of model for extrap-

olation. When sufficient computational resources and data are

available, model choice may be made by quantitative comparison

of multiple candidate models’ outputs against field conditions
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observed outside the domain of the original model fitting. Such

comparisons from areas such as climate science, environmental

science, physiology, and economics have revealed significant

variability in model predictions when modeling methods, resolu-

tion, predictor variables and other aspects differ [18–21]. Where it

is not possible for all candidate models to be recreated,

extrapolated, and compared, subjective examination of model

characteristics can guide model choice. Here, we describe and

demonstrate the relevance of these characteristics by extrapolating

multiple existing landscape models (Table 1) of Ixodes scapularis,
the primary tick vector of Lyme disease in the Eastern U.S. We

examine the extrapolation issues summarized in Text S1, and

provide a checklist (Table 2) for qualitative assessment of

candidate models for extrapolation. This tool, valuable both to

model consumers and to model producers, is intended to improve

the interaction between those building generalizable models and

those with interest in applying them to new areas and research

questions.

Materials and Methods

Ixodes scapularis Models
The large number of geographically limited landscape models

for I. scapularis, the primary Lyme disease vector in the Eastern

U.S., presents an opportunity to apply the checklist as summarized

in Table 2, and examine how results from extrapolation differ

across multiple models. Lyme disease is the most commonly

reported vector-borne disease in the U.S. [22], and infection

requires that the bacteria, Borrelia burgdorferi, be transmitted

from a competent reservoir host, such as white-footed mice

(Peromyscus leucopus), to the tick through a blood meal, and then

subsequently from the tick to a human in a later blood meal lasting

more than 36 hours. Thus, tick survival and abundance are

central to sustaining transmission. A number of studies have

assessed the relationship of tick abundance to topography or

habitat variables (e.g., slope gradients, elevation, patch size, soils,

forest type), remotely-sensed data (e.g., Normalized Difference

Vegetation Index or NDVI), climate/meteorological variables

(e.g., temperature, day length, relative humidity), and host

abundance measures (e.g., deer density, pellet counts) [23]. It is

important to note that many of these models use drag sampling to

estimate tick abundance, which may more accurately reflect the

distribution of host-seeking ticks and thus the risk of human

exposure, rather than total tick distribution.

To examine issues raised by conceptual and spatial extrapola-

tion of such models, multiple models were recreated, applied to a

new domain, and their projections examined to determine the

extent to which they agreed in their epidemiological and

entomological risk predictions. The ability of the landscape models

to predict county-level observed data was assessed, as was the

extent to which agreement between models was determined by

location and other geographic characteristics. Finally, the potential

for improvement of model predictions through incorporation of

additional information (e.g., adding variables or combining

models) was examined. The analysis focused on associations

between habitat variables and the county-level prevalence of either

human Lyme disease or I. scapularis. Extrapolations were carried

out on a 464 km grid covering the Eastern United States, starting

just west of the Mississippi River (24.3uN to 45.97uN, 293.0uE to

266.88uE; Figure 1).

Model Search and Selection
Models were selected from published research articles using

habitat variables as predictors of epidemiological or entomological
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Figure 1. Spatial extent of Eastern United States considered in the analysis, based on 2000 U.S. Census (24.36N to 45.96N latitude,
93.06W to 66.56W longitude).
doi:10.1371/journal.pone.0103163.g001
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risk of Lyme disease in the Eastern U.S. Literature searches were

carried out in PubMed using the search terms: ‘Ixodes scapularis’
or ‘Lyme’ and ‘landscape’ or ‘habitat’ or ‘GIS’ or ‘geographic

information systems’ or ‘spatial,’ and included appropriate

truncation and wildcards. In addition, literature cited in Appen-

dices 1 and 2 of the Killilea et al. [23] review were included.

Models were then assessed according to inclusion/exclusion

criteria, as follows: models must include habitat variables and I.
scapularis or Lyme disease incidence in Eastern U.S; non-

quantitative models were excluded; models that predicted survival

or infection (rather than Lyme disease risk/incidence or tick

presence/establishment/count) were excluded; and models that

incorporated climate variables were excluded owing to the

unavailability of climate data matched at the temporal and spatial

resolution of the original analysis. Of approximately 30 models

that examined the relationship between habitat variables and tick

populations or Lyme disease in the U.S. (see Text S2), 24 were

excluded on the basis of the above criteria or due to incomplete

methods descriptions, dependence on data that were not available

across the extrapolation area, or methods that could not be

replicated due to software or processing constraints. A total of six

models (heretofore termed Tick Patch, Lyme Patch, NDVI,

Development, Herbaceous, and Coniferous models) were used in

the analysis. The Tick Patch model and NDVI model predict tick or

nymph counts per geographic unit, and the remaining four models

predict odds or incidence of Lyme disease. All six models are

described in Table 1 and below.

Data Sources and Processing
Where possible, spatial data were drawn from the same year

(2001) for all models. Parameter estimates for intercepts were not

always provided by the literature and thus baseline counts and

risks were not available. Inter-model analyses were carried out by

relative pair-wise comparison of model predictions. For each

model, predictor data were obtained at the same resolution as in

the original analysis unless the resolution was not specified or was

not available. All datasets were clipped to the extent of the full grid

and projected using the Lambert Conformal Conic projection.

Data processing and analyses were conducted using ArcGIS 9.3

(ESRI, Redlands, CA). Spatial join (for polygon features) and

zonal statistics (for raster layers) were used to compute an average

of each variable for each 464 km grid cell, which were then

entered into the respective models (Table 1) to generate predic-

tions in each cell. Cells located outside of U.S. boundaries (as

defined by the U.S. Census Bureau) and cells comprised of greater

than 50% open water (as defined by the U.S. Geological Survey)

were excluded from the analysis [24,25]. Grid predictions were

also aggregated at the county level (N = 1814) to ease comparison

with observed data. Detailed data sources for each model are

provided below.

Tick Patch and Lyme Patch models
National Land Cover Data (NLCD) at 30 meter resolution were

obtained from the U.S. Geological Survey for the year 2001 [26].

Deciduous forest patch size and patch isolation were calculated

using the program FRAGSTATS 3.3 [27]. The FragStatsBatch

script [28] was used to compute class-level metrics [27] for patches

of deciduous forest. All other landscape classes were set as

background and ignored as specified in Brownstein et al. [29]. At

the center of each cell in the grid, the average area of forest

patches within 500 m (in hectares) and the average minimum

distance between patch edges within 500 m (in meters) were

calculated. The Tick Patch model, whose outcome is tick density,

and Lyme Patch model, whose outcome is human Lyme disease

incidence, used both patch size and patch isolation as predictors.

NDVI model
Scaled NDVI data for June 10–25, 2001, the time period used

in the original analysis [9], were obtained from the Global Land

Cover Facility and were converted to true NDVI values following

methods detailed elsewhere [30]. Human population data were

obtained from the U.S. Census Bureau at county-level resolution

for the year 2000 [24]. County population was assumed to be

evenly distributed in each county. An area weighted population

value, obtained from county-level population data, was applied to

each grid cell, where population at a cell was estimated as the

county population divided by the number of grid cells in that

county. The NDVI model predicts number of ticks as a function of

spatially averaged NDVI and human population.

Development, Coniferous, and Herbaceous models
Soil Survey Geographic (SSURGO) data were obtained from

the Natural Resources Conservation Service [31] with a variable

describing each soil group’s ability to support a coniferous habitat,

defined as ‘‘very poor’’, ‘‘poor’’, ‘‘fair’’, or ‘‘good.’’ An analogous

variable for herbaceous habitat was also available. Groups

described as very poor supporters of herbaceous habitats were

assumed to fit into the poor-fair category described by Glass et al.
[32]. Due to a lack of spatial orientation for soil components

within each SSURGO map unit, the characteristics of the soil

component which comprised the greatest proportion of the map

unit were applied to the entire SSURGO map unit. Data on

extent of development were obtained from the NLCD [26].

Highly developed areas were assumed to be those described as

‘‘developed, high intensity’’ in the NLCD. All other land cover

types were assumed to be the reference category described by

Glass et al. [32]. Of the models presented by Glass et al. [32], only

univariate models were appropriate for inclusion in this analysis

due to the presence of location-specific variables in the multivar-

iate models. Development, Coniferous, and Herbaceous models
predict odds of Lyme disease as a function of the extent of

development, soil supporting coniferous habitat, or soil supporting

herbaceous habitat, respectively.

Observational data
Predictions from the above models were compared to county-

level data on tick presence and Lyme disease risk from the U.S.

Centers for Disease Control and Prevention (CDC), the definitive

national dataset on Lyme disease surveillance and tick distribution

in the U.S. [33,34]. CDC categorizes tick presence for each county

as none, reported (,6 ticks and 1 life stage identified), or

established ($6 ticks or .1 life stage identified), based on

questionnaires sent to health officials and researchers, surveys of

the MEDLINE data base, and review of National Tick Collection

data. In addition, CDC categorizes Lyme disease risk as minimal/

no, low, medium, or high, based on both entomologic risk

obtained from tick presence and host abundance data; and risk of

human exposure obtained from nationally notifiable disease

surveillance.

Statistical Analyses
Predictions were compared between models and evaluated

against observational data. All comparisons are reported at the

county level, although grid cell level comparisons were also

conducted. County-level predictions were calculated by taking the

mean of all predictions for grid cells with centroids that fell inside

Inter-Model Comparison of the Landscape Determinants of I. scapularis
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county boundaries, with the exception of the NDVI model, which

predicts a tick count (in excess of the unknown baseline) rather

than a risk or density and thus the sum of grid cell predictions

within the county was used. State-level predictions were calculated

by taking the mean of all county-level predictions within the state.

Analyses were conducted using SAS 9.3 (SAS Institute Inc., Cary,

NC).

Model-model comparison
The Spearman’s rank correlation coefficient (r) and associated

p-values were calculated for each model pair to quantify the

agreement between models at both county and state levels. These

analyses were conducted to demonstrate how one might begin to

determine the utility of extrapolated models in the absence of

observational data for model validation. Assuming that no other

information is available, a model-model comparison may aid in

identifying outlying models that generate predictions that disagree

broadly with the consensus of other models. To arrive at a value

for r, model outputs are ranked, rankings are compared between

two models (in this case, by geographic unit), and then agreement

is assessed between those models over the full data set. The

Spearman’s rank correlation coefficient represents the level of

agreement, with r= 1 indicating that the model outputs are in

complete agreement. Spearman’s rank correlation tests were

performed to address dissimilarities in outcome variables that

were not directly comparable in terms of units and numerical

range.

The availability of hosts, the distribution of ticks across elevation

gradients, the behavior of I. scapularis, and many other factors

have been cited as sources of regional (particularly Northern vs.

Southern) differences in the etiology of tick-borne human diseases

in the U.S. [35–37]. Thus, the potential for increased model

agreement in specific geographic areas was explored through

analyses on subsets of the data at the county level. U.S. Census

definitions were used to define these subsets: Northeast/Midwest/

South, urban/rural and coastal/inland (Table 3). Elevation,

categorized as high or low using the median elevation in the area

of interest (calculated at the grid level), was also used to create

subsets.

Evaluation against observations
County-level predictions for each model were compared with

observational data obtained from CDC using area under the

receiver operating characteristic curve (AUC) and multinomial

logistic regression (MLR). AUC is a discriminatory index that is

particularly useful for comparing continuous predictions to

dichotomous observations because its calculation does not require

subjective cut points for predictions. The statistic calculates the

probability that a randomly chosen county with CDC-determined

tick presence (or higher Lyme disease risk) will have a higher

model-predicted score than a randomly chosen county with no

CDC-determined tick presence (or lower Lyme disease risk) [38].

A model with an AUC value of 0.5 is considered to be no better

than chance, while a model with an AUC value of 1 is considered

to be a perfect model. Models with discriminatory power

Table 4. AUC values from MLR analyses for predictive models using CDC data as gold standard.

Observational Data Set/
Dichotomization

Tick Patch
N = 1750

Lyme Patch
N = 1750

Development
N = 1814

Coniferous
N = 1814

Herbaceous
N = 1814 NDVI N = 1814

Lyme disease risk

Minimal vs Low/Moderate/High 0.64* 0.65* 0.50 0.60* 0.58* 0.52

Minimal/Low vs Moderate/High 0.50 0.51 0.65* 0.65* 0.49* 0.67*

Minimal/Low/Moderate vs High 0.55* 0.55* 0.79* 0.71* 0.55* 0.70*

Minimal vs High 0.44 0.50 0.78* 0.75* 0.60* 0.69*

Minimal vs Moderate 0.62* 0.62* 0.52 0.64* 0.52 0.61*

Minimal vs Low 0.66* 0.67* 0.46 0.57* 0.59* 0.57*

Low vs High 0.64* 0.65* 0.80* 0.68* 0.50 0.72*

Low vs Moderate 0.56* 0.57* 0.56* 0.57* 0.57* 0.65*

Moderate vs High 0.59* 0.59* 0.77* 0.63* 0.58* 0.64*

Minimal vs Moderate/High 0.59* 0.59* 0.64* 0.69* 0.55* 0.65*

Minimal/Low vs High 0.54 0.55* 0.79* 0.71* 0.55 0.71*

Minimal vs Low/Moderate 0.65* 0.66* 0.47 0.58* 0.58* 0.55*

Low vs Moderate/High 0.60* 0.61* 0.67* 0.62* 0.54 0.68*

Minimal/Low vs Moderate 0.47 0.48 0.54 0.61* 0.53 0.63*

Low/Moderate vs High 0.64* 0.64* 0.80* 0.67* 0.52 0.71*

Tick Presence

None vs Reported/Established 0.60* 0.60* 0.52 0.58* 0.56* 0.52

None/Reported vs Established 0.54* 0.54* 0.59* 0.64* 0.60* 0.55*

None vs Established 0.58* 0.58* 0.58* 0.65* 0.61* 0.55*

None vs Reported 0.62* 0.62* 0.52 0.53* 0.53 0.50

Reported vs Established 0.55* 0.55* 0.60* 0.62* 0.58* 0.55*

Bolded AUC values indicate a positive association.
*AUC values are significant (p,0.05).
doi:10.1371/journal.pone.0103163.t004
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significantly better than chance were identified by an AUC p-value

,0.05 in the positive direction (higher predicted values corre-

sponding with higher observed values). Because the observational

data were not dichotomous as obtained, they were categorized into

‘‘low’’ or ‘‘high’’ risk in multiple ways (see Table 4 and Table 5).

To address spatial characteristics of the data, county-level

predictions were regressed on CDC observed data, controlling

for the effects of spatial autocorrelation with adjacent neighbors

using an intrinsic conditional autoregressive model. Details of the

MLR and spatial autocorrelation analyses are found in Text S2.

Incorporating additional information
To test whether incorporating additional information could

improve the predictive ability of models, an elevation cut-off

(510 m) identified in Diuk-Wasser et al. [35] was incorporated into

the six original models by assigning the minimum prediction value

to counties above the cut-off. Three additional ensemble models

were also constructed. The first included all six original models,

while the second included the three models that best predicted

observed data in AUC and MLR analyses. The Coniferous,
Herbaceous, and Development models from Glass et al. [32] were

assembled as the third ensemble model. To create ensemble

statistics, predictions from each original model were ranked from

lowest (1) to highest (N) and ensemble models were constructed by

taking the average of the rank of each component model (thus,

high ranks indicate higher valued predictions). AUC and MLR

procedures were conducted using ensemble statistics as described

above and the predictive ability of cut-off and ensemble models

was qualitatively compared to that of the original models.

Results

Model-Model Comparisons
Positive, significant, though weak r were observed in six of the

15 pairwise comparisons of model prediction at the county level

(p,0.01; Table 3). Two groups of models with consistent

predictions emerged through these analyses. The Tick Patch and

Herbaceous models were generally in agreement with each other

but not with the remaining models, and vice versa. Of note, the

Tick Patch and Lyme Patch models were inversely correlated

(r= 21.0). At the state level, four of the 15 model pairs

demonstrated significant evidence of agreement (p,0.05; Ta-

ble 3). Grid cell level analyses showed general agreement with

analyses conducted at the county level (results not shown).

Correlation sub-analyses revealed regional and topographical

differences in model agreement (Table 3). While the direction of

all correlations in both the Northeast and South regions remained

consistent with overall results, six correlations changed direction

(e.g., switched from a positive correlation to a negative correlation,

or vice versa) in the Midwest. With the exception of the correlation

between Lyme Patch and Development, inter-model agreement

weakened at elevations above the median.

Four model pairs showed no positive correlations in either

overall comparisons or any sub-analyses: Tick Patch/Lyme Patch,

Tick Patch/Coniferous, Development/NDVI, and Herbaceous/
NDVI. Comparisons between the Development and Herbaceous
models yielded the least consistent results (the correlation

coefficients for five of the nine sub-analyses were positive, while

the overall correlation was negative but not significant). The most

consistent correlation, that between the Lyme Patch and Conif-
erous models, remained positive in all sub-analyses, though the

relationship was not significant in the Midwest or in urban areas.

Evaluation Against Observations
AUC values for dichotomizations of observational data show

weak agreement with modeled predictions (AUC#0.72; Table 4).

Of the 15 examined dichotomizations of CDC’s Lyme disease risk

data, the NDVI model performed significantly better than chance

alone in 11 dichotomizations, while the Lyme Patch and

Herbaceous models performed significantly better than chance in

just under half (seven and six, respectively) of the 15 dichotomi-

zations. In evaluations against CDC’s tick presence data, the Tick
Patch and Herbaceous models performed significantly better than

chance in four of the five dichotomizations and the NDVI model in

three out of five, while the Coniferous and Development models did

not perform better than chance in any dichotomization of either

CDC data set (Table 4). Spatial regressions showed no evidence of

spatial autocorrelation across adjacent counties (results not shown).

In geographic AUC sub-analyses using four dichotomizations of

CDC Lyme disease risk data, the NDVI model performed

significantly better than chance in most geographic areas (Table

S1 in Text S2). However, the Tick Patch model performed

significantly better than chance in all Southern analyses, while the

Lyme Patch model was the only model to demonstrate discrimi-

natory ability in the Midwest. The Development model performed

Table 5. AUC values from MLR analyses for predictive models using CDC data as gold standard – ensemble models.

Observational Data Set/
Dichotomization

Ensemble Model 1: All Models
(N = 1750)

Ensemble Model 2: ‘‘Top 3’’
Models (N = 1750)

Ensemble Model 3: Glass et al. (1995)
Models (N = 1814)

Lyme disease risk

N vs L/M/H 0.54* 0.61* 0.51

N/L vs M/H 0.59* 0.61* 0.71*

N/L/M vs H 0.67* 0.64* 0.81*

N vs H 0.69* 0.69* 0.81

Tick presence

A vs R/E 0.51 0.60* 0.53*

A/R vs E 0.56* 0.61* 0.59*

A vs E 0.55* 0.63* 0.58*

Bolded AUC values indicate a positive association.
*AUC values are significant (p,0.05).
N = none/minimal; L = low; M = moderate; H = high; A = absent/none; R = reported; E = established.
doi:10.1371/journal.pone.0103163.t005
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better than chance in only three of the 36 sub-analyses and the

Coniferous model never performed better than chance. No best

performing model emerged in geographic sub-analyses using CDC

tick presence data, with multiple models demonstrating discrim-

inatory ability in most geographic areas. The models most

frequently performing better than chance were the Tick Patch,

Herbaceous, and NDVI models. The Lyme Patch model again

demonstrated some discriminatory ability in the Midwest, and the

Coniferous model never performed significantly better than

chance.

MLR analyses yielded similar results, with the NDVI, Tick
Patch, and Herbaceous models producing significant positive odds

ratios (ORs) against both observational data sets (Table 6 and

Table S3 in Text S2). The other three models failed to

demonstrate significant positive predictive ability and the Devel-
opment model failed to converge. Sub-analyses pointed to

Table 6. Odds ratios in MLR for predictive models using CDC data as gold standard – original and ensemble models.

Outcome6 Lyme disease risk (CDC) Tick presence (CDC)

OR 95% CI AIC OR 95% CI AIC

Tick Patch (N = 1750)‘ 3761.9 3279.8

1v0 3.9* (2.9, 5.3) 2.2* (1.6, 3)

2v0 2.0* (1.2, 3.4) 1.5* (1.1, 2.1)

3v0 0.9 (0.5, 1.7)

Lyme Patch (N = 1750)‘ 3747.0 3274.5

1v0 0.7 (0.7, 0.8) 0.8 (0.8, 0.9)

2v0 0.8 (0.7, 0.9) 0.9 (0.8, 1.0)

3v0 1.0 (0.9, 1.2)

Development (N = 1814) 3927.9 3433.9

1v0 0.2 (,0.001, 269.8) 15.4 (0.0, .1000)

2v0 ,0.001 (,0.001, 0.2) 0.0 (0.0, 0.6)

3v0 ,0.001 (,0.001, ,0.001)

Coniferous (N = 1814) 3915.7 3402.9

1v0 0.4 (0.2, 0.6) 0.7 (0.4, 1.3)

2v0 0.2 (0.1, 0.5) 0.2 (0.1, 0.3)

3v0 0.1 (0.0, 0.1)

Herbaceous (N = 1814) 3933.5 3406.6

1v0 4.8* (2.8, 8.2) 1.6 (0.9, 2.9)

2v0 1.4 (0.5, 3.7) 7.0* (3.7, 13.2)

3v0 4.1* (1.4, 11.6)

NDVI (N = 1814) 3901.8 3435.8

1v0 0.9 (0.9, 1.0) 1.0 (0.9, 1.1)

2v0 1.1 (1.0, 1.2) 1.1* (1.0, 1.2)

3v0 1.7* (1.4, 2.0)

Ensemble Model 1: All Models (N = 1750) 3808.6 3293.8

1v0 0.999 (0.998, 1.000) 1.000 (0.999, 1.002)

2v0 0.999 (0.997, 1.000) 0.998 (0.997, 0.999)

3v0 0.994 (0.992, 0.996)

Ensemble Model 2: "Top 3" Models (N = 1750) 3776.1 3244.5

1v0 1.001* (1.001, 1.002) 1.001* (1.001, 1.001)

2v0 1.002* (1.001, 1.002) 1.002* (1.001,1.002)

3v0 1.003* (1.002, 1.003)

Ensemble Model 3: Glass et al. (1995) Models (N = 1814) 3794.9 3417.5

1v0 1.001* (1.000, 1.001) 1.000 (1.000, 1.001)

2v0 0.998 (0.998, 0.999) 0.999 (0.998, 0.999)

3v0 0.994 (0.993, 0.995)

AIC = Akaike information criterion; considers both model fit and complexity, used to assess goodness-of-fit.
uFor Lyme Disease Risk, 0 = minimal/no risk, 1 = low risk/Lyme disease reported, 2 = medium risk, 3 = high risk. For Tick Presence, 0 = absent/none, 1 = reported, 2 =
established.
‘N = 1750: Some counties had no deciduous forest; thus, patch size and patch isolation could not be calculated.
*Significant positive OR estimate: 95% CI excludes the null (1.0) and OR estimate is .1.0 (p,0.05).
doi:10.1371/journal.pone.0103163.t006
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differences in model predictive ability by geographic area, with the

NDVI and Herbaceous models demonstrating significant positive

predictive ability in the Northeast, and the Lyme Patch model
demonstrating significant positive predictive ability in the Midwest

(Table S2 in Text S2).

Incorporating Additional Information
Adding an elevation cut-off to predictive models increased the

number of statistically significant positive AUC values and MLR

ORs in most analyses (Tables S1 and S3 in Text S2). Precision was

gained in MLR ORs for ensemble models that incorporated

information from more than one model (Table 6). The ensemble

model consisting of the three better-performing models in above

analyses (NDVI, Tick Patch, and Herbaceous) produced all

significant AUC values and MLR ORs and was positively

associated with CDC data (Table 5 and Table 6). Ensemble

models consisting of all six original models and the three Glass et

al. [32] models produced mostly significant AUC values and MLR

ORs, but were negatively associated with CDC data.

Discussion

Qualitative and Quantitative Assessment of Model
Predictive Ability

The inter-model comparison results together with the proposed

checklist for model extrapolation illustrate the value of a combined

approach for identifying models suitable for extrapolation. Results

from the quantitative analysis reinforced the value of the

qualitative model selection checklist (Table 2), indicating that

these criteria can indeed be useful for identifying the relative

strengths and weaknesses of models a priori. For instance, based

on a qualitative analysis of model selection considerations the

NDVI model was expected to be most suitable for extrapolation to

much of the studied region. The NDVI model presented several

advantages for extrapolation over other models; these include

similarity of grain size between original analysis and extrapolation,

appropriate data type and categorization, and presence of the

variable in the region of extrapolation. This expectation is

generally borne out in comparisons to CDC observational data

in both AUC (Table 4 and Table S1 in Text S2) and MLR

analyses (Table 6). The NDVI model generated consistent positive

and significant associations with both Lyme disease risk and tick

presence data from CDC, henceforth jointly termed CDC-defined

risk. NDVI was found in several studies to be a predictor of tick

presence [39,40], and its consistent performance in AUC

comparisons to CDC data were thus anticipated. Though not

uniformly significantly elevated in MLR analyses, ORs for the

NDVI model generally increase in magnitude when moving from

comparisons of low CDC-defined risk versus minimal CDC-

defined risk, to comparisons of high risk versus minimal risk. This

increase in OR magnitude when moving from low risk to high risk

represents a monotonically increasing ’dose-response’ relationship

between model predictions and CDC-defined risk as estimated by

the NDVI model. These results support the inclusion of NDVI in

subsequent predictive models of tick habitat. Of note, the NDVI
model was designed to control for human population because the

detection of tick presence in this study was reliant on human hosts

submitting captured ticks. The favorable performance of this

model indicates that the presence and activity of the human host

population, though not a traditional landscape variable, may be an

important variable to consider in models of tick presence and/or

Lyme disease.

In some cases, agreement of quantitative and qualitative

assessments is less obvious. Tick Patch and Herbaceous models

arguably perform better in MLR analysis than the NDVI model
based solely on OR significance. However, in AUC analyses their

agreement with observed data is primarily with tick presence, not

Lyme disease risk. Qualitative model selection considerations

indicate that univariate construction of Coniferous, Herbaceous,
and Development models may be problematic (Table 2). In

addition, the Tick Patch and Lyme Patch models were fit in

Connecticut, where deciduous forest patches are numerous.

However, in extrapolating these models to the remainder of the

Eastern U.S., areas with few deciduous forest patches were

encountered, and thus the generally uniform predictor values

resulted in uniform model output and little useful information.

Accordingly, the appropriateness and categorization of predictor

variables were found to be lacking in these models during the

preliminary, qualitative model assessment.

The Coniferous, Herbaceous, and Development models [32]

required many assumptions in assigning values to predictors that,

while effective for Baltimore County where the model was

developed, may not be appropriate for other regions. For example,

the poor predictive performance of the Development model might

have been foreseen by considering the dichotomous character of

the model’s predictor and the quality of the original model as

assessed by the qualitative criteria (Table 2). Urban areas are

sparse in some areas of the U.S., resulting in a number of large

rural areas with uniform predictions. Also, in the original Glass et
al. [32] analysis, development was not a significant predictor in

univariate analysis but was significant in multivariate analysis.

Altering Models to Improve Predictive Ability
Modification of existing models through the incorporation of

additional information or combining multiple models can improve

the predictive ability of extrapolated models, especially for

regression models that rely on just one or two predictors.

Additional information may be in the form of a screening

variable, such as an elevation cut-off above which no nymphs are

expected to be observed [35]. In this work, the elevation cut-off at

510 meters improved agreement with observed data for most

models. Combining several models into an ensemble model may

also improve predictive capacity, as was demonstrated with the

ensemble model comprised of the NDVI, Tick Patch, and

Herbaceous models, termed the ‘‘top 3’’ ensemble model (Table 5

and Table 6). The failure of other ensemble models to demon-

strate improved predictive capacity highlights the efficacy of using

qualitative (Table 2), in addition to quantitative (e.g., Table 4),

criteria to inform selection of models for the ensemble.

Inter-model Comparison: The Effect of Spatial Extent and
Scale

Model-model correlations highlight the regional nature of the

models studied. In regional sub-analyses, model-model correla-

tions in the South were generally weak, and models that agreed in

the majority of sub-analyses often disagreed in the Midwest. These

findings point to the challenges in extrapolating models developed

in a single region, as all models in the present study were

developed and fit in Canada and the Northeast U.S. (Table 1).

Importantly, several studies have shown that the number of

reported cases of Lyme disease is lower in the Southeast than in

the Northeast [22]. Differences in I. scapularis abundance, host

composition, tick behavior, and other factors may explain the

lower number of Lyme disease cases in the South [36,40].

Additional studies of the relationship between landscape variables

and both tick abundance and Lyme disease occurrence in the

South, following the guidelines presented here, would aid model
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extrapolators in better characterizing Lyme disease in the Eastern

U.S.

Though the Tick Patch model showed high overall agreement

with observed data in all analyses, a comparison to the closely

related Lyme Patch model from the same project reveals some

interesting discrepancies that suggest non-stationarity in space and

time. Brownstein et al. ’s [29] Tick Patch and Lyme Patch models
were inversely correlated (r = 21.0), and the authors acknowl-

edged that this suggests a lack of a positive association between the

density of tick populations and the incidence of Lyme disease.

However, Lyme disease risk and tick presence have been shown to

be correlated elsewhere [41], and were positively correlated in the

CDC observational data sets presented here. While Tick Patch
and Lyme Patch models were fit to regional data, they were not

validated with reserved data in the same or different regions or

time periods [29]. Taken in concert with our findings, this

highlights problems associated with non-stationarity when extrap-

olating models developed in a single region and time period [42].

Modelers ideally consider all relevant variables and obtain data

representing the full range of each variable in the production of

niche or habitat models, yet data limitations are common and

resulting models may have limited applicability outside the spatial

and temporal range in which they were fit.

Conclusions

Previous work has shown that factors such as scale, data quality,

and modeling technique are important to consider when

extrapolating ecological models. Such qualitative considerations

may have value in predicting the quantitative suitability of models

applied to new questions or locations, especially where researchers

have time or budget constraints and elect to apply information

from previously published work. Investigators who are interested

in extrapolating a model but are unable to carry out a

comprehensive quantitative comparison of all candidate models

can use the qualitative considerations detailed here to identify the

most promising models for extrapolation (e.g., Table 2). Further

refinement of models selected using these criteria may be achieved

by developing an ensemble model or applying further literature-

based selection criteria. Such systematic consideration of these

criteria by both producers and consumers of ecological models will

facilitate model development and usefulness, while strengthening

collaboration between these two groups.
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