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Cycles, chaos, and noise in predator±prey dynamics

Bruce E. Kendall *

Donald Bren School of Environmental Science and Management, University of California, Santa Barbara, CA 93106 USA

Abstract

In contrast to the single species models that were extensively studied in the 1970s and 1980s, predator±prey models give rise to long-

period oscillations, and even systems with stable equilibria can display oscillatory transients with a regular frequency. Many ¯uctuating

populations appear to be governed by such interactions. However, predator±prey models have been poorly studied with respect to the

interaction of nonlinear dynamics, noise, and system identi®cation. I use simulated data from a simple host±parasitoid model to in-

vestigate these issues. The addition of even a modest amount of noise to a stable equilibrium produces enough structured variation to

allow reasonably accurate parameter estimation. Despite the fact that more-or-less regular cycles are generated by adding noise to any

of the classes of deterministic attractor (stable equilibrium, periodic and quasiperiodic orbits, and chaos), the underlying dynamics can

usually be distinguished, especially with the aid of the mechanistic model. However, many of the time series can also be ®t quite well by

a wrong model, and the ®tted wrong model usually misidenti®es the underlying attractor. Only the chaotic time series convincingly

rejected the wrong model in favor of the true one. Thus chaotic population dynamics o�er the best chance for successfully identifying

underlying regulatory mechanisms and attractors. Ó 2000 Elsevier Science Ltd. All rights reserved.

1. Introduction

Ecological population dynamics are inevitably `noisy'. Even in systems dominated by a few strong
feedbacks, there are exogenous perturbations from weather-driven environmental variability and from the
network of species that interact weakly with the population. Thus, despite the fact that many simple
ecological models easily generate chaos [1], it has proven di�cult to unequivocally distinguish chaos from
noise or noisy periodicity in real ecological data. Analyses that explicitly take into account dynamical noise
in the time series suggest that most ecological populations are not chaotic [2], but there have only been
limited tests of these techniques with ecological models [2,3].

As a result of these di�culties, ecologists have largely abandoned the search for chaos. Instead, new
e�orts focus on identifying the biological processes underlying the dynamics by ®tting simple mechanistic
models to the time series data [4±8]. An interesting philosophical and practical question becomes, does
strongly nonlinear dynamics in general, and chaos in particular, improve our chances of correctly identi-
fying the underlying mechanism? This certainly seems to be true in one-dimensional systems [9]. However,
many oscillating populations display long-period cycles characteristic of predator±prey dynamics [10].
Models of predator±prey systems are quite di�erent from one-dimensional maps. The equilibrium is a focus
rather than a node, and so displays oscillatory transients even when stable. The equilibrium is destabilized
by a Hopf bifurcation and the system follows the torus route to chaos. Thus, all forms of attractors (stable
equilibrium, periodic and quasiperiodic orbits, and chaos) may display oscillations with similar charac-
teristic frequencies. In the presence of noise it may be particularly di�cult to distinguish these attractors.
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The interaction of nonlinear dynamics and noise, and the resulting e�ects on our ability to identify both
the dynamics and the underlying mechanisms, has never been systematically examined in consumer±
resource systems. In the paper I use a simple host±parasitoid model to address three questions:
1. Do the oscillatory transients allow us to identify the model at a noisy equilibrium?
2. Do the oscillatory transients confound e�orts to distinguish di�erent forms of dynamics?
3. Does chaos provide any `bene®t' from the standpoint of system identi®cation?

2. The model and simulated data

To generate simulated data, I used a host±parasitoid model initially introduced by Beddington, Free,
and Lawton [11], henceforth denoted BFL. A parasitoid is a special form of insect predator that lays an egg
inside a living host organism. Once the egg hatches, the developing parasitoid larva consumes the host from
the inside, and emerges once the host is consumed. If multiple eggs are laid in the same host, there is usually
contest competition among the developing larvae, such that at most one parasitoid emerges from each
parasitized host. If parasitoids choose hosts at random for oviposition, then the fraction of hosts escaping
parasitism should be the zero term in a Poisson distribution; all other hosts produce parasitoids instead.
Such models are unstable in the absence of host density-dependence or other regulating factors [12]. The
BFL model includes host density dependence:

Ht�1 � Hte
r�1ÿHt�ÿaPt

Pt�1 � Ht�1ÿ eÿaPt�;

where Ht and Pt are the host and parasitoid densities (the host density is scaled so that the carrying capacity
is one), r is the intrinsic growth rate of the host, and a is the attack rate of the parasitoid.

The `coexistence equilibrium' (in which both host and parasitoid have densities greater than zero) in this
and similar models is a focus over a majority of the parameter space in which it is stable. This equilibrium
can lose stability through a number of di�erent bifurcations [13], but the only one that maintains persis-
tence of both species is a Hopf bifurcation, leading to long-period cycles (4±20 generations). A number of
forest insect pests display such long-period cycles (Fig. 1), and parasitoids have been proposed as a general
mechanism for producing those patterns [14].

Using the bifurcation diagram in Fig. 1 of [11] as a guide, I selected parameters associated with four
di�erent attractors: a stable focus, a quasiperiodic orbit, a phase-locked period-®ve orbit, and chaos
(Table 1). I added dynamic noise to the simulation by multiplying both state variables by independent log-
normally distributed random numbers at each generation: zt � exp�rxt�, where xt is normally distributed
with variance one. Independent random numbers were applied to the host and parasitoid. I used four noise
levels: r � 0, 0.01, 0.1, and 0.3. At the highest noise level, typical perturbations range from 0.5 to 1.8; larger
variances resulted in rapid extinction of one or both species.

I generated time series of 50 generations for each set of parameters (Fig. 2). Notice that in the presence of
noise, the `stable focus' displays fairly regular oscillations as the trajectory spirals back from large per-
turbations. Also, at the largest noise level it would be di�cult to visually distinguish among the putative
attractors ± they all look like `noisy periodicity', with the chaotic simulation being somewhat more erratic.
These noisy simulations look qualitatively similar to some of the insect data portrayed in Fig. 1, and may be
a real challenge to distinguish from one another.

3. Lyapunov exponents

Recent e�orts to characterize the dynamics of short noisy time series have focussed mainly on the
Lyapunov exponent, in contrast to studies in the 1980s that also attempted to estimate the correlation
dimension. The most successful of these techniques use some variant of the following algorithm:
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1. Embed the time series using lagged values of the observations: Xt � �xt; xtÿ1; xtÿ2; . . .�.
2. Use nonlinear regression to ®t a parametric or nonparametric model, of the form xt�1 � f �Xt�, to the

data. These models include generalized polynomials [15], neural networks [16], and thin plate splines
[17].

3. Evaluate the Jacobian of f at each data point Xt, and use the eigenvectors and eigenvalues to calculate
the average Lyapunov exponent along the trajectory.

The subtleties are in the choice of embedding and the procedures for nonlinear regression.

3.1. Model-based estimates

To obtain a baseline of `truth', I performed Jacobian-based Lyapunov exponent calculations using the
BFL model and the true parameter values, following the classic algorithm of Wolf et al. [18]. I applied the
Gram±Schmidt reorthonormalization at every time step, and evaluated the average Lyapunov exponent
after 5000 model iterations, at which point the estimate had converged to three or more decimal places. I
used a slightly modi®ed version of the implementation in Dynamical Software [19,20].

Table 1

Parameter values used for generating simulated data from the BFL model and their associated attractors

Attractor r a

Stable focus 2.0 3.0

Quasiperiodic 1.8 4.0

Periodic (phase locked) 2.2 4.5

Chaotic 2.7 5.0

Fig. 1. Long-period oscillations in the density of several forest insect species, all with one-year generation times: (a) Larch budmoth

(Zeiraphera diniana) [28]; (b) pine looper moth (Bupalus piniaria) [29]; (c) pine beauty moth (Panolis ¯ammea) [29]; (d) winter moth

(Operophthera brumata) [30].
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In the absence of noise, the Lyapunov exponents are as expected (Table 2): negative for the focus and
periodic orbit, zero for the quasiperiodic orbit, and positive for chaos. With increasing noise, these esti-
mates start to vary. This is to be expected: the trajectory is exploring new regions of the phase space, where
the Jacobian may have characteristics quite di�erent from the region of the attractor. A notable feature of
these results is that whereas the focus and chaotic orbit have consistently negative and positive exponents,
respectively, the exponents of the quasiperiodic and periodic orbits become more negative at small noise
levels and then become positive at larger noise levels, suggesting that there is qualitatively more hetero-
geneity in the Jacobian in this region of the parameter space.

3.2. Estimates from time series

I analyzed the time series in Fig. 2 with a neural network algorithm [2,21] that has recently been ported
to S-PLUSS-PLUS [22,23]. There are two ®tting parameters that need to be chosen: the embedding dimension (d)
and the number of independent units in the neural net (k). Larger values of both quantities increase the

Fig. 2. Simulated time series from the BFL model. Each column represents a single deterministic attractor, with parameters a and r

from Table 1. Each row is a di�erent noise variance: in order from the top, r � 0, 0.01, 0.1, and 0.3.

Table 2

Model-based Lyapunov exponent estimates from the BFL model using the parameters in Table 1

Noise Focus Quasiperiodic Periodic Chaos

0 )0.045 )0.0001 )0.032 0.20

0.01 )0.047 )0.001 )0.072 0.21

0.10 )0.14 )0.040 0.039 0.20

0.30 )0.10 0.052 0.11 0.24
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degrees of freedom of the model, and so will increase the goodness of ®t. However, over-®tting will produce
a function that is too `wiggly' and has spurious variation in the Jacobian. Following [2], I used generalized
cross validation with an overweighting factor of 2 (GCV(2)) to ®nd the simplest model that adequately
describes each time series; these are reported in Table 3. Notice that di�erent models were selected for the
di�erent time series.

To improve the model-®tting, I log-transformed the time series before analyzing them. This normalizes
the log-normal process noise and should eliminate most biases in the model estimation. At ®rst glance it
seems that this should produce inappropriate estimates the Lyapunov exponents, but the Lyapunov ex-
ponent is called a `dynamical invariant' precisely because it is insensitive to smooth transformations of the
state space.

I estimated the Lyapunov exponents for each of the time series using the model parameters in Table 3
(Table 4). Within the minimization routine, I used 200k `rough ®ts' and 20k `polished ®ts': the dependence
on k was to force the minimization routine to work harder at ®tting the more complex models. I also
estimated con®dence intervals for the Lyapunov exponents (Table 4). These are calculated by ®nding ®ts of
the neural network model that are nearly as good (based on normal approximation theory) as the best ®t,
and estimating the Lyapunov exponents with those ®ts [24]. The con®dence intervals are based on 500 ®ts.

The quality of these estimates is mixed. The con®dence interval covers the `true' value (from Table 2)
only for six cases: equilibrium at low and intermediate noise; quasiperiodicity at low noise; periodicity at no
and intermediate noise; and chaos at intermediate noise. The estimates have the wrong sign in six of the
®fteen cases, and the con®dence intervals span zero in another six cases. The estimates fail spectacularly at
the highest noise levels, always being extremely negative.

4. Model ®tting

I next ®tted the BFL model to the simulated time series, to discover whether the model parameters can
be recovered empirically. If I were to use time series of both state variables, then this would be a simple
regression exercise. However, I wished to use only the time series of hosts, as being representative of the
problem faced when analyzing real ecological data. The problem becomes much harder, because there is no
analytical formulation for the mapping between the embedded state space and the true state space.

Table 3

Parameters of the neural network models with the best GCV(2) scores as ®tted to each simulated time series

r Focus Quasiperiodic Periodic Chaos

d k d k d k d k

0.00 2 5 2 2 2 5

0.01 2 1 4 2 2 3 2 4

0.10 3 1 3 1 2 2 3 3

0.30 2 1 3 1 2 1 3 1

Table 4

Lyapunov exponents estimated by the neural network model for the simulated time seriesa

r Focus Quasiperiodic Periodic Chaos

0 0.006 )0.011 0.154

(0.006, 0.007) ()0.206, 0.028) (0.154, 0.155)

0.01 )0.030 )0.022 0.038 0.130

()0.098, 0.047) ()0.065, 0.101) (0.024, 0.049) (0.119, 0.156)

0.10 )0.048 0.023 0.194 0.254

()0.203, 0.004) ()0.013, 0.052) ()0.344, 0.242) (0.026, 0.380)

0.30 )1.559 )0.459 )0.352 )0.219

()1.845, )1.468) ()0.634, )0.310) ()0.408, )0.271) ()0.301, )0.204)

a 95% con®dence intervals (based on 500 re-®ts) in parentheses.

B.E. Kendall / Chaos, Solitons and Fractals 12 (2001) 321±332 325



One approach to this problem adapts the technique of nonlinear forecasting (NLF) [25,26,4,27,8]. In
essence, the model is run with a trial set of parameters to generate an `atlas' of points with which to forecast
the data. The actual forecasts are based on local kernel regression:

ŷt�1 �
Xna

i�1

xi�1w�Xi; Yi�;

where y is the time series to be ®t, x the model-generated atlas, Y and X their embeddings, na the number of
atlas points, and w is a weighting function based on the distance between X and Y.

The accuracy of the prediction is assessed with the `prediction r2' [27]:

r2 � 1ÿ
P�yt ÿ ŷt�2P�yt ÿ �y�2 :

This has an unfortunate name, for the r2 can be negative; a negative r2 simply means that the predictions
are worse than would be obtained by simply predicting the mean of the time series at each time step.

A nonlinear ®tting algorithm is then applied to ®nd the parameter values that maximize the predic-
tion r2.

For these analyses I used a weighting function that declined as a Gaussian function of the Euclidean
distance [27], and used atlases 2000 points long. I used a two-dimensional embedding, and log-transformed
the data and atlas before doing the forecasting.

4.1. Fitting results

In most cases the ®ts are fairly accurate, although the errors in the parameters increase (Fig. 3) and
the r2 decreases with increasing amounts of noise (Table 5). For the nonchaotic datasets, the ®tting
routine chooses noise levels similar to the true values: although this noise degrades the prediction ac-
curacy at any given point in state space, it is required for the atlas to fully explore the state space. For
the chaotic ®ts, the estimates of r are lower, as the chaotic trajectory traverses much of the state space
anyway. The ®ts of r to the equilibrium time series are worst at all noise levels, and the ®ts to the pe-
riodic time series are relatively poor at the higher noise levels. The chaotic time series receive the best
estimates of r at the higher noise levels, and along with the quasiperiodic time series receives the best
estimates of a.

4.2. Dynamics of ®tted models

To characterize the dynamics of the ®tted model, I performed model-based Lyapunov exponent esti-
mates using the ®tted parameters. I analyzed both `noisy' trajectories (using r̂) and deterministic trajectories
(r set to zero). The former characterized the dynamics of the trajectories, comparable to Table 2, while the
latter characterized the underlying attractor.

In all cases, the deterministic attractor was correctly identi®ed, although the magnitude of the Lyapunov
exponents was sometimes too large, especially at large noise amplitudes (Table 6). The noisy Lyapunov
exponents were substantially in error only at the largest noise amplitude; noisy periodicity and quasipe-
riodicity predicted the wrong sign.

5. Fitting the wrong model

In the real world, we do not know the `true' model, and indeed we may want to make inferences about
mechanism based on which model best ®ts the data [8]. Under what circumstances can we be sure that the
`true' model will ®t better than a wrong one? Furthermore, we may want to use our ®tted model to make
inferences about the underlying dynamics [4]; could accepting a `wrong', but well-®tting, model lead to false
dynamical conclusions?

To address these questions I used the nonlinear forecasting techniques described in the preceding section
to ®t a di�erent host-parasitoid model to the simulations generated by the BFL model:
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Ht�1 � Ht exp r 1

��
ÿ Ht

K

�
ÿ aPt

�
;

Pt�1 � Ht exp r 1

��
ÿ Ht

K

��
�1ÿ eÿaPt�:

Table 5

Prediction r2 of the best ®t BFL models applied to each of the BFL simulations

r Focus Quasiperiodic Periodic Chaos

0.00 1.000 1.000 0.999

0.01 0.814 0.999 0.999 0.999

0.10 0.812 0.952 0.932 0.937

0.30 0.684 0.743 0.760 0.835

Fig. 3. Relative errors of the estimated values of r and a in the BFL model. Within each cluster, r increases from left to right.

Table 6

Model-based Lyapunov exponent estimates from the BFL model using the estimated parameters from the nonlinear ®ttinga

r Focus Quasiperiodic Periodic Chaos

N D N D N D N D

0 )0.000 )0.000 )0.074 )0.031 0.204 0.210

0.01 )0.072 )0.065 )0.000 )0.000 )0.100 )0.022 0.208 0.212

0.10 )0.179 )0.081 )0.046 0.000 0.080 )0.020 0.207 0.213

0.30 )0.073 )0.113 )0.003 )0.001 )0.090 )0.068 0.314 0.293

a N (noisy) denotes estimates that used the estimated noise variance, while D (deterministic) denotes estimates that used a deterministic

trajectory with the estimated values of r and a.
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This model (which I denote HP2) di�ers from the BFL model only in the leading term of the parasitoid
equation, and in the addition of the host scaling parameter K. Biologically this represents di�erences in the
timing of parasitoid attack and host density dependence, which may be di�cult to distinguish in ®eld data.
The scaling parameter is required because the relationship between the mean of the time series and the host
carrying capacity di�ers between the two models.

5.1. Fitting results

The prediction r2 for the HP2 model ®tted to the periodic and quasiperiodic time series were only
marginally worse than the r2 from the BFL model (Table 7). For the equilibrium and chaotic series the HP2
model ®t substantially worse than the BFL model.

5.2. Dynamics of ®tted models

The ®tted HP2 models ®nd the correct underlying attractor for the equilibrium and quasiperiodic
simulations, and get the correct sign of the noisy exponents in all but one case (Table 8). However, they fail
spectacularly with the periodic and chaotic time series, misidentifying both the attractor and the noisy
exponent at almost all noise levels. The periodic attractor is variously classi®ed as quasiperiodic and
chaotic, and the chaotic attractor is classi®ed as stable, quasiperiodic, and chaotic.

It is important to ask whether this model, which appears biologically very similar to the BFL model, is in
fact capable of reproducing the same range of dynamics. Certainly, it generates the full range of qualitative
dynamics, as illustrated by the Lyapunov exponents in Table 8. However, it is conceivable that a chaotic
time series from the HP2 model might look nothing like one from the BFL model. In Fig. 4 I plot simulated
time series from the HP2 model, using the parameters from the best ®t to each BFL time series. The shapes
of the time series are very similar to those in Fig. 2, suggesting that the two models are capable of very
similar dynamics, at least in the host population.

Inspection of Fig. 4 and Table 8 reveals some incongruities. For example, the ®t to the chaotic time series
with r � 0:1 has a negative Lyapunov exponent, yet the time series ¯uctuates quite irregularly. This is not
driven by noise, as the noise parameter in this ®t is very small �r � 0:00006�. Instead, what is happening is
that with these parameter values, the HP2 model has a very long chaotic transient (with a Lyapunov ex-
ponent of about 0.13) that eventually relaxes to a periodic orbit. The ®tting, which was based on 2000
model iterations, was matching the chaotic transient to the data, whereas the Lyapunov exponent calcu-

Table 7

Prediction r2 of the best ®t HP2 models applied to each of the BFL simulationsa

r Focus Quasiperiodic Periodic Chaos

0.00 0.978 0.993 0.636

0.01 )0.565 0.974 0.933 0.631

0.10 0.620 0.903 0.784 0.545

0.30 0.582 0.780 0.580 0.605

a Compare with Table 5.

Table 8

Model-based Lyapunov exponent estimates from the HP2 model using the estimated parameters from the nonlinear ®ttinga

r Focus Quasiperiodic Periodic Chaos

N D N D N D N D

0 )0.001 )0.001 0.163 0.171 0.054 )0.001

0.01 )0.093 )0.099 )0.002 )0.001 0.017 0.016 )0.019 0.000

0.10 )0.071 )0.055 )0.036 )0.000 )0.036 0.000 )0.120 )0.188

0.30 )0.102 )0.021 )0.005 )0.001 )0.015 0.000 0.115 0.066

a N (noisy) denotes estimates that used the estimated noise variance, while D (deterministic) denotes estimates that used a deterministic

trajectory with the estimated values of r, a, and K.
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lation, which was based on 5000 iterations, was dominated by the periodic attractor. However, this e�ect of
transient dynamics does not appear to a�ect the other ®tted models, which have su�ciently high noise levels
to keep the trajectory on a chaotic transient if one exists.

6. Discussion

The results of this analysis are somewhat promising. It is possible to estimate the model parameters of a
noisy equilibrium with reasonable accuracy in the host±parasitoid model. The oscillatory transients of the
stable focus provide su�cient structure to allow not only parameter estimation but a distinctively better ®t
by the `true' model than by a wrong one (Tables 5 and 7). This is in stark contrast to one-dimensional
models, in which a noisy equilibrium displays a `largely uninformative cloud of points' [9].

The e�orts to distinguish the attractors using time series analysis was also reasonably successful. Except
at the highest noise level, the neural network model correctly identi®ed the sign of the Lyapunov exponent
for the equilibrium and the periodic (mostly) and chaotic orbits, although the con®dence interval
often crossed zero (Table 4). Even the magnitude of the exponent was often not too far o�. The poor
identi®cation of the quasiperiodic trajectory is curious and somewhat worrisome, as quasiperiodic at-
tractors are far more common than periodic attractors in these models.

Previously published tests that demonstrate that the neural network model can identify noisy chaos use
lognormal noise with r � 0:1 [2], corroborating my results at r � 0:1 but suggesting that the failure is rapid
with increasing noise. The neural network model produced very negative exponent estimates in nearly half
of the population time series analyzed by [2]; this may be an artifact of high noise levels in those data.

Fig. 4. Simulated time series from the HP2 model. Each panel shows a realization of the model with the parameter values from ®tting

the HP2 model to the corresponding time series in Fig. 2. The values displayed were preceded by 100 convergence iterations.
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Closer inspection reveals that the problem is not with the neural network model itself, but instead with the
strategy for selecting the model complexity. For example, when I applied the neural network model to the
chaotic time series with r � 0:3 using d � 2 and k � 5, I got a point estimate of the Lyapunov exponent
that matched the true value to two signi®cant digits! However, the GCV(2) criterion selected a much
simpler model. Standard GCV would select this model; however, it also selects complex models for all of the
time series. For the series with lower noise levels this would almost certainly be over®tting, and indeed
frequently results in positive Lyapunov exponent estimates for time series such as the stable equilibrium
with low noise. It is notable that simple neural network models were selected for almost all of the time series
analyzed by [2], in which GCV(2) was the selection criterion.

An alternate model selection scheme that is intermediate between GCV and GCV(2) is the Bayesian
Information Criterion (BIC). Models selected with this criterion led to Lyapunov exponents that are ac-
curate for the chaotic and periodic time series, but consistently return large positive values for the equi-
librium and quasiperiodic series. Thus none of the standard model selection algorithms works consistently
across all types of dynamics and all levels of noise. Since we do not know either of these a priori with real
data, ®nding a solution for this model selection problem is an important avenue for future work.

The wide con®dence intervals for the neural net Lyapunov exponent estimates are also a matter of
concern. In many cases, the con®dence interval extends across the origin, which can be interpreted as
meaning that any type of dynamics is plausible. This is not a very useful result, especially when the con-
®dence interval often does not even cover the true value. The rationale behind the con®dence interval
estimators was based on large-sample theory, and was tested on time series of length 400 [24]. It is likely
that the asymptotic theory does not apply to the short time series that I have analyzed. It is possible,
however, that estimates are going to be inherently uncertain with short time series, in which case the large
con®dence intervals are correct. An alterative approach is to use bootstrap techniques to estimate the
con®dence intervals; this should be computationally feasible with short time series. This is an issue that can
be addressed with simulation studies, and is a valuable future direction for research. As a ®rst step, I
analyzed a set of time series of length 100. There was no consistent improvement: some con®dence intervals
became smaller, and others larger. The number of con®dence intervals crossing the origin remained the
same. The quality of the con®dence intervals will also be a�ected by the model selection issue discussed
above.

As with any analysis of stochastic processes, there is a risk that any particular realization of the model
will be `atypical'. In this paper I chose to apply a breadth of analyses, and since each is computationally
intensive I could not perform replication for them all. I did, however, create 10 replicates of the chaotic time
series with r � 0:1, and subject them to the nonparametric estimate of the Lyapunov exponent. The results
were fairly consistent: the same neural network model was selected each time, the Lyapunov exponent
estimates ranged from 0.12 to 0.29, and the con®dence interval crossed zero in only one of the ten replicates.
Thus I have high con®dence in at least the qualitative results of my study.

When ®tting the true mechanistic model to the time series, the best parameter estimates, for a given noise
level, are generally found in the chaotic and quasiperiodic trajectories. Thus complex dynamics do seem to
promote our ability to parameterize mechanistic models. However, the di�erences in estimation error
among the di�erent dynamics are not that great (Fig. 3). In contrast to one-dimensional models [9], pre-
dator±prey models have su�cient structure even around a stable equilibrium to allow reasonable charac-
terization of the system.

With all of the time series, the true model ®t better than the wrong one. However, with many of the
periodic and quasiperiodic time series, the di�erence in prediction r2 was small (Tables 5 and 7). In the real
world, in which even the `true' model does not capture all of the precesses exactly, the two models are likely
to be indistinguishable. In contrast, the wrong model ®t the chaotic time series rather poorly, suggesting
that chaos provides enough structure to distinguish the models. This occurs even when the Lyapunov
exponent of the ®tted model is positive, so it is not simply an artifact of a chaotic transient leading to a
periodic attractor. There was also a substantial di�erence in the r2 for the periodic attractor with r � 0:3;
this trajectory has a strongly positive exponent (Table 2).

The ®tted BFL model always produced the correct deterministic attractor, although the Lyapunov ex-
ponents associated with the noisy time series were not always accurate. The latter is not surprising, as the
estimated r is trying to be as small as possible (to reduce prediction error) while still being large enough to
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allow the trajectory to explore the state space occupied by the data. In contrast, the ®tted HP2 model was
able to reliably identify the quasiperiodic attractor and stable equilibrium; the chaotic and periodic at-
tractors were almost always misidenti®ed. Even the estimates along the noisy trajectories were usually
wrong. Thus the risks associated with drawing dynamical conclusions from ®tted models are high, so such
conclusions should only be drawn when there is very high con®dence that the model is correct.

In general, it appears that use of the `correct' model is superior to nonparametric techniques that simply
use information from the time series; but that the nonparametric techniques are superior to using the
`wrong' model. Thus in the absence of con®dence in the `truth' of the model, nonparametric time series
techniques would be the preferred approach. An important open question is where an `incomplete' model
(with components that are all true, but missing a key process) falls in this hierarchy. Likewise, it is unclear
what would occur with a model that captured all of the dynamical processes, but had an incorrect noise
speci®cation.

As the debate about whether there is chaos in population ecology waned, I began to believe that the
distinction between `noisy chaos' and `noisy periodicity' in oscillatory populations was largely academic,
with neither biological signi®cance or practical consequence. The issue of biological signi®cance remains
open, but the results in this paper suggest that chaos does indeed have great practical bene®t from the
standpoint of identifying the mechanisms that underlie the population dynamics. As scientists, we should
hope that nature is chaotic!
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