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Monolayer CrCl3, an ideal testbed for the universality classes of 2D magnetism

M. Dupont,1, 2 Y. O. Kvashnin,3 M. Shiranzaei,3 J. Fransson,3 N. Laflorencie,4 and A. Kantian5, 3

1Department of Physics, University of California, Berkeley, California 94720, USA
2Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA

3Department of Physics and Astronomy, Uppsala University, Box 516, S-751 20 Uppsala, Sweden
4Laboratoire de Physique Théorique, IRSAMC, Université de Toulouse, CNRS, UPS, 31062 Toulouse, France

5SUPA, Institute of Photonics and Quantum Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK

The monolayer halides CrX3 (X=Cl, Br, I) attract significant attention for realizing 2D magnets with genuine
long-range order (LRO), challenging the Mermin-Wagner theorem. Here, we show that monolayer CrCl3 has
the unique benefit of exhibiting tunable magnetic anisotropy upon applying a compressive strain. This opens
the possibility to use CrCl3 for producing and studying both ferromagnetic and antiferromagnetic 2D Ising-type
LRO as well as the Berezinskii-Kosterlitz-Thouless (BKT) regime of 2D magnetism with quasi-LRO. Using
state-of-the-art density functional theory, we explain how realistic compressive strain could be used to tune the
monolayer’s magnetic properties so that it could exhibit any of these phases. Building on large-scale quantum
Monte Carlo simulations, we compute the phase diagram of strained CrCl3, as well as the magnon spectrum
with spin-wave theory. Our results highlight the eminent suitability of monolayer CrCl3 to achieve very high
BKT transition temperatures, around 50 K, due to their singular dependence on the weak easy-plane anisotropy
of the material.

Introduction.— Two-dimensional (2D) systems are of
unique importance to many-body quantum mechanics, as at-
tested, e.g., by superconductivity in the cuprates [1] and at the
LAO/STO interface [2], as well as graphene monolayers [3].
Part of this importance stems from the Mermin-Wagner (MW)
theorem [4, 5], which precludes any long-range order (LRO)
arising from the spontaneous breaking of a continuous sym-
metry in 2D, but leaves room for a topological transition at
finite temperature, named after Berezinskii [6], Kosterlitz, and
Thouless [7, 8] (BKT), e.g., in superfluid thin films [9] or 2D
easy-plane (EP) magnets. Conversely, for easy-axis (EA) mag-
nets, LRO due to the breaking of a discrete symmetry (e.g.,
Z2 for Ising systems) can occur at finite temperature. Such 2D
magnets are at the forefront of both experiment and theory, not
only for these fundamental reasons, but also for applications,
ranging from spintronics [10, 11] to both classical [12] and
quantum information [11]. Based on the precise demands,
materials in different universality classes of magnetic order
may be desired, each of which may face specific fundamental
challenges to be realized in 2D. Recently, genuine magnetic
LRO has been observed in chromium halides CrX3 (X=Cl, Br,
I), which show local magnetic moments of spin greater than
1/2, in the few — and monolayer regimes [13, 14]. These
results had substantial impact and induced much follow-up
work in many other atomically thin van-der-Waals materials
and their heterostructures [15, 16].

First-principles density-functional theory (DFT) calcula-
tions show, and experiment confirms, that the insulating
CrX3 realizes highly localized magnetic moments close to
3`B [17, 18], corresponding to an ideal 𝑆 = 3/2 system,
with short-range, Heisenberg-like superexchange couplings,
as well as local EA magnetic anisotropy. The latter allows
CrX3 to overcome the MW theorem and to establish 2D mag-
netic LRO [19, 20]. These traits imbue CrX3 with a major
advantage compared to gapless itinerant magnets [21]. It is
then CrCl3 specifically that has unique potential for realizing

magnetic universality classes beyond those with LRO, as it
shows only a small EA anisotropy due to its lighter ligand,
making it the most amenable to sign change by external ma-
nipulation, and thus realizing an EP anisotropy instead [17].
DFT-study further predicts that the anisotropy of the exchange
in CrCl3 is sufficiently suppressed [22]. In contrast, bulk and
monolayers of CrBr3 and CrI3 are predicted to show strong EA
anisotropy (both single-ion and inter-site) for which achiev-
ing sign-change would be unrealistic. This strong anisotropy
arises from the spin-orbit-coupling emerging from the heav-
ier ligands [23, 24], and CrI3 further also displays strongly
anisotropic exchange (possibly stemming from Kitaev interac-
tions) [25, 26].

Thus the opportunity to turn EA into EP anisotropy in CrCl3
via compressive strain raises the possibility of tuning a material
across strikingly different universality classes, with remarkable
critical properties. Of greatest interest in this respect is the
BKT regime, marked by the appearance of topological vortex-
excitations. Below a critical temperature the BKT regime
exhibits quasi-LRO, i.e., with critical algebraic correlations.
But while the realization of the quasi-LRO regime was first
proposed for magnetic systems [7], it has been surprisingly
difficult to detect in such. In the various layered bulk magnets
in which it is sought at low temperatures, there is invariably
a temperature scale below which the weak coupling between
the 2D layers gives rise to an effective 3D regime [27, 28] with
its attendant magnetic LRO, obscuring the sought-after BKT
physics [29, 30].

In this Letter, we propose that, amongst the monolayer
halides, CrCl3 provides unique advantages for tuning mate-
rial properties using, e.g., externally applied pressure such
that both 2D Ising ferromagnetic (FM) and antiferromagnetic
(AF) states with LRO as well as the sought-after BKT univer-
sality class could be observed, all in the same material. This
ability is based on monolayer CrCl3 realizing a 2D spin-3/2
Heisenberg-like Hamiltonian with local anisotropy on a honey-
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comb lattice with high fidelity, where both nearest-neighbour
superexchange coupling and magnetic anisotropy are suscep-
tible to tuning of both their magnitude and sign due to strain
Y caused by realistic external pressure. Most pertinently, this
in turn yields a BKT transition that is predicted to occur at
much higher temperatures than true LRO in the layered bulk
material [31], found to be around 17 K at zero strain [32], see
Fig. 1 (d). We further calculate the spin-excitation spectra of
the material in the various strain regimes using the spin-wave
approximation.

DFT of the monolayer and the effect of strain.— The general
crystal structure of monolayer CrCl3 is depicted in Fig. 1 (a).
Within our DFT approach, we first obtain the equilibrium
structure of the crystal. Then, we strain the lattice while al-
lowing Cl atoms to adjust their positions in order to minimize
the energy cost of the lattice deformation at each chosen value
of strain Y. For every structure generated, we compute the
total energy difference between FM and AF states. This al-
lows us to extract the effective value of the nearest-neighbour
exchange coupling 𝐽Y by mapping the energy difference onto
Hamiltonian:

�̂� = 𝐽Y

∑︁
〈𝒓 ,𝒓′〉

�̂�𝒓 · �̂�𝒓′ + 𝐾Y

∑︁
𝒓

(
𝑆𝑧𝒓

)2
, (1)

where �̂�𝒓 =
(
𝑆𝑥𝒓 , 𝑆

𝑦
𝒓 , 𝑆

𝑧
𝒓

)
are the standard 𝑆 = 3/2 spin-

operators positioned on the vertices of a 2D honeycomb lattice.
The sum 〈𝒓, 𝒓 ′〉 restricts the magnetic exchange to nearest-
neighbor spins. We perform fully relativistic calculations
in order to compute the magnetic anisotropy 𝐾Y , calculat-
ing the total energy difference between in-plane and out-of-
plane orientations of the magnetization [33]. Our approach
is in line with previous work studying the magnetic proper-
ties of Cr𝑋3 [23, 25, 34–39], which we note to yield criti-
cal temperatures in excellent agreement with experiment (see,
e.g., Ref. 32). Our own DFT treatment results in a nearest-
neighbour distance for the Cr-atoms of 3.424 Å at Y = 0%,
thus matching the measured bulk-value of 3.44 Å [40, 41],
signifying the accuracy of our approach.

We present our results for the Hamiltonian parameters 𝐽Y
and 𝐾Y as a function of material strain Y in Fig. 1 (b, c). It
shows the FM configuration to be energetically favoured at zero
strain, in line with bulk CrCl3, and the magnetic anisotropy to
be of EA type and pointing out-of-plane, opposite to what is
known for the bulk [17]. This change in the monolayer limit
has been obtained in prior DFT-based studies however [36, 42,
43][44]. As compressive strain is applied to the monolayer, two
key features of Fig. 1 (b, c) stand out: the sign-change of 𝐽Y at
Y = −1.2% from FM at AF coupling, and of 𝐾Y at Y = −2.4%
from EA to EP anisotropy as strain increases. These results
validate our initial hypothesis that the much weaker magnetic
anisotropy of monolayer CrCl3 compared to CrI3 and CrBr3
offers an ideal platform to modify the Hamiltonian symmetry
and thus explore Ising-type 2D magnetism of both the FM and
AF variant (for 𝐾Y < 0), as well as the BKT regime (for 𝐾Y >

0), as the strains necessary are readily available in the lab; a
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FIG. 1. (a) Crystal structure of monolayer CrCl3. The Cr and
Cl atoms are represented in blue and orange, respectively. The A
and B sublattices of Cr is indicated. Dashed lines denote the unit
cell with basic vectors 𝜹1 = 𝑎Y

(
0, 1

)
, 𝜹2 = 𝑎Y

(√
3/2,−1/2

)
, 𝜹3 =

𝑎Y
(
−
√

3/2,−1/2
)
, with strain-dependent lattice constant 𝑎Y . (b-

c) Magnetic nearest-neighbour superexchange 𝐽 and anisotropy 𝐾

of Hamiltonian (1) respectively, computed via DFT as function of
monolayer strain Y. (d) Finite-temperature phase diagram of the
monolayer CrCl3 versus strain Y, obtained by QMC simulations for
the 𝑆 = 3/2 model of Eq. (1) on the 2D honeycomb lattice. Strain
drives the monolayer into three different finite-temperature magnetic
phases: BKT quasi-LRO phase for Y . −2.4%, AF Ising for−2.4% .
Y . −1.2%, and FM Ising for Y & −1.2%. At zero temperature, the
BKT quasi-LRO turns into genuine XY LRO, separated from the AF
Ising order by an isotropic Heisenberg point displaying Néel order
(where 𝐾Y vanishes). The AF and FM Ising phases are separated by
a trivial paramagnetic point (where 𝐽Y vanishes). The colored lines
are fits to the form of Eq. (2).

strain of, e.g., −4% corresponds to pressure of 0.7 GPa. While
a different choice of DFT exchange-correlation functional [36]
predicts a different 𝐾Y , (changing sign along with 𝐽Y; thus no
AF Ising phase would occur), we note our own choice, also
used in, e.g., Ref. 22, yields a better match to the real lattice
constant at Y = 0%.
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Our DFT analysis reveals the source of the sign change
in 𝐽Y as a subtle shift in balance between two opposing su-
perexchange paths of the electrons localized at the Cr-atoms,
which each are mediated by the Cl-atoms [20, 45, 46]. The
first so-called “direct” path is of AF type and occurs between
two neighboring Cr 𝑡2𝑔-orbitals via a single 𝑝-orbital of the
in-between Cl-atom. The second path, termed “indirect”, as
it involves two 𝑝-orbitals of the Cl-atom (separate from the
one involved in the “direct” path), is of FM type and connects
𝑡2𝑔 with nominally empty 𝑒𝑔 orbitals. Compressive pressure
on the monolayer shifts the relative contribution of these two
paths by decreasing the Cr-Cl-Cr bond angle from its equilib-
rium value of about 95◦ (decreasing linearly in Y and reaching,
e.g., 91◦ at Y = −4%) while bringing the Cr-atoms closer to-
gether and pushing the Cl-atoms out-of-plane. This not only
decreases the overlap of the 𝑝-orbitals, thus weakening the
FM contribution of the “indirect” path, but also boosts the AF
component as the 𝑡2𝑔-orbitals of nearest neighbor Cr atoms
overlap better.

From Ising to BKT.— Building on the DFT-calculated cou-
plings 𝐽Y and 𝐾Y , we perform large-scale QMC simulations
of the 𝑆 = 3/2 Hamiltonian of Eq. (1) [33]. We simulate 2D
systems of 𝑁 = 2 × 𝐿 × 𝐿 spins on the honeycomb lattice, up
to 𝑁 ≈ 5 · 104, and map the phase diagram as a function of the
strain Y for CrCl3, as shown in Fig. 1 (d).

For 𝐾Y < 0 (Y > −2.4%) in the EA regime, we perform
a finite-size scaling analysis of the magnetic order parameter
in order to extract the critical temperature 𝑇c for the onset of
magnetic LRO, perfectly supporting the 2D Ising universality
class. This is exemplified in Figs. 2 (a,b) where we find the
thermal melting of both FM order for Y > −1.2%, and AF
order for Y ∈ [−2.4%,−1.2%], to be precisely described by
the critical exponents 𝛽 = 1/8 for the order parameter, and
a = 1 for the correlation length [47], allowing for accurate
extraction of 𝑇c.

When entering the EP regime for 𝐾Y > 0 (Y < −2.4%),
there is a drastic change in the critical properties. At zero
temperature, true LRO is expected, breaking the U(1) sym-
metry, but at finite temperature the MW theorem precludes
this [4, 5], allowing at most for quasi-LRO in the XY plane.
This is what we observe for Y = −4% in Fig. 2 (c), where the
system displays a finite spin stiffness 𝜌s (𝑇) below a transi-
tion temperature 𝑇BKT ∼ 50 K. Another manifestation of the
transition to quasi-LRO is the onset of algebraic decay of spin
correlations [33]. We determine 𝑇BKT both from the univer-
sal relation 𝜌s (𝑇 = 𝑇BKT) = 2𝑇BKT/𝜋 [48], see Fig. 2 (c), as
well as from critical correlations decaying with a universal
exponent [ = 1/4 [8, 33]. Yet, strong logarithmic finite-
size corrections are expected for BKT transitions [8, 49, 50],
calling for a careful analysis. Noting 𝑇★(𝐿) the solution of
𝜌s (𝐿) = 2𝜋/𝑇 , we extract the thermodynamic limit estimate of
𝑇BKT through the relation [51]𝑇★(𝐿) = 𝑇BKT+𝐶/(ln 𝐿)2, valid
as 𝐿 → +∞, with 𝐶 a non-universal constant, as exemplified
in Fig. 2 (d) for Y = −4%, where we obtain 𝑇BKT = 48(2) K.
Several estimates are reported in Fig. 1 (d), where we observe
a strong enhancement of 𝑇BKT upon compressive strain for
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FIG. 2. (a-b) Obtaining 𝑇c (dashed vertical lines) for onset of mag-
netic LRO from scaling analysis of QMC-values of the order param-
eter in the EA regime, using 2D Ising critical exponents 𝛽 = 1/8
and a = 1. (a) Magnetization density vs. temperature for different
𝐿 at Y = 0% (FM Ising), with 𝑇c = 14.84(1) K. (b) Staggered
magnetization density vs. temperature for different 𝐿 at Y = −2%
(AF Ising), with 𝑇c = 12.6(1) K. (c) Finite-size scaling analysis of
QMC-computed spin stiffness 𝜌s (𝐿) at different 𝐿 in EA regime, at
Y = −4% (BKT Quasi-LRO). Dashed line shows 2𝑇/𝜋. (d) 𝑇★(𝐿)
extracted from (c) vs. (ln 𝐿)−2 for Y = −4%. 𝑇BKT = 48(2) K is
extracted from fitting with 𝑇BKT + 𝐶/(ln 𝐿)2 (dashed line).

Y < −2.4%. This remarkable increase is not directly con-
trolled by the SU(2) → U(1) symmetry breaking term 𝐾Y in
the Hamiltonian Eq. (1), but emerges from a strong non-linear
effect, as we discuss now.

Logarithmic enhancement of the critical temperature.— The
critical nature of 2D systems at low temperatures results in a
strong sensitivity to even weak anisotropies (|𝐾Y/𝐽Y | is typi-
cally less than ≈ 10−2) that nudge the system towards a certain
(quasi-)order. Thus, in line with previous work on alterna-
tive realizations of 2D magnets [52–54], we find a strong
logarithmic enhancement of critical temperatures, which are
controlled by the exchange 𝐽Y but also with a singular depen-
dence on 𝐾Y , both on the Ising and on the BKT side for the
CrCl3 monolayer, as clearly shown in Fig. 3. Using QMC for
both physical parameters at various strains, as well as a broader
range for the ratio |𝐾Y |/𝐽Y , we find excellent agreement with

𝑇c,BKT =
4𝜋𝐽Y 𝜌 (0)s

ln
��𝐽Y/𝐾Y

�� + 𝐵 , (2)

where 𝜌 (0)s is the dimensionless spin stiffness of the isotropic
(𝐾Y = 0) system at zero temperature and 𝐵 is a non-universal
constant [53, 54]. A QMC estimate of the isotropic stiffness
gives a prefactor 4𝜋𝜌 (0)s = 16(1), which agrees well with our
results displayed in Fig. 3.
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(BKT Quasi-LRO, green) vs. |𝐾Y |/𝐽Y . Points with explicit Y-
values correspond to 𝐾Y/𝐽Y for monolayer CrCl3 at such strain, see
Fig. 1 (d). Dashed lines show fit to 𝐴/

(
ln |𝐽Y/𝐾Y | + 𝐵

)
in the small

anisotropy limit |𝐾Y |/𝐽Y ≤ 0.1, with 𝐴 and 𝐵 fitting parameters.
For BKT, 𝐴 = 14.6(3), 𝐵 = 9.2(3). For AF Ising, 𝐴 = 14.1(5),
𝐵 = 6.5(4). Both 𝐴-values are compatible with the analytical pre-
diction 𝐴 = 4𝜋 𝜌 (0)s = 16(1) in Eq. (2).

Magnon-spectra of the monolayer.— Complementing our
QMC description of the equilibrium properties we use spin-
wave (SW) analysis for an 𝑁-site cluster of the system Hamil-
tonian (1) to obtain predictions for the 𝑇 = 0 excitation spec-
trums of the monolayer at Y = 0% (FM phase) and Y = −4%
(XY order), see Fig. 1 (d). In each case we model the devi-
ations of the spins around a classical configuration, with the
analytical procedure depending on whether this configuration
is externally proscribed or has to be picked randomly.

For 𝐾Y < 0 (Y = 0%), the ground-state configuration is of
the spins aligned out-of-plane in the 𝑧-direction. We use the
appropriate Holstein-Primakoff (HP) transformation [55] for
mapping the magnon excitations above the ground state onto
non-interacting bosons [33]. Up to quadratic terms and after
canonical transformations, one arrives at

�̂�

𝑁𝑆2 ≈ − 3𝐽Y
2

− 𝐾Y +
3𝐽Y
𝑁𝑆

∑︁
𝒒

[
𝜔𝛼

(
𝒒
)
�̂�
†
𝒒�̂�𝒒 + 𝜔𝛽

(
𝒒
)
𝛽
†
𝒒𝛽𝒒

]
,

(3)

for approximating the magnon spectrum as the dispersion of
two distinct types of free bosons, with

𝜔𝛼/𝛽
(
𝒒
)
= 1 + 𝐾Y

3𝐽Y
±
��𝛾 (𝒒) �� , (4)

where 𝛾(𝒒) = (1/3)∑3
𝑛=1 e𝑖𝒒 ·𝜹𝑛 and 𝜹𝑛-vectors as shown in

Fig. 1 (a). The EA anisotropy is seen to open a gap at the bot-
tom of the lower 𝛽-branch, which stabilizes the system against
the long-wavelength Goldstone modes that would otherwise
result in the destruction of magnetic LRO, see Fig 4 (a).

For 𝐾Y > 0 (Y = −4%), when the anisotropy becomes EP
due to compressive strain, one has to pick an arbitrary orien-
tation in the XY-plane along which the spins order; we chose
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bottom of spectrum close to Γ due to anisotropy while the one in
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(
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Y

(
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)
, and K = 𝑎−1

Y

(
𝜋, 𝜋/

√
3
)

with strain-dependent
lattice constant 𝑎Y .

the 𝑥-direction in the following. For the concrete CrCl3 mono-
layer this procedure is justified by our DFT results, which
show energy-differences for different in-plane orientations to
be well below the `eV-level. Application of the standard
HP-approach would violate the Goldstone-theorem, so we
use the matching of matrix-elements (MME) technique in-
stead [33, 56, 57]. As spin-exchange dominates, we expand
to the first power of 𝑑Y = 𝐾Y/6𝐽Y𝑆. This results in another
magnon-Hamiltonian structurally analogous to the one pre-
sented in Eq. (3), but with the ground state energy replaced
by 𝑁𝑆

[
− 3𝐽Y𝑆 + 𝐾Y

(
1 − 𝑑Y (2𝑆 − 1)

) ]
/2 and the dispersion

relation

𝜔𝛼/𝛽
(
𝒒
)
=

√︂[
1 + 𝑑Y (2𝑆 − 1)

(
1 ±

��𝛾 (𝒒) ��) ]2
−
��𝛾 (𝒒) ��2. (5)

As shown in Fig. 4 (b), the magnon spectrum now is mostly
degenerate except around the Γ-point where the EP anisotropy
breaks the degeneracy, gapping the 𝛼-branch while the 𝛽-
branch remains linear down to 𝒒 = 0, thus signalling the
presence of a Nambu-Goldstone mode associated with the
breaking of the U(1) symmetry.

Discussion and outlook.— Various signatures would be
available in order to detect the transition of monolayer CrCl3
to the BKT regime that we have shown to happen as com-
pressive strain is increased. The decay-behaviour of an in-
duced spin-current as, e.g., emanating from a Pt-electrode has
been proposed for this [58]. So has been the minimum in the
uniform magnetic 𝑧𝑧-susceptibility predicted to occur for 2D
EP magnets just above the BKT transition, as opposed to the
monotonous decline predicted for the 𝑥𝑥-susceptibility [59].
In that respect, the 2D honeycomb 𝑆 = 1 AF compound
BaNi2V2O8 [60, 61] was very recently shown to be a good
candidate [62]. These susceptibilities are practically accessi-
ble in current experiments on compressed monolayers. Cru-
cially, the monolayer of CrCl3 would not suffer from some
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intervening onset of 3D magnetism which has obscured ex-
perimental studies of the BKT regime in layered bulk magnets
thus far. The sum of the present work shows this material to
be ideally situated in parameter space in order to address the
major universality classes of 2D magnetism with great control
and accuracy.
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Supplemental material to “Monolayer
CrCl3, an ideal testbed for the

universality classes of 2D magnetism”
In this supplemental material, we provide technical informa-
tion regarding the DFT calculations, the QMC simulations,
and the spin-wave analysis. We also provide details regarding
the finite-size scaling analyses of the QMC data for the FM
Ising, AF Ising, and BKT regimes.

DETAILS OF THE DFT-CALCULATIONS

The equilibrium crystal structure of the monolayered CrCl3
having 𝐷3𝑑 symmetry was obtained by performing a complete
optimization within density functional theory (DFT)-based
calculations. A 20-thick vacuum was added to ensure no inter-
action between the layers. The lattice parameters and atomic
positions relaxed using projector augmented wave method as
implemented in VASP code [63, 64]. We chose PBESol [65]
as exchange-correlation functional. The plane-wave kinetic
energy cut-off for was set to 450 eV along with 25 × 25 × 1
k-point grid. The forces on each atom were minimized down
to 0.1 meV/Å. Once the equilibrium structure was obtained,
we have strained the lattice while allowing Cl atoms to adjust
their positions in order to minimize the energy cost of the lat-
tice deformation. This procedure was done for each chosen
value of strain.

QUANTUM MONTE CARLO SIMULATIONS

Method and definitions

Quantum Monte Carlo simulations of the 𝑆 = 3/2 lattice
Hamiltonian of Eq. (1) in the main text are performed with
stochastic series expansion (SSE) algorithm using directed
loops updates [66, 67]. Our calculations are based on the
ALPS library [68]. We simulate fully periodic 2D systems
of 𝑁 = 2 × 𝐿 × 𝐿 sites up to ≈ 5 · 104 spins on the lattice.
The phase boundaries of the model (strain versus temperature)
are determined by a standard finite-size scaling analysis. We
denote the Monte Carlo average by 〈·〉. For the FM Ising
transition (see Fig. 2 of the main text), we consider the square
of the magnetization density, defined as,

𝑚2 =

〈(
1
𝑁

∑︁
𝒓
𝑆𝑧𝒓

)2
〉
. (6)

For the AF Ising transition, we consider the square of the
staggered magnetization density (see Fig. 2 of the main text).
It reads,

𝑚2
stag =

〈
1
𝑁2

(∑︁
𝒓 ∈A

𝑆𝑧𝒓 −
∑︁

𝒓 ∈B
𝑆𝑧𝒓

)2
〉
, (7)
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Tc = 12.6(1)Tc = 14.84(1) ε = − 2.0 %ε = 0.0 %

°50 0 50
°
T ° Tc

¢
£ L1/∫

0.0

0.5

1.0

1.5

2.0

2.5

m
2
(L

)
£

L
2
Ø

/
∫

L = 32

L = 48

L = 64

L = 96

L = 128

L = 160

°250 0 250
°
T ° Tc

¢
£ L1/∫

0.0

0.5

1.0

1.5

2.0

2.5

m
2 st

a
g
(L

)
£

L
2
Ø

/
∫

L = 64

L = 80

L = 96

L = 112

L = 128

L = 144

FIG. 5. Data collapse of Fig. 2 (a,b) of the main text by rescaling the 𝑥
axis as 𝑇 → (𝑇 −𝑇c) × 𝐿1/a with a = 1 the correlation length critical
exponent of the 2D Ising universality class. (a) Magnetization density
vs. temperature for different 𝐿 at Y = 0% (FM Ising), with 𝑇c =

14.84(1) K. (b) Staggered magnetization density vs. temperature for
different 𝐿 at Y = −2% (AF Ising), with 𝑇c = 12.6(1) K.

with A and B corresponding to the two sublattices of the
hexagonal lattice, respectively. For the BKT transition, we
consider two different quantities. First, the two-point off-
diagonal spin correlation function at the longest distance 𝒓max
available between two spins (i.e., ‖𝒓max‖ ∝ 𝐿):

〈
𝑆+𝒓 𝑆

−
𝒓+𝒓max

〉
.

We evaluate it while constructing the loop update [69] and
average over all lattice sites 𝒓. The second quantity we consider
regarding the BKT transition is the spin stiffness 𝜌s, made
readily accessible when expressed as the fluctuation of the
winding number [70, 71].

Ising transitions

To determine the critical temperature 𝑇c for the FM and
AF Ising regimes, we use a standard finite-size scaling of the
order parameter. For the FM Ising transition, the square of the
magnetization density of Eq. (6) follows,

𝑚2 (𝐿) = 𝐿−2𝛽/a × F𝑚2

[ (
𝑇 − 𝑇c

)
× 𝐿1/a

]
. (8)

For the AF Ising transition, the square of the staggered mag-
netization density of Eq. (7) follows,

𝑚2
stag (𝐿) = 𝐿−2𝛽/a × F𝑚2

stag

[ (
𝑇 − 𝑇c

)
× 𝐿1/a

]
, (9)

with 𝛽 the order parameter and a the correlation length ex-
ponents, respectively. For the 2D Ising universality class,
𝛽 = 1/8 and a = 1 [47]. F𝑚2 and F𝑚2

stag
are universal scaling

functions.
Throughout the paper, we determine the critical temperature

of the AF and FM regimes according to Eqs. (8) and (9).
See Fig. 2 (a,b) of the main text as well as Fig. 5, where the
collapse of the data points correspond to the universal scaling
functions. The perfect collapse using the 2D Ising universality
class exponents confirm the nature of the phase transition.
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and Y = −3.0% (lower row). In the thermodynamic limit, at the
BKT transition 𝑇BKT, the spin stiffness shows a universal jump and
takes the value 𝜌s = 2𝜋/𝑇BKT. For a finite-size system, we note
𝑇★(𝐿) the solution of 𝜌s (𝐿) = 2𝜋/𝑇 . 𝑇★(𝐿) is expected to behave
as 𝑇BKT + 𝐶/(ln 𝐿)2 for 𝐿 → +∞, with 𝐶 a non-universal constant.
We fit the data points to determine 𝑇BKT.

Determining the BKT transition

The first way we use to determine the BKT transition is
based on the finite-size scaling of the spin stiffness 𝜌s, as
explained in the main text. See Fig. 2 (b,c) of the main text
as well as Fig. 6 for additional data corresponding to strains
Y = −3.5% and Y = −3.0%.

Another way to obtain the BKT temperature is by consider-
ing the two-point off-diagonal spin correlation function at the
longest distance 𝒓max available between two spins

〈
𝑆+𝒓 𝑆

−
𝒓+𝒓max

〉
,

with ‖𝒓max‖ ∝ 𝐿. At 𝑇 = 𝑇BKT, it has the following finite-size
scaling, 〈

𝑆+𝒓 𝑆
−
𝒓+𝒓max

〉
∼ 𝐿−[ , (10)

with [ the anomalous exponent which takes the value [ = 1/4
at the BKT transition. We show results using the relation of
Eq. (10) in Fig. 7. The crossing point of the data for different
linear sizes 𝐿 when rescaling the 𝑦 axis accordingly signals
the BKT temperature 𝑇BKT.

DETAILS OF THE SPIN-WAVE -ANALYSIS

In the FM phase with EA, we apply Holstein-Primakoff
transformation [55] to find the bosonic excitation Hamiltonian.
This transformation, up to the first order, is defined as,

𝑆𝑧𝒓 = 𝑆 − �̂�†𝒓 �̂�𝒓 , and 𝑆−𝒓 =
√

2𝑆�̂�†𝒓 , (11)
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FIG. 7. Two-point off-diagonal spin correlation function at the
longest distance 𝒓max available between two spins (i.e., ‖𝒓max‖ ∝ 𝐿):〈
𝑆+𝒓 𝑆

−
𝒓+𝒓max

〉
for different values of 𝐾Y/𝐽Y in the BKT regime (they

do not correspond to a physical strain Y). At the BKT transition
𝑇 ≡ 𝑇BKT, one has

〈
𝑆+𝒓 𝑆

−
𝒓+𝒓max

〉
∼ 𝐿−[ with a universal exponent

[ = 1/4. Here, we use this relation to determine 𝑇BKT. As the ra-
tio 𝐾Y/𝐽Y decreases, systematic drifts of the crossing point with the
smallest system sizes are visible.

where �̂�𝒓 is a destruction operator of boson at 𝒓 which lies
in A sublattice and the same definition is valid for the other
sublattice with �̂�𝒓′ where 𝒓 ′ points outB sublattice. Collecting
all relevant terms and after unitary transformation, we obtain
the magnon spectrum of the main text.

However, in the AF with EP case, we use the MME ap-
proach [56, 57], as discussed in the main text. Treating the
anisotropy as a perturbation and with the small expansion pa-
rameter 𝑑Y = 𝐾Y/6𝐽Y𝑆, we find the first-order approximation
of the spin-operators in terms of bosonic ones �̂�𝒓 , �̂�𝒓′ ,

𝑆𝑧𝒓 = 𝑆 − �̂�†𝒓 �̂�𝒓 + 𝑑Y

√︄
𝑆

(
𝑆 − 1

2

) (
�̂�𝒓 �̂�𝒓 + �̂�†𝒓 �̂�†𝒓

)
,

𝑆−𝒓 =
√

2𝑆
[
�̂�
†
𝒓 − 𝑑Y

(
𝑆 − 1

2

)
�̂�𝒓

]
,

𝑆𝑧𝒓′ = −𝑆 + �̂�†𝒓′ �̂�𝒓′ − 𝑑Y

√︄
𝑆

(
𝑆 − 1

2

) (
�̂�𝒓′ �̂�𝒓′ + �̂�†𝒓′ �̂�

†
𝒓′
)
,

𝑆−𝒓′ =
√

2𝑆
[
�̂�𝒓′ − 𝑑Y

(
𝑆 − 1

2

)
�̂�
†
𝒓′

]
,

(12)

where 𝒓, 𝒓 ′ lie in A and B sublattices respectively.

Moreover, by expanding the spin-wave dispersion around
the Γ-point, we explore how the dispersion behaves at the
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bottom of the spectrum. In the FM phase, we find,

𝜔𝛼

(
𝒒
)
= 2 + 𝐾Y

3𝐽Y
− 𝑎2

Y

4
𝒒2, (13)

𝜔𝛽

(
𝒒
)
=
𝐾Y

3𝐽Y
+ 𝑎

2
Y

4
𝒒2, (14)

where 𝑎Y refers to lattice constant. Both bands are quadratic
in 𝒒, see Fig. 4 (a) in the main text. Besides, for AF phase with

EP, up to the first order of 𝑑Y , we obtain,

𝜔𝛼

(
𝒒
)
= 2

√︁
𝑑Y (2𝑆 + 1)

[
1 − 𝑎2

Y [𝑑Y (2𝑆 + 1) − 1]
16𝑑Y (2𝑆 + 1) 𝒒2

]
,

(15)

𝜔𝛽

(
𝒒
)
=

√︂
𝑑Y (2𝑆 + 1) + 1

2
𝑎Y |𝒒 |, (16)

where it shows that the lowest energy 𝜔𝛽

(
𝒒
)

is linear in 𝒒
while 𝜔𝛼

(
𝒒
)

has quadratic dependency, see Fig. 4 (b) of the
main text.
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