
UC Irvine
ICS Technical Reports

Title
Mobile agents : the right vehicle for distributed sequential computing

Permalink
https://escholarship.org/uc/item/4sx3p798

Authors
Pan, Lei
Bic, Lubomir F.
Dillencourt, Michael B.

Publication Date
2001

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4sx3p798
https://escholarship.org
http://www.cdlib.org/

Mobile Agents - The Right Vehicle for
Distributed Sequential Computing

Lei Pan, Lubomir F. Bic, and Michael B. Dillencourt

Technical Report No. 01-68
Information and Computer Science, University of California, Irvine, CA 92697-3425

{pan,bic,dillenco}©ics.uci.edu
December, 2001

Notice: This Material
may be protected
by Copyright Law
(Title 17 U.S.C.)

Mobile Agents - The Right Vehicle for
Distributed Sequential Computing

Lei Pan, Lubomir F. Bic, and Michael B. Dillencourt

Information and Computer Science, University of California, Irvine, CA 92697-3425
{pan,bic,dillenco}©ics.uci.edu

Abstract. Distributed sequential computing uses the collective memory
of a network of workstations to reduce paging overhead. In contrast to the
"page farm" approach, in which a stationary program remotely accesses
data, distributed sequential computing moves the code to the data. In
this paper, we show that mobile agents are the most natural and effective
way to implement this approach. This is because mobile agents preserve
the algorithmic integrity of sequential programs, while a message passing
implementation requires a complete restructuring of the code.

Keywords: mobile agents, MESSENGERS, distributed computing, dis
tributed sequential computing, algorithmic integrity, paging, Crout fac
torization, Network of Workstations

1 Introduction

While mobile agents have been successfully employed in many special situations,
they have not been widely used for general-purpose computing. It has been
said that what mobile agents need is a "killer application" [6). In this paper,
we discuss a programming paradigm called distributed sequential computing,
introduced in [5), and we argue that mobile agents are uniquely suited to this
mode of programming.

In essence, distributed sequential computing is a means of applying the power
of a network of workstations to improve the performance of data-intensive se
quential programs without reprogramming them. This is based on the observa
tion that under certain circumstances partitioning the data onto different ma
chines and reducing the disk paging overhead by using the collective memory
of a network of workstations can result in considerable performance increase,
without converting the underlying algorithm to a parallel implementation. One
means of doing this is the "page farm" approach described in [11], in which a
process runs on a single machine and accesses data by using remote memory
accesses. A major disadvantage of this approach is that it uses a large amount of
data bandwidth when the total amount of data to be accessed is large. Another
approach is to use the distributed sequential computing paradigm introduced in
[5). The data is distributed over the workstations in the network just as in the
"page farm" approach. The difference is that rather than having the code run on
a single machine and remotely access the data, the code moves to the data. This

1 5 2002

2

approach is useful when there is large amount of data but the program state
information is relatively small, so that moving the code to the data requires less
bandwidth than moving the data to the code.

In [5] we described several examples of this approach, and we showed that it
has two major advantages: algorithmic integrity and performance improvement.
Algorithmic integrity refers to the fact that the distributed sequential algorithm
is identical to the sequential algorithm. Additional statements (annotations) may
be added to tell the code how to access the data, but the sequential algorithm
remains intact. The performance improvement comes from the reduction or elim
ination of paging overhead, and the decrease in network traffic from moving code
to data rather than data to code. In addition, the agent doing the computation
can inject other agents to preload data that will be needed in the future or to
post-write data that has already been computed and needs to be written to the
disk.

In the present paper, we argue that mobile agents are not only a good way to
do distributed sequential programming, but they are the right way to do it. Of
course, anything that can be done with mobile agents can be done with message
passing: after all, at low level mobile agents are a special case of message passing,
in the sense that an agent is ultimately a stream of bytes and hence a message.
But, at a high level which is closer to the level of the application programmer,
mobile agents provide a new layer of abstraction that helps the programmer in
two ways. First, a distributed sequential program implemented as a mobile agent
has a single locus of computation that captures the entire program state. This
means that a programmer using mobile agents does not have to distribute the
program state over all the participating nodes; this must be done explicitly in a
message-passing implementation. This observation, that mobile agents simplify
the programming task by eliminating the necessity of explicitly maintaining
the state of the process, has been previously articulated in [10]. Second, in a
mobile agent implementation, the attention of the programmer is switched from
stationary nodes to moving agents. This change of focus is significant because
now data that gets communicated between nodes is not seen as being moved at
all; rather, it is carried by the agent during the move.

For comparison purposes, we show in this paper that if we attempt to do
distributed sequential programming using a message-passing paradigm, the pro
gramming task becomes considerably more complicated. So while we do not
claim to have found a "killer application" for mobile agents, we do claim that we
have identified an important class of programs with the property that the only
natural way of expressing these programs is through the use of mobile agents.

The paper is organized as follows. Section 2 contains a brief discussion of the
message-passing and agent-based approaches to distributed computing. Section 3
presents a simple example of distributed sequential computing, and compares the
different ways mobile agents and message passing would be used to implement
the algorithm. Section 4 describes a numerical application, Crout factorization,
and its different implementations. The last section contains some conclusions
and final remarks.

3

2 Message Passing and Mobile Agents

Message passing is a commonly used approach for distributed and parallel com
puting on network of computers. Messages are used to communicate problem
data, execution status, and process synchronization among computing nodes
on a network. Today, the message passing standard defined by the Message
Passing Interface Forum ([7]), or MPI, is a de facto standard for message pass
ing on both distributed-memory supercomputers and networks of workstations.
The most fundamental communication mechanism provided by MPI is the send
receive primitive. A data source performs a send() to transmit a message to a
destination, which must perform a receive() to accept it. ·

Recently mobile agents are starting to be considered for distributed com
puting. Mobile agents are programs that move dynamically among networked
machines, carrying their data and execution states with them. A mobile agent,
with "strong mobility" ([9]), can halt its execution, encapsulate the values of
its variables and execution stack, move to another machine, restore the state,
and continue executing. Although ultimately based on message passing at low
level, this "mobile" capability, as will be shown later in this paper, is the right
vehicle for application programmers who want to make good use of a distributed
environment with less efforts.

All mobile-agent systems have the same general architecture: a server on
each machine accepts incoming agents, and for each agent, starts an appropriate
execution environment, loads the agent's state information into the environment,
and resumes agent execution.

The most important feature that distinguishes agent-based systems from
conventional message-passing systems is that all functionality of the application
is embedded in individual agents, i.e., the programs are carried by agents as they
navigate through space. This is in contrast to message-passing, where messages
are only passive carriers of data.

The MESSENGERS system ([2-4]) is an environment for distributed com
puting in which applications are developed as collections of autonomous self
migrating computations, called Messengers. In the MESSENGERS system, there
are three levels of networks. The lowest level is the physical network(e.g. a LAN
or WAN), which constitutes the underlying computational nodes. Superimposed
on the physical layer is the daemon network, where each daemon is a server
process that receives, executes, and dispatches Messengers. The logical network
is an application-specific computation network created on top of the daemon
network. Messengers may be injected (from the shell or by another Messenger)
into any of the daemon nodes and they may start creating new logical nodes and
links on the current or any other daemons.

The important concepts and features of MESSENGERS are as follows:

- All participating physical nodes have MESSENGERS daemons running on
them. The logical network is thus established on top of this daemon network,
which in turn runs on the physical network.

4

i-Q i-P

• • •
-1 0 2 4 N-1 N

I 0 I 0 I ... -
Node 1 Node2 NodeK

Fig. 1. Access pattern and array distribution for a simple 1-D array access program.

- The MESSENGERS scripting language is a subset of C, so it is easy for
C/C++ programmers to develop MESSENGERS applications. Furthermore,
the MESSENGERS script is first preprocessed into C code which is then
compiled into machine native code, and therefore the execution is very effi
cient;.

- There are two types of variables: Messenger variables and node variables.
A Messenger variable, often taken as a medium for communication, is one
that belongs to a particular Messenger and travels with that Messenger to
different logical nodes, whereas a node variable is one that is stationary to
a logical node.

- The most important navigational statement for Messengers are create() and
hop(). The create() statement generates a link along which a Messenger
moves, and creates a logical node on the physical node. The hop() statement
causes the Messenger to navigate to a node, along a link or using the node's
logical address.

3 A Simple Example: Updating A 1-D Array Sequentially

In this section, we present a simple, contrived example to illustrate the idea
behind distributed sequential programming and also to demonstrate why mobile
agents (as opposed to message passing) are the right way to do distributed
sequential programming. The example consists of an algorithm that sequentially
updates the items in a one dimensional array according to a certain fixed pattern.

Figure 1 shows the access pattern. and Figure 2(a) contains the sequential
program defining the algorithm.

P and Qare positive constant integers, fa(), fp() and fq() are functions. It
is assumed that a[j] = 0 for j :S 0, and that the number of bytes required to
represent each element of the array a[·] is considerably larger than the number
of bytes required to represent the values returned by the functions fp() and fq().
For example, each element of a[·] could be a large structure or a k x k array,
while each of the values returned by the two functions might be a scalar or a
column vector with k entries.

As N and the size of each element of a[·] become large, the array a[·] will no
longer fit into the main memory of a single computer, and disk paging will cause

5

(1) for (i = 1; i <= N; i + +) { (1) for (i = 1; i < = N; i + +) {
(1.1) hop(node_map(i - P));

(2) x = fp(a[i - P]); (2) x = fp(a[i - P]);
(2 .1) hop(node_map(i - Q));

(3) y = fq(a[i - Q]); (3) y = fq(a[i - Q]);
(3.1) hop(node_map(i));

(4) a[i] = f (x, y); (4) a(i] = f(x, y);
(5) } (5) }

(a) (b)

Fig. 2. Pseudocode for a simple 1-D array access program. (a) the sequential imple
mentation. (b) the distributed sequential implementation using MESSENGERS.

the program's performance to degrade badly. This disk paging can be avoided by
distributing the array onto several machines, as illustrated in Figure 1. Figure
2(b) shows the distributed sequential implementation using MESSENGERS. The
code is simply the original sequential code, augmented with three hop() state
ments. A hop() statement suspends the execution, moves the mobile code to a
node whose number is passed as an argument, and resumes execution on that
node. A command to hop to the node on which the mobile program is already
running is a no-op, and the cost is negligible. The function node_map(j) returns
the node on which the element a[j] resides. Thus in Figure 2(b), line (1.1) causes
the mobile code to hop to the machine where array item a[i - P] resides. The
statement at line (2), causes the value fp(a[i - P]) to be loaded into the MES
SENGERS variable x, which is then carried around by the Messenger. Since
fp(a[i - P]) is much smaller than a[i - P] in size, carrying x around is much
cheaper than shipping a[i - P] first and computing fp(a[i - P]) later.

If we compare the MESSENGERS code in Figure 2(b) with the original code
in Figure 2(a), we see that in the MESSENGERS implementation, the algorithm
sequence and code structure are not changed. The only change is the insertion of
three hop() statements. This code change preserves the algorithmic integrity; in
essence, the hop() statements are annotations describing how to obtain the data,
rather than statements that affect the computation or change the algorithm.
Statically, the MESSENGERS code is very similar to the original code, which
is a big advantage for programming and code maintenance. On execution, the
MESSENGERS code moves through the distributed environment, taking full
advantage of distributed computing.

To develop the distributed sequential program from the sequential program,
the programmer first needs to decide how to distribute the data. This is a nec
essary step for any distributed programming paradigm, such as message pass
ing. Notice that a by-product of this step would be constructing the function
node_map(), which is the only detail missing from the pseudocode in Figure 2(b).
The program must then be augmented to "drive" through the network, perform-

6

ing computation at the appropriate locations and making intermediate stops, as
necessary, to "pick up" or "drop off" data. For real applications, this requires
careful thinking, but the simple example presented above illustrates the basic
idea.

We can of course implement the same algorithm using message passing. Since
message passing is happening among processes on different nodes, a natural
way of quantifying the complexity of this approach is to count the number of
"roles" or "node states" that all the nodes can have. Let us consider one node,
and see how many roles it can take. In any iteration of the main loop, three
array entries are referenced, namely a[i], a[i - P], and a[i - Q]. Call the nodes
containing these three entries the "participating nodes." The node containing
a[i] (call it the "master node") can either contain or not contain a[i - P], and it
can independently either contain or not contain a[i -Q]. (Note: we are assuming
here that we do not know whether P > Q; if we knew this, we could eliminate one
possibility.) In the case where neither a[i-P] nor a[i-Q] is on the master node,
these two values could be on a common second node or on two different nodes.
So there are five different cases. In each case, there is a different combination
of states that the master and the 0, 1 or 2 other participating nodes (call them
"slave nodes") have. In each of these cases, a different set of "threads of control,"
representing the node states runs on the participating nodes. Each thread of
control communicates with the threads of control on other nodes using message
passing. So code must be written for each of the five cases:

1. i, i - P, and i - Q all on the same node (code listed in Figure 3(a))
2. i and i - P on the same node, and i - Q on a different node (code listed in

Figure 3 (b))
3. i on one node, and i - P and i - Q both on a different node (code listed in

Figure 3(c))
4. i and i - Q on the same node, and i - P on a different node (code listed in

Figure 3(d)))
5. i, i - P, and i - Q all on different nodes (code listed in Figure 3(e))

Notice that the proposed code is only one way of doing things. For example, the
programmer could choose to have the master always be on one node that does
not contain any entries of the array a[·] and treats all the participating nodes as
slaves, and then the code could be written from a different point of view. There
are also ways to reduce the number of code pieces by merging master or slave
code using "if statements"· here and there. Smarter and cleaner message passing
code than the one presented is certainly possible.

Nevertheless, one simple fact cannot be changed: with a message-passing im
plementation that avoids sending the values of array entries, the original code
(Figure 2(a)) must be broken down into several code pieces. This results in a sig
nificant departure of the implementation from the original algorithm, destroying
the algorithmic integrity. The reason why the code must be broken down is that
the state of the entire computation is distributed over the various nodes, so the
application programmer needs to worry about what states the nodes are in, and
how and when to coordinate their state changes.

II Master1
(1) x = fp(a[i - P]);
(2) y = fq(a[i - Q]);
(3) a[i] = fa(x, y);

II Slave1
II (none)

(a)

II Master3
(1) send(node_map(i - P), i - P, i - Q);
(2) receive(node_map(i - P), x, y);
(3) a[i] = fa(x, y);

II Slave3
(1) receive(node_map(i), i - P, i - Q);
(2) x = fp(a[i - P]);
(3) y = fq(a[i - Q]);
(4) send(node_map(i), x, y);

(c)

II Master4
(1) send(node_map(i - P), i - P);
(2) receive(node_map(i- P),x);
(3) y = fq(a[i - Q]);
(4) a[i] = fa(x, y);

II Slave4
(1) receive(node_map(i), i - P);
(2) x = fp(a[i - P]);
(3) send(node_map(i),x);

(d)

7

II Master2
(1) x = fp(a[i - P]);
(2) send(node_map(i - Q), i - Q);
(3) receive(node_map(i - Q), y);
(4) a[i] = fa(x, y);

II Slave2
(1) receive(node_map(i), i - Q);
(2) y = fq(a[i - Q]);
(3) send(node_map(i), y);

(b)

II Master5
(1) send(node_rrap(i - P), i - P);
(2) receive(node_map(i - P), x);
(3) send(node_map(i - Q), i - Q);
(4) receive(node_map(i - Q), y);
(5) a[i] = fa (x, y);

II Slave5.1
(1) receive(node_map(i), i - P);
(2) x = fp(a[i - P]);
(3) send(node_map(i), x);

II Slave5.2
(1) receive(node_map(i), i - Q);
(2) y = fq(a[i - Q]);
(3) send(node_map(i), y);

(e)

Fig. 3. Pseudocode for the message-passing implementation of the simple 1-D array
access program shown in Figure 2(a). The various cases depend on which nodes contain
the entries a[i], a[i - P], and a[i - Q].

8

Mobile agents eliminate this problem by providing a layer of abstraction that
gives the application programmer a single locus of computation that captures
the state of the entire computation. In the next section, we will provide an
example illustrating how this new layer of abstraction can help with a numerical
application.

4 A Real Application - Crout Factorization for Solving
Linear Systems

The paper [5] describes several examples of distributed sequential programming
for numerical computing, along with performance data supporting the usefulness
of distributed sequential programming. In this section, we describe one of those
examples; here the focus is on why, once we have decided to use distributed
sequential programming, mobile agents are better than message passing. The
particular example chosen here, Crout Factorization [8], is noteworthy because it
illustrates how distributed sequential programming can be adapted to situations
in which the amount of data is much larger than the combined memories of all
the machines in the network. Moreover, it is a real-world example of an algorithm
that is run on very large data.

In essence, Crout Factorization is a method of factoring a symmetric positive
definite matrix K into the product of three matrices

K=UTDU,

where U is an upper triangular matrix with unit diagonal entries and D is a
diagonal matrix. This decomposition can then be used to solve a linear system
of equations. The algorithm works in place on the matrix K; when it concludes,
the diagonal entries are the entries of D, and the entries above the diagonal are
the entries of U. Typically, K is a sparse banded matrix, meaning that entries
that are more than a fixed distance b from the diagonal are set to 0. The value b
is called the half-bandwidth of the matrix. Because K is sparse, it is stored using
standard techniques for space-efficient storage of a sparse matrix.

Figure 4(a) shows the pseudocode for Crout factorization [8]. In line (3), the
summation over l corresponds to a dot product of two sub-vectors of columns
i and j. The computation of the jth column depends on previously computed
columns. Because the matrix is banded, the computation of column j only re
quires portions of the b previous columns, where bis the half-bandwidth of the
matrix. The "working set" of matrix entries required to compute column j is
shown shaded in Figure 5 (a).

When the size of the working set exceeds the size of the main memory on a
single workstation, extensive paging overhead occurs. This paging can be elim
inated by using the distributed sequential implementation of the algorithm de
scribed in [5). The idea is to split the matrix into pieces, where each piece is a
contiguous set of columns. The size of the piece is chosen so that each piece can
fit into the main memory of one workstation. The algorithm runs on k worksta
tions, where k - 1 is the number of pieces that comprise a working set. Figure

(1) F OT j = 1 . " N

(2) For i = 2 ... j - 1

"'i-1 K K (3) Kii +- Kii - .w1= 1 li li

(4) End For

(5)

(6)

(7)

(8)

(9)

For i = 1 ... j-1
T+-Ki
K·+-L iJ Kii

Kji +- Kii - T Kij
End For

(10) End For

(a)

(1)

(1.1)
(1. 2)
(2)

(2 .1)

(3)

(3 .1)
(4)

For j = 1 ... N
hop(to column j)
load column j
For i = 2 ... j-1

hop(to column i)
"'i-1 K K Kij +- Kij - .w1=1 li li

load Kii
End For

9

(4.1) hop(to column j)

(5)

(6)

(7)
(8)

(9)

(9 .1)

(9.2)
(10)

For i = 1 ... j -1
T +- Kij
K·+-L

iJ Kii

Kjj +- Kii - T Kii
End For
unload column j
inject I/O Messenger if required

End For

(b)

Fig. 4. Pseudocode for Crout factorization. (a) the sequential implementation. (b) the
distributed sequential implementation using MESSENGERS.

5(b) shows an example for which the working set is subdivided into three pieces
(i.e., for which k = 4). The arrows indicate how an agent, carrying the jth col
umn which it is computing, would move through the pieces of the working set.
This is a very efficient use of the network because computing a column requires
only three hops, each of which requires moving only the code and one column of
the matrix to the machine containing a remote piece of the working set. Moving
the entire working set to a single stationary process would require much more
data to be transferred.

Figure 6 shows the logical network, again assuming that the working set is
decomposed into three pieces. The logical network consists of four nodes. Three
of the nodes are used to hold the three working set pieces shown in Figure 5,
and a fourth node is used to post-write the computed piece that is no longer
used for the factorization and to preload the next piece that will be computed
later. All four logical nodes are fully connected, so that an agent can hop to
any node from anywhere in one step. Figure 6 shows how we would use the
logical network ring as a "running wheel" rotating forward (clockwise) while it
processes the matrix pieces in sequence. Figure 6(a) shows the state of the logical
network when columns belonging to piece k are being computed. The working
set, consisting of pieces k, k - 1, and k - 2 of the matrix, is distributed over
nodes 1, 2, and 3. While the columns in piece k are being computed, node 4 is

10

(a) (b)

Fig. 5. Working sets in the Crout factorization algorithm: (a) Working Set for the jth
Column. (b) Decomposition of the working set into three pieces.

preloading piece k + 1. When the computation progresses to the point where a
column in piece k + 1 is being computed, piece k - 2 is no longer part of the
working set. So now the working set, consisting of pieces k + 1, k, and k - 1 of
the matrix, is distributed over nodes 4, 1, and 2, as shown in Figure 6(b). Node
3 is now free to write the updated contents of piece k - 2 that will no longer be
used to the disk, and then to preload piece k + 2.

The distributed sequential implementation of Crout factorization using MES
SENGERS is shown in Figure 4(b). The only difference between this code and
the sequential code is that three hop statements, three load/unload statements,
and one inject statement are added. Although there are a large number of hops,
most of them will be local hops. These are essentially no-ops, so their cost will
be negligible. The load statements involve copying a single column (at line 1.2)
or a single matrix entry (at line 3.1) into MESSENGER variables. Once the new
values of column j have been computed, by the Messenger visiting the nodes
that contain the pieces of the working set, they are copies back into the appro
priate location on the machine storing column j by the unload statement at line
9.1. The inject statement (line 9.2) initiates the post-writing of the piece of the
output that will no longer be used and the preloading of the next piece of the
matrix K, and is performed when the computation of a piece is completed.

As can be seen by comparing Figures 4(a) and (b), none of the statements in
the sequential code are altered when moving from the sequential implementation
to the distributed sequential implementation. Some new statements are added,
telling the computation when to hop, when to load and unload data from its
"briefcase" (i.e., when to copy node data into or out of Messenger variables), and
when to start transferring data to and from the disk. These statements are really
annotations that coordinate the mapping between the computation and the data,
but they do not modify the logic of the existing sequential computation. Hence,
the mobile agent implementation using MESSENGERS preserves the integrity
of the sequential algorithm.

11

(a) (b)

Fig. 6. Logical network for Crout factorization with the working set divided into three
pieces. (a) currently computing piece k. (b) currently computing piece k+l.

It is of course possible to mimic our implementation using message passing
by assigning each node a "role" or a state, which changes as the application
progresses. Figure 6 suggests how we might do this. For example, we can see
from Figure 6 (a) that at the time when we are processing matrix piece k, node 1
takes the role as master, node 3 is the slave, and node 2 is the slave of node 3,
which makes it the slave of the slave (the subslave). At this time, node 4 does
not directly take part in the actual computing; rather it is performing the post
writing of piece k-3 and the preloading of piece k+l. The master's task is to send
out a matrix column to its slave, and then to wait until it receives the partially
processed column and the diagonal terms from the subslave. When this data is
received, the master will compute the column terms that it is responsible for, and
do the scaling for the entire column with the diagonal terms. The master repeats
this task until all the columns that belong to it are processed, at which time all
nodes change state (the master becomes the subslave, the subslave becomes
the slave, the slave becomes the preloader, and the preloader becomes the new
master). The logic for the slave and the subslave are simpler: all they need to
do is to receive a column (from the master and the slave, respectively) compute
the corresponding column terms, and pass on the column together with the
corresponding diagonal entries (to the subslave and the master, respectively). In
addition to the master, the slave, and the subslave, a controller is also necessary
to tell the processes when to switch states and to initiate the I/ 0 processing (the
post-write and the preload). Figure 7 shows the pseudocode for the controller,
master, slave, and subslave.

Notice that the pseudocode provided here is incomplete. It does not describe
in detail how to control state changes (i.e. how to stop one thread of control, and
start another on a node), nor does it completely specify exactly which column
terms {Ki} and which diagonal terms {Kii} are communicated and computed.
Although lines (3) and (4) in Figures 7(c) and (d) look exactly the same, they
actually update different set of column terms and send different set of diagonal
terms. So they are different code lines if we expand them.

12

II Controller
(1) for (j = 1; j <= num_pieces; j + +) {
(2) send(all, "state change");
(3) send(M, "start", j);
(4) send(I/O, "I/0");
(5) receive(M, "piece done");
(6) }

(a)

II Master
(1) receive(Cntl, "start", j);

(2) for (i = lj; i <= lj+1 -1; i + +) {
(3) send(S, {Ki});
(4) receive(SS, {Ki}, {Kii});
(5) compute({Ki});
(6) scale({Ki});
(7) }

(8) send(Cntl, "piece done");

(b)

II Slave
(1) while(l) {
(2) receive(M, {Ki});
(3) compute({Ki});
(4) send(SS, {Ki}, {Kii});
(5) }

(c)

II SubSlave
(1) while(l) {
(2) receive(S, {Ki});
(3) compute({Ki});
(4) send(M, {Ki}, {Kii});
(5) }

(d)

Fig. 7. Pseudocode for Crout factorization implementation using message passing.
(a) Controller. (b) Master. (c) Slave. (d) Subslave.

Figure 8 depicts the message-passing patterns among the three computing
nodes for each configuration of states, together with the state change pattern for
all the nodes. In the figure, M stands for master, S for slave, and SS for subslave.
The horizontal arrows represent messages, and the vertical arrows represent state
changes.

If we compare the task of producing the agent-based implementation shown
in Figure 4(b) with that of producing the message-passing code shown in Fig
ure 7, the differences are considerable. To produce the agent-based code, we
need to first size the application (i.e., determine how big the working set is, and
from this and the amount of memory available on each workstation compute the
number of nodes and the size of each piece). We then have to write the function
that decides which columns belong to which piece and which pieces are mapped
to which nodes. These two tasks have to be performed as part of any distributed
implementation. But once they are done, we have all the ingredients necessary
to turn the sequential implementation into the agent-based distributed sequen
tial implementation. In contrast, producing the message-passing version requires
carefully analyzing the roles played by the various nodes. This can of course be
done, but it is tedious and error-prone. Moreover, the high-level structure of the
original algorithm shown in Figure 4(a) has been abstracted out of the code, so

13

Node: 2 4

! State Change

GJ

$ w GJ 4J
! State Change

4=J GJ w ~
! State Change

GJ
State Change

Fig. 8. Node state change pattern for Crout factorization

it would be a very difficult task to reconstruct the original algorithm from the
message-passing implementation.

5 Conclusions and Final Remarks

In this paper we have presented two examples of distributed sequential com
puting. We have seen that the MESSENGERS implementations preserve the
algorithmic integrity, as the algorithms remain unchanged. The only difference
between the sequential algorithm and the MESSENGERS implementation is the
addition of statements to allow the MESSENGERS to navigate through the dis
tributed environment, to load and unload data to and from its state variables,
and to inject auxiliary Messengers that preload and post-write data.

Distributed computing requires managing three tasks: data distribution, code
distribution, and inter-process coordination (communication and synchroniza
tion). Data distribution consists of analyzing the data access pattern, decompos
ing the data into pieces, distributing the pieces, and managing mapping of data
to nodes. These steps must be performed irrespective of whether the applica
tion is developed using message passing, mobile agents, or any other distributed
computing paradigm.

The mobile agent approach hides the details about how the code is actually
distributed. As far as the application programmer is concerned, there is only
one copy of the code, which distributes itself dynamically. This is very different
from the message-passing approach, in which there are multiple code copies, not
all of them necessarily the same. The application programmer must be aware
of which code is running on which nodes. Adding new nodes may require new
code to be written, as in the case of the Crout factorization example discussed in

14

Section 4. As the number of node states that the programmer has to explicitly
handle increases, the complexity of the programming task increases, and so does
the complexity of the higher level controller code necessary for coordinating state
changes for all the nodes. The code copies depart significantly from the original
algorithm. It would take a very highly skilled code reviewer to put these code
pieces back together to obtain the original algorithm. This makes maintenance
and further development difficult. On the other hand, since mobile agent code is
augmented from the original algorithm by inserting only hop and load/unload
statements, it is quite easy to recognize the old algorithm from the mobile code.
This is the practical value of algorithmic integrity. It is made possible by the
fact that in the mobile agent approach, program states are handled implicitly
by the mobile code.

For inter-process coordination, the message passing approach handles both
data communication and process synchronization explicitly using the send-receive
commands. This places a burden on the application programmer. For example,
the programmer needs to know what to expect when programming the receiver.
Mobile agent systems remove this burden from the programmer and pass it down
to a lower level function. When a mobile agent hops to a different node, the data
and program state are both carried by the agent itself. The new node is simply
a resource providing CPU cycles and storage space, and the application pro
grammer does not need to worry about any coordination from the view point of
the node. At the application level, all coordination and communication are en
capsulated in the augmented code (the original code plus the hop, load/unload
statements), and the mobile agent system figures out the low level details.

We briefly consider a third alternative to implementing distributed sequential
computing, namely Remote Procedure Calls (RPO). Like mobile agents RPO is a
higher-level approach to distributed computing, built on top of message passing.
The main disadvantage of using RPO for distributed sequential computing is its
lack of navigational autonomy, the ability to navigate freely through the system.
Because RPO consists of a form of procedure calls, implementations using RPO
must return to the point from which they were called. This presents a difficulty
when the navigational pattern is a cycle like that in the Crout factorization
example of Section 4. In terms of the logical network shown in Figure 6(a), the
natural pattern is to repeatedly cycle through nodes l,3,2,1,3,2,1. ... This could
be simulated in RPC by, for example, having node 1 call node 3, node 3 call
node 2, and then returning through node 3 to node 1 and repeating. However,
this is an artificial approach, and it adds unnecessary network traffic (the return
from node 2 to node 3) to each pass through the cycle. Alternatively, a separate
controller could be introduced that mimics the navigation pattern of the mobile
agent implementation. But this doubles the network traffic because each hop
becomes a remote call followed by a remote return. Moreover, each remote call
to a note would have to explicitly take into account the state of the computation
as it arrived at the node, so this approach is really just a simulation of message
passing by RPC.

15

We have demonstrated in this paper that distributed sequential applications
are a natural fit with mobile agents and a very poor fit with message passing,
which is a lower level approach to distributed computing. An obvious analogy is
with higher level languages and machine languages. This suggests the following
general question: under what circumstances is it possible to automatically gen
erate a message-passing implementation of a distributed sequential algorithm
(something like the pseudocode shown in Figure 3) from the mobile agent im
plementation and appropriate additional information, such as a specification of
the data access pattern and the mapping of data to nodes?

References

1. L.F. Bic, M. Fukuda, M.B. Dillencourt: Distributed computing using autonomous
objects. Computer, vol.29, no.8, IEEE Comput. Soc, Aug. 1996. 55-61

2. M. Fukuda, L.F. Bic, M.B. Dillencourt: Messages versus messengers in distributed
programming. Journal of Parallel and Distributed Computing 57, (1999) 188-211

3. M. Fukuda, L.F. Bic, M.B. Dillencourt, F. Merchant: Distributed coordination with
MESSENGERS. Science of Computer Programming, vol.31, (no.2-3), Elsevier, July
1998. 291-311

4. M. Fukuda, L.F. Bic, M.B. Dillencourt, F. Merchant: MESSENGERS: Distributed
Programming Using Mobile Autonomous Objects. Journal of Information Sciences,
to appear.

5. Lei Pan, Lubomir F. Bic, Michael B. Dillencourt: Distributed Sequential Numerical
Computing Using Mobile Code: Moving Computation to Data. 2001 International
Conference on Parallel Processing, Valencia, Spain, Sept. 2001.

6. Kotz, D., Gray, R.S.,: Mobile agents and the future of the Internet. Operating
Systems Review, vol.33, (no.3), ACM, July 1999. 7-13

7. MPI: A Message-Passing Interface Standard. The Message Passing Interface Forum
(1995). Available online at http://www.mpi-forum.org/docs/mpi-11-html/mpi
report.html

8. Thomas, J. R., Hughes: The Finite Element Method, Linear Static and Dynamic
Finite Element Analysis. Prentice Hall, 1987

9. Antonio Carzaniga, Gian Pietro Picco, and Giovanni Vigna: Designing Dis
tributed Applications with Mobile Code Paradigms. http://citeseer.nj.nec.com/
carzaniga97 designing.html

10. David Chess, Colin Harrison, and Aaron Kershenbaum: Mobile Agents: Are They
a Good Idea? IBM Research Report, IBM Research Division, 1995.

11. Goerge Dramamitos and Evangelos P. Marktos: Adaptive and Reliable Paging to
Remote Main Memory. Journal of Parallel and Distributed Computing 58, (1999),
357-388.

