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Abstract

Precision Measurement in Atom Interferometry Using Bragg Diffraction

by

Brian Vincent Estey

Doctor of Philosophy in Physics

University of California, Berkeley

Associate Professor Holger Müller, Chair

We experimentally and theoretically study Bragg diffraction as a tool for large-momentum
transfer beam splitters in atom interferometry. A theoretical framework is developed to
quantify the diffraction phase systematic caused by Bragg diffraction and experiments are
performed to confirm these predictions using a Ramsey-Bordé atom interferometer. We
then develop methods to systematically cancel and reduce the diffraction phase systematic
by carefully selecting Bragg diffraction parameters and utilizing Bloch oscillations. These
techniques are then applied to an ongoing precision measurement of h/mCs for cesium, with
the end goal of measuring the fine structure constant α. We demonstrate a high contrast
simultaneous conjugate Ramsey-Bordé interferometer using 5th order Bragg diffraction and
25 common mode Bloch oscillations which achieves 2.5 × 106 radians of phase. We also
demonstrate an interferometer with a statistical uncertainty of δα/α = 0.25 ppb after 25
hours of integration time that has diffraction phase systematic error of around 1 ppb. Other
sources of systematic uncertainty are also thoroughly explored and determined to better
than 0.1 ppb. The techniques and theories developed in this thesis will hopefully help enable
future precision measurements based on Bragg diffraction.
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Chapter 1

Introduction

1.1 Interferometry

The basic concept behind any interferometric measurement is relatively straightforward and
relies on two important principles: coherent superposition and counting. When a wave-
function (whether it be a light field, a quantum particle, or even a classical wave) is coher-
ently split along two paths and brought back together, the resulting interference pattern will
be a function of the relative phase difference between the split wave-functions. Since the
phase of the wave-function is 2π periodic, the interference (and therefore the relative phase
difference) can theoretically be measured to the same precision regardless of the absolute
phase difference. The power of interferometry occurs when the signal of interest (whether
it be time, distance, etc.) is proportional to the absolute phase difference. Since counting
the number of oscillations can be done with negligible probability of error for a well re-
solved fringe, one can perform a more precise measurement by increasing the absolute phase
difference without the need for a better measurement of the interference.

This theoretical scalability of the signal relative to a fixed absolute measurement error in
an interferometer makes it very appealing for precision measurement. One of the quintessen-
tial uses of precision interferometry was in 1887 when Michelson and Morley [1] set up an
optical interferometer which helped disprove the aether theory of electromagnetism. Optical
interferometers have continued to increase in sensitivity in large part due to the invention
of the laser, which enabled extremely strong coherent sources of light. While laser interfer-
ometers have the benefit of high signal-to-noise, their ultimate accuracy is limited by the
need to contain the light using macro-scale systems (mirrors, fiber optics) which are subject
to thermal variation. As an optical interferometer changes in temperature, the total path
length of the light varies and therefore so does the absolute phase shift. These shifts cause
errors when converting the interference signal to an absolute signal since the scale factor be-
tween the two is less well known. The stability of this scale factor determines the accuracy
of the device and therefore is an intense area of research [2].

Atom interferometers work along the same principles as an optical interferometer, except
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that atoms play the role of the wave and light is instead used to manipulate the path
of the atoms. Since atoms are (usually) non-relativistic, they can easily be contained for
limited periods of time in an inertial free-fall frame where coupling to the thermodynamic
world is significantly reduced. Consider an atom in free-fall that interacts with a laser field
such that two photon momentum quanta are transferred to the atom with 50% probability
creating a superposition state. As two atom wave-packets propagate, they will acquire phases
proportional to their kinetic and potential energy. After the two superpositions are brought
back together and interfered with additional laser pulses, a determination of the energy
difference can be made from the resulting interference. By measuring the laser frequency [3]
which determines the atom’s path, the total phase shift can be determined to very high
accuracy, enabling a precision measurement of the energy difference.

Atom interferometry has proven to be an exceptionally powerful tool in precision mea-
surement over the last couple of decades. Applications have ranged from inertial sensing
with accelerometers [4] and gyroscopes [5, 6] to measurements of gravitational tides [7] and
gravity gradients [8]. Where atom interferometers are especially useful is in fundamental
physics research where they have been used to measure the gravitational constant [9], test
the equivalence principle [10], put bounds on theories of dark energy [11], and serve as mi-
croscopic mass standards [12]. There are even proposals to measure the charge neutrality of
atoms [13] and investigate the gravitational AharonovBohm effect [14].

The main focus of our atom interferometer (on which this thesis is based) is to measure
the fine structure constant [15]. By utilizing higher order momentum transfer techniques,
the phase sensitivity of our atom interferometer can be increased to hopefully pave the way
for an improved measurement and enable future tests of fundamental physics.

1.2 Fine Structure Constant

The fine structure constant α is a parameter in the standard model that characterizes the
strength of the electromagnetic field and relates the binding energy of an electron-proton
system to the rest mass energy of the electron through the relationship

hcR∞ =
1

2
α2mec

2, (1.1)

where h is the Plank constant, c is the speed of light, R∞ is the Rydberg constant, and me

is the mass of an electron. Historically, measurements of the fine structure constant have
come from many branches of physics including spectroscopy of muonium [16], h/mN for
neutrons [17], measurements of the proton gyromagnetic ratio [18], and the quantum Hall
effect [19]. The most accurate measurements of α by far, however, come exclusively from a
measure of h/m for neutral atoms [15, 20] and the anomalous magnetic momentum of the
electron (g − 2) [21, 22]. A list of α measurements and their relative uncertainty are shown
in Fig. 1.1, with the last two measurements being of prime importance. The measurements



CHAPTER 1. INTRODUCTION 3

-150 -100 -50 0 50 100 150 200

Muonium

h/mN

Proton γ ′

p

Quantum Hall

-15 -10 -5 0 5 10 15 20

Relative Uncertainty δα/α [ppb]

h/mCs

g − 2 (Washington)

h/mRb

g − 2 (Harvard)

Figure 1.1: The relative uncertainty of various types of fine structure constant measurements.

of h/m and g − 2 are fortunately very different in nature and provide a means to test the
theory of quantum electrodynamics in the laboratory.

To determine α from a measurement of h/mx for some atom with mass mx, one relies on
the relationship (1.1) which can be rewritten as

α2 = 2
R∞
c

me

h

= 2
R∞
c

me

u

u

mx

mx

h
, (1.2)

where u is the atomic mass unit. Instead of measuring h/me for the electron directly, the fine
structure can be determined by the ratio of the electron mass to the atomic mass unit [23,24]
and the ratio of the atomic mass unit to some other atom [25,26], in combination with h/mx

for that atom. This chain of different measurements ends up being easier than determining
h/me due to the inherent difficulty of containing and manipulating free electrons. The
uncertainties for these quantities are listed in Table 1.1 for two popular atom species, with
the largest of these uncertainties coming from the values of h/m. Since the fine structure
constant is related to h/m by a square root, the relationship (1.2) means that the uncertainty
in α is half that of h/m and, thus, the best measurement using this method has an uncertainty
of 0.66 ppb [15].

The other method of measuring α involves the anomalous magnetic moment of the elec-
tron g − 2, which can be written as a power series in α using corrections from quantum
electrodynamics (QED)
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Table 1.1: Sources of uncertainty in determining α with a h/m measurement (left) and a
g − 2 measurement (right). The uncertainties are taken from the references listed in this
section and from CODATA [27].

Uncertainty
R∞ 0.005 ppb
me/u 0.03 ppb
mRb/u 0.012 ppb
h/mRb 1.3 ppb

mCs/u 0.01 ppb
h/mCs 15 ppb

Uncertainty
g − 2 0.24 ppb
a4 0.05 ppb
a5 0.034 ppb
aQCD 0.013 ppb

g − 2 =
∑
n=1

(α
π

)n
an + αweak + αQCD, (1.3)

where the coefficients an come from calculating all possible QED corrections of order 2n
and the factors αweak and αQCD are electroweak and quantum chromodynamics corrections
obtained from particle physics data [28]. From a measurement of g − 2 for an electron, the
value of the fine structure constant can be obtained by inverting (1.3). A summary of the
QED corrections are shown in Fig. 1.2, with relevant uncertainties listed in Table 1.1, which
give a combined uncertainty of 0.25 ppb in α.

A measurement of α using h/m and (1.2) is essentially free from the theory of QED,
with only small correction to R∞ from the Lamb shift [29]. Therefore by comparing α as
measured by h/m (1.2) and g − 2 (1.3), one can test the theory of QED to extremely high
accuracy. From the data in Fig. 1.2, one can see that improving the measurement of h/m
has the potential to test QED at the level of 10th order corrections.

In addition, there is speculative evidence for new physics in measurements of the anoma-
lous magnetic momentum of the muon [30]. When the experimentally measured value is
compared to theoretical calculations derived from particle physics data, the measured value
deviates from theory by approximately 3.6 standard deviations. If this deviation is caused
by new physics which couples to the muon with a strength Λµ, then the new physics will
also cause a deviation in the electron anomalous moment

∆ae
∆aµ

=
m2
e

m2
µ

Λ2
µ

Λ2
e

,

where Λe is the coupling between the new physics and the electron [31]. If the couplings are
approximately equal, Λµ/Λe ≈ 1, then this shift could show up in the electron g − 2 at the
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Figure 1.2: The relative magnitude of the different QED corrections that go into calculat-
ing the electron anomalous magnetic moment g − 2. Also listed is the uncertainty in the
experimental g − 2 measurement and the corresponding value using α derived from h/mRb.

0.06 ppb level. Therefore if α is measured with g−2 and h/m independently at the 0.06 ppb
level, this new physics could potentially be tested (if the muon measurement is verified).

1.3 h/m Measurement

When an atom of mass m absorbs a photon of known wavenumber k, then the atom will
recoil with a velocity vr = ~k/m (where ~ = h/2π). From a measurement of the imparted
kinetic energy

1

2
mv2

r = ~
(
~k2

2m

)
= ~ωr,

a value for ~/m can be obtained by taking into account the laser frequency. Since this
recoil frequency ωr shifts the energy of the atom, it can be measured with interferometry
techniques.

Consider an atom that absorbs a photon from one laser field and is stimulated to emit
a photon in the counter-propagating direction such that the atom is coherent kicked with a
momentum of 2~k. If this is done such that the atom ends up in a momentum superposition,
then the moving part of the atom’s wave-function will gain energy at a rate ~ωr faster than
the stationary component. The moving part of the superposition is then kicked several more
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Figure 1.3: A simple interferometer to measure the recoil energy of an atom, also called
a Ramsey-Bordé interferometer. The atom is coherently split by atom-light beam splitters
(vertical dashed lines) and recombined to produce interference proportional to the kinetic
energy.

times to bring the wave-function back together as shown in Fig. 1.3, where the resulting
interference will be proportional to the energy difference (and thus to the kinetic energy).

An interferometer with this configuration, also called a Ramsey-Bordé interferometer,
typically relies on Raman transitions for the beam splitters to transfer two photon momenta
to the atom [32]. In order to scale up the interferometer phase and increase the accuracy, the
time between pulses can be increased so that the atom accumulates a larger kinetic energy
phase shift during its evolution. A different way to scale up the sensitivity is to increase the
number of photons the atom absorbs, so that the kinetic energy changes from

1

2
m

(
2~k
m

)2

→ 1

2
m

(
2n~k
m

)2

,

where n is an integer. This has the advantage that the signal is proportional to the square
of the photon number, (2n)2, which is a very appealing scaling. The focus of the work in
this thesis is on using a multi-photon beam splitter process called Bragg diffraction [33] to
increase the Ramsey-Bordé signal and hopefully enable a new measurement of α.

1.4 Overview of this Thesis

In Chapter 2, the total phase of the atom interferometer is calculated, including the phase
from atom-light interactions. In addition, the theory of Bragg diffraction beam splitters is
discussed in detail. Chapters 3 and 4 will focus on the experimental setup of the various
optical systems and techniques needed to implement our atom interferometer. Some exper-
imental results are discussed in Chapter 5, focusing on increasing the interferometer phase
through high momentum transfer beam splitters and decreasing the systematic influences of
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those beam splitters on our recoil measurement. Finally, Chapter 6 will briefly discuss other
possible systematic effects and their influence on h/m.
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Chapter 2

Theory

The simplest interferometer that can be constructed in quantum mechanics is one in which
an initial state |ψ1〉 is placed into a superposition state via a rotation between |ψ1〉 and |ψ2〉,
allowed to evolve in time, and then rotated back:

ŜÛ Ŝ |ψ1〉 , (2.1)

where the rotation operator Ŝ (colloquially called a beam splitter) and evolution operator
Û are in their most basic form:

Ŝ =
1√
2

(
1 i
i 1

)
, Û =

(
eiφ1 0
0 eiφ2

)
.

The probability that the final measured state ends up in |ψ1〉 or |ψ2〉 is then the projection
of (2.1) onto |ψj〉, which gives

∣∣∣〈ψ1| Ŝ†Û Ŝ |ψ1〉
∣∣∣2 =

∣∣∣∣12eiφ1 − 1

2
eiφ2
∣∣∣∣2

= sin2

(
φ1 − φ2

2

)
,∣∣∣〈ψ2| Ŝ†Û Ŝ |ψ1〉

∣∣∣2 = cos2

(
φ1 − φ2

2

)
.

Therefore the probability to end up in a given state then depends on the phase acquired under
the evolution operator Û and from the beam splitters Ŝ. For interferometry in general, it
is therefore important to understand how the wave-function (whether it be particle, atom,
etc.) acquires phase during the wave-function’s free evolution and from the beam splitter
interactions.
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2.1 Free Evolution Phase

The free evolution of a particle in atom interferometry is dependent on the Hamiltonian
Ĥ that determines the particle’s energy. For generality, consider a Hamiltonian that con-
sists of the particle’s kinetic energy along with a potential energy term which encompasses
conservative forces such as gravity or magnetic fields.

In quantum mechanics, the dynamics of the system are described by the Schrödinger
equation

Ĥ |ψ(t)〉 = i~
∂

∂t
|ψ(t)〉 .

For a time-independent Hamiltonian and a particle initially in the state |ψ(tI)〉 at a time tI ,
the Schrödinger equation can be directly integrated to find state |ψ〉 at a later time t.

|ψ(t)〉 = e−iH(t−tI)/~ |ψ(tI)〉
= Û |ψ(tI)〉 .

Consider a particle in one dimension that moves along the x-axis, which is initially located
at xI at a time tI . The probability amplitude that the initial particle |ψ(tI)〉 can be found
at a position x1 after a time δt is then

〈x1|ψ(tI + δt)〉 = 〈x1| e−iHδt/~ |ψ(tI + δt)〉
= 〈x1| e−iHδt/~ |xI〉 .

This process can be repeated for the next time step δt to find the probability amplitude of a
state which starts at |x1〉 to end up at |x2〉 and so on. To find the amplitude of a particular
path (x1, x2, · · · , xN−1) between xI and xF , it is just a matter of multiplying the amplitudes
of each intermediate path xj → xj+1:

〈xF | e−iHδt |xN−1〉 〈xN−1| e−iHδt |xN−2〉 . . . 〈x1| e−iHδt |xI〉 ,
where ~ has been set to 1 for simplicity. The path integral formulation of quantum mechanics
then states that the amplitude for a state starting at xI to end up at xF , is the integral over
all possible paths from xI(tI) to xF (tF ) [34].

〈xF | e−iH(tF−tI) |xI〉 =
N−1∏
j=1

∫
dxj 〈xF | e−iHδt |xN−1〉 〈xN−1| e−iHδt |xN−2〉 . . . , (2.2)

where δt = (tF − tI)/N . To simplify the integral, a small piece of the path between xj and
xj+1,
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〈xj+1| e−iHδt |xj〉 , (2.3)

is evaluated during a time-step δt. Since the Hamiltonian is of the form H = p̂2/2m+V (x̂),
inserting a complete set of momentum states∫

dp

2π
|p〉 〈p| = 1

into (2.3) allows us to rewrite it as:

〈xj+1| e−iδt(p̂
2/2m+V (x̂)) |xj〉 =

∫
dp

2π
〈xj+1| e−iδt(p̂

2/2m+V (x̂)) |p〉 〈p|xj〉

= e−iδtV (xj)

∫
dp

2π
e−iδt(p

2/2m) 〈xj+1|p〉 〈p|xj〉

= e−iδtV (xj)

∫
dp

2π
e−iδt(p

2/2m)eip(xj+1−xj),

(2.4)

where the position and momentum operators have been applied to the states |p〉 and |xj〉
to yield their eigenvalues and we have made use of the relation 〈xj|p〉 = eipxj . Since the
potential does not depend on the momentum, we may perform the Gaussian integral1 over
dp in (2.4), which can then be written as

〈xj+1| e−iδt(p̂
2/2m+V (x̂)) |xj〉 =

(−im
2πδt

) 1
2

eiδt
[
m
2

[(xj+1−xj)/δt]2−V (xj)
]
. (2.5)

To evaluate the remaining path segments, simply apply the results from (2.5) to each discrete
step of Eq. (2.2) to obtain

〈xF | e−iH(tF−tI) |xI〉 =

(−im
2πδt

)N
2

(
N−1∏
j=1

∫
dxj

)
eiδt

∑N−1
j=0

[
m
2

[(xj+1−xj)/δt]2−V (xj)
]
. (2.6)

Since the (xj+1−xj)/δt factor in the exponential is approximately a discrete time derivative
of xj, the terms in the exponential can be written as

δt

N−1∑
j=0

m

2

(
xj+1 − xj

δt

)2

→
∫ tF

tI

m

2
q̇2dt,

δt

N−1∑
j=0

V (xj)→
∫ tF

tI

V (q)dt,

1A Gaussian integral with complex argument is evaluated as
∫

exp[ 1
2 iax

2 + ibx]dx =
√

2πi/a exp[−i b22a ].
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where the parameterized function q(t) is the continuum limit of the path (xI , x1, . . . , xN−1, xF )
as δt→ 0 with q(tI) = xI and q(tF ) = xF . The full path integral (2.6) is then

〈xF | e−iH(tF−tI) |xI〉 = lim
N→∞

(−im
2πδt

)N
2

(
N−1∏
j=1

∫
dxj e

i
∫ tF
tI

[mq̇2/2−V (q)]dt

)

=

∫
Dx ei

∫ tF
tI

[mq̇2/2−V (q)]dt.

(2.7)

While this formalism of integrating over all paths is very useful in field theory, it is somewhat
impractical for atom interferometry and therefore beneficial to make some approximations.

Recognizing that the bracketed term in the exponent of (2.7) is the Lagrangian L(q, q̇) =
mq̇2/2 − V (q), the integral

∫ tF
tI
L(q, q̇)dt is simply the action S of a given path q(t). The

phase and amplitude of a state starting at xI and ending at xF is therefore determined by
the interference between all possible paths ei

∫
dtL(q,q̇) between |xI〉 and |xF 〉. If the units of

~ are restored,

〈xF | e−iH(tF−tI) |xI〉 = lim
N→∞

( −im
2π~δt

)N
2

(
N−1∏
j=1

∫
dxj e

iS(q)/~

)
, (2.8)

it becomes clear that the exponential eiS/~ will oscillate rapidly when the action is large
compared to ~, tending to destructively interfere with neighboring paths. The path integral
will instead be dominated by constructive interference from the slower varying terms, which
occur around the minimum of S/~. Minimizing the action S =

∫ tF
tI
L(q, q̇)dt yields the

familiar Euler-Lagrange equations:

d

dt

(
∂L

∂q̇

)
− ∂L

∂q
= 0,

which implies that the path integral will be dominated by the classical trajectories of the
particle.

Since only paths near the classical trajectory will contribute to the integral, we can
Taylor expand the action about the classical path qc. Recalling that the parameterized
function q(t) is the continuum of the path (xI , x1, . . . , xN−1, xF ), we can rewrite q(t) as a
perturbation of the classical path qc(t) ≈ ~qc = {xI , xc(tI+δt), . . . , xc(tI+(N−1)δt), xF} by an
amount δq(t) ≈ ~ε = {0, ε1, . . . , εN−1, 0}:

q(t) = qc(t) + δq(t).

By making a change of variables xj → xc(tj) + εj and dxj → dεj, the path integral (2.8)
becomes

lim
N→∞

( −im
2π~δt

)N
2

(
N−1∏
j=1

∫
dεj e

iS[qc(t)+δq(t)]/~

)
. (2.9)
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The action can now be power series expanded about qc(t) for small deviations δq(t) about
the classical path. Since δq(t) is actually a function of multiple variables (ε1, . . . , εN−1), the
familiar power series needs to be generalized to

S(~qc + ~ε) =
∞∑
n=0

1

n!
(~ε · ∇)nS(~q)

∣∣∣∣
q=qc

≈ S(qc) +

(
N−1∑
j=1

∂S

∂xj
εj

)∣∣∣∣∣
q=qc

+
1

2

(
N−1∑
i=1

N−1∑
j=1

∂2S

∂xi∂xj
εiεj

)∣∣∣∣∣
qc

+O(ε3),

where the first order term in the power series should be zero since the expansion is about
the minimum of S. Using the discrete definition of the action from (2.6)

S = δt
N−1∑
j=0

m

2

(xj+1 − xj)2

δt2
− V (xj)

where the first order term of the power series can be calculated as

N−1∑
j=1

∂S

∂xj

∣∣∣∣∣
q=qc

=

(
δt

N−1∑
j=1

−m(xi+1 − 2xi + xi−1)

δt2
− ∂V (xj)

∂xj

)∣∣∣∣∣
q=qc

∼=
∫ tF

tI

(
−m ∂q

∂t2
− ∂V (q)

∂q

)
dt

∣∣∣∣
q=qc

= 0,

where the finite second derivative is replaced by a continuous second derivative as δt → 0.
The integrand is equal to the Euler-Lagrange equations, which is zero along the classical
path by definition. The total path integral (2.8) can then be approximated as

〈xF | eiH(tF−tI)/~ |xI〉 ≈

lim
N→∞

( −im
2π~δt

)N
2

eiS(qc)/~

N−1∏
j=1

∫
dεj exp

 i

2~

(
N−1∑
i=1

N−1∑
j=1

∂2S

∂xi∂xj
εiεj

)∣∣∣∣∣
qc

+O(ε3)

 ,

(2.10)

where terms of O(ε3) are dropped. In the case of a quadratic potential where ∂3S/∂x3 = 0,
then these higher order terms are identically zero and (2.10) is therefore exact. To compute
the second order term for this approximation, first construct the matrix

Aij =
∂2S

∂xi∂xj

∣∣∣∣
q=qc

.
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Since A is real and symmetric, the eigenvectors-eigenvalues pairs [~vn, λn] for A (of which
there are N − 1) may be found by solving the eigenvalue problem,

A~vn = λn~vn, (2.11)

where the eigenvectors are chosen such that they are orthogonal and normalized:

~v Tm~vn = δmn. (2.12)

Since the eigenvectors ~vn make up a complete basis, the perturbation ~ε can be written as a
superposition of the basis αn which results from diagonalizing A,2

εj =
∑
n

αnv
j
n, (2.13)

where vjn is the jth component of the nth eigenvector. This change of basis allows the
expansion of the double sum in (2.10),

∑
i,j

εi
∂2S

∂xi∂xj
εj →

∑
i,j

∑
n,m

αnv
i
nAijαmvjm

=
∑
n,m

αnαm~v
T
n A~vm

=
∑
n,m

αnαm (λmδmn)

=
∑
n

α2
nλn,

where we have made use of the identities (2.11) and (2.12). The differential elements dεj can
also be written in the basis of αn by doing a multi-variable coordinate transform

N−1∏
j=1

∫
dεj = |det(V)|

N−1∏
n=1

∫
dαn,

where V is the matrix of all eigenvectors ~vn. Since all the eigenvectors are normalized and
orthogonal from (2.12), |det(V)| = 1. Each integral dαn in (2.10) can then be sequentially
performed independently from the other variables dαm using Gaussian integrals to give

N−1∏
n=1

∫
dαn exp

[
i

2~

N−1∑
m=1

λmα
2
m

]
=

N−1∏
n=1

(
2πi~
λn

) 1
2

,

2The set of eigenvectors ~vn diagonalize A = VT ΛV. Therefore Vjn = vjn maps the usual position basis
~ε = (ε1, ε2, . . . , εN−1) into a new basis ~α = (α1, α2, . . . , αN−1) = V~ε in which there is no coupling between
basis variables through A. This mapping can be inverted to instead write εj in terms of αn.
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resulting in the complete path integral:

〈xF | eiH(tF−tI)/~ |xI〉 ≈ lim
N→∞

( −im
2π~δt

)N
2

eiS(qc)/~
N−1∏
n=1

(
2πi~
λn

) 1
2

= lim
N→∞

√
1

2πi~

(m
δt

)N
2

(∏
n

λn

)− 1
2

eiS(qc)/~

= lim
N→∞

√
1

2πi~

(m
δt

)N
2 1√

det(A)
eiS(qc)/~.

(2.14)

The only remaining step is to calculate that value of det(A) if desired. One might be
concerned about the behavior of (2.14) as δt→ 0, but it turns out that the path integral is
well behaved for particular choices of the Lagrangian.3 In the case of a quadratic potential,
A(qc)ij = ∂2S/∂qi∂qj|q=qc is independent of the particular choice of classical path qc(t)
and, therefore, det(A) is just a normalization constant [35]. As a caveat, the normalization
“constant” does depend on the time (tF − tI) a trajectory takes [36], but as long as two
paths are compared at the same time, this normalization cancels.

2.1.1 Interference of Paths

Consider an interferometer in which a particle initially in the state |xI , p1〉 is coherently split
into two different states |xI , p1〉 and |xI , p2〉 with momentums pi. If these states follow the
two classical trajectories [qc1 , qc2 ] such that they both end up at xF after a time T , then a
final beam splitter can recombine the states to give the probability amplitude of finding the
particle in |xF , p′1〉 as

|ΨF 〉 ≡
1

2
|xF , p′1〉

(
〈xF , p′1| eiHT/~ |xI , p1〉

∣∣
qc1

+ 〈xF , p′2| eiHT/~ |xI , p2〉
∣∣
qc2

)
=

1

2
|xF , p′1〉

(
eiS(qc1 )/~ + eiS(qc2 )/~)

and, therefore,

|〈ΨF | ΨF 〉|2 ∝
1

2
+

1

4

(
ei[S(qc1 )−S(qc2 )]/~ + e−i[S(qc1 )−S(qc2 )]/~)

= cos2

(
S(qc1)− S(qc2)

2~

)
= cos2

(
φ1 − φ2

2

)
.

3In the special case that the Lagrangian L = mq̇2/2 −mgq + mγq2/2, the normalization factor turns
out to be det(A) = (m/δt)N · (tF − tI)/m · sinh(

√
γ(tF − tI))/

√
γ. In the limit of γ → 0 the normalization

becomes that of a free particle and
√
γ → iω for a harmonic oscillator.
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Thus, the resulting interference is equivalent to the particle acquiring a free evolution phase

φj =
1

~
S(qcj) (2.15)

along the trajectory qcj . Corrections to this phase are potentially required if the Lagrangian is
not quadratic, but we will not concern ourselves with those as quadratic potentials are enough
to approximately describe gravity and gravity-gradients near Earth’s surface. Therefore the
phase of the evolution operator in (2.1) is simply

Û |ψ〉
∣∣∣
qc
∝ eiS(qc)/~ |ψ〉 .

2.1.2 Separation Phase

While the derivation in the previous section assumes that the two wave-packets end up with
the same position and momentum when they interfere, this may not always be the case due
to perturbations in the potential and atom-light interactions. If the two wave-packets are
separated by an amount δx at the moment of the last beam splitter, then there will be an
addition phase shift

|ΨF 〉 =
1

2
|xF , p′1〉

(
eiS(qc1 )/~ + eip̄ δx/~eiS(qc2 )/~)

due to the displaced overlap of the two wave packets, where p̄ is the average momentum of
the two interfering states at the moment of the last beam splitter [37,38]. This extra phase
shift δφ = p̄ δx/~ will end up contributing to the gravity gradient phase in Section 5.3 and
the wave-vector systematic in Section 6.7.

2.2 Atom-Laser Interaction Phase

The beam splitters in an atom interferometer typically rely of the absorption and emission
of photons of well defined momentum to coherently separate the atomic wave-packets. This
atom-photon interaction will apply a phase shift to the atoms and therefore must be under-
stood. Although the laser fields in the experiment are macroscopic in nature, the derivation
presented here uses electromagnetic field operators to more closely follow the photon inter-
action picture.

The Hamiltonian that describes the interactions of a system with electromagnetic fields
is given by

Ĥ =
1

2m

(
p̂− qeÂ(~r, t)

)2

+ qeV (~r)

=
p̂2

2m
− qe

2m

(
p̂ · Â(~r, t) + Â(~r, t) · p̂

)
+

q2
e

2m

∣∣∣Â(~r, t)
∣∣∣2 + qeV (~r),



CHAPTER 2. THEORY 16

where V (~r) is the electric potential and Â(~r, t) is the magnetic vector potential. If we choose
to work in the Coulomb gauge where ∇ · Â(~r, t) = 0, then the commutation relation

[p̂, Â]ψ = −i~∇ · (Âψ) + i~Â · (∇ψ)

= −i~ψ�����:
0

(∇ · Â)− i~Â · (∇ψ) + i~Â · (∇ψ) = 0

and therefore p̂ · Â = Â · p̂. In the case of an atom where the free electrons are bound to a
heavy nucleus, the electron wave-function is bound to a length scale of the Bohr radius a0,
with a momentum of order ~/a0. The relative size of the q2

e |Â|2 and qeÂ · p̂ terms are then
∼ qeE0a0/~ω, where E0 is the electric field strength of the laser. For typical conditions, the
Â2 term is negligible and can be dropped4 resulting in the simplified Hamiltonian

Ĥ ' p̂2

2m
− qe
m
Â(~r, t) · p̂+ qeV (~r). (2.16)

Without loss of generality, consider a monochromatic transverse electromagnetic wave
with linear polarization along the x-axis. The quantized field operator in the Coulomb
gauge can be expressed as

Â(z, t) =
E0

ω

(
âeik(z′−z)−iωt + â†e−ik(z′−z)+iωt

)
x̂,

where â† and â are creation and annihilation operators for a photon with wave-vector k and
E0 ≡

√
~ω/2ε0V is a normalization factor. Additionally, since the relative phase of Â will

turn out to be important, the system’s center of mass coordinate z is chosen relative to a
reference coordinate z′. By applying the gauge transformation

Â′(z, t) = Â(z, t)−∇
(
~r · Â(0, t)

)
= Â(z, t)− Â(0, t)

and power series expanding the field operator Â(z, t) about z = z′, the field becomes

Â′(z, t) =
E0

ω

[
âeikz

′−iωt (1− ikz + . . .) + h.c.
]
x̂− E0

ω

[
âeikz

′−iωt + h.c.
]
x̂

≈ −ikzE0

ω

[
âeikz

′−iωt − â†e−ikz′+iωt
]
x̂.

The new Â · p̂→ Â′ · p̂ term in (2.16) is of order kz ∼ a0/λ and can be ignored for visible/UV
wavelengths (i.e. the so-called electric-dipole approximation). Since we applied a gauge
transformation on the vector potential, we must also transform the scalar potential

4For laser frequencies in the visible, the Â2 term is no longer negligible at laser intensities I = cε0|E0|2/2
of order 1 GW/cm2.
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V ′(~r) = V (~r) + ~r · ∂Â(0, t)

∂t

= V (~r)− ixE0

[
âeikz

′−iωt − â†e−ikz′+iωt
]
,

where V (~r) is the usual Coulomb potential of the nucleus and the second term is the dipole-
electric field interaction term. It should be noted that performing the gauge transformation
Â′ = Â +∇Λ is equivalent to applying the unitary transformation ψ′(~r, t) = eiqeΛ/~ψ(~r, t),
which for Λ = −~r · Â(0, t) is just a translation in momentum space [39]. The transformed
Hamiltonian (2.16) is then

Ĥ ≈ p̂2

2m
+ qeV (~r) −iqexE0

[
aeikz

′−iωt − a†e−ikz′+iωt
]

= Ĥ0 −iqexE0

[
âeikz

′−iωt − â†e−ikz′+iωt
]
, (2.17)

where Ĥ0 is the usual Hamiltonian for an atom in the absence of external electromagnetic
fields. The relative strength of the dipole interaction term to the atomic Hamiltonian H0

is approximately qeE0a0/~ω0, where ~ω0 is the characteristic binding energy of an atom,
allowing the interaction term to be treated as a perturbation Ĥ1.

One term that has been neglected in (2.17) is the energy of the bare electromagnetic
field, which can be written as

ĤEM =
ε0
2

∫ (
|E|2 + c2|B|2

)
dV

=
ε0
2

∫ ∣∣∣∣∣∂Â∂t
∣∣∣∣∣
2

+ c2
∣∣∣∇× Â∣∣∣2

 dV = ~ω
(
â†â+

1

2

)
.

This Hamiltonian has the same form as a simple harmonic oscillator, with number eigenstates
|n〉 such that â |n〉 =

√
n |n− 1〉 and â† |n〉 =

√
n+ 1 |n+ 1〉. Therefore, the expectation

value for the energy of the electromagnetic field is 〈n| ĤEM |n〉 = ~ω(n+1/2), approximately
the energy of n photons. The relative energy scale of ĤEM and the atom-field interac-
tion Hamiltonian Ĥ1 is qeE0a0/~ω � 1, which means that Ĥ1 can also be treated as a
perturbation to ĤEM. This allows the use of number eigenstates |n〉 as the basis for the
electromagnetic field when calculating the interaction term.

For a standard laser that follows Poisson statistics (shot-noise limited), the laser wave-
function can be described by a coherent state |α〉,

|α〉 = e
1
2
α2
∞∑
n=0

αn√
n!
|n〉 ,
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where α2 = n̄ is the mean number of photons in the field. A coherent state has properties
such that â |α〉 = α |α〉 and 〈α| â† = (â |α〉)† = 〈α|α∗, with an energy expectation value
〈α| ĤEM |α〉 = ~ω(α2 + 1/2).

Consider an atom in the ground state ψg, interacting with a laser field with n̄ photons.
The combined wave-function of the atom-laser system is

Ψg(~r, t) = |α〉ψg(~r, t).
The coupling of the ground state Ψg to the excited atomic state, Ψe = |α〉ψe(~r, t), is equal
to

〈Ψe| Ĥ1 |Ψg〉 = −iqeE0

∫
dV ψ∗e(~r, t) 〈α|x

[
âeikz

′−iωt − â†e−ikz′+iωt
]
|α〉ψg(~r, t). (2.18)

Since z′ is a constant referencing the atom’s center of mass to some external coordinate
system, we can move the photon interaction term outside of the integral and evaluate it
separately as

〈α| âeikz′−iωt − â†e−ikz′+iωt |α〉 = αeikz
′−iωt 〈α|α〉 − α∗e−ikz′+iωt 〈α|α〉

= α
(
eikz

′−iωt − e−ikz′+iωt
)
.

(2.19)

For the integral in (2.18), the atomic wave-functions consist of two parts: the spatial part
ψ(~r), which comes from solving the time-independent Schrödinger equation Ĥ0ψ = Eψ and
an energy phase term eiEt/~, which is a result of time-dependent part of the Schrödinger
equation i~∂tψ = Eψ. Therefore the total atom wave-function is

ψj(~r, t) = e−iEjt/~ψj(~r)

and the integral

qe

∫
ψ∗e(~r, t)xψg(~r, t) = ei(Ee−Eg)t/~qe

∫
ψ∗e(~r)xψg(~r)dV

= ei(Ee−Eg)t/~ · dge,

where dge is the dipole transition matrix element to go from ψg to ψe (which depends on
the specifics of the two atomic states and the polarization of the electro-magnetic field). All
together (2.18) simplifies to

〈Ψe| Ĥ1 |Ψg〉 = −idgeE0α
(
eikz

′
e−i[ω−(Ee−Eg)/~]t − e−ikz′ei[ω+(Ee−Eg)/~]t

)
.

For laser frequencies ω close to the transition energy (Ee − Eg)/~, the second term will
oscillate very fast compared to the first term and therefore average out to zero. This is the



CHAPTER 2. THEORY 19

rotating wave approximation and makes physical sense as a photon should not be emitted
when an atom is excited due to conservation of energy. A similar calculation can be done for
transitioning from the excited state to the ground state where a photon is emitted instead.
All together, the two expectation values are:

〈Ψe| Ĥ1 |Ψg〉 = −idgeαE0 · eikz
′−iωtei(Ee−Eg)t/~

〈Ψg| Ĥ1 |Ψe〉 = id∗geαE0 · e−ikz
′+iωte−i(Ee−Eg)t/~,

(2.20)

where |E0| = 2αE0 is the effective electric field. These expectation values imply that when-
ever a photon is absorbed, a phase eikz

′−iωt is imparted on the atom wave-function, and when
emitted, the opposite sign phase is transferred. If we drive the system with two laser fields
k1 and k2 such that nk1 photons are absorbed and nk2 photons are emitted, then it follows
that the phase transferred to the atoms due to the laser phase is

ϕlaser = arg
[
〈Ψe| Ĥ1(k1) |Ψg〉n 〈Ψg| Ĥ1(k2, φ0) |Ψe〉n

]
= arg

[
ein(k1z′−ω1t)ein(Ee−Eg)t/~e−in(k2z′−ω2t+φ0)e−in(Ee−Eg)t/~

]
= n(k1z

′ − ω1t)− n(k2z
′ − ω2t+ φ0),

(2.21)

where φ0 is a phase offset.5

2.2.1 Classical Approximation

As a side note, the photon field interaction (2.19) can be re-written as

iE0 〈α| âeikz
′−iωt − â†e−ikz′+iωt |α〉 = iαE0

(
eikz

′−iωt − e−ikz′+iωt
)

= 2αE0 sin(kz′ − ωt)
= |E0| sin(kz′ − ωt),

which is just a classical electromagnetic wave. In general, the dipole interaction part of
(2.17) for a classical electromagnetic field is simply

Ĥ1 = −~dge · ~E(~r ′, t)(|Ψe〉 〈Ψg|+ h.c.).

2.3 Atom Interferometer Phase

With the tools to calculate the free evolution phase of the atom’s trajectory and the atom-
laser phase for the beam splitters, it is then straightforward to calculate the total phase for

5A real multi-photon process is more complicated since the excited state is only virtually populated, but
the phase shift is the same.
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Figure 2.1: A sample space-time diagram for an interferometer (in this case a Ramsey-Bordé
interferometer). The two paths a (blue) and b (red) are recombined into one of two outputs
Ψu and Ψ`. Vertical dashed lines indicate the ith beam splitter.

a complete interferometer. Consider an interferometer in a single spatial dimension such as
the one in Fig. 2.1 consisting of N beam splitters (which impart a momentum 2n~k onto the
atom), followed by periods of free evolution. The total phase of an atom following either of
the four interferometer paths (traveling along trajectory a or b and leaving along the upper
or lower beam splitter port) is

Φa/b,u/` =
N∑
i

(
1

~
S[zi, pi, Ti] + φγ[zi]

) ∣∣∣∣
a/b,u/`

, (2.22)

where φγ[zi] is the laser phase acquired during the ith beam splitter for an atom located at
position zi and S[zi, pi, Ti] is the action of a particle starting at zi with momentum pi, which
travels along the classical trajectory for a time Ti. Recall that the action is calculated as the
integral of the Lagrangian

S[z0, p0, T ] =

∫ T

0

L[z(t), p(t)]dt (2.23)

such that z(t) and p(t) follow the classical trajectories obtained by solving the Euler-Lagrange
equation

m
d

dt

(
∂L

∂p

)
=
∂L

∂z

with initial conditions z(0) = z0 and p(0) = p0 and a Lagrangian given by L = p2/2m+V (z).
Consider the potential created by the gravitational field of Earth, V (r) = −GMm/r and

restrict the motion of atoms to the z−axis along the direction of gravity (other potentials
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such as those from electromagnetic fields are negligible in this experiment and can be treated
as perturbations). Near the Earth’s surface, the gravitational potential can be power series
expanded about the Earth’s radius Re such that

V (Re + z) ≈ mgz − 1

2
mγz2 +O

(
z3

R3
e

)
,

where g = GMe/R
2
e is the usual gravitational acceleration and γ = 2GMe/R

3
e is the gravity

gradient. For simplicity, terms higher order than (z/Re)
2 are dropped as they are too small

to have any impact on laboratory distance scales. The simplified Lagrangian

L =
1

2m
p2 −mgz +

1

2
mγz2 (2.24)

can then be used to exactly solve the Euler-Lagrangian equations for the position z(t). For
a particle starting at z0 and p0 = mv0 at t = 0, the particle moves along the trajectory

z(t, x0, v0) =
g

γ
+

(
x0 −

g

γ

)
cosh(t

√
γ) +

v0√
γ

sinh(t
√
γ)

≈
(
x0 + v0t−

gt2

2

)
+ γt2

(
x0

2
+
v0t

6
− g

24

)
,

where the approximation assumes that the interferometer timescale T is much smaller than
1/
√
γ.6 With the solutions for z(t), the free evolution phase (2.15) for each segment can

then be explicitly integrated

φfree =
1

~

∫ T

0

L[x(t), v(t)] dt

=
1

~

∫ T

0

[
m

2

(
∂z(t)

∂t

)2

−mgz(t) +
m

2
γz(t)2

]
dt

=
m

~

(
1

3
g2T 3 − gv0T

2 +
1

2
v2

0T − gx0T

+
γ

30

[
2g2T 5 − 10gv0T

4 + 10v2
0T

3 − 20gx0T
3 + 15x0T

])
+O(γ2).

To compute the total free evolution phase of the entire path, the final position zi(Ti) is used
as the initial position of the next segment zi+1(0) and the final velocity vi(Ti) is modified to
take into account the momentum transfer of the beam splitter.

Similarly, for lasers with frequencies {ω1, ω2}, the laser phase for each beam splitter (2.21)
can be evaluated at the atom’s position zi(0) = zi as

6The gravity gradient on Earth’s surface is approximately 3× 10−6 s−2.
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φγ[zi] = ±
[
n (k1zi − ω1ti)− n (−k2zi − ω2ti + φ0)

]
,

where ti is the absolute time of the beam splitter

ti = t0 +
i−1∑
j=1

Tj

and the sign difference between k1 and k2 comes from the fact that the lasers are counter-
propagating. The overall sign of the laser phase is positive when absorbing photons from
the laser field ω1 and is negative when emitting into the field.

After computing the total phase (2.22) for each of the two trajectories for a given output
port, then the amplitude of the interference is given by the phase difference

|〈Ψu|Ψu〉|2 = cos2

(
Φa,u − Φb,u

2

)
|〈Ψ`|Ψ`〉|2 = sin2

(
Φa,` − Φb,`

2

)
.

2.3.1 Symbolic Computation of Phase

The actual process of turning the crank and calculating these phases for different types of in-
terferometers is tedious. Additionally, if any perturbations are needed then the computation
can get very messy without intuition as to which assumptions can be made. Instead, this
section will briefly discuss how these calculations can be done using symbolic computation
software such as Mathematica, with a complete code listing in Appendix A. While symbolic
computation of the interferometer phase is far from a new idea, the advantage of this code
is that it provides a very robust framework to handle arbitrary interferometer geometries
and perturbations without significant user involvement. The code is used to generate phase
corrections for gravity gradients (Section 5.3) and wave-vector perturbations (Sections 6.1.4
and 6.7), along with the main interferometer phases.

First, start with an initial state vector [z0, v0, A, n0] that has an initial position z0, velocity
v0, and probability amplitude A = 1. The variable n0 is used to keep track of the diffraction
momentum state of the atom. For each beam splitter that transfers atoms from n1 → n2, the
state vector is checked to see if any state is resonant with the pulse (n0 = n1 or n0 = n2). If
a state is resonant, its amplitude is changed from A→ A cos(θ/2) and another state is added
to the vector with amplitude i sin(θ/2)Aeiφγ [z] to represent the diffracted atom state. The
new vector has the same position z0, a velocity modified by the transferred photon momenta
v0 ± 2(n2 − n1)~k, and an updated momentum index (n1 or n2).

For the free evolution steps, simply go through each state and calculate the free evolution
phase φfree along the path (given the state’s position and velocity) and change the state’s
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amplitude from A → Aeiφfree . The state’s position and velocity are then updated to reflect
the final state of the atom after a free-fall time T .

The somewhat subtle step occurs when checking to see whether the states interfere with
each other, as perturbations can cause the interferometer to not completely close. The
easiest method is to check if two states have the same position and momentum with the
perturbation set to zero. If the two are overlapped, then combine the states together and add
their probability amplitudes as A1 +A2e

imv̄ δz/~, where the extra phase term is the separation
phase, the quantity δz is the position difference of the two states with perturbations, and v̄
is the average velocity of the states before the beam splitter. All that is left to do is calculate
the absolute square of the probability amplitude to get the interference (and therefore the
phase difference).

Once the correct signs and factors are figured out, calculations for new interferometer
configurations can be done with speed and reliability. In addition, perturbations are easy
to incorporate by modifying the potentials, wave-vectors, etc. The only component of the
calculation that is not explicitly done in the code in Appendix A is the time-dependent
laser phase due to the laser frequency ω. While this could be included, it is easy enough to
calculate it by hand (and is done in Section 2.3.3 for a Ramsey-Bordé interferometer).

2.3.2 Ramsey-Bordé

The primary interferometer configuration used in the experiment is the Ramsey-Bordé in-
terferometer [40] shown in Fig. 2.2. An atom initially in momentum state |0〉 is split with a
Bragg beam splitter transferring 2n~k momentum with 50% probability to the atom wave-
function (discussed in more detail in Section 2.5). After free-falling for a time T , the states
are split with another π/2-pulse to produce four total trajectories. The resulting |0〉 states
(which will be referred to as the lower interferometer) evolve for a time T ′ and are followed
by a beam splitter in the other direction, kicking the atoms down by −2n~k. The |0〉 and
|−n〉 states then evolve for another period T before being recombined with a fourth and final
beam splitter to interfere the states.

Intuitively, one would expect the phase of interferometer to depend on gravity since the
two trajectories spend time at different gravitational potentials. Similarly, the upper trajec-
tory has a non-zero relative velocity compared to the lower initial trajectory and will therefore
contribute a kinetic energy phase. Since we are only interested in the recoil frequency (and
therefore the kinetic energy), a separate conjugate interferometer is used to cancel gravity
using the |n〉 atoms produced by the second beam splitter. The |n〉 state atoms are deflected
up with the last two pulses instead of down to produce an upside-down version of the lower
interferometer. Since the gravitation potential mgz is odd in the z coordinate and the kinetic
energy mż2/2 is even, the relative sign of the two phases reverses. By subtracting the upper
interferometer phase from the lower interferometer phase, the acceleration contribution is
canceled.
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Figure 2.2: Space-time diagram for a conjugate Ramsey-Bordé interferometer when gravity
is along the atom trajectory. The relative inertial frame momentum 2n~k of each state
is labeled as |n〉 and the four π/2 Bragg beam splitters are show as vertical dashed lines
(the extra atom trajectories from the third and fourth beam splitters are not shown). The
subscripts the final states correspond to the upper (u) or lower (`) path followed by the
upper or lower output port.

2.3.3 Simultaneous Conjugate Ramsey-Bordé

In theory, the gravitational potential could instead be measured using a Mach-Zehnder in-
terferometer and then subtracted from the Ramsey-Bordé phase. However, since the atoms
are in free-fall and are measured with respect to the lab frame, any relative phase fluctua-
tions between the two lasers due to technical noise or vibrations will cause phase shifts that
look like a fluctuating gravitational acceleration (due to the equivalence principle). Since
these vibrations can cause phase shifts of many radians, extremely well-engineered vibration
isolation would be required to have a stable measurement of gravity [41] for both the Mach-
Zehnder and Ramsey-Bordé interferometers. For this reason it is also difficult to perform
both upper and lower variations of the conjugate Ramsey-Bordé interferometers as separate
sequences [42] as the requirements on vibrations are similar.

Instead, both conjugate interferometers are done simultaneously so that phase shifts due
to vibrations and gravity are exactly the same. This requires that the last two beam splitters
drive both Bragg diffraction orders simultaneously, which can be accomplished by driving
the atoms with three laser frequencies (ω1 and ω2±ωm) instead of two. The vibration phases
are then correlated, which allows for extraction of the recoil phase without ever measuring
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the gravitational phase.
Since all output trajectories of the interferometer have the same internal state, the states

must be sufficiently spatially separated so that the amplitudes can be measured indepen-
dently of each other. For Ramsey-Bordé interferometers that use Raman transitions to apply
2~k momentum splittings, resolving the individual clouds becomes challenging as the sepa-
ration velocity is usually comparable to the cloud expansion rate. Since Raman transitions
transfer the atom between one of two available ground states (for alkali atoms), the two
conjugate interferometers are almost required to be done as separate measurements so that
state selective detection can be used. For interferometers using Bragg diffraction, the mo-
mentum transfer can be much higher so that the atom states separate completely, allowing
them to be measured without any state labeling.

Phase

Inputting the conjugate Ramsey Bordé pulse and evolution sequence into the symbolic phase
computation results in a net phase of

∆Φ`/u = ±8n2ωrT + nkeffgT (T + T ′) +O (γ, δk) , (2.25)

where the effective wave-vector keff = (ω1 + ω2)/c, the recoil frequency ωr = ~k2
eff/8m, and

the plus/minus corresponds to the lower and upper interferometers respectively (the same
result is obtained by hand in [43]). The additional terms due to gravity gradients and the
difference in wave-vectors δk due to ωm are described in greater detail in Sections 5.3 and 6.7.
Also not included are the time-dependent frequency phases which can easily be calculated by
considering the phase accumulation of the laser fields {ω1, ω2} and the difference frequency
2ωm. For the lower interferometer: atoms that follow the upper trajectory and exit the upper
output port acquire a time-dependent laser phase of

φω`uu = φ1(t0)− φ1(t0 + T )− φ2(t0 + T + T ′) + φ2(t0 + 2T + T ′),

where the phases φ1(t) = n(ω1−ω2)t and φ2(t) = n(ω1− (ω2 +ωm))t. Atoms that follow the
lower trajectory and exit the upper output port receive zero momentum kicks and therefore
acquire zero laser phase (φω``u = 0). The difference in the time-dependent laser phase is
therefore

φ`uu − φ``u = −nωmT,
which only depends on the frequency ωm. Doing the same steps for the upper interferom-
eter yields a phase difference φuuu − φu`u = nωmT and, therefore, the total phase for both
interferometers is

∆Φ`/u = ±8n2ωrT + nkeffgT (T + T ′1 + T ′2)∓ nωmT.
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The differential phase is then

∆Φ` −∆Φu = 16n2ωrT − 2nωmT,

which is independent of both gravity/accelerations and the pulse separation time T ′. Ad-
ditionally, since the frequency shift required to change the Bragg diffraction order from +n
to −n is equal to 8nωr, setting the frequency modulation frequency ωm = 8nωr results in a
null differential phase measurement ∆Φ`−∆Φu = 0. This is important because it enables a
direct measurement of ωr by adjusting a frequency synthesizer (ωm) until the phase is zero.

Ramping Laser Phase: If the laser frequency is ramped common mode to both interfer-
ometers (for example to compensate for gravity), then there will be an additional phase shift
proportional to ΛrampT (T +T ′), where Λramp is the frequency ramp rate. This term will have
the same sign as gravity and will therefore cancel when measuring the differential phase.

2.3.4 With Bloch Oscillations

For a fixed phase uncertainty δφ (limited ideally by measurement shot-noise), the uncertainty
δωm in the modulation frequency ωm = 8nωr can be improved by increasing the momentum
transfer n or the evolution time T since the uncertainty scales as

δφ = 16n2ωrT − 2n(ωm + δωm)T

= −2nδωmT.

Additionally, the recoil frequency uncertainty scales as δωr = ωm/8n and therefore the overall
sensitivity to the recoil frequency is

δωr =
δφ

16n2T
.

It is therefore very desirable to increase the momentum splitting n due to the quadratic
scaling, as long as the phase sensitivity is not degraded by a comparable amount (which can
be the case for large n due to decoherence).

Alternatively, if both paths (for a given interferometer) are accelerated by an additional
±2N~k during the middle T ′ pulse separation, as shown in Fig. 2.3, then the modulation
frequency required to address the atoms for the third and fourth beam splitters will need
to be increased to 8(n + N)ωr. Even though the differential momentum between the two
paths of a given interferometer has not changed, the frequency uncertainty δωm is the same
despite the increase of the absolute value of ωm. Therefore by changing the common mode
velocity of the two paths by 2N~k, one can increase the measurement sensitivity to ωr by
(n+N)/n.

One way to accomplish this additional momentum transfer is to load both arms of the
interferometer into the same optical lattice (which is possible since both paths have the same
velocity during T ′) and accelerate the atoms using Bloch oscillations. The atoms bound in
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Figure 2.3: Space-time diagram for a conjugate Ramsey-Bordé interferometer with Bloch
oscillations (region shaded in red). The relative momentum states reflect the addition mo-
menta transferred by the Bloch oscillations, which accelerates the lower interferometer down
to −2N~k and the upper interferometer up to +2N~k.

the lattice will undergo oscillations of their momentum as the lattice potential is accelerated,
adiabatically changing the atom’s momentum in quantized steps of 2~k. This method has
been used in a Raman-based Ramsey-Bordé interferometer to transfer an additional 1600~k
photon momenta to the common mode velocity as was done in [42]. For a simultaneous
Ramsey-Bordé interferometer configuration, the Bloch oscillations must accelerate the upper
and lower interferometers at the same time and is described Section 4.5. Since the dynamics
of the Bloch oscillations are common mode to both arms of the interferometer, the details
are ignored and the process is treated as a single beam splitter which takes the states from
|n〉 → |n+N〉 and |0〉 → |−N〉. For the sake of computation, the oscillations are treated
as starting at a time T ′1 after the second beam splitter with a neglectable duration (tbloch �
T ′1 + T ′2).

In total, combining Bloch oscillations with the simultaneous conjugate Ramsey-Bordé
interferometer [44] results in a differential phase of

∆Φ` −∆Φu = 16n(n+N)ωrT − 2nωmT +O(γ, δk), (2.26)

and a common mode phase equal to

∆Φ` + ∆Φu = 2nkeffgT (T + T ′1 + T ′2) +O(γ, δk).
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2.4 Ellipse Fitting

While the previous section was focused on calculating the theoretical phase shifts in an atom
interferometer, the experimental apparatus is in practice used to solve the inverse problem
of measuring the phase shifts given an interference pattern. For an initial atom amplitude
of A0, the upper output ports of each Ramsey-Bordé interferometer shown in Fig. 2.3 have
theoretical amplitudes of

|Ψ`u|2 =
A0

8
cos2

(
1

2
(φc + φd)

)
|Ψuu|2 =

A0

8
cos2

(
1

2
(φc − φd)

)
,

where the factor of 1/8 comes from the four π/2 beam splitters, the last of which interferes
two trajectories. The differential phase φd and common mode phase φc were previously
calculated as

φd = 8n(n+N)ωrT − nωmT
φc = nkeffgT (T + T ′1 + T ′2)

(2.27)

for a Ramsey-Bordé interferometer with Bloch oscillations. If φc were constant, then one
could scan φd by shifting the modulation frequency ωm by a small amount δωm to trace
out two oscillating fringes. By fitting the fringes to a cosine squared function, the phase at
δωm = 0 could be extracted for the two outputs, which would allow for explicit calculation
of the phase difference between Ψ`u and Ψuu. This is not possible in practice because φc
fluctuates by more than π radians per shot due to vibrations, washing out the fringes.
However, because the common mode phase φc is correlated between the two output ports,
the two amplitudes trace out an ellipse when the lower interferometer output is plotted
against the upper interferometer, as shown in Fig. 2.4. In order to extract the differential
phase φd, one must then fit an ellipse to the resulting data points and calculate the phase
from the fitted ellipse parameters.7

In a real world interferometer, the four output ports might have non-ideal interference
contrast and can therefore be generalized to

|Ψ``|2 = A` sin

(
1

2
(φc + φd)

)2

+ b1, |Ψ`u|2 = A` cos

(
1

2
(φc + φd)

)2

+ b2

|Ψu`|2 = Au sin

(
1

2
(φc − φd)

)2

+ b3, |Ψuu|2 = Au cos

(
1

2
(φc − φd)

)2

+ b4,

7Since the fitting works best when the points are evenly distributed around the ellipse, it is actually
beneficial to have a largely varying common mode phase φc. For this reason, no vibration isolation is used
in the experiment.



CHAPTER 2. THEORY 29

Trial

0

0.2

0.4

0.6

0.8

1

Ψ
u
u

0 0.2 0.4 0.6 0.8 1

Ψℓu

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Figure 2.4: Two simulated Ramsey-Bordé interferometer outputs plotted against each other.
Despite the seemingly random fluctuations from shot to shot caused by vibrations, the
amplitudes are still correlated and form an ellipse.

where {A`, Au} are the interference amplitudes and {b1, b2, b3, b4} are the amplitude offsets
due to backgrounds. Since the total atom number for each pair of outputs |Ψ``|2 + |Ψ`u|2 and
|Ψu`|2 + |Ψuu|2 can fluctuate and drift due to imperfections in the atom source, it is useful
to first normalize the signal

x =
|Ψ`u|2 − |Ψ``|2

|Ψ`u|2 + |Ψ``|2
, y =

|Ψuu|2 − |Ψu`|2

|Ψuu|2 + |Ψu`|2

such that

x = Ax cos(φc + φd) + bx

y = Ay cos(φc − φd) + by,
(2.28)

where Ax, Ay are the normalized fringe contrasts and bx, by are offsets. In order to fit data
of this form to an ellipse, we first need to rewrite {x, y} in the form of a generalized conic
section

a1x
2 + a2xy + a3y

2 + a4x+ a5y + a6 = 0 (2.29)

which describes an ellipse when a2
2− 4a1a3 < 0. To convert the equations for {x, y} into this

form, first subtract the offsets and normalize to obtain a set of rescaled points
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x′ = (x− bx)/cx = cosφc cosφd + sinφc sinφd

y′ = (y − by)/cy = cosφc cosφd − sinφc sinφd.
(2.30)

With these rescaled coordinates, it becomes apparent that the relation(
x′ − y′
2 sinφc

)2

+

(
x′ + y′

2 cosφc

)2

− 1 = 0

cancels the common mode phase φc and has the form of (2.29). Expanding this equation
using our definitions for x′ and y′ from (2.30) yields

1

c2
x

x2 − 2 cos 2φd
cxcy

xy +
1

c2
y

y2 +

(
2by cos 2φd

cxcy
− 2bx

c2
x

)
x+

(
2bx cos 2φd

cxcy
− 2by

c2
y

)
y

+

(
b2
x

c2
x

+
b2
y

c2
y

− 2bxby cos 2φd
cxcy

− 4 cos2 φd sin2 φd

)
= 0,

(2.31)

which can be matched up term for term with the coefficients ai from (2.29). A simple
substitution will then verify that

φd =
1

2
cos−1

( −a3

2
√
a1a2

)
.

By fitting an ellipse to the data and extracting the parameters a1, a2, and a3, the differential
phase and therefore the desired recoil frequency phase can be measured.

One might be tempted to assume that the amplitudes of the individual cosines in (2.28)
are simply

√
a1 and

√
a3 from Eq. (2.31). However, since (2.31) can be scaled by an arbitrary

constant, one cannot guarantee that the ellipse is normalized as such. Instead the cosine
amplitudes are given by the much more complicated formulas

c2
x =

4a3(a6(a2
2 − 4a1a3) + a3a

2
4 + a1a

2
5 − a2a4a5)

(a2
3 − 4a1a3)2

c2
y =

4a1(a6(a2
2 − 4a1a3) + a3a

2
4 + a1a

2
5 − a2a4a5)

(a2
3 − 4a1a3)2

,

which are used to compute the contrast of the interferometers.

2.4.1 Least Squares Ellipse Fitting

The normalized data points x and y measured by the experiment will in general tend to
have noise. This means the entire data set will not fall perfectly on an ellipse described by
(2.29) and instead the ellipse must be chosen as a best fit. There are several methods for
determining the best fit for an ellipse, such as minimizing the geometric distance of every



CHAPTER 2. THEORY 31

point to the ellipse [45, 46] or by using a probabilistic Bayesian estimation [47].8 While
these methods are powerful in their own right, a simpler least squares fitting is used for the
majority of data fitting. Since least squares methods are based in linear algebra, they can be
calculated extremely fast which makes it possible to rigorously check for systematic errors
due to fitting through simulation.9

The least squares fitting method used is based on the paper [49] and seeks to minimizes
the conic section equation a1x

2 + a2xy + a3y
2 + a4x+ a5y + a6 = aT~x for an ellipse where

a = [a1 a2 a3 a4 a5 a6]T ,

~xi = [x2
i xiyi y2

i xi yi 1]T ,

and {xi, yi} are the normalized data points (2.28) of the interferometer. If the data were
to form a perfect ellipse, then aTxi would be zero for every data point and therefore the
algebraic distance (aTxi)

2 can be treated as a metric to be minimized. The goal of the least
squares fit is then to find values for ai which minimize

ε =
n∑
i

(aTxi)
2

with the restriction that a describes an ellipse with a2
2− 4a1a3 < 0. For simplicity, assume a

is normalized such that a2
2−4a1a3 = −1, then the ellipse restriction can be written in matrix

form as aTCa = −1, where

C =


0 0 −2 0
0 1 0 0 · · ·
−2 0 0 0
0 0 0 0

...
. . .

 .

Similarly, the metric ε can be written as
∑n

i (aT~xi) = (aTDT )Da with

D = [~x1 ~x2 · · · ~xn]T .

Then using a Lagrange multiplier λ, the least squares minimization can be written as a
system of equations,

8There are methods for extracting the phase that do not rely on ellipse fitting, such as analyzing the
noise distribution [48], but the systematics phase shifts of these methods have not been thoroughly explored.

9This is not true for other fitting methods. For example, Bayesian estimation can take several seconds
to compute a single fit, which makes it difficult to run the millions of simulations needed to determine part
per billion systematics.
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DTDa− λCa = 0

aTCa = −1
(2.32)

with six eigenvector solutions a = ~uj and corresponding eigenvalues λj. To impose the
condition aTCa = −1 on the eigenvectors, multiply the first equation in (2.32) by aT and
rearrange to obtain

aTDTDa = λja
TCa.

Since the left-hand side aTDTDa =
∑n

i (aT~xi) is positive and aTCa is negative from our
ellipse constraint, then only negative eigenvalues are valid solutions. Therefore the only
unique ellipse solution10, a = ~uk, occurs when the corresponding eigenvalue λk < 0.

2.4.2 Ellipse Noise

As the least squares ellipse fitting method is the primary way to measure the phase of
the interferometer, it is important to understand the limitations and errors caused by the
distribution of real data. The interferometer phase for a Ramsey-Bordé interferometer (2.26)
with typical experimental parameters of n = 5, N = 25, and T = 80 ms is around 2.5× 106

radians, which means that for a 0.5 ppb measurement, the phase uncertainty must be less
than 1 mrad. Therefore any systematics caused by the ellipse fitting algorithm must be
understood at a level below 1 mrad, otherwise the fitting would contribute significantly to
the error budget of the measurement.

Consider a simple noise model where the two normalized interferometer outputs (2.28)
have an offset noise εx,y that has a Gaussian distribution with a variance σ2

x,y:

x = cx cos(φc + φd) + bx + εx

y = cy cos(φc − φd) + by + εy.

One of the first things to examine is the accuracy of the least squares ellipse fit in the presence
of this offset noise. An example of such an analysis is shown in Fig. 2.5, where ellipses with
different phases φd were simulated with offset noise equal to σx,y = 0.07. The measured
phase is most accurate near ±π/4 where the ellipse is a circle and least accurate around
{0,±π/2} where the ellipse forms a line (the deviation increases with noise). Therefore it is
best to operate the interferometer at a net phase of ±π/4 for optimal least squares fitting.

Modulation

Since the differential phase (2.27) is nominally null when the external modulation frequency
ωm matches the recoil frequency 8(n + N)ωr, an extra frequency shift δωr is required to

10This is proven in reference [49]. Note that in the reference, the constraint 4a1a3−a2
2 = 1 is used instead,

which leads to a positive eigenvalue solution.



CHAPTER 2. THEORY 33

-1.5 -1 -0.5 0 0.5 1 1.5

Phase [rad]

0

0.5

1

1.5

M
ea
su
re
d
P
h
as
e
[r
ad

]

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

Figure 2.5: Left: The phase measured by the least squares fitting as a function of differential
phase φd in the presence of offset noise σx,y = 0.07 using simulated data (note that the ellipse
fitting cannot determine the sign of the phase). Right: An example of a simulated ellipse fit
with a differential phase φd = π/6 and the same offset noise.

rotate the ellipse to π/4. For a given interferometer with Bragg order n and pulse separation
time T , the frequency shift is chosen such that

±π
4

= 8n(n+N)ωrT − n(ωm + δωm)T,

which for ωm = 8(n+N)ωr gives

±π
4

= −nδωmT

or δfm = δωm/2π = ±1/(8nT ). To determine the correct center frequency ωm and therefore
the recoil frequency, two ellipses are taken at +δωm and −δωm and the measured phases are
subtracted to give the phase error δφ = ϕ (+δωm) − ϕ (−δωm) from null. The modulation
frequency ωm can then be corrected to be on resonance by applying the shift ωm + δφ/2nT
to obtain a measurement of the recoil frequency

ωr =
1

8(n+N)

(
ωm +

ϕ (+δωm)− ϕ (−δωm)

2nT

)
.

An example of the fitting error in the differential phase as a function of the center phase
ϕ (+δωm) − ϕ (−δωm) using this ellipse modulation procedure is shown in Fig. 2.6. As is
apparent from the plots, a modulation of ±π/4 gives the lowest error, as does having the two
ellipses symmetric about zero phase. For Gaussian offset noise equal to σ = 0.03, the ellipse
must be kept within 200 mrad of symmetric to have a fitting error of less than 1 mrad.
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Figure 2.6: Left: A plot of the fitting error as a function of the ellipse center phase (difference
between the plus and minus modulation) for ellipses with σ = 0.03 offset noise. Several other
phase modulations are shown to emphasize the benefit of using ±π/4 radians. Right: A log
scale plot of the ±π/4 modulation error to better show the magnitude of the error.

Shot-Noise

Another noise model that could be considered similar to the Gaussian offset noise is the
shot-noise caused by quantum projection of the atom state during detection [50, 51]. For
an ensemble of N atoms with a probability pa to be in state a (Ψ`` for example), then the
likelihood of measuring Na atoms in that state is given by the binomial distribution

P(Na, N, pa) =
N

Na!(N −Na)!
pNaa (1− pa)N−Na

with a variance of

σ2 = Npa(1− pa).
For an interferometer where the probability of ending up in state a = Ψ`` is pa = sin2(φc +
φd)

2, the noise εa on the amplitude |Ψ``|2 is then given by the Gaussian variance

σ2 =
sin2(φc + φd) cos2(φc + φd)

N

which is anti-correlated with the noise on |Ψ`u|2. Similarly, the variance of the upper in-
terferometer port amplitudes can be calculated as σ2 = sin2(φc − φd) cos2(φc − φd)/N . A
simulated ellipse with the shot-noise of N = 500 atoms is shown in Fig. 2.7. Also plotted
is the per-shot ellipse fitting phase uncertainty as a function of the atom number N , which
matches to a 1/

√
N line for N > 10. This implies that when using ellipse fitting, a shot-noise

limited interferometer should obtain a phase resolution of 1/
√
N for a single trial and a per

ellipse resolution of (NatomNbin)−1/2, where Nbin is the number of points per ellipse.
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Figure 2.7: Left: The simulated per-shot phase uncertainty σφ for ellipses that are dominated
by shot-noise. Right: A simulated ellipse with N = 500 at an angle of φd = π/4.
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Figure 2.8: A plot of the sensitivity of the phase error (φmeas − φ) to the modulated center
phase φcenter, as a function of noise strengths. The lines show the sensitivity as a function of
offset noise σoffset (red) and atom number N quantum projection noise (blue).

To compare the two noise models, a curve similar to that of Fig. 2.6 is calculated for
both offset noise σoffset and atom shot-noise N , using the ±π/4 modulation scheme. The
slope of the resulting phase error versus center phase curve is computed for a variety of noise
strengths and plotted in Fig. 2.8. For both noise models, as the noise decreases so does the
restriction on the ellipse center phase.
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Figure 2.9: A plot of the per-shot standard deviation σφ for 10,000 simulated points that are
grouped into ellipses of bin size Nbin. The per-point standard deviation was calculated by
taking the standard deviation of the simulated ellipse’s phases and multiplying by

√
Nbin.

Below a bin size of 15 the standard deviation tends to blows up (not shown).

Binning

One last thing to consider is the choice of bin size for the ellipse fitting. Even though only
6 points are enough to produce ellipse solutions with least squares fitting, a bin size larger
than 15 gives much more accurate results as shown in Fig. 2.9. Since making the bin size
larger has only a small effect on reducing the per point standard deviation, a modest bin
size of 20-30 is typically used to reduce the impact of long timescale drifts.

2.5 Bragg Diffraction

In Section 2.2, a simplified calculation of the atom-light interaction was done to figure out
the phase acquired by the atoms during absorption and emission of photons in the beam
splitters due to the laser phase. This calculation was generalized to many types of beam
splitters and neglected to account for any phase shifts caused by the dynamics of the Bragg
beam splitters used in the experiment.

The Hamiltonian describing the interaction between an atomic two-level system and an
electromagnetic field, shown in Fig. 2.10, can be written as

Ĥ =
p̂2

2m
+ ~ω0 |e〉 〈e| −

(
~dge · ~E |e〉 〈g|+ h.c.

)
, (2.33)

where |g〉 is the ground state, ω0 is the transition frequency of the excited state |e〉, and
~dge · ~E |e〉 〈g| is the interaction matrix element between the atomic dipole moment and the

electric field as described in Section 2.3. Here, the momentum p in (2.33) is the center of
mass motion of the atom and not the relative motion of the electron-proton system as was
used in (2.16). If we consider the electric field of a plane wave with the form
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Figure 2.10: A two-level system with ground state |g〉 and excited state |e〉 with energy
ω0 = ∆ + ωL, driven with an electric field of frequency ωL.

~E = ~E0 cos(kz − ωLt)

=
1

2

(
eikz−iωLt + e−ikz+iωLt

)
,

then the interaction part of the Hamiltonian can then be written as

Ĥint = − ~dge · ~E |e〉 〈g|+ h.c.

= −~Ω

2

(
eikz−iωLt + e−ikz+iωLt

)
|e〉 〈g|+ h.c.,

where we define the Rabi frequency as Ω ≡ ~dge · ~E0/~. If the eigenvector is transformed by ap-
plying the unitary transformation U = eiω0t|e〉〈e|, then the interaction part of the Hamiltonian
is transformed as

Ĥ
′

int = ÛĤintÛ
† − i~Û ∂Û

†

∂t

= −~Ω

2

(
eikz−i(ωL−ω0)t + e−ikz+i(ωL+ω0)t

)
|e〉 〈g|+ h.c.

In the limit where the laser detuning ∆ ≡ ωL−ω0 is much smaller than the excited state
energy ω0, then the rotating wave approximation can be applied to neglect the fast rotating
ei(ωL+ω0)t terms (compared to the slowly rotating e−i(ωL−ω0)t terms). The inverse unitary
transformation U †H

′
intU brings the eigenvectors back into the non-rotating frame

Ĥ ≈ p̂2

2m
+ ~ω0 |e〉 〈e| −

(
~Ω

2
eikz−iωLt |e〉 〈g|+ h.c.

)
,
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which is exactly the same result found in (2.20), only starting from the classical electric field
instead of the quantized field. The rotating wave approximation can be generalized for a
superposition of plane waves such that for the generalized electric field

~E =
∑
j

~Ej cos(kjz − (ωL − δj)t),

the Hamiltonian after the rotating wave approximation can be written as

Ĥ ≈ p̂2

2m
+ ~ω0 |e〉 〈e| − ~

(∑
j

Ωj

2
eikjz−i(ωL−δj)t |e〉 〈g|+ h.c.

)
assuming |δj| � ωL and where Ωj ≡ ~dge · ~Ej/~. As a final step, the eigenvectors are
transformed by the unitary operator U = eiωLt|e〉〈e|, where the full Hamiltonian is transformed
as

Ĥ ′ = ÛĤÛ † − i~Û ∂Û
†

∂t

=
p̂2

2m
+ ~(ω0 − ωL) |e〉 〈e| − ~

(∑
j

Ωj

2
eikjz+iδjt |e〉 〈g|+ h.c.

)
.

(2.34)

So far, the Hamiltonian above is generalized for any two-level system driven by an ar-
bitrary electric field. For the special case of Bragg diffraction, a nearly-standing electric
field is used to coherently scatter the atomic wave-function from one momentum state to
another through a multi-photon process. The electric field of the standing light wave after
the rotating wave approximation is

~E →
~E0

2
u(z, t) =

~E0

2

[
e−ikz+iδt + eikz−iδt

]
, (2.35)

where k is the laser wave-vector, 2δ is the detuning between the counter-propagating laser
beams (corrections to the wave-vector due to δ are negligible), and

Ĥ ′ =
p̂2

2m
− ~∆ |e〉 〈e| −

(
Ωu(z, t)

2
|e〉 〈g|+ h.c.

)
. (2.36)

In general, solutions to this Hamiltonian can be written as the superposition

|Ψ〉 = e(z, t) |e〉+ g(z, t) |g〉 ,
which can be used as an ansatz to the Schrödinger equation, i~∂t |Ψ〉 = Ĥ ′ |Ψ〉, with the
Hamiltonian from (2.36) to give

i~ė(z, t) =
p̂2

2m
e(z, t)− ~∆e(z, t)− ~Ω

2
ug(z, t) (2.37)



CHAPTER 2. THEORY 39

i~ġ(z, t) =
p̂2

2m
g(z, t)− ~Ω∗

2
u∗e(z, t). (2.38)

Since the laser detuning ∆ is large compared to the Rabi frequency Ω, we can adiabatically
eliminate the excited state by setting ė(z, t) equal to zero. In addition, the detuning ∆� ωr
and therefore the kinetic energy term is negligible compared to ~∆ in Eq. (2.37). Solving
for e(z, t) and substituting it into Eq. (2.38) yields

iġ(z, t) = − ~
2m

∂2

∂z2
g(z, t) +

|Ω|2
4∆

uu∗g(z, t). (2.39)

Due to the periodicity of the electric field, a reasonable ansatz for g(z, t) would be a super-
position of plane waves, such as

g(z, t) =
∞∑

n=−∞

gn(t)ei2nkze−i(2n)2ωrt. (2.40)

The second factor is a kinetic energy phase factor11 for a massive particle with velocity
2n~k/m (where ωr ≡ ~k2/2m). This ansatz, along with the relative field strength u from
(2.35),

u = e−ikz+iδt + eikz−iδt

uu∗ = 2 +
[
e−i2kz+i2δt + ei2kz−i2δt

]
,

can be inserted into (2.39), which after some rearranging reduces to

∞∑
n=−∞

iġne
i2nkze−i4n

2ωrt = Ω̄
∞∑

n=−∞

gne
i2nkze−i4n

2ωrt+

Ω̄

2

[
∞∑

n=−∞

gne
i2(n−1)kzei2δte−i4n

2ωrt +
∞∑

n=−∞

gne
i2(n+1)kze−i2δte−i4n

2ωrt

]
,

where Ω̄ ≡ |Ω|2 /2∆ is the two-photon Rabi frequency. Note that one of the terms in
i∂g(z, t)/∂t exactly canceled the momentum term −(~/2m)∂2g(z, t)/∂x2 in (2.39) as the
recoil frequency is defined as ωr ≡ ~k2/2m.

The first term on the right-hand side can be eliminated by going to a rotating frame
gn → gne

−iΩ̄t, which simplifies the system of equations to

∞∑
n=−∞

iġne
i2nkze−i4n

2ωrt =
Ω̄

2

[
∞∑

n=−∞

gne
i2(n−1)kzei2δte−i4n

2ωrt +
∞∑

n=−∞

gne
i2(n+1)kze−i2δte−i4n

2ωrt

]
.

11While not needed, the kinetic energy phase term is also included in the ansatz to reduce the numerical
complexity of the final solution.



CHAPTER 2. THEORY 40

In general, terms in uu∗ that are not a function of z do not couple the momentum states gn
and can be ignored. Instead these terms contribute to common mode ac-Stark shifts, which
phase shift all the coefficients gn and, therefore, all momentum states, by the same amount.

Additional simplifications are made by performing the transformations (n− 1)→ n and
(n+ 1)→ n on the left and right summation in brackets to obtain:

∞∑
n=−∞

iġne
i2nkze−i4n

2ωrt =
Ω̄

2

[
∞∑

n=−∞

gn+1e
i2nkzei2δte−i4(n+1)2ωrt +

∞∑
n=−∞

gn−1e
i2nkze−i2δte−i4(n−1)2ωrt

]
.

Since the solution to gn must be satisfied for all z, each terms of order ei2nkz must be equal
individually, therefore

iġn =
Ω̄

2

[
gn+1e

i2δte−i4(2n+1)ωrt + gn−1e
−i2δtei4(2n−1)ωrt

]
. (2.41)

This result is an infinite set of coupled differential equations, where the two-photon Rabi
frequency Ω̄ is in general a function of t. We can immediately see that the plane wave
momentum states of the atom are coupled only by integer multiples of the photon wave-
vector k. An atom starting in state gnI , with momentum 2nI~k, can only be transferred to
other states gnF with momentum 2nF~k.

In the special case where the detuning δ between the counter-propagating fields is zero
and the interaction time is long (Bragg regime), atoms in state gn preferentially end up in
g−n (and visa-versa). In general, the Bragg resonance condition to transfer atoms in state
gnI to gnF occurs when δ = 2(nF + nI)ωr.

Unfortunately, no closed solution exists for the system of equations (2.41), save for a few
special cases. In the Raman-Nath regime, where the interaction time t→ 0, (2.41) simplifies
to

iġn =
Ω̄

2
[gn+1 + gn−1]

with solutions gn = (−i)nJn(4Ωt), where Jn are Bessel functions. While beam splitters in the
Raman-Nath regime can be used for interferometry [52], the resulting populations tend to be
spread out amongst many momentum states (not just the two of interest). In order to have
efficient beam splitters, we would instead like to be in the Bragg regime where population
is only transferred between two momentum states. For long interaction times and zero
detuning (δ = 0), we can adiabatically eliminate12 the intermediate states g−n+1 through
gn−1 to obtain a two-level system between g−n and gn with an effective Rabi frequency [53]

Ωeff ≈
Ω̄n

(8ωr)n−1

1

(n− 1)!2
(2.42)

12One has to be careful when adiabatically eliminating the ġk terms for |k| < n since we have rotated all

the states gk by ei4k
2ωrt in our ansatz for g(z,t).
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for Ω̄� 4(n−1)ωr. With typical experimental parameters of n = 5, the characteristic inter-
action time Ω−1

eff would need to be approximately ω−1
r . This is longer than what is achievable

in our experiment,13 and therefore the strict Bragg regime is an unsuitable approximation
for our purposes. Instead, a quasi-Bragg solution is needed which can be accomplished by
numerically integrating (2.41) with appropriate boundary conditions.

Consider a resonant system where an atom, initially in a pure momentum state (g−n = 1),
is transferred to a state gn for a symmetric detuning δ = 0. For sufficiently long interaction
times, any term containing factors proportional to ei4(±2k±1) for |k| � n will tend to oscillate
rapidly and cancel to zero. This allows the truncation of (2.41) by setting g−k−1e

i4(−2k−1) = 0
and gk+1e

−i4(2k+1) = 0 for a sufficiently large momentum cutoff k. Generalizing to a detuning

δ = 2(nF + nI)ωr

which resonantly couples gnI and gnF , we can introduce an upper cutoff n1 > max(nI , nF ) and
a lower cutoff −n2 < min(nI , nF ) such that (2.41) reduces to the finite system of equations:

iġn1+1 = 0

iġn1 =
Ω̄

2

[
gn1−1e

−i2δtei4(2n1−1)ωrt
]

iġn1−1 =
Ω̄

2

[
gn1e

i2δte−i4(2n1−1)ωrt + gn1−2e
−i2δtei4(2n1−3)ωrt

]
...

iġn =
Ω̄

2

[
gn+1e

i2δte−i4(2n+1)ωrt + gn−1e
−i2δtei4(2n−1)ωrt

]
...

iġ−n2+1 =
Ω̄

2

[
g−n2+2e

i2δte−i4(−2n2+3)ωrt + g−n2e
−i2δtei4(−2n2+1)ωrt

]
iġ−n2 =

Ω̄

2

[
g−n2+1e

i2δte−i4(−2n2+1)ωrt
]

iġ−n2−1 = 0.

(2.43)

These equations are readily solvable by numerical computing software with reasonable choices
for the cutoffs. For typical experimental parameters, choosing cutoffs ∆n = 5 on either side
of {nI , nF} give results with fractional error below 10−7 and ∆n = 15 yields results that
are limited by numerical machine precision at below the 10−17 level. Typical choices for the
cutoff are therefore n1 = max(nI , nF ) + 15 and −n2 = min(nI , nF )− 15.

Before solving (2.43), it is beneficial to take a closer look at the time-dependent shape
of the Rabi frequency Ω̄(t). Consider Fig. 2.11, where the detuning of the undesired 2m-
photon process g0 = |g, 0~k〉 → gm = |g, 2m~k〉 is δm = 2mδ − 4m2ωr. In order for

13The experimental pulses can have a width of at most 0.5ω−1
r before a significant decrease in signal-to-

noise is observed (due to loss of coherence).
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Figure 2.11: A diagram of the relevant momentum states of an atom and the laser fields
for Bragg diffraction. The detuning between the laser fields is 2δ and the single photon
detuning of the lasers from the excited state |e〉 is ∆. The multi-photon detuning to an
arbitrary intermediate ground state |g,m~k〉 is δm.

intermediate states to remain unpopulated, the detuning δm for every state other than the
final state m = n should be much greater than the Rabi frequency Ω̄. The obvious way
to satisfy this adiabatic requirement is to use very long, low Rabi frequency pulses such
that Ω̄ � |2mδ − 4m2ωr| for all intermediate states m (which is the same condition used
in the Bragg regime approximation (2.42)). A Rabi frequency this low requires that the
atom ensemble have a very small momentum spread, which is outside the capabilities of our
experimental apparatus.

The other option is to use shorter, quasi-adiabatic pulses that efficiently transfer the
atom through the undesired momentum states in such a way that the intermediate states
remain unpopulated at the end of the π or π/2 pulse.14 This requirement is essential since
the parasitic phase imparted onto the atoms by the beam splitter is proportional to the losses
into these intermediate states [53]. There also exist adiabatic rapid-passage techniques for
Bragg diffraction, such as those described in [54], but these methods tend to have worse
beam splitter phase systematics in the end.

Pulse Shape

While a square pulse is very simple to create and works well in Raman type beam splitters,
the high intensities at the edges of the pulse cause large oscillating populations in the inter-
mediate states that are unsuitable for high-order Bragg diffraction (though are manageable

14The conditions for efficient π pulses are usually not the same as π/2 pulses as the intermediate states
can oscillate in a manner that is difficult to predict.
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Figure 2.12: Bragg diffraction population transfer versus Rabi frequency Ω0 for an atom
initially in g0 = 1 with detuning for 5th order Bragg diffraction (δ = 10ωr) and a zoomed
view to emphasize the losses into other orders. The gray dashed line indicates the optimal
π/2 pulse intensity at Ω0 = 31.23ωr. (σ = 0.188ω−1

r , τ = 3.272σ)

for 2~k or 4~k Bragg diffraction). Continuous and slowly varying functions such as truncated
Gaussian pulses:

Ω̄(t) =

{
Ω0e

−t2/2σ2
if − τ ≤ t ≤ τ

0 otherwise
(2.44)

or Blackman pulses:

Ω̄(t) = Ω0

[
1− α

2
− 1

2
cos

(
π(t− τ)

τ

)
+
α

2
cos

(
2π(t− τ)

τ

)]
, α = 0.16

tend to minimize these oscillation by quasi-adiabatically transferring the atom through the
intermediate states. Since the Rabi frequency is small for these kinds of functions at the
start and end of the pulse, coupling to the near detuned states gnI+1 and gnF−1 are minimized
during the transfer (see for example Fig. 2.13).

Although Blackman pulses (among other similar functions) have desirable properties,
such as being functionally zero at ±τ , Gaussian pulses have been studied in more detail
[44, 53, 54] and have been the focus of our group and this thesis. Solving (2.43) with a
Gaussian intensity (2.44) is then straightforward in numerical computation software such as
Matlab or Mathematica. The parameters typically used in the experiment are σ = 0.188ω−1

r

and τ = 3.272σ and therefore these parameters are used in the remainder of this section
unless otherwise noted. In order to determine the appropriate intensity for a π or π/2 pulse,
Ω0 is varied until |gnI |2 = |gnF |2, such as in Fig. 2.12. This condition does not usually
correspond to where the diffraction efficiency is 50 percent, but instead gives the maximum
contrast for a Ramsey-Bordé interferometer which is easier to measure experimentally.

The quasi-adiabatic nature of a π/2 pulse can be seen by looking at the time-dependent
dynamics, such as the 10~k Bragg diffraction process shown in Fig. 2.13. During the pulse,
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Figure 2.13: Left: The population of different momentum states as a function of time for
an optimal Gaussian π/2 pulse with Ω0 = 31.23ωr, σ = 0.188ω−1

r , and τ = 3.272σ. Right:
Phase of the undeflected 0~k order and the desired 10~k order (phases shown are 2π periodic).
The fast oscillations at the beginning are most likely due to numerical precision errors in
calculating the phase (since the amplitude is very small).

atoms are initially transfer to low order states, but are then slowly transferred to higher
order states, finally arriving at the final output state. The −2~k and 12~k momentum
states are also populated, but are not plotted for simplicity. The phase as a function of time
is also plotted in Fig. 2.13 for the states g5 and g0 with the normal π/2 beam splitter phase
subtracted from the diffracted order g5 to emphasis the problematic diffraction phase. Even
though the final phase difference is small for the simulated parameters (∆φ = −2.6 mrad),
both the diffracted and un-diffracted states undergo very large phase shifts during the course
of the interferometer due to population transfer between neighboring states. The huge
asymmetry of the phase shift makes multiple Bragg diffraction pulses [55] a particularly
poor choice for large momentum transfer (from a systematics point of view) since a large
portion of the diffraction phase remains uncanceled.

Varying the two-photon detuning δ also has a significant effect on the beam splitter
as shown in Fig. 2.14. As the detuning is reduced towards lower-order Bragg diffraction
(δ < 2nωr), the intermediate states are more resonant and therefore end up with larger
populations. The behavior is not symmetric, as increasing the detuning predominately re-
duces the beam splitter efficiency, with an increase in population transfer to gn−1. One
might expect significant losses into gn+1 (not shown in the figure); however for a fixed Bragg
diffraction order n, the effective Rabi frequency for an n+1 transition is reduced by an order
of magnitude according to (2.42). The detuning δ also causes a large asymmetry in the
diffraction phase for a single beam splitter, though some symmetry will be restored when
considering a full conjugate interferometer, as shown in Section 2.5.2.
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Figure 2.14: Left: Bragg diffraction population transfer versus detuning from resonance
δ − 10ωr. Right: Phase difference between the desired 10~k order and the undeflected 0~k
order. (σ = 0.188ω−1

r , τ = 3.272σ, Ω0 = 31.23ωr)

Moving Atoms

The last remaining points to consider are the effects caused by a moving atom. The state
g0(t) has been defined to be at rest with respect to the standing wave formed by the counter-
propagating fields when δ = 0. If in our ansatz for g(z, t) we instead chose g0(t) to have a
velocity ∆v, then (2.40) becomes

g(z, t) =
∞∑

n=−∞

gn(t)ei(2n+∆v/vr)kze−i(2n+∆v/vr)2ωrt,

where vr = ~k/m. Following the same steps used to obtain (2.41), the modified system of
equations is

iġn =
Ω̄

2

[
gn+1e

i2δte−i4(2n+∆v/vr+1)ωrt + gn−1e
−i2δtei4(2n+∆v/vr−1)ωrt

]
or, equivalently,

iġn =
Ω̄

2

[
gn+1e

i2(δ−2ωr∆v/vr)te−i4(2n+1)ωrt + gn−1e
−i2(δ−2ωr∆v/vr)tei4(2n−1)ωrt

]
. (2.45)

Therefore atoms with net velocity ∆v are out of resonance with the Bragg condition δ =
2(nF + nI)ωr by an amount 2ωr∆v/vr, but still only couple to higher or lower momentum
states by the same integer multiple of 2~k. This is an important feature of any beam splitter,
since the atom source for an interferometer has a finite velocity distribution. The effects of
a velocity distribution on the diffraction phase is more complicated and will be discussed in
Section 5.4.
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2.5.1 Multi-Frequency Beam Splitters

The third and fourth pulses in a conjugate Ramsey-Bordé interferometer drive the atoms with
two different frequency pairs to address the upper and lower interferometers simultaneously.
Although it is possible to have four separate frequencies to drive both pairs of interferometers,
technical reasons make it easier to use three frequencies, with a common frequency shared
between the pairs. The electric field for these pulses has a relative field strength of

u3,4 = e−ikz+iδt + eikz−iδt+iωmt + eikz−iδt−iωmt

u3,4u
∗
3,4 = 3 + 2 cos(2ωmt) + 2 cos(ωmt)

[
e−i2kz+i2δt + ei2kz−i2δt

]
.

As before, the terms in u3,4u
∗
3,4 which do not depend on z can be dropped as they only

contribute common mode ac-Stark shifts. We can then follow the same procedure outlined
above for a single-frequency pair to show that the optical Bloch equation for two-frequency
pairs has the solution

iġn = cos(ωmt)Ω̄
[
gn+1e

i2δte−i4(2n+1)ωrt + gn−1e
−i2δtei4(2n−1)ωrt

]
, (2.46)

where 2ωm is the frequency difference between the two co-propagating fields and 2δ is
the frequency difference between the counter-propagating field and the average of the co-
propagating fields. Whereas the two-frequency system (2.41) couples gn0 to gn0+n with a
detuning δ = 2(2n0 + n)ωr, the multi-frequency system (2.46) instead couples gn0+n+N to
gn0+2n+N and gn0−N to gn0−n−N using a modulation frequency ωm = 8(n+N)ωr for the same
detuning δ. The dual resonance of the multi-frequency system is important as it is needed
to drive both interferometers at the same time during a single pulse.

The diffraction efficiency of the multi-frequency system is similar to the two-frequency
system (2.41), except that the optimal π/2 Rabi frequency for gn0+n+N to gn0+2n+N is now
a function N as seen in Fig. 2.15. The optimal Rabi frequency approaches that of the
two-frequency system as N goes to infinity, which is intuitive since the other off-resonant
frequency pair has a larger detuning and therefore has a smaller influence. This is further
emphasized by comparing the time-dependent dynamics (Fig. 2.16) to the two-frequency
system (Fig. 2.13). As the modulation ωm = 8(n+N)ωr increases, the fast time-dependent
oscillations decrease and approach the dynamics of a single Bragg diffraction pulse.

2.5.2 Full Interferometer

Combining the results for single and multi-frequency Bragg diffraction, we can now calculate
the total phase shift in the interferometer due to the beam splitter diffraction phase. At each
beam splitter along a particular path, the atom acquires a diffraction phase given by solving
(2.41) or (2.46). There are eight relevant paths to consider as each of the two interferometers
(upper and lower) have two trajectories (upper and lower) and two output ports for each of
those trajectories (upper and lower), as shown in Fig. 2.17.
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Figure 2.15: Left: Bragg diffraction population transfer versus Rabi frequency Ω0 for an
atom initially in g5 = 1 with detuning δ = 10ωr and ωm = 40ωr. Right: The optimal
π/2 Rabi frequencies that give equal populations in g5+N and g10+N for δ = 10ωr and
ωm = 8(5 + N)ωr. The dashed line in both plots indicates the π/2 Rabi frequency for
two-frequency Bragg diffraction between g0 and g5 with the same detuning. (σ = 0.188ω−1

r ,
τ = 3.272σ)

−3σ −2σ −σ 0 σ 2σ 3σ

Time

0

0.2

0.4

0.6

0.8

1

P
o

p
u

la
ti
o

n

10h̄k

20h̄k

12h̄k

14h̄k

16h̄k

18h̄k

−3σ −2σ −σ 0 σ 2σ 3σ

Time

0

0.2

0.4

0.6

0.8

1

P
o

p
u

la
ti
o

n

60h̄k

70h̄k

62h̄k

64h̄k

66h̄k

68h̄k

Figure 2.16: Left: The population of different momentum states as a function of time for
an optimal multi-frequency Gaussian π/2 pulse with Ω0 = 31.23ωr, σ = 0.188ω−1

r , and
τ = 3.272σ. Left: Multi-frequency Bragg diffraction from g5 to g10 for N = 0. Right:
Multi-frequency Bragg diffraction from g30 to g35 for N = 25.
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Figure 2.17: The full conjugate Ramsey-Bordé consisting of the lower interferometer (red
and green) and the upper interferometer (purple and blue). Each interferometer has a lower
(green or blue) and an upper (red or purple) path, each with an upper/lower output. The
labeled trajectories cu`` and cu`` (dashed) are two of the eight trajectories that make up the
interferometer outputs.

Numerically solving the two-frequency optical Bloch equation for the output state gb
given the input state ga = 1 for a detuning δ = 4nωr yields the matrix elements 〈b| Ĥn |a〉.
Similarly, the matrix elements 〈b| Ĥn,N |a〉 can be found by integrating the multi-frequency
optical Bloch equation for δ = 4nωr and ωm = 8(n+N)ωr.

The matrix elements for Ĥn and Ĥn,N are symmetric, as well as invariant under a mo-
mentum transformation:

〈b| Ĥn(,N) |a〉 = 〈a| Ĥn(,N) |b〉 (2.47)

= 〈b+ c| Ĥn+c(,N) |a+ c〉 ,
which follows from Eq. (2.45) after some rearranging. For the two-frequency Hamilton Hn,
there is also symmetry about the Bragg resonance condition. For any value {a, b, c} ∈ R,
then

〈n+ b| Ĥ2n+c |n+ a〉 = 〈n− b| Ĥ2n−c |n− a〉 .
Additionally, for large modulation frequencies ωm, the multi-frequency Hamiltonian Ĥn,N

looks like a momentum shifted two-frequency Hamiltonian Ĥn.

〈b| Ĥn |a〉 = lim
N→∞

〈b+ n+N | Ĥn,N |a+ n+N〉

= lim
N→∞

〈b− n−N | Ĥn,N |a− n−N〉 .
(2.48)

The complex amplitude along a particular interferometer path is labeled as cijk, where
the index i determines the interferometer, j determines the path within that interferometer,
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and k determines the output port. Each index can take two values, u or `, signifying “upper”
and “lower” respectively. All eight paths can then be described as

c`u` = 〈−n−N | Ĥn,N |−n−N〉 〈−N | Ĥn,N |−n−N〉 〈n| Ĥn |0〉2

c``` = 〈−n−N | Ĥn,N |−N〉 〈−N | Ĥn,N |−N〉 〈0| Ĥn |0〉2

c`uu = 〈−N | Ĥn,N |−n−N〉2 〈n| Ĥn |0〉2

c``u = 〈−N | Ĥn,N |−N〉2 〈0| Ĥn |0〉2

cuu` = 〈n+N | Ĥn,N |n+N〉2 〈n| Ĥn |n〉 〈n| Ĥn |0〉
cu`` = 〈n+N | Ĥn,N |2n+N〉2 〈n| Ĥn |0〉 〈0| Ĥn |0〉
cuuu = 〈2n+N | Ĥn,N |n+N〉 〈n+N | Ĥn,N |n+N〉 〈n| Ĥn |n〉 〈n| Ĥn |0〉
cu`u = 〈2n+N | Ĥn,N |2n+N〉 〈n+N | Ĥn,N |2n+N〉 〈n| Ĥn |0〉 〈0| Ĥn |0〉 ,

where the individual beam splitter diffraction phases φijk = {φ```, φ``u, . . .} are given by
cijk = |cijk| eiφijk .

The free evolution and laser phases along the lower and upper trajectories are then defined
to be φ` = φc+φd and φu = φc−φd, taken from the results of (2.26). As before, the differential
phase contains the quantity to be measured and the common mode phase fluctuates between
zero and 2π due to vibrations. The probability amplitudes of the interferometer output ports
are then

Ψ`` = |−n−N〉
[
c`u` + eiφ`c```

]
Ψ`u = |−N〉

[
c`uu + eiφ`c``u

]
Ψu` = |n+N〉

[
cuu` + eiφucu``

]
Ψuu = |2n+N〉

[
cuuu + eiφucu`u

]
.

Assuming the amplitudes of all the paths are equal |ci| = |cj|, the measured populations of
the lower interferometer output ports are

|Ψ``|2 = cos2

(
1

2
(φ` + φ``` − φ`u`)

)
|Ψ`u|2 = sin2

(
1

2
(φ` + φ``u − φ`uu − π)

)
,

where we have inserted a −π phase shift by hand to produce the usual sine squared interfer-
ence result. By applying the substitution Φ` = φ` + φ``` − φ`u`, the amplitude of the upper
output port simplifies to

|Ψ`u|2 = sin2

(
1

2
(Φ` + (φ``u − φ`uu)− (φ``` − φ`u`)− π)

)
= sin2

(
1

2
(Φ` + ∆φ`)

)
,
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Figure 2.18: A non-ideal ellipse resulting from a simulated interferometer with parameters
n = 5, N = 25, Ω0 = 32.23ωr, and a detuning from Bragg resonance of δ = 0.6ωr. The red
points indicate the simulated interferometer measurements, while the black curve is a best
fit ellipse.

where we have introduced ∆φ` = (φ``u−φ`uu)−(φ```−φ`u`)−π as the difference in diffraction
phase between the two output ports of the lower interferometer. Since the beam splitter
phases also encode the usual π/2 phase shifts intrinsic to beam splitters, the aforementioned
−π phase shift is included to make ∆φ` small.

Although it is possible to calculate the phase difference between the upper and lower
interferometer by fitting the ellipse |Ψ``|2 vs. |Ψu`|2, this method is sensitive to fluctuations in
absolute atom number. A more robust technique is to use the normalized difference between
the interferometer outputs (|Ψ``|2 − |Ψ`u|2)/(|Ψ``|2 + |Ψ`u|2) and (|Ψu`|2 − |Ψuu|2)/(|Ψu`|2 +
|Ψuu|2). For an ideal interferometer with output populations |Ψ`|2 = A cos(φ/2)2 and |Ψu|2 =
A sin(φ/2)2, the normalized difference reduces to (|Ψ`|2 − |Ψu|2)/(|Ψ`|2 + |Ψu|2) = cos(φ),
independent of the signal amplitude A.

However in the case of Bragg diffraction, the sum of the interfering populations is not
unity, |Ψ``|2 + |Ψ`u|2 6= 1, due to beam splitter losses. This non-conservation of probability
poses conceptual problems when extracting the phase via ellipse fitting since there does not
appear to be a well-defined differential phase. This effect can be seen in Fig. 2.18, where
the Bragg diffraction detuning is chosen to be off-resonant for each beam splitter. When
parameters are chosen to be far from the ideal, the normalized outputs of the two conjugate
interferometers tend not to form an ideal ellipse.

If the difference between the diffraction phase of the two output ports ∆φ` is small, then
we can approximate the normalized population as

|Ψ``|2 − |Ψ`u|2

|Ψ``|2 + |Ψ`u|2
≈ cos (Φ`)−

1

2
∆φ` sin (Φ`) +

1

4
∆φ` sin (2Φ`) +O(∆φ2

`). (2.49)

Recall that the phase φ` (and therefore Φ`) contains a common mode term φc which fluctuates
between zero and 2π due to vibrations. Interpreting φc as a parametric variable, we can
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further approximate (2.49) by ignoring the second perturbative term that has twice the
frequency in Φ` (and therefore in φc) as it will tend to average out when fitting (2.49) to
the {x, y} components of an ellipse with the functional form A cos(φc + φ) + B. Utilizing a
Taylor series approximation, the normalized population for the lower interferometer can be
simplified to

x =
|Ψ``|2 − |Ψ`u|2

|Ψ``|2 + |Ψ`u|2
≈ cos (Φ`)−

1

2
∆φ` sin (Φ`)

≈ cos

(
Φ` +

∆φ`
2

)
and similarly for the upper interferometer,

y =
|Ψu`|2 − |Ψuu|2

|Ψu`|2 + |Ψuu|2
≈ cos

(
Φu +

∆φu
2

)
,

where Φu = φu + φu`` − φuu` and ∆φu = (φudu − φuuu) − (φudd − φuud) − π. The extracted
differential phase after ellipse fitting {x, y} is then

∆ϕ = (Φ` +
∆φ`

2
)− (Φu +

∆φu
2

)

= 2φd +
1

2
[(φ``` − φu``)− (φ`u` − φuu`)] +

1

2
[(φ``u − φu`u)− (φ`uu − φuuu)] (2.50)

= 2φd +
1

2
[(φ``` − φ`u`)− (φu`` − φuu`)] +

1

2
[(φ``u − φ`uu)− (φu`u − φuuu)]

= 2φd + φ0,

where φ0 is the measured diffraction phase systematic due to beam splitter losses. Therefore
to leading order, the non-conservation of probability due to beam splitter losses does not
produce a systematic shift in the fitted ellipse phase and only the average diffraction phase
φ0 is measured (assuming the differential diffraction phases ∆φu,` are small).

Interferometer Symmetries

We can also take advantage of certain cancellations to determine which pulses contribute the
most to the measured diffraction phase. Expanding out each diffraction phase pair in (2.50)
in terms of the Hamiltonian matrix elements:

φ``` − φu`` = arg

(
〈−n−N | Ĥn,N |−N〉 〈−N | Ĥn,N |−N〉 〈0| Ĥn |0〉2

〈n+N | Ĥn,N |2n+N〉2 〈n| Ĥn |0〉 〈0| Ĥn |0〉

)
,



CHAPTER 2. THEORY 52

φ`u` − φuu` = arg

(
〈−n−N | Ĥn,N |−n−N〉 〈−N | Ĥn,N |−n−N〉 〈n| Ĥn |0〉2

〈n+N | Ĥn,N |n+N〉2 〈n| Ĥn |n〉 〈n| Ĥn |0〉

)
,

φ``u − φu`u = arg

(
〈−N | Ĥn,N |−N〉2 〈0| Ĥn |0〉2

〈2n+N | Ĥn,N |2n+N〉 〈n+N | Ĥn,N |2n+N〉 〈n| Ĥn |0〉 〈0| Ĥn |0〉

)
,

φ`uu − φuuu = arg

(
〈−N | Ĥn,N |−n−N〉2 〈n| Ĥn |0〉2

〈2n+N | Ĥn,N |n+N〉 〈n+N | Ĥn,N |n+N〉 〈n| Ĥn |n〉 〈n| Ĥn |0〉

)
,

we immediately see that the right-most matrix elements describing the first beam splitter
(〈0|Ĥn|0〉 for the lower interferometer and 〈n|Ĥn|0〉 for the upper interferometer) cancel out
in each pair. Therefore the first beam splitter has no effect on the measured diffraction phase
in the case of a conjugate Ramsey-Bordé interferometer, even if the Bragg detuning δ is not
on resonance.

A slightly less ideal symmetry can be seen by looking at the left-most matrix elements in
each pair, which corresponds to the last beam splitter. The contribution to the diffraction
phase due to the last beam splitter is

φlast = arg

(
〈−n−N | Ĥn,N |−N〉
〈n+N | Ĥn,N |2n+N〉

× 〈n+N | Ĥn,N |n+N〉
〈−n−N | Ĥn,N |−n−N〉

×

〈−N | Ĥn,N |−N〉
〈2n+N | Ĥn,N |2n+N〉

× 〈2n+N | Ĥn,N |n+N〉
〈−N | Ĥn,N |−n−N〉

)
.

The matrix elements that change the atom momentum (e.g. 〈−n−N | Ĥn,N |−N〉) cancel
because of the symmetry (2.47). Additionally, in the limit of large N , the matrix elements
that do not change momentum (e.g. 〈n+N | Ĥn,N |n+N〉) also cancel due to (2.48). This
shows that the last beam splitter also does not contribute to the diffraction phase of the inter-
ferometer assuming N is large.15 Therefore, if the interferometer is run with enough Bloch
oscillations N , only the second and third Bragg pulses contribute to the total diffraction
phase.

The dependence of the diffraction phase on the intensity of the second, third, and last
beam splitter is shown in Fig. 2.19 with and without Bloch oscillations. With no Bloch
oscillations, N = 0, the last pulse intensity has a slightly reduced impact on the diffraction

15Although the diffraction phase cancels for the first and last beam splitter in the case of a single atom,
transverse motion causes second-order effects when considering the atomic ensemble; see Section 5.4.
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Figure 2.19: The Ramsey-Bordé interferometer diffraction phase as a function of the second,
third, or last beam splitter intensity in units of the π/2 Rabi frequency. Left: An interfer-
ometer with n = 5 and N = 0, Right: The same interferometer with n = 5 and N = 25
Bloch oscillations. (Ωπ/2 = 31.23ωr, δ = 10ωr, σ = 0.188ω−1

r , τ = 3.272σ)
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Figure 2.20: The Ramsey-Bordé diffraction phase as a function of the detuning from n = 5
Bragg resonance δ − 10ωr (in units of ωr), with and without N = 25 Bloch oscillations.
(Ωπ/2 = 31.23ωr, σ = 0.188ω−1

r , τ = 3.272σ)

phase compared to the middle two pulses, but is still significant (2 mrad per percent change in
Rabi frequency). When the number of Bloch oscillations is increased to N = 25, the intensity
dependence of the last pulse all but disappears, with a slope of 10 µrad per percent change
in Rabi frequency. Due to the strong dependence on the second and third pulses intensities,
it is critical that the two pulses have the same intensity for all experimental configurations
(different pulse separation times, etc.) to obtain consistent phase measurements.

The dependence of the diffraction phase on the detuning of the Bragg transition is shown
in Fig. 2.20 with and without Bloch oscillations. The change in diffraction phase as a
function of the Bragg detuning is similar for Bloch oscillations, with an overall smaller
absolute diffraction phase for a given detuning (with the choice of parameters here). The
symmetry of the diffraction phase about the Bragg resonance condition δ = 2nωr turns out
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to be incredibly useful. Since the atom velocity is not known to very high accuracy, the exact
frequencies needed for resonance are also not well known. By varying the laser detunings
and measuring the phase, the resonant frequency can be determined by looking for a phase
extremum.

2.5.3 Diffraction Phase

The diffraction phase (2.50) calculated in Section 2.5.2 ends up being a large problem when
attempting to measure the recoil frequency ωr. The parasitic diffraction phases produced by
the Bragg interaction adds to the atom’s free evolution and laser phase (2.26) to produce a
total differential phase of

∆Φ = 16n(n+N)ωrT − 2nωmT + φ0,

where φ0 is the diffraction phase. When the modulation frequency ωm is adjusted to null
the interferometer phase ∆Φ = 0, then the measured frequency is no longer a multiple of
the recoil frequency 8(n+N)ωr, but is instead

ωm = 8(n+N)ωr +
φ0

2nT
.

Therefore the diffraction phase will shift the measured recoil frequency inversely proportional
to the pulse separation time. This is intuitive as the beam splitters are independent of T and
increasing the total interferometer phase will decrease the relative size of the fixed diffraction
phase φ0.

Since the exact diffraction phase is very sensitive to intensity and detuning, it would be
almost impossible to predict φ0 to a high enough accuracy to subtract it from the interfer-
ometer phase. Ideally one would just go to a very long pulse separation time T or reduce
the diffraction phase such that the error from φ0/2nT is below the desired accuracy. For
typical parameters of n = 5, N = 25, and assuming the diffraction phase is zero within an
1σ uncertainty of 5 mrad, then the pulse separation time would need to be larger than 300
ms for a 0.5 ppb measurement of the recoil frequency (which is beyond our capabilities).
Instead, the phase is measured at multiple pulse separation times and the value of ωr is
extrapolated by fitting the data and taking the limit as T goes to infinity, which is discussed
in more detail in Section 5.2.
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Chapter 3

Atomic Source

3.1 Vacuum Chamber

Since the coherence in an atom interferometer depends on it being free from background
interactions, the experiment is performed in an ultra-high vacuum (UHV) environment. In
order to obtain the vacuum pressures required, the chamber is constructed out of stainless
steel and glass, using ConFlat (CF) flanges which are sealed with copper gaskets. The body
of the chamber is made of 304 stainless steel components and the optical access is provided
by uncoated fused silica view-ports. Besides one custom glass cell, all other components are
commercially available to increase the reliability of assembly.

The chamber is evacuated with the aid of a vacuum roughing pump and a turbo-molecular
pump to bring the pressure down to 10−7 torr, at which point the pressure is limited by the
outgassing of volatile materials trapped in the metal surfaces. Since this outgassing rate is
proportional to the temperature, the chamber is heated to approximately 200 degrees C. This
is accomplished by wrapping the entire vacuum assembly with a resistive heating tape and
covering it with layers of aluminum foil, which prevents the heat from escaping and keeps
the temperature of the chamber more uniform. The chamber is baked at 200 degrees C for
approximately two weeks while the accelerated outgassing is continuously removed with the
vacuum pumps. When the chamber is cooled back down to room temperature, the amount
of volatile material is significantly reduced and the pressure can now be pumped to below
10−10 torr.

Due to significant contaminates from the epoxy used to glue mirrors to the inside of the
chamber, our pressure is limited to around 10−9 torr. After the baking is finished, the turbo
pump is removed to reduce vibrations during the experiment and a Varian 55 l/s ion pump
and a titanium sublimation pump are used to maintain the vacuum pressure.
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Figure 3.1: Symbols used in the figures detailing the optical setup. Laser colors are shaded
based on their relative frequency difference within each figure.

3.2 Spectroscopy

At the heart of an atom-optics experiment is a stable optical frequency that is used for laser
cooling and atomic manipulations. One of the more reliable ways to obtain a stable frequency
is to perform spectroscopy on an atomic transition. The error signal from the spectroscopy
can then be used as feedback to frequency lock a laser which serves as an optical reference.
This reference can then be either used directly or shifted to generate other needed optical
frequencies.

A simple method to probe the atomic transitions of an atom is to use frequency mod-
ulation (FM) spectroscopy [58]. Near-resonant laser light is sent through an electro-optical
modulator (EOM) to produce frequency sidebands on the carrier frequency. This modulated
light is then passed through a glass cell filled with atomic vapor. If the laser frequency is
centered on an atomic transition, some of the carrier will be absorbed (along with equal
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Figure 3.2: Hyperfine structure for the D2 line of cesium. The hyperfine splitting of the
62S1/2 ground state currently defines the SI second and is therefore exact. The splittings
between the 62P3/2 hyperfine states was measured by Tanner and Wienman [56] and the
absolute frequency of the 62S1/2 → 62P3/2 was measured by Udem et al. [57] using an optical
frequency comb.
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amounts of each sideband), which produces no net modulation on the transmitted beam. If
the optical frequency is slightly off-resonance, then the sidebands will be absorbed by dif-
ferent amounts, which produces a beat on the transmitted beam. Since the sidebands have
different relative phases, the beat signal will change phase depending on which sideband gets
absorbed. By detecting and demodulating the transmitted light at the modulation frequency,
an error signal is produced that can be used to stabilize the laser frequency. However, since
the vapor is at a finite temperature, the hyperfine structure of the atoms can be unresolved
due to Doppler broadening of the atomic transitions.

When laser light (the probe beam) is swept across the atom’s hyperfine structure, a
large Doppler broadened absorption dip is observed in the transmitted beam. To obtain
a Doppler insensitive measurement of the hyperfine transitions, a saturation laser beam is
passed through the vapor in the opposite direction. When both the saturation beam and the
probe are resonant with the same Doppler class of atoms, then the atomic transition will be
partially saturated producing a transmission bump on top of the absorption background [59].
These transmission bumps can then be probed by modulating the probe beam and using FM
spectroscopy to produce a Doppler-free measurement of the atomic transitions. There are a
couple of drawbacks to saturated FM spectroscopy that should be pointed out. First, the
modulated probe still produces a Doppler broadened background on top of the Doppler-free
signal which causes small offsets of the center frequencies in the error signal. In addition,
the EOM can produce amplitude modulation on the probe beam in addition to the desired
frequency modulation. Since the amplitude modulation has the same beat frequency as the
FM spectroscopy signal, the demodulated signal will cause a DC offset error proportional
to the amplitude modulation. For these reasons it is not optimal to use saturated FM
spectroscopy for low frequency feedback to the laser, as drifts will cause absolute frequency
errors in the lock.

A slightly different spectroscopy method that helps mitigate these problems is modulation
transfer spectroscopy [60–62]. A probe laser is passed through the atomic vapor and detected
while a modulated saturation beam is sent through from the other direction. When both
beams are on Doppler resonance, there is a four-wave mixing process that occurs producing
frequency sidebands on the transmitted probe. The probe is then detected and demodulated
to obtain a Doppler-free error signal. Since the probe is not FM modulated in this configura-
tion, the detected signal does not have the Doppler background or the amplitude modulation
offset and thus produces a mostly drift-free error signal. The downside is that the four-wave
mixing process produces a small signal and thus has relatively poor signal-to-noise compared
to saturated FM spectroscopy. Therefore it is advantageous to combine the two spectroscopy
methods to gain the benefits of both.

The optical setup for the reference laser and the spectroscopy is shown in Fig. 3.3. For
the spectroscopy, about 600 µW of optical power is sent into AOM1 and split approximately
evenly between the zeroth and minus first order. The minus first order is passed through
a glass cell filled with room temperature 133Cs vapor while the zeroth order is modulated
by EOM1 and passed through the cell in the opposite direction. The EOM is modulated
at 11 MHz using a crystal oscillator amplified by a resonant LC circuit using the intrinsic
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Figure 3.3: Optical setup for the reference laser and cesium spectroscopy.
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Figure 3.4: Electronics setup for producing the electro-optical modulation frequency and
combined error signal from the spectroscopies.

capacitance of the EOM crystal and an external inductor. The saturated frequency modula-
tion spectroscopy and modulation transfer spectroscopy signals are detected by photodiodes
PD1 and PD2 respectively and demodulated using the circuit in Fig. 3.4. Variable phase
shifters are applied to the demodulation frequencies so that both spectroscopies produce the
same sign error signal, allowing the two to be combined. The FM spectroscopy error signal
is high-pass filtered and added to the modulation transfer spectroscopy signal to produce a
high signal-to-noise and lower drift lock point. The error signal is fed into a proportional-
integral-derivative (PID) control loop and used to frequency stabilize a New Focus TLB-6917
external cavity diode laser (ECDL) which serves as the optical reference.

The spectroscopy is locked to the F = 3 → F ′ = 2 transition of the D2 line in 133Cs
as shown in Fig. 3.2. Since AOM1 frequency shifts the deflected laser light by -fAOM1, the
atoms that are Doppler resonant with both beams see a frequency that is the average of
the two. Combined with the double-pass AOM2, the reference laser ends up locked to a
frequency f3,2′ + 2fAOM2 + fAOM1. Both fAOM1 and fAOM2 are chosen to be 141.0 MHz so
that the reference laser is resonant with the F = 3 → F = 4′ transition, which is useful
for optical trapping. Without being locked, the free running reference laser has a linewidth
of 160 kHz, as measured by an optical delay line beat [63]. Unfortunately, the linewidth
increases to 180-240 kHz when the laser is locked to the spectroscopy, which is most likely
caused by technical noise in the spectroscopy and lock electronics. The long-term stability
of the lock is described in more detail in Section 6.1.1.
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3.3 Optical Trapping

In order to create an atomic sample with the density and temperature needed for high
sensitivity atom interferometry, the cesium atoms must first be trapped and cooled from
room temperature. The basis for most optical trapping is an optical molasses [64–66], which
consists of two counter-propagating laser fields that are both red-detuned from a cycling
transition. When an atom moves in the field towards one of the beams, the frequency of that
beam is Doppler shifted closer to resonance, which results in more photons being absorbed
and scattered. This creates an effective force in the opposite direction of the atom’s motion.
When the optical molasses is applied in three dimensions, it can reduce an atom cloud’s
mean velocity and, therefore temperature, down to the Doppler temperature,

TD =
~Γ

2kB

,

limited by by the linewidth of the atomic transition Γ.
Since an optical molasses only provides a velocity-dependent force, there is no spatial con-

finement of the atoms. An atom will diffuse via a random walk by absorbing photons from all
fields and randomly emitting them. To provide a position-dependent force, a quadrupole field
is introduced to create a magneto-optical trap (MOT) [67]. The field provides a quantization
axis for the atom’s magnetic sublevels and shifts their energy by

∆EF,mF = µBgFmFBz,

where mF is the magnetic sublevel quantum number, Bz is the strength of the magnetic
field, and gF is the hyperfine Landé g-factor1 [68]. The gradient provided by the quadrupole
field creates a spatially varying Zeeman energy splitting which flips sign through the center
of the trap. Consider a transition between two states where gF is positive for both the
ground and excited state, such as the F = 4 → F ′ = 5 transition on the D2 line of 133Cs.
As an atom moves out from the center towards increasing magnetic field, Bz > 0, the σ−

transitions decrease in frequency. If the molasses light field coming from this direction is σ−

polarized and is red-detuned, this will result in more scattered photons, pushing the atom
back towards the center. If the opposing molasses beam is σ+ polarized,2 then the atom
will be confined at the magnetic zero where all Zeeman levels have the same energy. The
density of trapped atoms at the center is ultimately limited by the reabsorption of scattered
photons, which causes an outward radiation pressure on the trapped cloud. To limit this
effect, one can use a dark-spot MOTs [69, 70] which reduces the amount of time atoms at
the center spend in a resonant state by selectively depumping the atoms to a dark state.

While selection rules require the F ′ = 5 excited state to decay back to the F = 4 ground
state, the finite Lorentzian linewidth of the excited states means there is a small probability

1The hyperfine Landé g-factor is equal to gF ' gJ [F (F + 1)− I(I + 1) + J(J + 1)] /2F (F + 1) where
gJ is the fine structure g-factor.

2In the other direction, the field is decreasing, Bz < 0, and the σ+ transitions become more resonant.
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that the F ′ = 4 state is excited instead. Once the F ′ = 4 state is excited, there is an
approximately 50% chance that the atom decays to the dark F = 3 ground state where
the cooling light is no longer resonant. The number of photons scattered per second by a
particular transition is given by

RF,F ′ =

(
Γ

2

)
s

1 + 4(ωL − ωF,F ′)2/Γ2 + s
,

where ωL − ωF,F ′ is the detuning between the laser frequency and the atomic transition and
s = I/Isat is the saturation parameter. For nominal parameters of s ' 1 and a detuning
of ωL − ω4,5′ = −3Γ, the relative excitation rate R4,5′/R4,4′ means that approximately 400
photons are scattered before the atom falls back to the dark state. To prevent atoms from
accumulating in the dark ground state, a small amount of repump light is introduced on the
F = 3 → F ′ = 4 transition, which allows the atom to eventually decay back to the cooling
transition.

3.3.1 2D MOT

In order to have a sufficiently high number of atoms in the chamber to quickly load a
magneto-optical trap, the atoms must first be extracted from a reservoir placed in the vac-
uum chamber. Thermodynamic processes will cause a solid to evaporate until the background
vapor pressure is in equilibrium with the condensed state. At room temperature, the equi-
librium vapor pressure of solid cesium is approximately 10−6 torr [71]. While this is ideal for
fast loading of a MOT, the high vapor pressure means that collisions with background gas
would limit the coherence of atom interferometry. In order to retain the benefits of a fast
MOT loading rate while having a much lower vacuum pressure, the main three-dimensional
MOT is loaded by a two-dimensional MOT [72] instead of from background atoms.

The two-dimensional MOT cell is separated from the ultra-high vacuum main chamber
by a differential pumping tube, as shown in Fig. 3.8, which creates a pressure differential by
restricting the conductance of particles between the two regions. This allows the atoms to
be loaded from a high background pressure vapor while still maintaining the low pressures
needed in the experiment. In the ultra-low vacuum, molecular-flow regime, the conductance
of a tube is given by

C =
D3

6L

√
2πkBT

m
,

where D is the diameter and L is the length of the tube and m is the mass of the particle
flowing through the tube. If the pressure of the 2D MOT cell is pcell, then the pressure on
the other side of the differential pumping tube will be

p =
C(pcell − p)

S
≈ Cpcell

S
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when pumped at a rate S [73]. The differential pumping tube used in the experimental setup
has a diameter of 5 mm and a length of 14 cm. When considering the partial pressure of
cesium in the cell, the pressure reduction should be approximately 1/1000 when the chamber
is pumped at a rate of 55 l/s by the Varian ion pump. This is slightly lower than what is
measured, but the vacuum chamber mostly likely has other contaminants that contribute to
the final vacuum pressure.

In order to transport cesium atoms through the differential pumping tube, a 2D MOT
is used to create a cooled atomic beam. Unlike a 3D MOT where all three dimensions are
spatially confined, a 2D MOT only confines in two directions, allowing the trapped atoms
to diffuse out the ends of the trap. The transversely cooled atoms will have a relatively
low divergence angle upon exiting the trap, allowing the atom beam to pass through the
differential pumping tube without a significant reduction in flux.

The reference laser frequency f3,4′ , described in Section 3.2, is used as the optical repump
and as the basis for the cooling transition. The optical setup used to create the required 2D
MOT frequencies are shown in Fig. 3.3 and Fig. 3.5. Approximately 4 mW of reference light
is split and sent through a secondary optical isolator3 and into a tapered amplifier (TA1),
which amplifies the input to about 120 mW of f3,4′ light. After coupling the majority of the
light into a fiber (Fiber:Repump, where the Fiber:X notation corresponds to the fiber labeled
X in the figures), the light is transported to another part of the table to serve as the MOT
repump light and as the frequency reference for the cooling transition. The output of the
fiber contains roughly 80 mW of laser light that is further split between the 3D MOT repump
(minus first order of AOM5), the 2D MOT repump, and the fiber coupled electro-optical
modulator (EOM2).

The cooling frequency should be slightly red of the f4,5′ transition and therefore the f3,4′

light needs to be shifted by a little more than the hyperfine splitting to have the correct fre-
quency. To accomplish this, EOM2 is driven by 9.21 GHz to generate frequency sidebands
on f3,4′ . The carrier and blue sideband are then filtered out by a passively temperature
controlled etalon. The etalon is double passed to increase the filtering and to reduce the
alignment sensitivity to tuning angle. Additionally the etalon is angled such that the reflec-
tions do not couple back into the fiber. The etalon has a thickness of 5 mm and a reflectivity
of 85% and, therefore, has a linewidth of 1 GHz which is large enough that no active sta-
bilization is required to keep the etalon resonant. The filtered light is further frequency
shifted down twice by an acousto-optical modulator (AOM6) running at 130.4 MHz to a
final frequency of f4,5′ − 7.6 MHz and coupled into a fiber.

The light out of the fiber is then sent into the rejection port of an optical isolator and
coupled into a QLD-850-150S laser diode (LD1). If the free running laser diode has a
wavelength close to that of the coupled light, then only a small amount of light is required
to force the laser cavity to oscillate at the injected frequency in a process called injection
locking [74]. This is a useful technique to make a laser run single mode without using a

3The isolator is needed to prevent the spontaneous emission of the tapered amplifier from disrupting the
spectroscopy and laser lock.
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Figure 3.5: Optical setup for the magneto-optical trap frequency generation and laser injec-
tion locks.
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more complex external cavity diode laser. The injection lock works optimally when the
temperature is tuned such that the free running wavelength is within 1 nm of the injected
wavelength. Additionally, adjustments to the diode current change the cavity length and
allow the injected light to have a larger coupling efficiency. Approximately 30-50 µW of
optical power is used to inject LD1 and the diode current wherein the laser is locked has
a range of nearly 1 mA. By running the diode at the center of the current range, small
fluctuations in air temperature and injection power will not perturb the lock, which makes
the technique fairly robust as a passive lock.4 Additionally, the injection frequency can be
changed by a fairly large amount before the lock fails, which allows for frequency switching
of the injected frequency.

A small amount of optical power from the output of LD1 is picked off by AOM7 to be
used as another injection lock, while the majority of the power is coupled into Fiber:2D TA
and sent to the setup in Fig 3.6. Overlapped on this fiber with the opposite polarization is
a small amount of repump light from Fiber:Repump. Approximately 50 mW of combined
cooling and repump light from the fiber output is split 50:50 and amplified by two EYP-
TPA-0850-00500 tapered amplifiers (TA2 and TA3) running at 2.5 amps to a total power
of 600-800 mW. The TA outputs are shaped with cylindrical lenses to an aspect ratio of
4:1 and enlarged to fill the glass cell. Dove prisms are used to rotate the orientation of the
elliptical beams to match the rectangular cell and λ/4 waveplates make the beams circularly
polarized. Although the ratio of cooling and repump light is around 10:1 at the input of the
TA, the nonlinear amplification by the TA chip makes the final ratio difficult to estimate.
Instead, the amount of repump in the 2D MOT is optimized by experimentally varying the
amount of repump overlapped with the cooling light at the polarizing beam splitter cube
with a λ/2 waveplate.

The field needed for the 2D MOT field is generated by two pairs of anti-Helmholtz
coils placed around the cell’s four rectangular windows. Each coil has 120 turns and is
independently run at 1.6 amps. At the center of the cell, the four rectangular coils can be
approximated by eight infinite wires, which gives a magnetic gradient of

∂Br

∂r
=

µ0nIab

π(a2 + b2)2
,

where n is the number of turns, I is the current, 2a is the coil pair separation and 2b is
the diameter of the coil on the minor axis. The coils in the experiment have a = 3.8 cm
and b = 3.2 cm which gives a field gradient of approximately 10 G/cm. In general, the
2D MOT is fairly unoptimized with a trap light detuning of −7.5 MHz and an intensity of
around 3 mW/cm2, but the parameter combination works well enough for our purposes.5

One critical optimization is the alignment of the 2D MOT axis with the differential pumping

4Temperature stabilization/shielding and alignment are fairly critical for reliable operation. Alignment
can be accomplished by sending the small amount of parasitic light that comes out of the rejection port of
the isolator and coupling it back into the fiber. Coupling efficiencies of 50% are fairly typical.

5Curiously, previous configurations used only 0.8 amps in each coil which gives a field gradient that is
more consistent with the observed optimal 3D MOT detuning and gradient.
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Figure 3.6: Optical setup for the two dimensional magneto-optical-trap.
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Figure 3.7: Optical setup for the three dimensional magneto-optical-trap and moving mo-
lasses launch.

tube which can be tuned by changing the power balance of the cooling beams and adjusting
the difference in currents between the coils.

3.3.2 3D MOT

The two-dimensional MOT described above then allows for efficient collection of cesium
atoms in the experiment’s three-dimensional MOT while maintaining an ultra-high vacuum
environment. The laser frequencies needed for the 3D MOT optics are similar to that of
the 2D MOT and are generated by the optical layouts shown in Figures 3.5 and 3.7. The
red-detuned trap light f4,5′−7.6 MHz from LD1 is frequency-shifted down by AOM7 running
at 87.9 MHz and sent into a fiber to facilitate injection locking a second QLD-850-150S laser
diode (LD2). Similar to LD1, approximately 100 µW of laser light is coupled into LD2
through the rejection port of the optical isolator giving the laser a current lock range of 2
mA. The double injection lock scheme (LD1 into LD2) has the benefit of further filtering
of LD1’s output frequency spectrum, which could still have small unfiltered components left
over from the carrier and sidebands of EOM2.
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The laser light from LD2 is overlapped on a polarizing beam splitter (PBS) cube with
some repump light that was deflected by AOM5 running at 80 MHz. The two overlapped,
oppositely polarized beams are then rotated and projected onto a second cube to give them
the same polarization so they can be amplified by a Dilas TA-0850-2000 tapered amplifier
(TA4) shown in Fig. 3.15. The input power to TA4, containing approximately 20 mW
of trap light and 2 mW of repump light, is amplified to a total of 1.3 W when the TA is
running at 3 amps. The tapered amplifier has two important protections which help extend
the lifetime of the diode. First, the output of the TA is sent through an optical isolator
to prevent parasitic reflections from coupling back into the amplifier. The input facet has
a damage threshold of 50 mW and therefore even a small amount of light when amplified
going backwards through the system could easily damage the front facet and destroy the
chip. Additionally, since the TA chip dissipates a significant amount of its power in the
optical field (25%), blocking the seed light could thermally damage the chip. To prevent
this from happening, a small amount of light is picked off the TA input using a glass plate
and sent to an interlock diode (PD3). When the diode detects a drop in optical power, the
MOSFET supplying current to the TA chip is shut off to prevent excess heat from being
generated.

The light from TA4 is coupled into a fiber for mode filtering which gives a total usable
power of 600 mW. For normal MOT operation, the light is then directly coupled into a second
fiber (Fiber:3D MOT) to be used for the six MOT beams. The fiber output containing 300
mW of combined power is then sent through three acousto-optical modulators in series
(AOM8-10) which will provide power to the bottom, top, and side MOT beams. All three
AOMs are driven at 80 MHz bringing the repump back onto resonance and the trap light
to 15.5 MHz red-detuned from f4,5′ . The light from each AOM is coupled into a fiber
splitter and delivered to the main vacuum chamber as six separate beams (as shown in Fig.
3.8), each containing 25 mW of power. The power balance of the splitters is not perfect
and varies between 5-10%, but can be slightly compensated with adjustments to alignment
and polarization of the MOT beams. Each of the six beams is expanded to a waist of
1.6 cm to give an intensity of roughly 5-6 saturation intensities.6 A λ/4 waveplate before
each telescope converts the linear polarization out of polarization-maintaining fibers to the
circular polarization needed for the MOT.

The three-dimensional MOT quadrupole field is generated by two large, 60 turn coils in
an anti-Helmholtz configuration. The coil itself is made out of 6.35 mm thick square hollow
core copper wire, which allows water cooling to run through the length of the coils. The
field gradient generated by an anti-Helmholtz pair is approximately given by

∂Bz

∂z
∼= 3µ0nI

DR2

(D2 +R2)
5
2

along the coil axis, where 2D is the coil separation and R is the coil radius [75]. The

6For the cesium cycling transition of F = 4,mF = ±4 → F ′ = 5,mF = ±5, Isat is approximately 1.1
mW/cm

2
.
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field along the radial direction is simply half that of the axial direction. The coils in the
experiment have a radius of 8.9 cm and a half separation of D = 12 cm, which when driven
in series with 30 amps give a field gradient of 8.6 G/cm.

In a typical experimental run, the 3D MOT is loaded for 0.99 s, at which point the light
for the 2D MOT (TA2-3) is shut off with two mechanical shutters. This allows the atoms in
the 3D MOT to come into equilibrium without the introduction of new hot atoms from the
atomic beam. It is estimated that the MOT loads between 109 and 1010 atoms; however the
exact number was never calibrated.

3.3.3 Optical Molasses

Once the 3D MOT has been loaded with atoms for 1.00 s, the large magnetic field from
the coils is shut off by turning off two 100 amp MOSFETs which act as switches for the
MOT supply current. As the vacuum chamber is made primarily of steel, the large change
in magnetic flux from shutting off the coils induces eddy currents in the chamber walls that
last for many milliseconds. These eddy currents generate secondary magnetic fields and field
gradients which would interfere with the cooling stages that come after the MOT. Therefore
a molasses is kept on for 30 ms to prevent the atoms from escaping the trap region while the
eddy current fields decay. This stage does not need to be optimized at all for temperature
as the moving molasses launch that follows the will heat the atoms.

3.4 Atomic Fountain

In order to gain a longer force-free interaction period for interferometry measurements, the
atoms are launched into the vacuum chamber as an atomic fountain. This increases the
free-fall time by a factor of two (over a simple drop given the same chamber dimensions),
at the cost of a higher experimental complexity. The easiest method to create an atomic
fountain is with a moving molasses [76] which can be accomplished by slightly modifying
the optical molasses setup in Section 3.3.3. Other methods of launching atoms such as
with Raman sideband cooling [77] and optical lattices [78–80] have the benefit that they
can simultaneously cool (or at very least not heat) the atom sample, but have diminished
efficiency in our experiment since the lattices must be retro-reflected due to limited optical
access. A retro-reflected lattice configuration which accelerates atoms from rest would also
include a lattice traveling in the other direction, which would transport atoms in the wrong
direction.

When an atom is cooled in a red-detuned one-dimensional optical molasses, the equi-
librium point for the atom is when the scattering from the counter-propagating beams are
balanced. If one of the molasses beams is increased in frequency while the other is decreased,
then the atom will experience an effective force from the more resonant laser field as the
atom begins to scatter more photons. As the atom increases in velocity, the two molasses
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beams will be Doppler shifted, f ′ = (1 + vz/c)ftrap, until the atom is at a velocity where the
two molasses beams have the same apparent detuning in the frame of the atom.

For a cross configuration where the two upper molasses beams are pointing down at ±45
degrees and the two lower beams are counter-propagating to the upper beams, then the
vertical equilibrium velocity vz is equal to

(1− vz√
2c

)(ftrap + ε) = (1 +
vz√
2c

)(ftrap − ε),

which simplifies to vz =
√

2cε/f , where 2ε is the frequency difference between the upper
and lower beams and c is the speed of light. The factor of

√
2 is due to the Doppler shift

only applying to the velocity component along the 45 degrees beams. For a cesium trap
frequency near the cycling transition frequency of f4,5′ , the moving molasses launch gives a
launch velocity of approximately 1.2 m/s × (ε/MHz).

While an optical molasses has a theoretical cooling limit of the Doppler temperature,
a subtle cooling mechanism called polarization gradient cooling [81–84] helps significantly
decrease the final atom fountain temperature. For a one-dimensional optical molasses with
counter-propagating beams along the z-axis and orthogonal σ+σ− polarization, the electric
fields interfere locally to create a linear polarization pointing in the x-y plane. In addition,
the angle of this local polarization rotates along the z-axis linearly with the z-coordinate.
If the external magnetic field is zero, then the polarization of the optical field defines a
quantization axis for the atom’s magnetic sublevels. As an atom travels along the z-axis in
which the polarization rotates, the mF quantum number is no longer a conserved quantity
and therefore the magnetic sublevel populations will mix.

The energy of each magnetic sublevel in the absence of external fields is given by the
ac-Stark shift caused by the molasses light fields. The energy shift to the ground state7

magnetic sublevels caused by a red-detuned laser beam is given by

∆EmF =
∑
m′F

~
2

([
C2
mF ,m

′
F

I

Isat

Γ2

2
+ ∆2

] 1
2

−∆

)
,

where CmF ,m′F is the Clebsch-Gordan coefficient between ground and excited state and ∆ is
the single photon detuning [82, 85]. This creates a parabolic energy shift on the magnetic
sublevels, with the mF = 0 state having the lowest energy. As an atom is excited by the
σ+σ− polarized light, the atom will tend to decay into a lower |mF | state, reducing the
atom’s total energy. As the atom moves along the z-axis and the sublevels mix, the atom
will gain potential energy since the populated low energy |mF | states mix into higher energy
sublevels. The atom is then pumped by the field back into a lower energy sublevel removing
energy from the system and, thus, cooling the atom.

Polarization gradient cooling only works if the rate at which the atom is pumped is
much slower than the time it takes for the states to mix, otherwise the magnetic sublevels

7The shift to the excited state is equal to ∆Em′
F

=
∑
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~
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adiabatically follow the polarization and energy is lost. Therefore the time it takes for an
atom to travel a quarter optical wavelength,8 τv = λ/4v, should be much longer than the
pump time

τsc = R−1
sc =

[(
Γ

2

)
s

1 + 4(∆/Γ)2 + s

]−1

,

which gives a bound on the one-dimensional temperature of

Tpgc >
m

kB

(
sΓλ

8(1 + 4(∆/Γ)2 + s)

)2

,

where λ is the wavelength of cooling light, m is the mass of the atom, and s = I/Isat is
the saturation parameter. Since the minimum temperature is inversely proportionally to the
scattering rate Rsc, polarization gradient cooling works better when lowering the intensity
and increasing the detuning compared to a molasses.

Even though the polarization gradient cooling (PGC) mechanism applies in the moving
optical molasses and in the magneto-optical trap [86], the optimal parameters for PGC are
very different. The MOT is generally optimized for loading rate, while the moving molasses
needs to change the trapped atom’s velocity very quickly for an efficient launch since the
beams have finite size. For this reason the PGC is generally applied as a second stage during
the launch and not combined with the moving molasses.

3.4.1 Moving Molasses

After holding the trapped atoms in the optical molasses for 30 ms, the magnetic fields are
sufficiently small to proceed with the moving molasses launch. It is important to minimize
the stray fields in the molasses region since magnetic gradients will apply a force on the
atom’s magnetically sensitive sublevels which could interfere with the launch direction. In
addition, the polarization gradient cooling applied immediately afterwards requires a zeroed
magnetic field.

The moving molasses uses the same optics as for the stationary molasses, with the fre-
quency of the top and bottom molasses beams shifted by the acousto-optic modulators in
Fig. 3.7. The top molasses beams are frequency shifted −ε MHz by changing AOM8 from
80 MHz to 80 MHz − ε, while the bottom beams are shifted by +ε MHz using AOM9. In
order to shift the frequency of the AOMs using a single turnable source, a direct digital
synthesizer (DDS) frequency generator is combined with a 80 MHz crystal source as shown
in Fig. 3.9. Both the 80 MHz crystal and the launch shift frequency ε are split into quadra-
ture components and mixed to create a pair of frequencies at 80 MHz + ε and 80 MHz− ε.
The two outputs are filtered with phase-locked voltage controlled oscillators and amplified
before driving the acousto-optic modulators. The phase-lock loop allows a smooth transition
between the 80 MHz frequency of the stationary molasses and the shifted frequency of the

8At higher velocities, the Doppler molasses cooling mechanism takes over.
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Figure 3.9: The electronics used to switch from the stationary optical molasses to the moving
molasses launch. The dashed circle is a modified double balanced mixer with both IF port
outputs and the dashed rectangles are phase-locked voltage controlled oscillators.

moving molasses. Additional tunable attenuators (not shown) before the amplifiers allow for
adjustment of the AOM RF power to tune the deflection efficiency and balance the three
beam pairs.

For the cross configuration used in the experiment, a typical shift of ε = 4 MHz gives
a moving molasses traveling at approximately 4.8 m/s vertically. This gives one second of
free-fall time, 500 ms of which are inside the magnetically shielded interferometer region.
One important factor to take into account when changing the frequency of an acousto-optic
modulator is the change in deflection angle. The angle between the zeroth order and the
plus/minus order is given by

θa =
λfa
Va

,

where λ is the wavelength of the laser light, fa is the AOM driving frequency, and Va is
the speed of sound in the AOM crystal [87]. Since the outputs of AOM8 and AOM9 are
fiber coupled, a change in the drive frequency will cause the deflection angle to also change,
reducing the fiber coupling efficiency. If the divergence of the Gaussian beam, θ ' λ/πw0, at
the center of the AOM crystal is much larger than the change in deflection angle, then the
two beams are indistinguishable and will have approximately the same coupling efficiency.
Therefore the waist of the laser beam should be focused to

w0 �
Va
πε
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at the center of the AOM for optimal coupling. The modulators in the experiment use
TeO2 crystals9 and therefore a 4 MHz frequency shift requires a waist of much less than 300
µm. A smaller waist also decreases the maximum deflection efficiency of the acousto-optic
modulator, so a compromise must be made when designing the optics. Both AOM8 and
AOM9 use a f = 150 mm telescope to focus the laser at center of the crystal, as shown
in Fig. 3.7, which gives a waist of approximately 80 µm. The side MOT/molasses beams
created by AOM10 do not need to change in frequency and therefore are created with a
f = 400 mm telescope, which gives a waist closer to 200 µm.

The coupling efficiency for the shifted beams are still not perfect and differ by about 10%
when optimized for one of the frequencies. To make the coupled power for both frequencies
the same, the fiber coupling is optimized by switching between the two frequencies and
aligning the fiber such that both frequencies have the same coupling loss.

3.4.2 Polarization Gradient Cooling

After 2 ms in the moving molasses, the laser intensity is reduced and the detuning is increased
to cool the atoms with polarization gradient cooling. The detuning is increased from −15.5
MHz to −44.3 MHz by changing the frequency of AOM7 to 116.0 MHz. The change in
deflection angle caused by the frequency switch is compensated by the double-pass AOM
configuration [88]. Additionally, the injection lock of LD1 is mostly insensitive to small
changes in optical power which facilitates switching between different laser detunings.

The intensity of the molasses beams is also reduced by a factor of 2-3 to further reduce
the atom temperature. While one option to lower the intensity is to reduce the drive power to
AOM8-10, this has the disadvantage that the three modulators are in series. Thus reducing
the deflection efficiency on one increases the power deflected by those downstream. Instead,
the current to TA4 is reduced to decrease the overall amplification of the molasses light. In
order to protect the TA chip from current spikes during switching, a MOSFET is driven in
parallel with the TA diode. During normal operation, the transistor is switched off allowing
all the current to run through the diode. When the gate of the MOSFET is driven slightly
open, current is drawn from the current source, thereby reducing the current available to the
TA. The gate voltage of the MOSFET is controlled by a DDS arbitrary waveform generator
which allows the intensity reduction to be programmed and ramped.

The polarization gradient cooling stage lasts for 1 ms, at which point the intensity is
ramped off adiabatically in 500 µs by reducing the TA current to zero. This further cools
the cloud by adiabatically releasing the atoms from the moving molasses lattice [89]. In the
end, the final temperature of the atom sample is 1-2 µK as measured by time-of-flight, as
described in Section 3.5.1.

It is fairly critical that the magnetic field be zeroed for the PGC cooling to work well;
therefore, three orthogonal Helmholtz coil pairs are placed around the main chamber which
are used to trim any residual magnetic fields. The bias coils need to be tuned often as the

9Speed of sound in TeO2 is 4200 m/s.



CHAPTER 3. ATOMIC SOURCE 75

stray magnetic fields in the lab can change as equipment is moved and nearby experiments
modify their setup. Additionally, the ion pump which is used to maintain the UHV is placed
as far away from the MOT region as possible since it contains large permanent magnets
which generate magnetic fields/gradients in region surrounding the pump.

3.5 Detection

As the atoms are launched vertically through the vacuum chamber, they pass twice through
a detection region that can be used to measure the interferometer outputs as well as charac-
terize the atom cloud. Since the sample can expand considerably during the free-fall time,
the final density can be quite low and therefore a sensitive detection scheme is needed to
measure the atoms. As the atoms fall through the detection region, they are illuminated
by a sheet of laser light perpendicular to the atom’s trajectory as shown in Fig. 3.8. The
light sheet is resonant with a cycling transition of the atoms, causing the atoms to scatter
photons isotropically which are collected by a lens system and either imaged onto a camera
or detected by a photodiode/photomultiplier tube.

Even though a camera has the advantage of spatial resolution, it ends up being less
practical than a simpler photodiode setup. This is mainly due to the low cloud density
which gives a poor per-pixel signal-to-noise. This can be overcome somewhat by binning
the camera pixels, but still requires image quality optics which are expensive and difficult to
make as large as simple collection optics. Additionally, the atom cloud is traveling quite fast
through the detection region (approximately 4 m/s), which will blur the image vertically
even for short exposure times. Complicating matters further, the different interferometer
outputs are spatially separated by several centimeters, making it hard to image everything
onto a single CCD. Therefore a simple photodiode setup is used in combination with fairly
large condenser lenses as shown in Fig. 3.10.

A pair of large 100 mm diameter, f = 100 mm lenses collect the atomic fluorescence
and focus the light onto a FDS100 silicon photodiode (PD4) which is amplified with a
transimpedance amplifier [90]. Since the photodiode does not have the inherent spatial
selectivity of a camera image, spatial filtering techniques are used to detect only the central
atoms in the cloud (which will be important for systematics, see Section 5.4.2). A pinhole is
placed at the focal plane of the condenser lens system using a 3-axis translation stage to limit
the x-z components of the detected fluorescence. The transverse component is also filtered
to a lesser extent since the focal point varies with z positions in the cloud and some of the
diverging light is blocked. To increase the y-axis and z-axis selectivity, the 3.9 mm waist
detection beam is truncated with a rectangular pinhole to approximately 4 mm × 600 µm
(which also increases the intensity uniformity across the light sheet).

The detection light is resonant with the F = 4 → F ′ = 5 cycling transition and is
derived from the same light as the trapping light for the magneto-optical trap and molasses.
To switch on the detection light, acousto-optical modulators AOM8-10 are switched off and
AOM11 is turned on, diverting light to the detection fiber. Since intensity noise on the
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Figure 3.10: Optical setup for the atom detection and Raman sideband cooling.

detection beam will translate to noise in the fluorescence signal, the detection light out of
the fiber is intensity stabilized by detecting a small fraction of the light (PD5) and feeding
back to AOM11. The detection light is converted to circular polarization and retro-reflected
with the opposite polarization. This creates a 1D molasses in the detection region which
prevents the atom cloud from being pushed sideways during detection.10 As with the MOT
and optical molasses, repump light from AOM5 is mixed with the detection light to prevent
atoms from being pumped to a dark state which would reduce the fluorescence signal. The
entire detection region is then covered by a laser blackout material to reduce the background
signal from the room lights and stray scattered laser beams. Additionally, the photodiode is
covered by an optical long-pass filter which blocks most visible light.

Estimating the atom number : It is fairly straightforward to estimate the number of atoms

10If the detection beam is too strong, a vertical trap can be accidentally formed which reduces the z
selectivity of the detection (and should be avoided).



CHAPTER 3. ATOMIC SOURCE 77

in the detection region from the fluorescence signal by taking into account the geometry of
the system and the gain of the detector. If the detection beam is on resonance, the atoms
will scatter photons at a rate of

Rsc =

(
Γ

2

)
s

1 + s

which simplifies to Γ/2 for the large saturation parameters typically used in the experiment.
The photons scatter into a full 4π solid angle and are collected by the 50 mm radius, 100
mm focal length condenser lenses which gives a collection efficiency of

Ω ∼= πr2

4πf 2
,

where 4πf 2 is the surface area of a sphere with a radius equal to the lens focal length and
πr2 is the surface area of the lens. Taking into account the quantum efficiency η of the
photodiode and the transmission coefficient T of the filter, the total current generated by
the photodiode is

Id = qη ·Rsc · ΩT,
where q is the elementary charge of an electron. The photocurrent from PD4 is amplified
with a transimpedance amplifier with a 2 GΩ feedback resistor resulting in a voltage output
per atom of Vatom = IdRf . Therefore for a signal size equal to Vsignal, the number of detected
atoms is approximately

Natoms = Vsignal [Rf (qη ·Rsc · ΩT )]−1 .

This gives an atom number of 5500 atoms/V with a photodiode efficiency of 0.55 amps/watt
(η = 0.8 at 852 nm) and a long-pass filter transmission of 70%. The large feedback resistor
on the amplifier also amplifies the dark current of the photodiode, causing a 200 mV offset
that needs to be accounted for.11 Additionally, to prevent saturation of the photodiode when
measuring atomic fountain diagnostic signals (basically everything except the final velocity
selected signal and interferometry), a neutral density filter is placed in front of the diode to
reduce the incoming light by a factor of roughly 130.

3.5.1 Time-of-Flight

One useful characterization of the atomic sample that can be performed with this detection
configuration is an estimation of the atom cloud temperature. After the atoms are released
from the moving molasses, the cloud will begin to expand as the atoms ballistically fly
away from each other due to their non-zero thermal velocity. Assuming the atoms are

11Without the neutral density filter, the background can be significantly larger than the 200 mV dark
current offset due to scatter from the detection beam off the chamber and windows.
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approximately thermalized during the cooling stages, then the atoms will have a velocity
distribution (in a particular dimension) equal to a Maxwell-Boltzmann distribution

f(v) =

√
m

2πkBT
e−mv

2/2kBT ,

where kB is the Boltzmann constant, T is the thermodynamic temperature of the ensemble,12

and m is the mass of the particles. Given an initial atom density ρ0(z) along the vertical
axis, the density ρ(z, t) at some later time t can be calculated by considering the velocity
distribution at each point in space.

In order for atoms to end up at position z at a time t, they must have originated from a
position z′ with a velocity v = (z − z′)/t. The distribution of atoms f(z, v, t) is then given
by integrating the initial density over all possible starting positions, weighted by the velocity
distribution, with the restriction that vt = z − z′:

f ′(z, v, t) =

∫ ∞
−∞

f(v)ρ0(z′)δ(z − z′ − vt)dz′,

where δ(z) is the Dirac delta function. If the initial density is assumed to be Gaussian,

ρ0(z) = N(2πσ2
z)
− 1

2 exp(z2/2σz), then the integral simplifies to

f ′(z, v, t) =
N

2πσ

√
m

kBT
exp

(−mv2

2kBT
− (z − vt)2

2σ2

)
,

where N is a normalization factor. Integrating again over every possible velocity gives the
atom number density

ρ(z, t) =

∫ ∞
−∞

f ′(z, v, t)dv

=
N√

2π(σ2 + kBTt2/m)
exp

(
− z2

2(σ2 + kBTt2/m)

)
(3.1)

as a function of the time t after releasing the atoms. With knowledge of the initial cloud
size and the expansion time, (3.1) shows that the temperature can then be deduced via a
measurement of the expanded cloud’s Gaussian width: σ2 = σ2

0 + kBTt
2/m. Since the initial

cloud size is typically not well known, a time-of-flight measurement is performed at two
separate times which allows us to solve for both the temperature and initial size.

As the atoms are launched vertically in a parabolic arc, one measurement is performed
at a time t1 when the atoms are traveling up and again at a time t2 as the cloud falls
back through the detection region. The two measurements are performed with separate

12Note that the temperature can be different in each dimension depending on how the cooling thermalizes
the sample.
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Figure 3.11: A sample time-of-flight signal. The blue dots show the florescence signal for
the upwards moving cloud (first fountain), while the red dots show the downward moving
fluorescence signal (second fountain). The time offsets for each signal are arbitrary and the
black lines indicate Gaussian fits.

launches as each detection heats the atoms significantly. While there are more complicated
time-of-flight temperature measurements that only use a single detection stage [91], multiple
measurements are easier to measure and interpret. For simplicity, assume that the atom cloud
does not expand as it traverses the detection beam, which is valid for traversal velocities vd
much greater than the expansion rate. Since the atom trajectory is parabolic, the atoms will
have the same vertical traversal speed vd during both detections and, thus, the measured
temperature can be calculated as

T =
m

kB

v2
d(σ

2
t2
− σ2

t1
)

(t22 − t21)
,

where σt is the temporal Gaussian width of the detected fluorescence signal.
An example time-of-flight measurement for a PGC cooled sample is shown in Fig. 3.11.

The fluorescence of the upward moving cloud (shown in blue) has a fitted Gaussian width of
σt1 = 0.68 ms and is measured t2 = 88.7 ms after being released from the moving molasses.
Similarly, if the falling cloud (shown in red) is fitted to a single Gaussian, then the fitted
width is σt2 = 2.63 ms when measured at t2 = 892.3 ms. The traversal velocity through the
detection region is approximately 4 m/s, which would give a measured temperature estimate
of 2 µK. However, a single Gaussian gives an extremely poor fit for the downward moving
fountain signal as can be seen in Fig. 3.12 and it is possible that the cloud contains a mixture
of two temperature distributions which can be fitted with a double Gaussian instead. The
double Gaussian fit has widths equal to 1.44 ms and 4.12 ms giving estimated temperatures
of 500 nK and 5.2 µK respectively, with approximately 30% of the atoms in the colder state.
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Figure 3.12: The downward moving fluorescence signal (second fountain) fitted to a single
Gaussian (left) and a double Gaussian (right).

Atom Number Conservation: While it might be worrying that the two fountain signals in
Fig. 3.11 clearly do not have the same integrated atom number, this is simply a consequence
of the finite detection volume. The expanded cloud’s 1σ radius is approximately 1 cm from
the time-of-flight signals, which if the cloud is spherically symmetric, is much larger than
the 4 mm wide detection beam (let alone the pinhole). By taking into account the relative
signal sizes of the first and second fountain and the expansion of the cloud, an upper bound
can be placed on the detection volume of (6 mm)2 × 600 µm, assuming the center of the
cloud is detected.

3.6 Raman Sideband Cooling

Despite the microkelvin temperatures achieved by polarization gradient cooling, the atom
cloud is far from an ideal source for atom interferometry. The populations of the various
magnetic sublevels in the atoms are equally distributed which is problematic for systemat-
ics, requiring a state selection step (see Section 4.2) to select out atoms in the magnetically
insensitive mF = 0 state. For atom species with large nuclear spin (such as cesium), the
ground states have a large number of possible magnetic sublevels due to the large total an-
gular momentum F = J + I. Since the cesium atoms are in their F = 4 ground state after
PGC, selecting only the mF = 0 state would reduce the atom signal by a factor of 8/9. Ad-
ditionally, microkelvin temperatures still cause the atom cloud to expand at a rate of nearly
1 cm/s, which results in loss of contrast and signal-to-noise as the atoms move transversely
out of the interferometer beams. This velocity spread is also problematic for implement-
ing Bragg diffraction (which requires sub-recoil velocity distributions), necessitating further
signal loss with a velocity selection stage as described in Section 4.3.

In order to increase the signal-to-noise of the interferometer, the launched atoms are
trapped in a moving optical lattice and cooled with Raman sideband cooling. While the
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detailed theory of Raman sideband cooling [92] is beyond the scope of this thesis, some
important details are described herein for cooling in a single dimension. If an atom is
trapped in a far detuned one-dimensional optical lattice with a trapping potential equal to

Ulattice = −~
4

Γ2

∆

I

Isat

sin2(kz)

then the potential minimum can be approximated as having energy levels given by a harmonic
oscillator with energy splittings

∆Evib = ~ωvib

= ~

√
ωrΓ2

∆

I

Isat

,

where ∆ is the nominal detuning from the D2 hyperfine states, I/Isat is the saturation
parameter, k is the wave-vector of the optical lattice, and ωr is the recoil frequency ~k2/2m
of the trapped atom with mass m [93]. If an external magnetic field is applied to the atom,
then each mF state will have a different vibrational energy spectrum as shown in Fig. 3.13.
If the Zeeman splitting ∆EB = gµBB is equal to the lattice vibrational energy splitting
∆Evib, then atoms can be driven between adjacent mF states by changing its vibrational
quantum number ν through degenerate Raman transitions.

For compactness, the lattice beams themselves are used to drive the degenerate Raman
transitions and therefore a careful choice of magnetic field direction and lattice polariza-
tion is necessary to ensure that the Raman coupling between |mF , ν〉 and |mF − 1, ν − 1〉
is non-zero. For an optical lattice created by two counter-propagating beams whose linear
polarizations subtends an angle α, the coupling matrix element is proportional to

〈mF , ν|Ulattice |mF − 1, ν − 1〉 ∝ sinα sin β,

where β is the angle the magnetic field makes to the wave-vector k [94]. Therefore in order to
have degenerate Raman coupling, the polarization of the two fields that make up the optical
lattice cannot be the same (α = 0) or orthogonal (α = π/2), as the former has zero coupling
and the latter does not form a standing wave.

Cooling is performed by weakly pumping the atoms with σ+ polarized light along the
closed |F = 3,mF 〉 → |F ′ = 2,mF + 1〉 transition. If the lattice is deep enough such that
the atoms are tightly bound, then spontaneous decay will conserve the atom’s vibrational
quantum number and remove energy from the system. As shown in Fig. 3.13, an atom
pumped from the |mF = 1, ν〉 state will preferentially decay to the |mF = 3, ν − 2〉 state,
removing two quanta of energy.13 Atoms that accumulate in the |mF = 3, ν = 0〉 state are

13The relative decay rates into other mF state are given by the Clebsch-Gordan coefficients. Since the
atom can at worst decay back to the same mF with zero change in energy, cooling of all states will eventually
take place.
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Figure 3.13: Energy diagram for the different states used in Raman sideband cooling. Each
mF state is shifted in energy by the Zeeman splitting ∆EB and the vibrational levels of the
lattice are split by ∆Evib. Degenerate Raman transitions are represented by black arrows,
while optical pumping (solid) and decay (dashed) are shown with red arrows.

dark since they cannot be optically pumped by f3,2′ due to the lack of a mF = 4 state in
F ′ = 2, nor coupled by the Raman transitions since all other states have higher energy. To
prevent |mF = 2, ν = 0〉 from also being dark, the pump beam is slightly misaligned from the
magnetic field axis so that there is a small amount of π polarized light which can optically
pump the state.

The atoms will continue to be cooled into lower lattice vibration until they reach equi-
librium with the heating caused by any parasitic σ− pump polarization and the far detuned
single photon scattering of the lattice beam

Rsc =
Γ3

8∆2

I

Isat

.

In order to reduce single photon scatter, the lattice detuning ∆ can be made arbitrary large.
However, it is convenient to use a frequency of f4,4′ for the lattice beams (which has a
detuning of 8.8 GHz) as it also serves to pump atoms into F = 3, which is the hyperfine
state required for cooling. Once the atoms are sufficiently cooled and optically pumped into
the |mF = 3, ν = 0〉 state, the lattice is adiabatically turned off. This lowers the energy of
the bound vibrational states which cools the trapped atoms further [89].

The optical lattice can be extended to three dimensions by adding two additional running
waves along the other two axes [95], which allows for Raman sideband cooling (RSC) in all
directions. Compared to previous 3D RSC experiments [77, 96], our setup is complicated
slightly by the need to have the ẑ RSC beam circularly polarized as it originates from the
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Figure 3.14: Diagram showing the relative polarizations and orientations of the Raman
sideband cooling beams, optical pumping beam, and magnetic field.

same optics as Bragg diffraction (which requires circular polarization); see Figures 3.8 and
4.3. This means that unlike previous experiments, the lattice beams cannot be all linearly
polarized with electric fields which all lie in the same plane. Instead, with the ẑ lattice beam
being circularly polarized in the x-y plane, the ŷ beam is chosen to be linearly polarized
along x̂ and the two counter-propagating x̂ beams are linearly polarized at a relative angle
α2 − α1, as shown in Fig. 3.14.

The lattice beams in the experiment are derived from the same laser frequency as po-
larization gradient cooling. The x-y Raman sideband cooling lattice light is generated by
AOM13 driven at 120.370 MHz as shown in Fig. 3.15, which shifts the laser frequency to
f4,4′+6.3 MHz. The z RSC light comes from AOM14 driven at 115.795 MHz which is coupled
into Fiber:z-RSC and then again into the main Bragg fiber in Fig. 4.3. The ẑ lattice light is
red-detuned compared to the x-y lattice beams to compensate for the Doppler shift of the
launched atoms and to create a lattice moving vertically at approximately 4 m/s. Since the
ẑ lattice optical path is retro-reflected in the chamber, there is necessarily a second parasitic
lattice moving downwards against the atom trajectory. Assuming the launch speed is fast
enough, the atoms will not be loaded into the second lattice and will instead interact with
the time averaged light field which should not interfere too much with cooling.

The optical pumping light comes from a polarizing beam splitter pickoff before the spec-
troscopy fiber in Fig. 3.3, shifted down 65.0 MHz by AOM4 to f3,2′ + 5.2 MHz, and coupled
into Fiber:Cooling Beam. The optical pumping frequency is purposefully chosen slightly
off-resonance to allow for easier tuning of the pump rate without dealing with incredibly
small optical intensities.

The atoms are loaded into the 3D lattice about 1 cm above the detection region and
approximately 40 cm above the MOT location as shown in Fig. 3.8. To increase the time
the atoms spend in the optical lattice as the atoms move upwards, the horizontal lattice
beams are expanded vertically to a waist of 12 mm with an intensity equal to ∼75 mW/cm2.
The lattice beams are also sent into the vacuum chamber at about 5 degrees from normal
incidence to prevent parasitic etalons from forming between the window surfaces. The ẑ
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Figure 3.15: Optical setup for the Raman sideband cooling frequency shifting and main
Tapered amplifier.

lattice beam has a waist of 6.2 mm with an intensity of ∼100 mW/cm2 and is sent through
the bottom of the chamber to be retro-reflected off the top mirror (since only the downwards
going beam contributes to RSC). Lastly, the optical pumping beam’s polarization is purified
with a high extinction Glan-Taylor polarizer, expanded to a waist of 1 cm with an intensity
of 100 µW/cm, and made circularly polarized with a high quality zero-order λ/4 waveplate.
To adjust the magnetic field in the RSC region, three pairs of Helmholtz coils around the
detection region are used to simultaneously zero the field and apply a small bias in the ŷ
direction for the optical pumping.

The timings for turning on the RSC lattice and the optical pumping beam, as well as the
ẑ lattice Doppler detuning, are critical to efficiently load the atoms into the optical lattice.
With the repump light from AOM5 turned off, the optical lattice and optical pumping
beam’s are turned on at 1.1233 s (90.3 ms after the atoms are adiabatic released from the
moving molasses). The atoms are then cooled for 2.8 ms, at which point the optical pumping
beam is turned off and the lattice is adiabatically ramped off over 400 µs by decreasing the
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Figure 3.16: The time-of-flight signal of a Raman sideband cooled sample (blue) compared
to a sample that has only been cooled by polarization gradient cooling (red). The black
line is a fit to a double Gaussian function, which corresponds to an atom sample at 330 nK
overlapped with a much hotter background cloud.

amplification of the tapered amplifier (by reducing the TA current).
As can be seen in Fig. 3.16, the cooled atoms (blue) arrive at the detector slightly later

since they were unaffected by gravity while trapped in the constant velocity optical lattice.
By fitting two Gaussians to the time-of-flight signal, we can estimate the temperature of the
colder ensemble at 330 nK with a cooled fraction of 50%. For comparison, the recoil limited
temperature for cesium is

Tr =
~2k2

2mkB

≈ 100 nK.

It should be noted that since the Raman sideband cooling is performed above the detection
region, it is not possible to do a two-point time-of-flight measurement. Instead, it is assumed
that the entire vertical extent of the upward moving sample is cooled equally so that the
same initial width can be used for the estimate. Some of the initial cloud width might be
cut off in practice, which would imply a higher actual temperature.

3.6.1 Rapid Adiabatic Passage

Since the atoms are mostly in the mF = 3 state after Raman sideband cooling, they must first
be transferred to the mF = 0 state before interferometry can be performed. While successive
Raman or microwave transitions could be used to drive the atoms down into progressively
lower mF states, a more efficient technique is to use rapid adiabatic passage (RAP) [97]
where a high power microwave source capable of driving hyperfine transition is slowly swept
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down in frequency through the possible mF transitions. When the Rabi frequency driving
the hyperfine transitions is much faster than the microwave frequency ramp rate, then the
atoms will be transferred to the final end state with a theoretical 100% efficiency.

If the atoms are to be transferred to the correct mF state for interferometry, the magnetic
quantization axis of ŷ for RSC must first be rotated to align with the interferometer z-axis
by switching the Helmholtz bias coils to apply a large bias field in the ẑ direction. Since the
drivers for the coils are somewhat slow, the magnetic field rotation is quasi-adiabatic and the
atoms stay in the mF = 3 state for the most part. A 10 watt traveling-wave tube amplifier
is used to amplify a dielectic resonant oscillator (DRO) which is phase locked to +900 kHz
above the cesium hyperfine frequency fhf = 9.192631 GHz. The amplifier is connected to
a microwave horn which produces free space radiation that drive transitions in the cesium
atoms. At 1.129 s, approximately 2 ms after the field is switched, the DRO frequency is
swept down at a rate of 230.8 kHz/ms to a final frequency of fhf − 121 kHz over 5 ms. This
transfers approximately 70% of the atoms into the F = 4,mF = 0 state, which is probably
limited by the random polarization of the microwave horn and imperfect initial mF = 3 state
occupation.
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Chapter 4

Coherent Manipulation

4.1 Ti:Sapphire Lasers

Historically, the coherent manipulation of atom states and momentum in atom interferome-
try has been accomplished with two-photon Raman transitions between two ground states.
While the frequency stability requirements for these kinds of experiments are strict, the
power needs are fairly minimal with simple ECDL diode lasers supplying enough power for
very high precision measurements [7]. If more laser power is required, tapered amplifiers
have even been used to boost the reach of these laser systems [98].

The multi-photon nature of Bragg diffraction requires a different approach to the laser
system as the optical intensities needed are significantly higher than for Raman, as discussed
in Section 2.5. The power requirements are compounded by the need for larger detunings
to minimize the single photon scattering (which can lead to the degradation of signal-to-
noise). Some atomic species allow the luxury of using frequency doubled fiber lasers, some
of which can output over 10 watts of optical power at 780 nm [99,100] for experiments with
rubidium. Unfortunately, high power fiber lasers at 1704 nm or 1788 nm (twice the D1

and D2 transition frequency in cesium) are still in the experimental stages [101], as is the
doubling of such lasers [102]. Recently, high power tapered amplifiers with 3 watts of output
power have become available at 852 nm, but these could potentially have deleterious effects
on interferometry due to amplified spontaneous emission [103].

Instead, two solid state titanium-doped sapphire lasers are used to drive the Bragg beam
splitters and the various required Raman pulses. A Coherent 899 Ti:Sapphire laser is pumped
by a 10 watt Coherent Verdi V10 DPSS laser, outputting around 700 mW of single frequency
laser light at 852 nm. A small amount of light is picked off at the output and sent to
an external cavity to stabilize the laser wavelength as shown in Fig. 4.1. For precision
interferometry, the laser frequency needs to be accurately referenced to an absolute optical
frequency with a sufficiently large detuning from any atomic transition as to limit single
photon scattering. Since our absolute frequency reference is tied to the spectroscopy, an
offset lock is used to shift the frequency many gigahertz away from the D2 line [104,105]. A
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small amount of light from the reference laser is coupled into a fiber (Fiber:Phase Lock) and
combined on a partially reflecting mirror with some 899 light to create a beat note of the
frequency difference. The combined light is coupled into a fiber (Fiber:Detector) which is
connected to a Newport 1544 IR photodetector. The detected beat signal is mixed with an
Agilent Microwave synthesizer, amplified, low pass filtered, and then sent to the main 899
locking circuit.

The locking circuit takes the beat signal and an external frequency source, divides them
both by 32, and then compares the relative phases of the two signals with a digital phase
detector. The error in the phase difference is used to feedback to the 899 laser and reference
cavity, thus phase locking the laser to an absolute frequency reference (the spectroscopy).
The frequency division step is critical as a 1:1 phase lock would be unstable due to the slow
feedback mechanisms available for locking the 899 laser. The external frequency is supplied
by a direct digital synthesizer (DDS) to give the flexibility of making small changes to the
absolute laser frequency without changing the microwave synthesizer. The free running 899
laser has a linewidth of 150-200 kHz and a locked linewidth of 400 kHz, as measured by an
optical delay line.

In order to amplify the 899 Ti:Sapphire light from hundreds of milliwatts to the several
watts that are needed for the experiment, the light is injected into a stripped-down M Squared
SolsTiS Ti:Sapphire laser. Since most of the loss in a Ti:Sapphire laser comes from the etalons
needed to make the laser run single mode, removing these elements significantly increases the
available output power. To force the laser to still lase at a single frequency, approximately
500 mW of 899 light is coupled into the laser to force stimulated emission at the injection
wavelength. Unlike a tapered amplifier, the SolsTiS is still a laser cavity and thus must be
locked to the injected light to get significant coupling into the cavity. Typical cavity locking
schemes either involve modulating the cavity length, or generating frequency sidebands on
the incoming laser frequency and measuring the transmission or reflection [106] to generate
a locking error signal. These methods are unsuitable for this situation as they would create
frequency sidebands on the laser output which would interfere with the experiment.

Instead, the cavity of the SolsTiS is stabilized using polarization spectroscopy [107] of the
injected light reflecting off cavity’s output coupler. In the original paper by Hänsch, a linear
polarizer was placed inside a bow tie cavity at an angle θ relative to the linearly polarized
input light. The uncoupled light reflecting off the cavity interferes with the circulating light to
form a slightly elliptically polarized output. The magnitude and direction of the ellipticity
is a function of the mismatch between the input laser frequency and the cavity length.
Therefore by analyzing the polarization of the output light, an error signal is generated
which can be used to lock the cavity. Instead of inserting a polarizer into the SolsTiS laser
cavity, the input polarization is rotated by a small angle θ away from the polarization axis
of the free running laser. The Brewster angle of the Ti:Sapphire crystal then provides a
small amount of loss for the off-axis polarization component similar to the polarizer in the
original paper. The SolsTiS output is then picked off and analyzed by sending it through
a λ/4 waveplate at 45 degrees and into a Wollaston polarizer, which splits the polarization
components onto a balanced photodetector (PD6). When the cavity is resonant with the
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Figure 4.1: Optical setup for the Ti:Sapphire master laser (899) and master power amplifier
(SolsTiS).
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injected light, the polarizer splits the light equally and an error signal of zero is measured.1

A nonzero error signal is created when the cavity is off resonant and the output becomes
elliptical, causing an imbalance in the Wollaston polarizer outputs.

Applying this locking technique to titanium-sapphire laser cavities has been shown to
produce output powers in excess of 6 watts with kilohertz linewidths [108]. Our SolsTiS is
pumped with 18.5 watts from a Coherent Verdi V18 and, when injected with 500 mW of
852 nm light, can output a combined total of 6.2 watts (with a linewidth limited by our 899
master laser).

Safety Considerations : As can be seen in Fig. 4.1, there are a couple of elements that
are required for clean and safe operation with our particular high power Ti:Sapphire. The
stripped down SolsTiS does not have an optical diode and therefore does not have a preferred
lasing direction when it is not injection locked. Additionally, because of the lack of frequency
selective elements, the SolsTiS will naturally oscillate near 750 nm (the gain maximum for
titanium-doped sapphire). To prevent watts of power from being sent back into the 899,
a dichroic mirror that reflects wavelengths longer than 808 nm is used as a filter for the
backwards lasing light. An optical isolator is also added to reduce any light not filtered by
the mirror. The λ/2 waveplate that controls the power to the beam dump (for reducing the
power during alignment) needs to be broadband so that it can rotate both 750 nm and 852
nm light in case the laser becomes unlocked. Lastly, there is a 852 nm bandpass filter in
front of the polarization analyzing electronics so that the 750 nm light does not saturate the
lock signal when the cavity is unlocked.

4.2 State Selection

With the titanium sapphire lasers locked to a far detuned laser frequency, we now have
the means to coherently prepare the atom ensemble into a state that is suitable for atom
interferometry.

After the launched atoms are cooled with Raman sideband cooling and transferred to
the |F = 4,mF = 0〉 state with rapid adiabatic passage, a small fraction of the atoms still
remain in the mF 6= 0 sublevels and in the F = 3 hyperfine state. In the presence of a weak
external magnetic field, these states will shift in energy by

∆EB = gFµ0mFB,

where the gF is the Landé g-factor for the hyperfine state F , µ0 is the Bohr magneton,
and B is the external magnetic field. These energy shifts cause perturbations in the free
evolution Hamiltonian from Section 2.5, manifesting as forces and additional phase shifts in
the interferometer. If the magnetic field is constant, then these phase shifts cancel along the

1To compensate for parasitic ellipticity caused by dielectric mirrors and the pickoff, the λ/4 waveplate’s
angle relative to normal incidence is adjusted to change the retardation amount and make the error signal
symmetric.
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Figure 4.2: A three-level system with ground states |g1〉 and |g2〉 and excited state |e〉, driven
by two electric fields of frequency {ω1, ω2} with coupling strengths {Ω1,Ω2}. The detuning
δ is the mismatch from two-photon resonance.

two trajectories and have zero net effect. However, in practice the magnetic field could have
gradients or other local perturbations that would contribute to a net phase shift between the
paths. Not only would these phase shifts cause systematics in the measurement, but they
would also decrease the overall contrast of the interferometer. Therefore all atoms except
those in the desired mF = 0 state are removed from the cloud by a series of state selective
manipulations. First, the atoms in the mostly unpopulated F = 3 state are resonantly
accelerated so that they leave the interferometer region (see Section 4.2.1). Next, the atoms
in the |F = 4,mF = 0〉 state are coherently transferred to |F = 3,mF = 0〉, followed by a
second resonant pulse to remove any remaining F = 4 atoms resulting in a theoretically
pure population in the |F = 3,mF = 0〉 state.

In order to perform the population transfer without heating the atoms, the two mF = 0
states are coupled using an optical Raman transition which is far detuned from the 62P3/2

manifold. If the different mF states are sufficiently resolved (by applying a magnetic field),
then the dynamics of the population transfer can be treated as a three-level system. Consider
a system with two ground states |g1〉 and |g2〉 that are coupled to an excited state |e〉 by
two co-propagating laser fields with frequencies {ω1, ω2} [109], as illustrated in Fig. 4.2. If
the Rabi frequencies {Ω1,Ω2} and single photon detuning ∆ of the fields are much larger
than the Doppler shift resulting from atomic motion, then the momentum of the atom can
be ignored and the Hamiltonian for the system can be written as

Ĥ = −~ω1 |g1〉 〈g1| − ~(ω2 + δ) |g2〉 〈g2|+ ~∆ |e〉 〈e|

− ~
2

(
Ω1e

−iω1t |e〉 〈g1|+ Ω2e
−iω2t |e〉 〈g2|+ h.c.

)
,

where the rotating wave approximation has already been applied to the atom-field interaction
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terms. The relevant dynamics of the system can be extracted by applying the unitary trans-
formation Û = e−iω1t|g1〉〈g1|−iω2t|g2〉〈g2| to the eigenstates |Ψ′〉 = Û |Ψ〉 and to the Hamiltonian
which yields

Ĥ ′ = ÛĤÛ † − i~Û ∂Û
†

∂t

= −~δ |g2〉 〈g2|+ ~∆ |e〉 〈e| − ~
2

(
Ω1 |e〉 〈g1|+ Ω2 |e〉 〈g2|+ h.c.

)
.

The time evolution of the transformed eigenstates |Ψ′〉 = g1(t) |g1〉+ g2(t) |g2〉+ e(t) |e〉 can
then be determined by solving the Schrödinger equation i~∂t |Ψ′〉 = Ĥ ′ |Ψ′〉. If the single
photon detuning is large |∆| � {|Ω1| , |Ω2| , |δ|}, then the excited state remains unpopulated
and can be adiabatically eliminated by setting ė(t) to zero and solving for e(t). Substituting
the solution into the equations for ġ1 and ġ2 eliminates the excited state and results in an
effective two-level system:

i~ġ1(t) = −~ |Ω1|2
4∆

g1(t)− ~Ω1Ω∗2
4∆

g2(t)

i~ġ2(t) = −~Ω∗1Ω2

4∆
g1(t)− ~

(
|Ω2|2
4∆

− δ
)
g2(t).

For a system initially in g1 and driven with constant intensities, the coupled differential
equations can be solved [110] for the time evolution of g2 to give

|g2|2 =
|Ω1|2 |Ω2|2

4∆2Ω̄2
sin2

(
Ω̄t

2

)
, (4.1)

where the effective Rabi frequency is

Ω̄2 =

(
|Ω1|2 + |Ω2|2

)2

(4∆)2
+
δ
(
|Ω1|2 − |Ω2|2

)
2∆

+ δ2.

Therefore a three-level system driven by a far detuned Raman pair undergoes Rabi oscilla-
tions with a frequency Ω̄. By varying the laser intensities and/or the interaction time t, the
population in g1 can be transferred to g2 using a π-pulse such that the length of the pulse
τπ satisfies Ω̄τπ = π.

Since we are interested in only transferring atoms starting in |g1〉 = |F = 4,mF = 0〉 to
|g2〉 = |F = 3,mF = 0〉, it is worth considering the effect of the laser fields on states other
than mF = 0. For the simplified case where the two Rabi frequencies are equal, Ω ≡ Ω1 = Ω2,
any off-resonant transitions will have a non-zero detuning δ and a suppressed (maximum)
population transfer equal to
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Figure 4.3: Optical setup for generating the frequencies for state selection, velocity selection,
and Bragg diffraction.

|gF=3,mF |2 =
Ω4

Ω4 + 4δ2∆2
,

given by the coefficient of (4.1). In order for the Raman pulse to transfer a negligible amount
of mF 6= 0 atoms, the detuning for those states must satisfy

|δ| � |Ω|2
2 |∆| ,

which can be accomplished by splitting the states with an external magnetic field such that

|B| � ~ |Ω|2
4gFµ0 |∆|

∼= ~π
2gFµ0τπ

,

where τπ is the Raman pulse length used in the state selection to transfer the mF = 0 atoms.
The magnetic field in our experiment is generated by a solenoid placed inside the vacuum

chamber and aligned with the fountain axis as shown in Fig. 4.9. The solenoid consists of
an aluminum tube with a 3.81 cm inner diameter that is wrapped with copper wire (0.867
mm diameter). The coil has a theoretical field of 14.5 mG/mA and a measured field of 13.7
mG/mA (which implies a fill factor of 94%) and is typically driven with 27.7 mA (producing
a 380 mG field). The bias field is kept on for the duration of the experiment as it is needed
to provide a quantization axis for velocity selection and Bragg diffraction as well.
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Δ

feom

σ+ σ+

Figure 4.4: The carrier frequency (black) and sidebands (blue and red, respectively) used
for the state selection Raman transition and the relevant atomic levels. The faded lines
represent other possible frequency pairs with suppressed transition probability due to their
increase detuning.

The state selection Raman frequencies are generated using the far detuned light from the
SolsTiS laser and an electro-optic modulator (EOM3) shown in Fig. 4.3. The 899 laser (and
therefore the SolsTiS laser) is typically locked to 15 GHz blue of the reference laser frequency
f3,4′ . The injection locked light from the SolsTiS is switched on with AOM15 and coupled
into a fiber to create a 70 µs square pulse that will drive the Raman transition. To generate
the required Raman frequencies, the pulsed light is passed through EOM3 modulated at
feom = 9.192625 GHz and coupled into a fiber (Fiber:Bragg). The light out of the fiber is
collimated to a waist of 6.2 mm and converted to circular polarization with a λ/4 waveplate
before being sent into the vacuum chamber along the ẑ axis as shown in Fig. 4.9.

The relevant laser frequencies and atomic states that make up the state selection pulse
are shown in Fig. 4.4. The dominant Raman transition is between the red sideband and the
carrier of the modulated light, although there is a weaker transition using the blue sideband.
Since the blue sideband has the opposite phase of the red sideband, these two transitions
destructively interfere and reduce the overall Rabi frequency of the transition. Additionally,
because of the retro-reflection mirror and waveplate inside the chamber, the σ+ light that
drives the atoms on the way up also interacts as σ− polarization on the way down. Since the
state selection pulse is Doppler insensitive, this σ− light also drives Raman transitions with
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Figure 4.5: Time-of-flight signals for Raman sideband cooling (blue) and state selection (red)
after the blow-away beams are applied. A double Gaussian fit to the state selection signal
is shown in black.

approximately equal strength. The relative phase of the Rabi frequencies between the σ+

and σ− light varies as a function of height and will therefore oscillate between constructively
and destructively interfering with a spatial period of 1.63 cm. For this reason it is important
to check the location of the atoms during state selection to ensure they are located at a
constructive maximum.

Detuning : The electro-optic modulator frequency of feom = 9.192625 GHz used in the
experiment ends up being about −6 kHz different from the cesium hyperfine frequency. The
reason is that the laser fields cause ac-Stark shifts in the ground state energy, modifying
the resonance frequency. A detuning of δ = 0 only results in maximum population transfer
if the Rabi frequencies of the two fields are the same, which results in ac-Stark shifts that
are equal for the two ground states. If the sideband produced by the EOM is not equal in
strength to the carrier, then the optimal detuning occurs when δ ≈ (|Ω2|2− |Ω1|2)/4∆ [109].

4.2.1 Blow-Away Beams

The resonant blow-away beams used before and after the state selection pulse to remove
unwanted atoms are derived from the spectroscopy light and the MOT light as shown in
Figures 3.3 and 3.7. For the 3-state blow-away, a small amount of reference light is picked
off by a PBS cube before the spectroscopy and shifted by AOM3 driven at 66.8 MHz. The
4-state blow-away frequency is created by turning off the repump light and deflecting a small
amount of MOT light with AOM12 driven at 95 MHz. Both frequencies are coupled together
into Fiber:Blow-Away and sent to the main chamber as shown in Fig. 4.9.

The purpose of the blow-away beams is to scatter photons off atoms in a given hyperfine
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state and accelerate them so they no longer overlap the remaining atoms during detection.
The 3-state blow-away beam has a frequency of f3,2′ + 3.7 MHz (slightly blue-detuned from
the 3→ 2′ cycling transition) to maximize the scattering rate when taking into account the
Doppler shift from the accelerating atoms. The 4-state blow-away has more available power
and therefore is just driven on resonance at f4,5′ .

The fiber carrying the blow-away beams is collimated to be diverging and the light is sent
into the chamber slightly off-axis to reduce the amount of light reflecting off the retro-reflect
mirror, which would otherwise push the atoms in the wrong direction (and create an optical
molasses). The blow-away beams typically contain a couple milliwatts of power and are
switched on for 2 ms to 6 ms. To prevent either blow-away beam from driving the atoms
into dark states, the light is adjusted to an elliptical polarization with a λ/4 waveplate after
the fiber.

A time-of-flight florescence signal of the state selected atoms after blow-away is shown
in Fig. 4.5. The signal reduction compared to Raman sideband cooling comes from the
residual mF 6= 0 atoms being removed, as well as an inherent inefficiency in our Raman
pulses most likely caused by the finite laser beam size and the spatial extent of the atoms.
When performing state selection on simple atomic fountain without RSC, the state selection
pulse reduces the signal by a factor of 15, lower than the factor of 9 expected from theory
(if atoms are equally distributed into the nine mF levels of F = 4).

4.3 Velocity Selection

As a final step to prepare the atomic sample for interferometry, the momentum width of the
atoms in the vertical direction is reduced by a series of Doppler-sensitive Raman pulses. Since
Bragg diffraction is very sensitive to the velocity of the atoms relative to the laser detunings,
it is important to have a very narrow momentum distribution so the dynamics for all atoms in
the sample are the same. The dependence of initial velocity on Bragg diffraction is described
briefly in Section 2.5, but is also more explicitly shown in Fig. 4.6. For n = 5 Bragg
diffraction, any atoms traveling faster than |vr| /10 relative to the Bragg resonant velocities
have significant population transfer into undesired states (as well as increased diffraction
phase shifts).

Similarly, the plane-wave assumption in the derivation of the Bragg diffraction theory
assumes that the atom is not localized and has infinite spatial extent. For thermalized atoms,
the average wave-packet size can be approximated as the thermal de Broglie wavelength
λth = h/

√
2πmkBT . For a 300 nK sample of atoms this length is approximately 270 nm,

which is smaller than the period of the Bragg potential λ/2 = 426 nm. In order for the plane-
wave assumption to be somewhat valid, the atom should have a wave function that extends
into multiple lattice sites so that the interaction can be treated as non-local. If an atom is
velocity selected such that it has a momentum uncertainty σp, then the position uncertainty
through the Heisenberg uncertainty principle can be considered as a type of coherence length
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Figure 4.6: Population transfer of an atom in |0〉 to different momentum states for n = 5
Bragg diffraction as a function of the atom’s velocity relative to resonance. Vertical dashed
lines indicate the ±vr/10 velocities.

σx = ~/2σp. If the atom is selected to have a velocity uncertainty of σp = mvr/10, then the
corresponding position uncertainty σx = 680 nm is longer than a lattice period.

The Raman sideband cooling stage produces samples that are approximately 200-400
nK, which correspond to a 1σ velocity distribution of 1-1.5 vr, where the recoil velocity
vr = ~k/m is approximately 3.52 mm/s for cesium atoms and 852 nm photons. This ve-
locity width is a factor of 10 larger than what is needed for clean Bragg diffraction and
therefore an additional preparation step is required. One way this can be accomplished is by
cooling the atoms further using sub-recoil techniques such as evaporative cooling [111, 112]
or by manipulating the phase-space density using delta-kick cooling to reduce the effective
temperature [113–115]. While these methods are quite powerful, they come at the cost of
increased experimental complexity which would be hard to incorporate into our apparatus.
Therefore the simplest option is to use a Doppler-sensitive Raman transition to transfer
atoms with the correct velocity to a different hyperfine state so that the hot atoms can be
removed with a blow-away pulse (similar to what was done with state selection).

In Doppler-insensitive Raman transitions, the state selectivity comes from the large de-
tuning of the undesired states from the main transition relative to the Rabi frequency. If
two counter-propagating lasers are used instead of two co-propagating lasers, then the mo-
mentum of the atoms becomes important as the Doppler shift for the two frequencies no
longer cancel. If the Raman transition is on resonance with a particular velocity class of
atoms, then any atoms with other velocities will have a larger detuning and therefore have
a suppressed transition probability. Consider the Doppler-sensitive Raman transition shown
in Fig. 4.7, where the two-photon detuning δdoppler is now a function of the atom veloc-
ity. Similar to what was done in Section 4.2, the Hamiltonian for an atom interacting
with counter-propagating electric fields can be solved by taking into account the momentum
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Figure 4.7: Frequency scheme for velocity selective Raman transitions between two ground
states using a virtual excited states. The two wave-vectors k↓ and k↑ are counter-propagating.

transferred by the fields [116]. The resulting evolution of the initially unpopulated state |g2〉,

|g2|2 =
|Ω1|2 |Ω2|2

4∆2Ω̄2
sin2

(
Ω̄t

2

)
Ω̄2 =

(
|Ω1|2 + |Ω2|2

)2

(4∆)2
+
δ
(
|Ω1|2 − |Ω2|2

)
2∆

+ δ2

is almost identical to the Doppler-insensitive Raman transition, except that detuning δ is a
function of the atom’s momentum

δ ≡
(

(p− ~k↓)2

2m~
− (p+ ~k↑)2

2m~

)
− ωhf − (ω↓ − ω↑),

where p is the momentum of the atom, k = ω/c is the wavenumber of the lasers, m is the
mass of the atom, and ωhf is the hyperfine splitting. If the laser frequencies are chosen to
be resonant with an arbitrary momentum p0 such that δ = 0, then any other atom with
momentum p will have a detuning

δdoppler = −p− p0

m
(k↑ + k↓)

= −v − v0

c
(ω↑ + ω↓),
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which is just the Doppler shift of the two laser frequencies. This means that atoms that
have a larger velocity difference are further off-resonance and will therefore tend to have a
smaller transition amplitude.

A single Doppler-sensitive Raman transition will transfer the resonant atoms from the
F = 3 state to F = 4 and kick the atoms with the momentum of two photons. A 3-state
blow-away beam can then be used to remove the remaining F = 3 atoms from the cloud,
resulting in an ensemble with a narrower velocity distribution. Since the Ti:Sapphire laser
is locked to +15 GHz blue of f3,2′ , leaving the atoms in the F = 4 state would mean that
there would be a 24 GHz single photon detuning for Bragg diffraction. As the SolsTiS laser
cannot output the necessary laser power for such a detuning, the atoms are velocity selected
with a second Raman pulse to transfer them back to F = 3 (followed by blowing away any
remaining 4-state atoms).2

The effectiveness of using Raman transitions for velocity selection can be seen by consid-
ering a thermal cloud of atoms at 200 nK which has a 1-sigma velocity width of σv = vr. For
a double Raman pulse sequence centered on p0 = 0, the resulting momentum distribution is
then equal to

f(p) =
1√

2π(mvr)2
e−p

2/2(mvr)2|g2|4.

To simplify the equation somewhat, we can assume the Rabi frequencies for the two beams
are equal Ω ≡ Ω1 = Ω2 and rescale {p, t,Ω} in terms of dimensionless parameters {u, τ, a}
such that

f(u) =
a4

√
2π
e−u

2/2 sin4
(
τ
√
a2 + u2

)
(a2 + u2)2

,

where p = umvr, t = τ/k̄vr, Ω2 = 4a∆(k̄vr), and k̄ = (k↑ + k↓)/2 is the average of the two
laser wavenumbers.

A comparison between a single 800 µs (τ = 20.76) velocity selection pulse and two
consecutive 400 µs (τ = 10.38) pulses is shown in Fig. 4.8, where the intensity of each pulse
is optimized for p = 0 (which occurs when a = π/2τ). While the double length velocity
selection pulse results in a narrower distribution, it also produces a larger fraction of atoms
with a velocity of vr/4. On the other hand, the two-pulse velocity selection procedure
produces a smoother distribution which can be approximated by a Gaussian with a 1-sigma
standard deviation of

σv ≈
vr√
2τ

=
1√
2k̄t

.

In a similar fashion to the state selection pulse, the velocity selection pulses are generated
by the optics layout shown in Figures 4.1 and 4.3. The 400 µs square pulses used for the
Raman pulses are created by switching on AOM15 at t = 1.221 s and t = 1.231 s, with a

2This has the added benefit of narrowing the velocity distribution further.
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Figure 4.8: The velocity distributions of a 200 nK thermal sample after a 800 µs velocity
selection pulse (blue) or two consecutive 400 µs pulses (red), in units of u = v/vr. Left: The
resulting distributions compared to that for 200 nK. Right: Log-scale comparison which also
shows the similarities to a 1 nK thermal distribution approximation.

3-state blow-away at t = 1.223 s lasting 6 ms and a 4-state blow-away at t = 1.233 s for 2
ms. The light coupled into Fiber:Switchyard is split by AOM16 which is driven at 180 MHz
and combined with the light that is double-passed by AOM18 and modulated by EOM3.
The double pass is driven by a ramping DDS running between 80 and 90 MHz, which serves
to compensate for the Doppler shift caused by gravity and is described in more detail in
Section 4.3.1. The electro-optic modulator is driven at 9.188631 GHz, approximately 4 MHz
lower than for state selection, to detune the velocity-insensitive Raman transition far from
resonance so only the Doppler-sensitive transitions take place.

The EOM modulated light and the deflected light from AOM16 are combined on a PBS
cube and either coupled into the main Bragg fiber or deflected by AOM19 and then sent
to a secondary fiber (Fiber:VS) that has a smaller waist when collimated; see Fig. 4.9.
Using the larger 6.2 mm Fiber:Bragg collimator for velocity selection tends to give a larger
signal as the atom cloud has a reasonably large diameter. Alternatively, the Fiber:VS fiber
port has a waist of 3.9 mm which allows for some transverse spatial selectivity which may be
important for systematics, see Section 5.4.2. The two different paths for velocity selection are
overlapped on an uncoated glass plate with 4% reflectivity and sent through a λ/4 waveplate
and then into the chamber.

Since the two optical paths from AOM16 and EOM3 have opposite linear polarization
going into the fiber, the waveplate converts those orthogonal polarizations in opposite circular
polarizations in the vacuum chamber. For the Raman transition, the unmodulated light
interacts with the atoms on the way up as σ+. The EOM modulated frequencies which
are traveling up as σ− polarization get reflected off the top mirror and interact with the
atoms traveling down as σ+. A λ/4 waveplate at the top of the chamber ensures that the
σ± polarizations going up convert to σ∓ on the way down. Due to the large Doppler shift of
the moving atoms, the σ− polarization pairing does not drive a transition as it is detuned
by several megahertz.
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Figure 4.9: The optical setup of the state and velocity selection, Bragg beam splitters, and
blow-away beams into the main vacuum chamber‘.
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Figure 4.10: Time-of-flight signal of the velocity selected atom sample. Left: Comparison
between the state selection (red) and velocity selection (blue) signals where the latter has
been rescaled to take into account the neutral density filter used in the state selection. Right:
Unscaled velocity selection signal with Gaussian fit (black) with no neutral density filter.

A sample time-of-flight signal of the atom cloud after two 400 µs velocity selections pulses
and blow-away beams is shown in Fig. 4.10, as well as a comparison to the state selection
signal. The velocity selection signal is fitted reasonable well to a Gaussian with a width
of σ = 0.6 ms, as compared to the state selection signal which needs to be fit to a double
Gaussian. It should be noted that the velocity selection width is smaller than that of the
up-going fountain, which means that the Raman sideband cooling must be cutting off part
of the cloud and the temperature estimates after RSC are probably too low.

In order to verify validity of the velocity selection calculations, the effective Raman
frequency width of the transition was measured for different pulse lengths and compared to
theory. For a given pulse length, the two-photon detuning and power for a single velocity
selection (VS) pulse was optimized to give the largest detection signal. Then the effective
frequency width was measured by sending in a second VS pulse and varying the two-photon
detuning (while keeping the first VS pulse the same) to find the detuning that gave a full-
width half-maximum (FWHM) signal. A comparison between theory and the measurements
for 100-, 200-, 400-, and 800-µs pulses is shown in Fig. 4.11. The signal size is compared as
a ratio to the 100-µs amplitude instead of as an absolute value to make the comparison to
theory easier.

The theory contains no free parameters, with the assumption that the two Rabi frequen-
cies are equal and that the initial velocity distribution3 has a width of σv = vr. Velocity
selection distributions are calculated as a function of the second pulse detuning δ2 and inte-
grated over all velocities to get the total signal size A(τ, δ2) as a function of pulse width and
detuning:

3The initial velocity width has little impact on the result as long as it is large.
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Figure 4.11: A comparison between the theory of velocity selection and experiments with
different pulse lengths. Left: The effective frequency width of the velocity selection two-
photon detuning (measured by the FWHM of the second of two VS pulses), as a function of
pulse length. Right: The signal loss as a function of pulse length for two resonant velocity
selections, normalized relative to the signal of the 100-µs velocity selection.

A(τ, δ2) =

∫
1√

2π(mvr)2
e−v

2/2v2r |g2(τ, v)|2
∣∣g2(τ, v − δ2/2k̄)

∣∣2 dv.
The full-width half-max 2δτ frequencies of the resulting amplitudes were then calculated
numerically by solving A(τ, 0) = 2A(τ, δτ ) for δτ .

4.3.1 Gravity Ramp

Over the duration of the experiment, the velocity of the free-falling atoms is constantly
changing due to the acceleration of gravity at a rate of ∆v = −gt. Since the velocity
selection and Bragg diffraction dynamics are velocity dependent, the laser beams need to be
ramped to compensate for the changing Doppler shift.

Recall that the 899 Ti:Sapphire laser is offset locked to the reference laser frequency f3,4′

by an amount fµ+fPLL, where fµ is the microwave mixing frequency and fPLL is the external
frequency reference for the 899 phase lock. The two counter-propagating laser frequencies
{fL1 , fL2} that interact with the atoms in the chamber are then

fL1 = f3,4′ + fµ + fPLL + fAOM15 + fAOM16

fL2 = f3,4′ + fµ + fPLL + fAOM15 + 2fAOM18.

Consider what would happen if the frequencies for the phase lock and the double-pass AOM
are chosen such that fAOM18 = −fPPL = f0 + Λdt, where Λd is a frequency ramp rate and
f0 a frequency offset. Then in the freely falling reference frame of the atoms, the frequency
difference between the lasers changes at a rate given by the difference in their Doppler shifts:
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∂(∆f)

∂t
=

∂

∂t

[(
1− gt

c

)
fL1 −

(
1 +

gt

c

)
fL2

]
= −2g

c

(
f3,4′ + fµ + fAOM15 +

fAOM16

2

)
− 2Λd

= −22.9957 MHz/s− 2Λd

for typical values of fµ = 15 GHz, fAOM15 = 80 MHz, fAOM16 = 180 MHz, a cesium transition
frequency of f3,4′ = 351.730902 THz, and a local gravitational acceleration of g = 9.7995
m/s taken from a measurement just outside of our lab in Berkeley, California. Therefore if
we chose Λd to be equal to 11.4978 MHz/s, then the changing frequency shift due to gravity
is canceled. In addition, because the phase lock frequency fPPL is ramped in the opposite
direction, the frequency sum (and therefore the effective wave-vector) is constant

fL1 + fL2 = 2

(
f3,4′ + fµ + fAOM15 +

fAOM16

2

)
,

which is an important property for interferometers where the phase depends on the laser
frequencies.

The ramp frequency framp = f0 + Λdt is generated by an Analog Devices AD9958 DDS
which is clocked to an external frequency synthesizer fclock. To get the smoothest ramp
possible, a very small frequency step and time step increment are used to create the frequency
ramp, which presents a problem when trying to program arbitrary ramp rates. A DDS runs
off an internal clock which is typically phased lock to some multiple of the external reference
(usually 10 MHz). The synthesizer can only update the frequency ramp at integer multiples
of the clock period and similarly the frequency step must also be an integer multiple of the
clock frequency. For an internal clock of fint = 20× fclock, the time and frequency steps can
be

∆tstep =
n

fint

, ∆fstep =
m

232
fint

for a 32-bit DDS, where {n,m} are integers. For the AD9958, the minimum possible n is 4
and m is chosen to be 2 such that the ramp rate is

∆fstep

∆tstep

= Λd =
(20fclock)2

233
.

In order to frequency ramp at a rate Λd = 11.4978 MHz/s, the reference clock must therefore
be fclock = 15.7135 MHz. Small changes to the gravity ramp rate can then be done by
modifying the reference clock frequency without changing the DDS programing. The value
of the offset frequency f0 to the ramp rate is varied to optimize the velocity selection pulses
and switched to a different value for Bragg diffraction. For velocity selection, the frequency
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ramp has a frequency offset f0 = 93.6643 MHz and the ramp is triggered starting at t = 1.033
s when the cloud is released from the moving molasses.

One important point that needs to be addressed is the ramping double-pass AOM18 since
the deflection efficiency and fiber coupling will depend on the ramp frequency. The laser
beam that goes through the AOM is focused into the crystal with an f = 150 mm lens,
which helps minimize the efficiency change, but the result is far from perfect. To make sure
that the power coupled into the fiber is constant regardless of the drive frequency, the RF
power to the AOM is modified by an arbitrary waveform generator using a voltage controlled
attenuator. The waveform is triggered at the same time as the ramp and is programmed
such that the output voltage flattens the optical power of the double-pass AOM.

4.4 Bragg Diffraction

After preparing the atoms in the |F = 3,mF = 0〉 state with a velocity spread of less than
vr/10, the sample is finally ready for interferometry using Bragg diffraction. Similar to
velocity selection, two counter-propagating laser fields are used to drive a multi-photon
Bragg transition between different momentum states of the atoms as described in Section
2.5.

For the first two Bragg pulses in the interferometer sequence, the frequency generation
scheme is nearly identical to the velocity selection pulses with some small modifications.
Since Bragg diffraction drives transitions directly between different momentum states with-
out changing the atom’s hyperfine state, the EOM which is used in state and velocity selec-
tion is disabled by switching off the microwave frequency to the amplifier and by turning off
the amplifier voltage (to ensure there is no microwave leakage onto the Bragg beams). The
two-photon resonance condition is also different for Bragg diffraction, so the ramp frequency
framp = f0 + Λdt that controls the double-pass AOM and the 899 phase lock is jumped to
a second ramp with a different starting frequency f ′0 using an RF switch. The frequency
ramps for both the velocity selection and Bragg diffraction are generated on the same dual
channel DDS and both ramps are triggered at the same time so that the detunings of the
Bragg diffraction pulses are independent of the atom’s free-fall velocity.

Just as before, the deflected light from AOM16 is coupled into Fiber:Bragg with one lin-
ear polarization and the zeroth order light that gets double passed by AOM18 is coupled into
the fiber with the opposite polarization. The orthogonal polarizations of the two frequencies
again allow the upwards moving σ+ light to only interact with reflected σ− polarized light
(which gets converted to σ+ by the retro-reflect mirror and waveplate). The σ+σ+ lattice
that is created by the counter-propagating light fields produce the interaction potential that
drives Bragg diffraction, assuming the frequency difference is resonant with the atoms. The
conjugate σ−σ− lattice which travels opposite the atoms is usually far enough Doppler de-
tuned to be ignored. However, near the turn-around point of the atom’s free-fall trajectory,
the two moving lattices become degenerate and cause problems. This can be avoided exper-
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Figure 4.12: The polarization combinations that make up the Bragg diffraction interaction
potentials for the first two Bragg pulses (single) and last two pulses (multi). The laser
frequency ω1 comes from AOM18, while ω2 and ω2 ± ωm are generated by AOM16. The
σ− polarization lattices (faded arrows) do not contribute to Bragg diffraction as they are
off-resonant by the Doppler shift.

imentally by making sure to never perform Bragg diffraction when any atom trajectory is
near zero velocity in the lab frame.

For the last two Bragg pulses, the Ramsey-Bordé interferometer configuration requires
that atoms with momentum p = 2n~k are diffracted up while the p = 0 atoms are diffracted
down. If the two laser frequencies ω1 and ω2 are resonant with the transition between the |0〉
and |n〉 momentum states, then the laser frequencies that enable |0〉 → |−n〉 and |n〉 → |2n〉
are

ω′1 = ω1, ω′2 = ω2 ± ωm = ω2 ± 8nωr,

where ωr = ~(k1 + k2)2/8m. These two frequency pairs can be created by driving AOM16
with two frequencies instead of a single frequency. Since the laser beam is focused heavily
into the AOM crystal with an f = 150 mm telescope and the frequency difference (ωm/2π)
is less than a megahertz, the two deflected frequencies are nearly overlapped and follow the
same optical path into the fiber (allowing them to be coupled with approximately the same
efficiency). More importantly, the overlap means that any path length fluctuations will be
common mode to both frequency components and will not cause fluctuations in the phase of
ωm. This is critical as minimizing the phase noise of ωm is necessary for a recoil frequency
measurement using a conjugate Ramsey-Bordé configuration as was shown in Section 2.3.
Previous experiments that did not use this dual-frequency AOM technique instead required
that the beat frequency was locked to an external reference by feeding back to the laser
phase [40].

Next, the frequency pair from AOM16 are again combined with the double-pass frequency,
coupled into the fiber, and sent to the vacuum chamber. Whereas before only a single
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frequency component from each direction contributed to the σ+σ+ lattice, now there are
two frequencies with σ+ polarization traveling downward which combine with the single
upward traveling σ+ frequency component to generate two moving lattices for the two Bragg
resonances, as depicted in Fig. 4.12.

When driving the acoustic-optical modulator with two frequencies there is necessarily
a beat in the deflected optical power due to interference of the two frequencies. Therefore
the undeflected zeroth order of the AOM must also have an optical power beat due to
conversation of energy. While the optical intensity beat on the frequency pair is unavoidable,
the intensity beat on the counter-propagating laser which should have a single frequency is
unnecessary and should be eliminated. To accomplish this, a complimentary acousto-optic
modulator (AOM17) is driven with the same frequency difference but with a phase that is
shifted by 90 degrees. When the RF to AOM16 is at a minimum and the transmitted power
is maximized, AOM17 then deflects that excess power into a beam dump (and when the
deflection of AOM16 is maximized the deflection of AOM17 is zero). The net effect is that
if the deflection efficiency of AOM17 is chosen appropriately (by alignment and choice of
RF attenuation), the optical power that is undeflected by AOM17 should be approximately
constant.

If we assume that the first AOM has a deflection efficiency of α for a single frequency
and 4α for two frequencies (where the factor of 4 comes from the beat), then the largest the
undeflected power can be is 1− 4α. If the double pass has an efficiency of β per pass, then
the maximum Rabi frequency (and therefore minimum power needed) for Bragg diffraction
occurs when

0 =
∂

∂α
Ω1Ω2 ∝

∂

∂α

[
4α · (1− 4α)β2

]
∝ 4(1− 8α)β2

or α = 1/8. Therefore the least power is required when AOM16 deflects one eighth the max-
imum power for a single frequency and at most half the power for dual-frequency operation.
The efficiency of an AOM is given by

η ∼= sin2
(π
λ
γ
√
Pa

)
,

where λ is the wavelength of light, γ is a constant that depends on the device properties,
and Pa is the power of the acoustic wave [87]. When driving the AOM with two frequencies
with a frequency difference 2ωm, the acoustic power has a beat and can be written as Pa =
P sin2 ωmt. The undeflected power through the multi-frequency AOM16 is then

(1− η16) = 1− sin2
(π
λ
γ
√
P |sinωmt|

)
= cos2

(π
4
|sinωmt|

)
,
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where π
√
Pγ/λ = π/4 for the optimized configuration that gives a peak-to-peak amplitude

beat of 50% (or 4α = 1/2). If the compensating AOM17 is driven with the same frequency
difference shifted by 90 degrees, then the undeflected power is

(1− η17) = (1− η16) cos2
(π

4
|sin (ωmt+ π/2)|

)
= cos2

(π
4
|cosωmt|

)
cos2

(π
4
|sinωmt|

)
,

which is unfortunately not exactly zero as one would hope (due to the AOM deflection non-
linearity), thus resulting in a ripple that has a peak-to-peak amplitude of roughly 2%. While
these small fluctuations do induce frequency sidebands on the laser, they should be small and
off-resonant to the atoms in the interferometer. Some rudimentary systematic checks were
performed by making the ripple larger with no measurable effect, but more careful analysis
may be required.

The electronic setup that generates the frequencies for AOM16 and AOM17 are shown
in Fig. 4.13. For single Bragg diffraction, the multi-frequency TTL is off and the 180 MHz
crystal frequency is sent into the AOM amplifiers through the -10dB port of a directional
coupler. For multi-frequency operation, the 180 MHz frequency is instead mixed with a
frequency fm which determines the frequency difference for the two Bragg beams. To get
the 0 and 90 degree components to drive the AOM pair, an offset frequency δ = 4 MHz is
split by a 90 degree splitter and mixed with δ+fm split by a zero degree splitter. After mixing
and low pass filtering, the outputs of the two mixers are fm and fm shifted by 90 degrees.
These frequencies are then used as inputs to a “compound mixer” as the IF frequency, while
the LO is driven by the 180 MHz crystal to produce 180 MHz± fm at 0 and 90 degrees.

While a standard balanced mixer could serve this purpose, there is almost always a
residual amount of LO frequency at the mixer RF output port which cannot be easily filtered
due to the small IF frequency (fm < 1 MHz). Instead, part of the 180 MHz is split off and
decomposed to its quadrature components and combined back into the signal to cancel the
LO frequency. By varying the current into the mixers, an effective attenuator is created which
can be used to exactly tune the phase and amplitude needed to cancel both quadratures of
carrier in the fm × 180 MHz mixer output.4 The mixer output still has higher mixing
harmonics, but those are less important to the interferometer as they are not resonant with
anything, unlike the 180 MHz carrier (which gives the same frequency as the single-frequency
Bragg diffraction).

Optimization: The various attenuators in Fig 4.13 are used to tune the RF power to
the AOMs such that a) when AOM16 is running multi-frequency it has a deflected peak of
50%, b) AOM17 minimizes the resulting ripples of the undeflected beam, c) when AOM16
is running single frequency it deflects 12.5%, and finally d) when running single frequency,
AOM17 should have the same undeflected power as when it is running multi-frequency. This

4The output of this type of mixer can have a LO carrier which is -80dB from the sidebands when tuned
well.
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Figure 4.13: The electronics that generate the single and multi-frequency Bragg diffraction
frequencies for AOM16 and AOM17. The left mixer pair produces the 0 and 90 degree
components of fm and fbloch, while the dashed regions are compound mixers that trim the
output LO frequency to zero.
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ensures that all Bragg pulses will have the same power in each frequency component. In
order to maximally cancel the ripples, the phase of the acoustic wave (at the point where it
intersects the light) must be 90 degrees out of phase compared to AOM16. Since the speed
of sound is much slower than the speed of light, this is easy to accomplish by translating the
AOM sideways with a translation stage until the cancellation is optimal.

4.4.1 Intensity Feedback

As was discussed in Section 2.5, the pulse shape for Bragg diffractions is chosen to be a
Gaussian function and not a square pulse as used in state and velocity selection. Since the
laser pulses are created by turning on an acoustic-optical modulator, careful control over the
RF power to the modulator will change the deflected power and enable arbitrarily shaped
pulses. While the RF power could be set directly by an arbitrary waveform generator, a
more flexible option is to use a feedback servo to lock the measured power to a reference
signal. The servo then allows the pulse’s shape and amplitude to be modified by simply
changing the reference waveform. In addition, the feedback will allow the servo to cancel
some of the intensity noise produced by the laser.

To decouple the SolsTiS laser optimization from the alignment of the Bragg frequency
optics as much as possible, the pulse power is measured by a photodetector (PD7) after
Fiber:Switchyard. While it would be better to measure the power at the vacuum chamber,
this is impractical due to the intensity beats from the multiple frequencies in the beam.
Instead, the photocurrent is detected by the feedback circuit shown in Fig. 4.14 and an error
signal is created by comparing the detected power to a voltage reference. This error signal
is integrated and used as feedback to control the RF power to the pulse shaping AOM15.
To control the RF power, a mixer is driven on the LO port by the AOM frequency and a
small current is injected into the IF port by the feedback box.5 The current opens the diodes
in the mixer and allows the LO to pass through with an RF power Pa proportional to the
square of the injected current.

Unfortunately, this technique of using a mixer as an attenuator has the downside of
creating nonlinearity in the feedback when considering the AOM deflection efficiency

ηa ∼= sin2
(π
λ
α
√
Pa

)
.

When the mixer is driven with a current If from the feedback circuit causing a modulation
of the RF power proportional to I2

f , then the deflected optical power is approximately

ηaP0
∼= P0 sin2

(π
λ
α
√
I2
f

)
≈ P0

(π
λ
α
)2

I2
f

5A mixer is preferable over other methods, such as voltage controlled attenuators, since the speed of a
mixer can be much faster than the rest of the circuit.
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Figure 4.14: The intensity feedback circuit used to create the arbitrary pulse shapes. The
photodiode signal is amplified and subtracted from a reference voltage to create the error
signal. This is integrated and amplified before being sent to a square root circuit (dashed
circle), followed by a transimpedance amplifier.

to leading order. Since the detected photocurrent Id is linearly proportional to the optical
power and, therefore, Id ∝ I2

f , linear feedback theory does not apply as the size of the signal
will change the feedback gain. To fix this nonlinearity, the circuit shown in Fig 4.14 contains
a square-root element [117] which converts the circuit output to

√
If instead of If . An

alternate method to get around this inherent nonlinearity in intensity feedback circuits is to
use a logarithmic photodetector and an exponential attenuator [118] (as opposed to a linear
detector and a mixer).

Instead of using a more typical PI controller, the intensity feedback circuit uses a pure
integrator which gives optimal performance when dealing with delay limited systems. Control
theory states that a feedback loop is stable if the phase shift of the entire loop is less than
180 degrees when the gain is equal to one. Since the bandwidth of the AOM is much slower
than all other elements due to the acoustic wave propagation speed, the delay of the AOM
accounts for the only real bottleneck in the feedback design. As the phase shift caused by
the acoustic wave delay increases linearly with feedback bandwidth without decreasing the
gain (unlike an element like a low-pass filter), the only way to make the overall gain less
than one before the phase shift reaches 180 degrees is with a 1/f frequency response (a
pure integrator). To give the highest possible feedback bandwidth, the acoustic delay can be
minimized by moving the AOM transducer closer to the laser beam. In our setup, AOM15 is
placed on a translation stage and moved until the acoustic delay is about 500 ns. This delay
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Figure 4.15: Oscilloscope trace of the intensity stabilized Gaussian pulse. Upper: Plot of
the measured intensity (red) and a Gaussian best fit line (black). Lower: Deviation of the
intensity stabilized intensity from a Gaussian, dashed lines represent the 1-sigma noise of
the analog digitizer. The vertical dashed lines show the 95 µs reference pulse length window.

is limited by the size of the beam (i.e. a smaller beam waist would decrease the deflection
efficiency) and minimizing the risk of damaging the transducer with the high intensity laser.

To prevent the integrator from accumulating error when the pulses are off (due to un-
avoidable circuit offsets and background on the photodiode), a voltage controlled switch is
used to short the integrator capacitor, holding the output at zero. When a pulse needs to
be generated, a TTL signal opens the switch enabling the integrator and a reference wave-
form is generated to be subtracted from the photodiode signal (producing the error signal).
When the switch is opened, a small amount of charge is injected into the capacitor which
propagates down the circuit resulting in a small intensity spike at the start of the pulse. To
reduce this effect, a second shorted switch prevents the spike from exiting the last gain stage
and is opened several hundred nanoseconds later once the charge injection of the integrator
decays. Since the gain after the second switch is small, the resulting spike from the second
switch is minimal.

For reliability of the experiment, all pulses including the square pulses for state and
velocity selection are generated with the intensity feedback servo. An oscilloscope trace of
an intensity stabilized Gaussian pulse is shown in Fig. 4.15, along with a plot of the deviation
from a Gaussian fit function. When optimized appropriately, the deviation of the optical
pulse from Gaussian is measured to be less than 2% peak-to-peak. The voltage waveform sent
to the reference has a programmed length of 95 µs and the measured waveform has a fitted
Gaussian width of σ = 14.518(9) ms, giving an approximately cutoff value of τ = 3.272(2)σ.

Optimization: The circuit requires a bit of fusing to optimize properly. The photodiode
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Figure 4.16: Oscilloscope traces of a Gaussian pulse being deflected by an AOM driven by
two frequencies. Top: Switching on the AOM RF power 1 µs before the Gaussian pulse.
Bottom: Switching on the RF power 1 ms before instead. Lines of best fit are shown in
black.

current and the reference signal are trimmed so that the error signal is as close to zero as
possible. The gain stage after the integrator has a small trim to force the signal before the
square root circuit to be slightly positive (otherwise the circuit will lock up, taking many
microseconds to recover). Since the speed of the circuit is limited by phase shifts, optimizing
the number of op-amps and the type of op-amp might help in future designs. All op-amps
except for the photodiode gain and integrator have a gain bandwidth product of over 100
MHz. Replacing the first two op-amps with faster ones would reduce the phase shift at
the cost of worse DC offset performance (which could potentially be trimmed). The last
transimpedance op-amp stage is actually unnecessary as the mixer requires a current input
(which is what the output of the square root circuit produces) and not a voltage.

4.4.2 Pre-triggering

In order to minimize thermal lensing caused by the acousto-optical modulators as they are
switched on and off, it is preferable to either keep the AOMs as close to a 0% duty cycle or a
100% duty cycle as possible; otherwise the alignment of the AOM will drift by an appreciable
amount as the AOM is heating up and cooling off over second timescales. Keeping the duty
cycle at one extreme or the other keeps the AOM crystal in thermal equilibrium as much
as possible. Since AOM16 and AOM17 switch their acoustic power for the last two Bragg
pulses, it is optimal to keep the AOMs nominally off to minimize thermal drift. Normally
when switching an AOM on with a single frequency, the time required for the deflected
optical power to settle is limited only by the frequency bandwidth of the AOM. However,
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when driving an AOM with multiple frequencies, there is an inherent settle time that can be
many hundreds of microseconds as seen in Fig. 4.16. If AOM16 is driven with RF starting
1 µs before the Gaussian pulse is sent through, there is significant distortion to the optical
beat pattern. Also shown in the Fig. 4.16 is a best fit line of the form

A(sin(ωt+ φ)2 + b)e(t−t0)2/2σ2

+B

which helps visualize the distortion. While the exact mechanism for this behavior is a
mystery, it can be eliminated by allowing the RF drive power to settle for 500 µs to 1 ms
before the optical pulse is sent through.

4.4.3 Coriolis Compensation

During the interferometer sequence the atoms spend the majority of their time in free-fall
without any external force interaction except through gravity. The inertial frame of the atom,
however, must interact with the lab frame during the interferometer beam splitters which
are rotating with the Earth at a rate Ωe. Since the Bragg diffraction beam splitters transfer
momentum to the atoms in the direction of the effective wave-vector ~keff = ~k1 +~k2, the atoms
will be diffracted in a slightly different direction for each of the four interferometer pulses as
the Earth rotates. Thus, the final position of the atoms from the two different interferometer
paths will no longer perfectly overlap, causing systematic shifts and a loss of interference
contrast at large pulse separation times [43,119].

Assuming the lab is rotating about the ŷ-axis and the interferometer beams are vertical
along ẑ, then the final displacement of the two trajectories for a Ramsey-Bordé interferometer
sequence can be calculated as

~δ = 4nvrΩeT (T + T ′) cos(θ)x̂,

where T and T ′ are the pulse separation times, n is the Bragg order, vr is the recoil velocity,
and θ is the geocentric latitude of the experiment in radians. If the atom wave-packets are
approximated by

Ψ =

(
detA

π

)1/4

e−~rA~r
T /2,

where A is matrix with diagonal elements equal to the coherence lengths σi in each dimension,
then the overlap integral between the displaced atom trajectories is

∫
dr3Ψ∗(~r + ~δ)Ψ(~r) = e−

~δA~δT /4

= e−δ
2
x/4σ

2
x .

In a previous configuration of this experiment without Raman sideband cooling, the coher-
ence lengths σi in the three spatial directions were measured to be σx = σy ≈ 100 nm and
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σz = 800 nm for a velocity selected ensemble with a transverse temperature of 2 µK. Our
coherence length in the z-direction is similar to the previous experiment as the velocity selec-
tion procedure is the same. The transverse size can be estimated by the thermal de-Broglie
wavelength h/

√
2πmkBT for a 300 nK sample which gives a size of approximately 270 nm.

For a typical interferometer sequence with T = 160 ms, T ′ = 10 ms, n = 5, and θ = 37.87
degrees,6 the displacement is 160 nm which would cause a contrast loss of 10%.

To prevent this loss of contrast and to eliminate possible displacement systematics, the
retro-reflect mirror is rotated at a rate equal to the Earth’s rotation rate (so that the down-
ward traveling beam rotates at twice Earth’s rate). This causes the effective wave-vector
to rotate in the lab frame and therefore point in a constant direction in the atom’s inertial
frame. Even though the magnitude of the wave-vector no longer constant, the perturbation
is small and is treated as a systematic in Section 6.1.2. The retro-reflect mirror is rotated by
applying voltage ramps to piezoelectric actuators attached to each axis of the mirror. The
optimal rotation rate is found by running the interferometer at a very long pulse separation
time T > 200 ms and adjusting the rotation rate for maximum interferometer contrast,
see [119].

4.5 Bloch Oscillations

In order to increase the sensitivity of the interferometer beyond what is realistically achiev-
able with single Bragg diffraction pulses, the momentum splitting of the atoms can be in-
creased through an adiabatic process which transfers successive momentum kicks of 2~k.
When an atom is held in an optical lattice, the atom has a well defined quasi-momentum as
determined by the band structure of the lattice. If the lattice is accelerated, then the atoms
will undergo Bloch oscillations wherein the atoms oscillate between quantized momentum
states that are spaced by 2~k [120,121]. If the lattice depth U0 is comparable to the atom’s
recoil energy Er and the atoms are accelerated at a rate

a� a0

16

(
U0

Er

)2

,

where the critical acceleration a0 = ~2k3/m2, then the atom’s quasi-momentum will adia-
batically follow the velocity of the lattice in momentum steps of 2~k [122]. Assuming the
acceleration is stopped after N oscillation periods, where a single period is equal to

τB =
2~k
ma

,

then the final state of the atom will be a superposition of momentum states with an average
value of p = 2N~k and density of state distribution given by the envelope of a Wannier
function [123]. In the harmonic trap limit, the Wannier function has a Gaussian width

6Berkeley is at a geocentric latitude of 37.87 degrees.
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Figure 4.17: The density of states of an atom’s quasi-momentum after undergoing Bloch
oscillations, given by the envelope of a Wannier function (dashed). Left: The density of
states has an approximate Gaussian distribution when the Bloch lattice is deeper than the
recoil energy Er. Right: As the lattice becomes shallower, the envelope turns into a square
function, thus pushing the density of states to the center momentum.

proportional to U
1/4
0 while in the shallow potential limit it has a mostly square envelope

extending to ±hk. If the atoms are adiabatically released from the lattice potential, then
the Wannier function also adiabatically narrows down to the shallow potential limit, leaving
the atoms in a pure state with momentum p = 2N~k [124] as shown in Fig. 4.17. If the
lattice is switched off non-adiabatically or if the average quasi-momentum is not a multiple
of 2~k, then the final atom state will be a superposition of momentum states (which is not
ideal for interferometry).

There are two fundamental factors that limit the number of Bloch oscillations that can be
applied to the atoms. If the atoms are accelerated too quickly, then the adiabatic condition
is not satisfied and the probability that an atom is lost during each oscillation is equal to

Ploss = exp

[
−a0

a

π

64

(
U0

Er

)2
]
.

The probability that an atom does not finish all N oscillations is then (Ploss)
N . On the other

hand, if the lattice is accelerated too slowly, then the single photon scattering

Rsc =
Γ3

8∆2

I

Isat

(4.2)

of the ∆ detuned lattice will dominate and result in a loss of Psc = 1 − e−Rsct. Therefore,
a comprise must be made between time spent in the lattice and the acceleration rate. In
practice, decoherence caused by ac-Stark shifts due to beam imperfections is a stronger
limitation of Bloch oscillations for interferometry as discussed in Section 5.5.

While Bloch oscillations have been used in atom interferometers to accelerate both arms
of the interferometer in opposite directions, thus increasing the momentum splitting from
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2n~k to 2(n + 2N)~k [125], this configuration could potentially have many unknown sys-
tematic effects that would need to be studied with a more detailed theory (as was done for
Bragg diffraction). Instead, it is much more common to use Bloch oscillations to accelerate
both arms of an interferometer in the same direction [42]. While this does not change the
momentum splitting, it does increase the sensitivity of a recoil measurement from n2 to
n(n + N) by increasing the frequency difference 2ωm which is measured as a laser phase in
the interferometer. Since both arms are accelerated in the same lattice, the systematic phase
shifts should be common mode to both arms and cancel.

The optics used to create the optical lattice for Bloch oscillations are identical to that for
multi-frequency Bragg diffraction. The only difference is that the frequency ωm is replaced
by a ramping frequency ωbloch in the electronics shown in Fig. 4.13 and the pulse shape is
modified. If the laser frequencies ω1 and ω2 are resonant with order n Bragg diffraction, then
shifting the laser frequency from ω2 to ω′2 = ω2 ± 4nωr will create lattices moving with the
same velocity as the atoms in the |0〉 and |n〉 states. If the atoms are to be accelerated such
that their momentum increases by 2N~k, then the laser detuning must be changed by

δ =
2N~k
m

(ω1 + ω2)

c
= 8Nωr

to account for the Doppler shift of the laser frequencies. To accelerate the atoms once they
are loaded into the lattice, the laser frequency ω2 is ramped from

ω2 ± 4nωr → ω2 ± 4(n+ 2N)ωr

which accelerates the atoms in the state |0〉 to |−N〉 and at the same time atoms in the state
|n〉 to |n+N〉. If the ramp takes place over a time τ , then the ramp rate of Λb = 8Nωr/τ
causes an acceleration of

a =
2N~k
mτ

.

In order to load the atoms into the optical lattice adiabatically, the laser pulse for the
Bloch oscillations is ramped from zero intensity to the desired lattice depth over 100 µs
while the multi-frequency AOMs are held constant at 180 MHz± 4nωr. Once the atoms are
loaded, the modulation frequency is ramped to ω2± 4(n+ 2N)ωr over 1 ms, driving AOM16
and AOM17 in the same manner as for multi-frequency Bragg diffraction. After the ramp is
finished, the frequency is held constant again while the lattice intensity is ramped off over
100 µs to adiabatically release the atoms.

While the lattice depth for Bloch oscillations was never measured directly, it can at
least be estimated by the ratio of the Bragg and Bloch intensity stabilized amplitudes. The
effective Rabi frequency for Bragg diffraction of order n is given by the approximation (2.42)

Ωeff(t) ≈ 8ωr

(
Ω̄(t)

8ωr

)n
1

(n− 1)!2
,
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where the Rabi frequency of the laser field Ω̄(t) = Ω̄0e
−t2/2σ2

is a Gaussian pulse. For a given
pulse width σ = τbragg/ωr, the Rabi frequency that results in a π/2 pulse must satisfy∫ ∞

−∞
Ωeff(t)dt = 8ωr

(
Ω̄0

8ωr

)n √
2πσ2

(n− 1)!2
√
n

=
π

2

=⇒ Ω̄0 = 8ωr

(√
πn(n− 1)!2

8
√

2 · τbragg

)1/n

.

For a Bragg order of n = 5 and a typical pulse of τ = 0.188, this gives a two-photon effective
Rabi frequency equal to Ω̄0 = Ω2/2∆ ≈ 32ωr. In our experiments the Bloch lattice amplitude
is typically a factor of 5 smaller than for Bragg; this implies that the Bloch oscillations have
a lattice potential of approximately Ubloch = ~Ω̄bloch ≈ 6~ωr. Therefore when transferring
N = 25 Bloch oscillations in 1 ms, the expected atom loss is nearly 40% (dominated entirely
by tunneling losses), which is similar to what is observed in the experiment.
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Chapter 5

Experiment

5.1 Interferometer

To assemble the components from the previous two chapters into a working interferometer,
all that is required is a timing system and data acquisition. The coarse experimental timings
are run using two programmable National Instrument cards (PCI-6534 and PCI-DIO-32HS)
which are used to create TTL signals for atom preparation and to initiate the interferometer
sequence.

The atom preparation sequence controlled by the National Instrument cards begins with
the loading of the 3D MOT for 1.000 s, followed by the moving molasses launch at 1.033 s.
After the Raman sideband cooling and rapid adiabatic passage, the atoms are state selected
and velocity selected to their final momentum width and atomic state. The interferometer
sequence is initiated at 1.239 s when the NI card triggers the first of several delay generators
and a final trigger starts the fluorescence detection and data acquisition at 1.880 s (which
lasts for roughly 100 ms). Everything is then reset and the experiment is triggered again to
perform the next measurement, with a total cycle time of 2.1 seconds.

Recall that the phase of the interferometer is directly proportional to the pulse separation
time and therefore the individual beam splitter pulse timings need to be accurate. Since the
NI card only has a timing resolution of 1 µs, a set of SRS DG535 digital delay generators are
used to control the individual beam splitter pulses (which have a timing jitter of only 100
ps). For a Ramsey-Bordé interferometer configuration (Fig. 5.2), the first SRS generator
(SRS1) is used to trigger a second generator (SRS2) twice, creating two pairs of pulses
(corresponding to the first two and last two pulses). The primary TTL trigger from the
NI card starts SRS1 which is programmed to delay for a wait time t0 before triggering two
pulses at t = t0 and t = t0 + T + T ′. These two pulses in turn trigger SRS2 which creates
two pairs of pulses separated by a time T , for a total of four pulses at t = {t0, t0 + T} and
t = {t0 + T + T ′, t0 + 2T + T ′}. By having a single delay generator control the timing of
both T separations, any drifts or offsets in the timing will be symmetric, which reduces the
potential for systematics effects.
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Figure 5.1: Time-of-flight interferometer signals for n = 5, T ′ = 10 ms, and T = 5 ms
(left) and T = 160 ms (right). The solid line indicates the 0~k momentum trajectory which
includes the |Ψ`u|2 output and dashed lines indicate the position of the |Ψ``|2, |Ψu`|2, and
|Ψuu|2 outputs. For T = 160 ms, the extra trajectories that do not interfere are more
resolved. Detection occurs 505 ms after the last Bragg pulse for T = 5 ms and after 350 ms
for T = 160 ms.

Each of the four TTL signals from SRS2 then trigger a third SRS, which is used to
create the timings for switching AOM15-17, starting the intensity stabilization and triggering
the Gaussian waveform. The Gaussian waveform is stored on an Agilent 3320A arbitrary
waveform generator and provides the reference signal for the intensity stabilization described
in Section 4.4.1. (The Agilent 3320A has a trigger jitter of approximately 1 ns and could
potentially be a source of interferometer noise in the future.) To switch the frequency of
AOM16 and AOM17 for the last two pulses, the falling edge of the second pulse from SRS2
is used as a trigger (after a roughly 2 ms delay). This ensures that the frequency switch
occurs during T ′ and allows for sufficient settling time before the next Bragg pulse.

After the Ramsey-Bordé sequence is performed on the atoms, the different interferometer
trajectories are allowed to separate before being detected on a photodetector by fluorescence
imaging. The photocurrent is amplified with a transimpedance amplifier and filtered with
a 10-kHz low-pass filter before being digitized with a National Instruments NI4474 card,
which has a sample rate of 102.4 kS/s and a resolution of 24 bits. The detected time-of-
flight signals, shown in Fig. 5.1, are then analyzed by subtracting off the background and
measuring the populations in the four output ports. Because the different trajectories can
potentially be overlapped, only a narrow section of each peak is measured and is typically
chosen to be ±1 ms.

Since a Ramsey-Bordé interferometer consists of four π/2 pulses, there are 16 output
trajectories (with interference between four pairs) to create a total of potentially 12 spatially
separated interferometer outputs, as shown in Fig. 5.2. If the pulse separation time is small,
then the 12 trajectories will have a separation smaller than the cloud radius and thus all
trajectories with the same momentum will overlap to form a total of four detection peaks
(as shown in Fig 5.1). If the pulse separation time is long enough, then the paths have



CHAPTER 5. EXPERIMENT 121

T' TT

2 2±m2±m2

1 1 1 1Po
sit

io
n

Time

Figure 5.2: A space-time diagram of all 12 Ramsey-Bordé outputs, including those that do
not interfere. Each of the four possible Bragg orders will have three corresponding atom
trajectories, all of which may overlap depending on the length of the pulse separation time T
and the width of the cloud (shown in red, with dashed lines indicating non-interfering atom
clouds).

time to separate out, revealing more of the interferometer trajectories in the time-of-flight
fluorescence. On the other hand, the spatial separation of the individual momentum classes
{−2n~k, 0~k, 2n~k, 4n~k} is proportional to the time between the last beam splitter and the
detection, which can be upwards of several hundreds of milliseconds. However, this creates
a small problem for very long T s, as the available separation time gets smaller and thus the
momentum peaks become less resolved.

The extra overlapped trajectories are not a concern, however, as the normalization pro-
cedure x = (|Ψ`u|2 − |Ψ``|2)/(|Ψ`u|2 + |Ψ``|2) and y = (|Ψuu|2 − |Ψu`|2)/(|Ψuu|2 + |Ψu`|2)
removes the influence of background atoms on the extracted phase. The background atoms
do reduce the effective contrast of the interference, however, which impacts the signal-to-
noise of the interferometer. For T � σatom/2nvr (where σatom is the atom cloud width and
vr = 3.5 mm/s is the recoil velocity), the contrast is limited to a maximum of 50% and gives
a baseline for coherence measurements.

After each experimental run, the normalized interference measurements {x, y} are recorded
along with a raw trace of the detection signal. These points are used to build up an ellipse
like the one shown in Fig. 5.3. Individually, the interference signals (x and y) produce
seemingly random noise, but when the two are combined a very clear ellipse is formed. The
ellipse continues to build up as more trials are recorded and after 20-30 points the data is
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Figure 5.3: A set of 50 measured data points from the lower interferometer (x) and upper
interferometer (y) for n = 5, T = 160 ms, and T ′ = 10 ms. When viewed independently
they seem to measure random phases, but when plotted together form an ellipse. An ellipse
with 800 points is shown in blue to show how the vibrations evenly spread out the phase.

fitted and the measured phase is recorded. The interferometer contrast for the lower and
upper interferometers can then be inferred by the fitted x and y amplitudes of the ellipse.
This method of determining the interference contrast is much more rigorous than looking
at the maximum and minimum variation in signal since the fitting method will tend not to
overestimate the contrast when noise is present.

5.1.1 Alignment

The high sensitivity of Bragg diffraction to intensity and detuning requires great care when
aligning and optimizing the beam splitters to the atomic fountain. An external camera is
used to measure the position of the fountain in the x-y plane as the atom cloud travels up
through the detection region and on the way back down. The fountain alignment is iterated
until both detected signals occur at the same position; this procedure aligns the fountain
with gravity. Next, the Bragg beam is aligned vertically by centering the beam on the input
view-port and looking for a small transmission signal through the top retro-reflect (dielectric)
mirror with a camera. The retro-reflect mirror is glued to the inside of a view-port, which
is connected to a flexible bellows that can be tilted with two large micrometer screws. The
mirror is adjusted such that the Bragg beam is reflected back into the launching fiber which
ensures optimal counter-propagating alignment. A photodiode (PD8 in Fig. 4.3) picks off
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Figure 5.4: Tuning curves for n = 4 Bragg diffraction. The interference contrast as a
function of intensity control voltage (left) and the phase as a function of detuning (right).
The dashed lines indicate the optimal parameters. (T = 160 ms, ∆ = 15 GHz blue single
photon detuning)

some of the back-coupled light and is used to help optimize the retro-mirror and monitor
the alignment.

While running the fountain with single Bragg diffraction pulses, the intensity and detun-
ing are roughly adjusted until the desired Bragg transition is visible. The intensity is then
lowered slightly and the Bragg beam aligned more carefully to optimize the diffraction effi-
ciency (taking care to readjust the retro-reflect mirror to keep the back-coupling). To ensure
that the Bragg beam axis is centered with the fountain axis, this single Bragg diffraction
alignment procedure is performed at various fountain heights (thus different times for a fixed
launch velocity) and iterated to maximize all signals. Once the Bragg beam is centered with
the atom launch axis, a final adjustment of intensity and detuning can then be performed.

The full interferometer sequence is then run with all four Bragg pulses using an esti-
mate for the modulation frequency, ωm = 8nωr, for the last two pulses. The contrast of
the resulting ellipses is then measured for different intensities (set by the amplitude of the
intensity stabilization Gaussian waveform) until a maximum is found, as seen in Fig 5.4,
which corresponds to the “π/2” intensity. The term π/2 is used somewhat loosely in this
case since the finite spatial size of the cloud means that not all of the atoms see the same
intensity and, therefore, the optimal contrast has some atoms under-rotated between the
two Bragg orders while others are over-rotated. This is further emphasized by looking at
the contrast vs. intensity for the upper and lower interferometers, which have maxima at
different intensities. Since the lower interferometer path contains the majority of the initial
atom cloud (which is quite large), more intensity is needed to rotate the atoms further out
in the cloud’s radius. Typically the maximum contrast of the upper interferometer is used
for alignment since the atoms that participate in the upper interferometer have more ideal
characteristics (velocity, spatial distribution) and match a theoretical π/2 pulse more closely.
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Figure 5.5: Plot of the Ramsey-Bordé interferometer contrast as a function of the pulse
separation time T with T ′ = 10 ms. Left: The difference in contrast between the upper
and lower interferometer with n = 4. Right: The upper interferometer contrast for different
Bragg orders n.

The detuning is optimized by measuring the phase of the interferometer ellipse as a function
of the AOM18 double-pass start frequency and finding the extrema as discussed in Section
2.5.2.

The contrast of our Ramsey-Bordé interferometer at different pulse separation times T
is shown in Fig 5.5. As a general rule of thumb, the contrast for the lower interferometer is
always less than the upper interferometer due to the background of the initial atom cloud.
Also observed is the characteristic increase in contrast for pulse separation times around
160 ms, where the interfering atoms spatially separate from the background atoms. This
increase in contrast at longer T is convolved with a linear contrast decay (most evident at
short T ) which is most likely caused by differential ac-Stark shifts, which will be elaborated
on in Section 5.5. Similarly, as the Bragg order is increased, the contrast decays at a faster
rate which limits the ability to increase the sensitivity of the interferometer by increasing
the momentum transfer.

5.1.2 With Bloch Oscillations

Applying common-mode Bloch oscillations to the sequence is relatively straightforward once
the simultaneous conjugate interferometer is working. The Bloch oscillations are applied
in the middle of the T ′ free evolution approximately 5 ms after the second beam splitter
pulse. The falling edge of the second pulse from SRS2 is sent through a 5 ms delay box
and is used to trigger another SRS delay generator which is used to control the timings for
the Bloch intensity stabilization and frequency switching (similar to the Bragg pulses). The
intensity stabilization waveform is generated by a second Agilent 3320A which creates the
linear 100 µs ramp on, followed by a variable constant intensity section, and ending with a
100 µs ramp off. To start the lattice acceleration, the frequency ramp fbloch from an Analog
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Figure 5.6: Time-of-flight signal for an interferometer with common mode Bloch oscillations
(blue) using n = 5, N = 20, and T = 5 ms. The center two peaks are not part of the
interferometer and are instead leftover atoms that did not follow the Bloch lattice. Also
plotted is an interferometer without Bloch oscillations (gray) for comparison to show the
difference in momentum separation between the upper and lower interferometers.

Devices AD9959 DDS is triggered 100 µs after the Agilent waveform (coinciding with the
start of the constant intensity part of the waveform). The length of the Bloch intensity
waveform is adjusted to match the frequency ramp rate for a given Bloch order such that
the ramp ends right before the lattice depth is lowered for adiabatic release.

The rest of the interferometer then follows the same sequence as before, except that the
modulation frequency ωm = 8nωr is changed to 8(n + N)ωr to account for the momentum
added by the Bloch oscillations. Since the timings of the Bloch oscillations pulses are only
relevant for systematic effects, the duration of the Bloch oscillations is approximated as zero
and the pulse separations before and after Bloch are labeled T ′1 and T ′2, respectively, such
that T ′ ≈ T ′1 + T ′2.

A typical time-of-flight signal for a conjugate Ramsey-Bordé with n = 5, N = 20, and
T = 5 ms is shown in Fig. 5.6. The lower interferometer (leftmost peaks) and upper
interferometer (rightmost peaks) are now highly separated due to the extra momentum
received by the Bloch oscillations. As the lattice accelerates, some of the hotter atoms fall
out of the lattice and are left behind in the center of the time-of-flight signal. These atoms
do not participate in the interferometer and are therefore not measured for the ellipses.
Additionally, since these hotter atoms would normally contribute to the background, the
contrast of the lower interferometer can be much larger when Bloch oscillations are used, as
shown in Fig. 5.7. Unfortunately, the introduction of Bloch oscillations also significantly
enhances the T dependent contrast decay; the reason is that the atoms spend much more
time in the laser field during Bloch oscillations (tbloch = 1 ms) than during a Bragg beam
splitter (σbragg = 14.5 µs) even though the intensity differs by a factor of 5 between the two.

The ac-Stark dephasing mechanism is also the reason that Bloch oscillations do not work
very well with a red-detuned optical lattice. Atoms in a red-detuned lattice are trapped at
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Figure 5.7: Plot of the Ramsey-Bordé interferometer contrast as a function of the pulse
separation time T with T ′1 = 5 ms and T ′2 = 5 ms. Left: The difference in contrast between
N = 0 and N = 25 for a Bragg order of n = 4. Both upper and lower interferometer
contrasts for both configures are plotted, showing the improvement in lower contrast with
Bloch oscillations. Right: The upper interferometer contrast for different Bragg orders n
with N = 25. (∆ = 15 GHz blue)

the intensity maxima and therefore see a much stronger oscillating electric field than with a
blue-detuned lattice (which traps at intensity minima). Since the lattice depth and ac-Stark
shifts are proportional, increasing the single photon detuning does not suppress the effect
and, therefore, blue lattices are used almost exclusively with Bloch oscillations. In addition,
the dephasing puts a limit on how deep (and therefore how efficient) the Bloch lattice can be
made because an increase in signal size is countered by a decrease in contrast. Typically a
compromise is made between signal size and contrast to optimize the overall signal-to-noise
ratio.

5.1.3 Measurement

Since the fundamental purpose of our Ramsey-Bordé interferometer is to measure the recoil
frequency ωr = ~k2/2m, a priori knowledge of ~/m should not be used as the basis for
setting the modulation frequency ωm = 8(n + N)ωr. Instead, a bootstrapping method is
employed wherein measurements of the recoil frequency are made at progressively longer
pulse separation times to systematically find the correct value.

First, a crude measurement value of ~/m is used in combination with the laser wavelength
to calculate a guess for the center modulation frequency ωm = 2πf0. Two sets of data are
generated by running the interferometer sequence with a very short T while alternating
between the ±π/4 modulation frequencies (fm± 1/8nT ) for each experimental run to create
two ellipses as discussed in Section 2.4.2. Once 20-30 points are recorded for each of the ±
modulations, the ellipses are fit and the phase difference is used to apply a correction to the
center modulation frequency fm. This is repeated until the ellipses are approximately ±90
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degrees from zero phase, at which point the accuracy of the center modulation frequency is
given by a final measurement of the phase difference.

Since the interferometer phase is π periodic (not 2π due to the ellipse fitting), the initial
guess for the modulation frequency must be accurate to

δωm
ωm

<
π

16n(n+N)ωrT0

,

where T0 is the shortest possible pulse separation time T . For a simple interferometer
with T0 = 2 ms, n = 4, and N = 0, then the modulation frequency need only be known
to 0.1 parts per thousand for the measurement to give the correct center frequency. The
center frequency measurement at T0 is then used as the modulation frequency for a larger
pulse separation time T1 > T0 allowing for a more sensitive measurement. This is repeated
until the modulation frequency is accurate enough to run the most sensitive interferometer
configuration.

Ideally, the recoil frequency would then be measured by fitting ellipses at ±π/4 until the
desired accuracy of ωr = ωm/8(n+N)T is achieved. However, as was shown in Section 2.5.3,
the Bragg dynamics create a large diffraction phase systematic that must be dealt with.

5.2 Diffraction Phase

Recall that the total differential phase between the upper and lower interferometers in a dual
conjugate Ramsey-Bordé is

∆Φ = 16n(n+N)ωrT − 2nωmT + φ0, , (5.1)

where the extra phase φ0 is the diffraction phase caused by using Bragg diffraction for the
beam splitters. When determining the recoil frequency ωr using the bootstrapping method
outlined in the previous section, one will find that the modulation frequency that gives zero
phase is a function of the pulse separation time T ,

ωm = 8(n+N)ωr +
φ0

2nT
. (5.2)

Since values of the diffraction phase can be as large as several hundred milliradians, the
measured value of the recoil frequency,

ωr =
ωm

8(n+N)
− φ0

16n(n+N)T
,

can be off by as much as 100 ppb for n = 5, N = 16, and T = 80 ms. Since it is not feasible
to calculate φ0 to a part-per-thousand accuracy using the theory for Bragg diffraction, a
different method must be employed to deal with the systematic shift.

A plot of the measured modulation frequency fm(T ) as a function of the pulse separation
time is shown in Fig. 5.8 for n = 5 Bragg diffraction with and without N = 16 Bloch
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Figure 5.8: Plots of the measured modulation frequency fm as a function of the pulse separa-
tion time T, with a 1/T scale to emphasize the asymptotic behavior and linear best fit lines
(black). Left: The difference between the measured frequency fm(T ) and the extrapolated
frequency fm(∞), for n = 5 with N = 0 and N = 16. Right: The relative uncertainty in the
recoil frequency fr = fm(T )/8(n+N) due to the diffraction phase.

oscillations. When the pulse separation time is plotted on a 1/T scale, the asymptotic nature
of the measurement becomes apparent. As the pulse separation time approaches infinity,
the modulation frequency (and therefore the measured recoil frequency fr) approaches the
“correct” value. When Bloch oscillations are added, not only does the fractional uncertainty
decrease due to the increase in total phase, but the value of the diffraction phase φ0 also tends
to get smaller [44]. The reason is that the increased velocity difference between the upper and
lower interferometer causes the non-resonant Bragg pair to be further Doppler detuned and
thus contribute less to the dynamics of the beam splitter. This increased symmetry cancels
some of the diffraction phase (primarily the contributions from the last beam splitter), as
was shown in Section 2.5.2.

The diffraction phase can be measured by fitting the modulation frequency vs. 1/T
data to a straight line. For convenience, the diffraction phase is sometimes referenced as a
frequency slope ∂fm/∂(1/T ) = φ̄0 = φ0/(4πn) in units of Hz·s. For a measurement with only
two pulse separation times T1 and T2 with corresponding measured modulation frequencies
f1 and f2, the recoil frequency and diffraction phase can be solved as

8(n+N)fr =
f2T2 − f1T1

T2 − T1

, and φ̄0 = T1T2

(
f2 − f1

T1 − T2

)
. (5.3)

By making alternating measurements between long and short T s, both the recoil frequency
and the diffraction phase can be solved simultaneously.

This method of extracting the recoil frequency depends heavily on the diffraction phase
φ0 being a constant; therefore, great care must be taken to ensure all parameters are the same
for different pulse separation times. The two factors that are the most likely to change during
the interferometer sequence are the transverse atom positions due to a misaligned launch
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Figure 5.9: Left: The measured diffraction phase as a function of detuning (in units of recoil
frequency) for n = 5 Bragg diffraction and N = 0 or N = 16 Bloch oscillations (pulse
length of 95 µs, Gaussian width of 14.52 µs). Right: The same data shifted up by 85 mrad
to compare to a theoretical curve using the parameters Ω0 = 31.23ωr, σ = 0.188ω−1

r , and
τ = 3.272σ.

direction and the deflected power from the ramping double-pass AOM18. These will both
change the laser intensity at the atoms during the interferometer sequence. Luckily, as was
shown in Section 2.5.2, the diffraction phase depends most strongly on the intensity of the
Bragg beam for the second and third beam splitter. Since the Ramsey-Bordé interferometer
is symmetric about the middle two pulses (which are separated by T ′), the second and third
beam splitters can always be made to occur at the same absolute time by delaying the first
pulse. Aligning the interferometers this way means that the double-pass efficiency and the
atom position will be the same for every interferometer time T , even if the transverse velocity
is not exactly zero (or if the double pass has a time dependent deflection efficiency). Since
the diffraction phase of the first beam splitter cancels and the sensitivity to the last beam
splitter is suppressed when using Bloch oscillations, the intensities for first and last beam
splitters need not be perfect.

The equations describing Bragg diffraction from Section 2.5 only have two free parame-
ters: the detuning 2δ between the counter-propagating Bragg beams and the effective Rabi
frequency Ω̄(t) which is proportional to intensity. To experimentally explore the diffraction
phase dependence on these two parameters, a recoil measurement is made with different
detunings and intensities at a variety of pulse separation times. To measure the phase that
results from the detuning δ, the frequency offset of the double-pass AOM18 is stepped across
the Bragg resonance. At each detuning step, two modulation frequency measurements are
made at Tshort = 5 ms and Tlong = 80 or 160 ms (with and without Bloch osculations, respec-
tively). The diffraction phase was then calculated and the results are plotted in Fig. 5.9. As
the detuning increases, so does the size of the diffraction phase as predicted by theory. Just
as before, the addition of Bloch oscillations suppresses the diffraction phase for all values of
the detuning, but not as much as was predicted by the theory. While the curvature of the
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Figure 5.10: Left: The measured modulation frequency as a function of the pulse separation
for a variety of intensities for n = 4 and N = 0 (pulse length of 95 µs, Gaussian width of
14.52 µs). An intensity of 1.00 a.u. corresponds to the maximum contrast for the upper
interferometer. Inscribed on each fit is the measured diffraction phase in units of Hz·ms.
Right: The diffraction phase at each intensity overlaid with a theory curve (black) using the
parameters Ω0 = 31.23ωr, σ = 0.188ω−1

r , and τ = 3.272σ. The 0.95 a.u. intensity point is
arbitrarily chosen to coincide with the theory line to show the comparison.

diffraction phase is predicted rather well, the overall offset differs by roughly 85 mrad. As the
theory was calculated for a single resonant atom velocity with close to ideal parameters, it
is not too surprising that the theory disagrees due to the velocity and position distributions
of the atoms in the experiment. To account for the non-ideal nature of the interferometer,
the Bragg differential equations can be solved for a variety of parameters and the diffraction
phase of the ensemble can be calculated in a Monte Carlo simulation, which will be discussed
in Section 5.4.

To check the intensity dependence of the diffraction phase, several 1/T measurements
were made at 5% intensity intervals for n = 4 and the results are plotted in Fig. 5.10. Since
the absolute laser intensity is not well calibrated, the intensity that gives the maximum con-
trast is labeled as 1.00 arbitrary units (a.u.) and all other intensity settings were referenced
to this value. The data shows that the diffraction phase increases as the intensity decreases
with a zero crossing occurring at an intensity of 0.94 arbitrary units. This zero crossing
in the diffraction phase is also present in the theory, but with a different intensity. The
Rabi frequency that gives a π/2 pulse (Ωπ/2) and, thus, optimal contrast, has nearly zero
diffraction phase in the theory, while the 1.00 a.u. experimental measurement has a signifi-
cant negative phase. This shift in the “optimal” intensity between theory and experiment is
explained by the ensemble behavior of the atom cloud and is observed in the Monte Carlo
simulation of the diffraction. Such a zero crossing also exists for n = 5, but occurs at a far
lower intensity in a parameter region where the interferometer does not work well.



CHAPTER 5. EXPERIMENT 131

0 20 40 60 80

Data Set

-20

-10

0

10

20

f
r
−
f̄
r
[p
p
b
]

-40

-20

0

20

φ
0
[m

ra
d
]

0 20 40 60 80

Data Set

0.72

0.74

0.76

In
te
n
si
ty

[a
.u
.]

Figure 5.11: A dataset taken over a period of 25.3 hours with T = {5, 80} ms, n = 4,
and N = 25 using feedback to null the diffraction phase. Top: The measured diffraction
phase as it is being zeroed by the changing intensity. Bottom: The control voltage/intensity
of the Bragg beams as it is being updated by the feedback servo. Right: The relative
recoil frequency fr measured for each dataset. (Each dataset contains the average of 5
measurements, where each measurement is calculated from two T = 5 ms and four T = 80
ms ellipses (including the ±π/4 modulations), with 30 points per ellipse.)

5.2.1 Zeroing the Phase

While one could imagine adjusting the Bragg parameters such that the diffraction phase is
zero in order to perform the recoil measurement, the sensitivity to drifts in alignment would
be far too large for this to work effectively. However, since the intensity of the Bragg beams
is a relatively simple parameter to control (by means of the intensity feedback servo), it is
straightforward to zero the diffraction phase by active feedback to the intensity.

To perform the recoil measurement with diffraction phase feedback, the interferometer
is run by taking sets of ellipses at long and short pulse separation times. Once a complete
measurement of at least four ellipses is taken (±π/4 for both Tshort and Tlong), the diffraction
phase is calculated with (5.3) and used as an error signal for a digital proportional-integral
servo which controls the voltage of the Bragg waveform. An example of a measurement using
intensity feedback is shown in Fig. 5.11 using n = 4 Bragg diffraction and N = 25 Bloch
oscillations. The pulse separation time is alternated between Tshort = 5 ms and Tlong = 80
ms, with twice as many ellipses taken at Tlong due to the lower signal-to-noise. Also plotted
in the figure are the corresponding recoil measurements (relative to the mean frequency),
which show no dependence on the diffraction phase due to the extrapolation. The combined
set of data ends up having a statistical 1-sigma relative uncertainty of 0.58 ppb in the recoil
frequency.

While zeroing the diffraction phase with intensity feedback may not end up being partic-
ularly useful for our measurement of ~/m due to the noisy measurements, it may be useful
in the future for two particular scenarios. First, if the signal-to-noise is excellent at short
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T , but relatively poor at long T , then an occasional measurement at Tshort could be enough
to measure the drift in diffraction phase, while the majority of the integration time can be
spent at the more sensitive Tlong. Second, for real time measurements, zeroing the diffraction
phase with periodic calibrations could enable faster rep rates, without requiring measure-
ments at multiple T s (as long as the errors caused by drifts in diffraction phase are within
the tolerance of the measurement).

5.3 Gravity Gradient

One of the next largest systematic after the diffraction phase that needs to be accounted
for is the effects caused by the gravity gradient of Earth. While the simultaneous conjugate
Ramsey-Bordé interferometer cancels the effects of a constant acceleration, the experiment
is sensitive enough that higher-order corrections need to be considered. The Lagrangian and
time-dependent trajectories for a particle in Earth’s field that were calculated in Section
2.3 already include corrections from the gravity gradient γ, but the interferometer phase
discussed so far has neglected those higher order terms. The differential Ramsey-Bordé
phase including the gradient is

∆Φ =16n(n+N)ωrT − 2nωmT

+
4

3
nωrγT

[
n
(
2T 2 + 3T (T ′1 + T ′2) + 3(T ′1 + T ′2)2

)
+N

(
2T 2 + 6TT ′2 + 6T ′2

2
)]
,

where the last term is the contribution from the gradient. The times T ′1 and T ′2 are the
durations between the second pulse and the Bloch oscillations and between the Bloch and
third pulse, respectively. Since the correction is small, the errors caused by not taking
into account the Bloch acceleration time are negligible. The fractional error in the recoil
frequency ωr is then

δωr
ωr

=
γ

12(n+N)

[
n
(
2T 2 + 3T (T ′1 + T ′2) + 3(T ′1 + T ′2)2

)
+N

(
2T 2 + 6TT ′2 + 6T ′2

2
)]

≈ γ · 1.2× 10−3 s2

for typical parameters of n = 5, N = 25, T = 80 ms, and T ′1 = T ′2 = 5 ms. The value
of the gravity gradient above Earth’s surface is approximately 3 × 10−6 s−2 and, therefore,
the gravity gradient correction is 4 ppb for the stated interferometer parameters. Since the
fractional correction depends on T 2, larger pulse separation times require significantly larger
correction. For example, the same interferometer parameters with N = 0 and T = 160 ms
increases the needed correction to 14 ppb.

To ensure that the gravity gradient does not dominate the systematics for a 0.5 ppb
recoil measurement, it is then necessary to know the value of γ to a few percent accuracy.
Due to the fact that the experiment is located partially underground in the basement of a
building, it is not appropriate to use the typical value of the gradient above Earth’s surface.
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Figure 5.12: A space-time diagram for a gravity gradiometer geometry. The vertical dashed
lines indicate Bragg beam splitters, while the shaded red line is the Bloch oscillations. The
last three Bragg pulses are run with multiple frequencies to address both Mach-Zehnder
interferometers.

Instead the value must be measured experimentally, which can be done using a gradiometer
consisting of two vertically separated Mach-Zehnder interferometers as shown in Fig. 5.12.
The Mach-Zehnder geometry provides a measurement of the gravitational acceleration of
the atoms [7] and, thus, two such measurements with knowledge of the separation gives the
gradient.

Converting the existing Ramsey-Bordé geometry into a gravity gradiometer [126] is rel-
atively straightforward. The atom cloud is first split by a Bragg beam splitter and then the
atoms trajectories are accelerated apart using Bloch oscillations as shown in Fig. 5.12. The
Bloch oscillations are performed in exactly the same manner as in the Ramsey-Bordé with
the |0〉 momentum atoms accelerated down and the |n〉 atoms accelerated up. After the atom
clouds have had time to spatially separate, simultaneous Mach-Zehnder interferometers are
performed on the two cloud trajectories. Since the two interferometers are performed at
the same time, the common mode acceleration g and any phase shifts due to vibrations are
canceled, thus leaving just the differential gravity gradient signal γ. The differential phase
of the configuration shown in Fig. 5.12 can be calculated as
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∆Φγ = 2nωrγT
2
[
2N(T + T ′2) + n(T + T ′1 + T ′2)

]
, (5.4)

where T ′1 is the time between the first beam splitter and the Bloch oscillations, T ′2 is the time
after the Bloch oscillations until the first Mach-Zehnder beam splitter, and T is the pulse
separation time of the Mach-Zehnder.

To ensure that the sign of the two gravimeters are aligned such that vibrations and g
cancel, both interferometers need to be kicked up by the beam splitters for the three Mach-
Zehnder pulses. This is accomplished by shifting the double-pass AOM18 frequency up by
ωm/2 = 4(n + N)ωr and modulating the multi-frequency AOMs (AOM16 and AOM17) by
ωm/2 instead of ωm.1 All four Bragg beam splitters are chosen to be π/2 pulses for simplicity,
instead of using a π pulse for the middle Mach-Zehnder pulse. The four outputs are analyzed
exactly the same as before by creating ellipses from the normalized outputs of the upper and
lower interferometer.

Since the gravity gradient is quite small, so will be the measured phase even for fairly
modest interferometer parameters. To ensure the ellipse is operated away from zero degrees
(where the ellipse looks like a line), a phase modulation is applied in a similar manner to the
Ramsey-Bordé interferometer. By ramping the multi-frequency modulation ω′m = ωm/2, a
laser phase is imprinted on the atoms that has the opposite sign for the two interferometers.
If the frequency is ramped as

ω′m(t) =
ωm
2

+ Λrampt

during the Mach-Zehnder interferometer, then the resulting phase is

∆Φ = 2nωrT
2γ
[
2N(T + T ′2) + n(T + T ′1 + T ′2)

]
+ 2nΛrampT

2.

The ramp rate Λ can then be adjusted to give a modulation angle φm by choosing Λ =
φm/2nT

2. The gradient is then measured by fitting ellipses at ±φm to give the center phase.
For historical reasons, the modulation angle of the ellipses was chosen to be π/6 instead
of π/4. Some measured ellipses from the gradiometer data are shown in Fig. 5.13 for the
interferometer parameters of n = 5, N = 20, T ′1 = 5 ms, T ′2 = 45 ms. As the pulse separation
is increased, the phase from the gradient can be observed in the ellipse angle as an asymmetry
between the plus and minus ramp modulations.

Since the data was taken before much consideration was given to the ellipse modulation
angle, the ellipses taken at large T were fit using Bayesian estimation [47] instead of least
squares to reduce the potential of systematics due to fitting errors. The measured gravity
gradient phase as a function of pulse separation time T is plotted in Fig. 5.14. The data is
fit to the functional form of (5.4), which results in measured gravity gradient equal to

γ = 2.17(3)× 10−6 s−2

1In order to run this particular geometry, Bloch oscillations must be present; otherwise, the two beam
splitters will necessarily interact with each other as one would be driving |n〉 → |2n〉 while the other |n〉 → |0〉.
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Figure 5.13: Measured gradiometer ellipses for T = 40 ms (blue) and T = 160 ms (red)
with interferometer parameters n = 5, N = 20, T ′1 = 5 ms, T ′2 = 45 ms. The left and right
variation of each T corresponds to the ±π/6 ramp modulation.
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Figure 5.14: The measured phases of the gradiometer at different Mach-Zehnder pulse sep-
aration times T . A best fit line to the functional form of Eq. (5.4) is shown in black.

in the region of the experiment. This value of the gravity gradient can then be used to
correct the measured frequencies in the Ramsey-Bordé experiment before the extrapolation
is performed to remove the gradient systematic. It is not too surprising that the measured
value differs significantly from the value near Earth’s surface (3.07× 10−6 s−2). As one goes
below Earth’s surface the gradient from the Earth changes sign and magnitude, therefore
being in a basement one would expect a value part way between the two theoretical values.

Diffraction Phase: Due to the very symmetric nature of the double Mach-Zehnder config-
uration, the diffraction phase from the Bragg beam splitters cancels exactly. Measurements
of the ellipses at very short pulse separation times T , in fact, result in zero measured phase
within the statistical uncertainty of a few milliradians.
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5.3.1 Systematic Correction

The phase of a Ramsey-Bordé interferometer including gravity gradients is

∆Φ =16n(n+N)ωrT − 2nωmT

+
4

3
nωrγT

[
n
(
2T 2 + 3T (T ′1 + T ′2) + 3(T ′1 + T ′2)2

)
+N

(
2T 2 + 6TT ′2 + 6T ′2

2
)]

and, therefore, the fractional correction to the recoil frequency is

δωr
ωr

=
γ

12(n+N)

[
n
(
2T 2 + 3T (T ′1 + T ′2) + 3(T ′1 + T ′2)2

)
+N

(
2T 2 + 6TT ′2 + 6T ′2

2
)]
.

For typical parameters of n = 5, N = 25, T = 80 ms, T ′1 = T ′2 = 5 ms, and a gravity gradient
of 2.17(3)× 10−6 s−2, the fractional shift in the recoil frequency is 2.78(4) ppb.

5.4 Monte Carlo Simulations

While the Bragg diffraction theory discussed in Section 2.5 describes the qualitative behavior
of the observed diffraction phase, it fails to account for the motion of the atoms and the
position and velocity distributions of the atomic ensemble. The finite velocity spread along
the axis of Bragg diffraction will cause atoms to have different effective Bragg detunings,
while the transverse spatial distribution will cause atoms to sample different intensities (for
a finite sized laser waist). The transverse velocity spread will also contribute as the atoms
will sample different intensities at each of the four beam splitters.2

This transverse motion can also introduce an intensity dependence on the measured
diffraction phase when varying the intensity of the first and last beam splitters, despite the
cancellation observed for a single atom (Section 2.5.2). To elaborate, consider the scenario
diagrammed in Fig. 5.15 where two different atoms interact with the four beam splitter
pulses. If the atoms have different transverse velocities and the Bragg beams are Gaussian
with a finite waist, then the two atoms will pick up different diffraction phases from the mid-
dle two beam splitters (the first and last still do not contribute diffraction phase). These two
trajectories will be spatially overlapped during detection (assuming the transverse velocity
is small) and the measured phase will be some type of average of the two interferences. If
the intensity of the first (or last) beam splitter is changed, then the interference contrast of
the two atom paths will also change. Since the contrast is not linear with the intensity, the
ensemble will now have a different average interference pattern and thus a different effective
diffraction phase.

2Keep in mind that for each individual atom, all arms of the interferometer will still see the same intensity
for a single beam splitter (as the transverse motion is common to all interferometer paths), but each beam
splitter can have a different intensity for a particular atom in the ensemble.
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Figure 5.15: A diagram of two possible atom trajectories through the four Bragg beam
splitters, one going through the center (green) of the laser beam and one having a transverse
velocity (blue). The dashed black lines represent the time of the beam splitters, while the red
Gaussian shows the spatial intensity distribution of the laser. The interferometer trajectories
caused by the beam splitters on the two different atoms are not shown, but are always along
the direction of the beam splitter and not along the direction of the initial atom velocity.

As the interference pattern caused by Na atoms with different diffraction phases is non-
trivial, especially when taking into account the ellipse fitting, a Monte Carlo approach is
taken to simulate the measurement. Solving the differential equations (2.41) for a single
Ramsey-Bordé interferometer can take more than a second even on a rather powerful com-
puter; thus, it would be impractical to solve the equations for Na = 106 atoms each with a
random position and velocity (especially if multiple parameters are to be varied). Instead,
all relevant matrix elements 〈a| Ĥn,N |b〉 and 〈a| Ĥn |b〉 are precomputed for a 2D grid of
intensities Ω0 and velocity offsets ∆v (the velocity difference from resonance). The matrix
elements are then interpolated in the complex plane to give the intermediate values; doing
so speeds up the calculation by many orders of magnitude with only a small loss of precision.

The Monte Carlo simulation is performed as follows: For each of the Na atoms to be
simulated, a random position is generated, which is weighted by a Gaussian probability
distribution with a width σxyz given by the atom cloud’s initial size (as calculated from the
temperature time-of-flight measurements). An x and y velocity is also generated from a
Maxwell-Boltzmann distribution (σvxy) based on the Raman-sideband cooling temperature
of the atoms. The z velocity is sampled from a Gaussian approximation of the momentum
spread (σvz) resulting from the velocity selection in Section 4.3. Other parameters such as
an overall transverse velocity and position offset can be added to each atom to simulate an
imperfect launch, if desired. To increase the integration rate of the computation, a parameter
for the detection radius rdet is used to immediately throw out any atoms that would not end
up in the detection region after the full time-of-flight. (To keep the statistical resolution
of the simulation, new atoms are generated until one is created that does end up in the
detection region.)

Once an atom is initialized (given its initialized position and velocity and assuming the
initialized atom was released at a time coinciding with the end of the Raman-sideband
cooling), the position of the atom is then calculated at the state selection pulse, at each
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Figure 5.16: A Monte Carlo simulation for an n = 4, N = 0 interferometer with T = 160
ms. Left: The simulated contrasts for the upper (red) and lower (blue) interferometers as a
function of the Rabi frequency in units of the π/2 Rabi-frequency, Ωπ/2. Right: A comparison
to the measured contrast for a n = 4 interferometer with the Rabi frequencies rescaled to
match the data and the contrasts scaled by 53% for the upper simulation and 46% for the
lower simulation to show the similarity of the intensity dependence.

of the two velocity selection pulses, and at all four Bragg diffraction pulses. The state
selection and velocity selection positions will determine three amplitude coefficients. Each
coefficient is determined by the Rabi oscillation transition amplitude given by the laser
intensity at the atom’s position (for a beam waist of w0). At the position of each Bragg pulse,
the complex matrix element for each interferometer path is computed given the intensity
at the location of the atom and the atom’s z velocity. The total probability amplitude
coefficient cijk is then computed for each of the 8 possible paths as given in Section 2.5.2,
including the additional amplitude coefficients from the state and velocity selection. The
total interferometer amplitudes are then calculated as

|Ψuu|2 =
Na∑
j=1

∣∣cjuuu + cju`ue
−i(φc+φm)

∣∣2 ,
|Ψ``|2 =

Na∑
j=1

∣∣cj`u`ei(φc+φm) + cju``
∣∣2 ,

|Ψu`|2 =
Na∑
j=1

∣∣cjuu` + cju``e
−i(φc+φm)

∣∣2 ,
|Ψ`u|2 =

Na∑
j=1

∣∣cj`uuei(φc+φm) + cju`u
∣∣2 ,

where cj is a probability amplitude coefficient for the jth atom, φc is the common mode
phase (the differential phase is assumed to be zero), and the modulation phase φm is used
to shift the phase away from zero. These interferometer amplitudes are calculated for values
of φc between 0 and 2π and φm = ±π/4 to generate ellipses, which are then fit to obtain
the simulated diffraction phase. The amplitude of the ellipse also gives a measure of the
maximum theoretical contrast.

The results of one such simulation for n = 4, N = 0, and T = 160 ms are plotted in Fig.
5.16, with atom parameters listed in Table 5.1, taken from experimental measurements. The
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Table 5.1: Parameters used in the Monte Carlo simulations, unless otherwise noted.

Parameter Symbol Value

Bragg diffraction order n 5
Bloch oscillation order N 25

Pulse width σ 0.188ω−1
r

Gaussian cutoff τ 3.272σ
Intensity Ω0 1.05Ωπ/2

Vertical velocity spread σvz 0.07vr
Transverse velocity spread σvxy 1.5vr

Position spread σxyz 2.2 mm
Initial position offset x0 0

Initial x-velocity vx0 0
Initial z-velocity vz0 0

Pulse separation time T 80 ms
Center separation time T ′ 10 ms

Detection radius rdet 2 mm
Laser waist w0 6.2 mm

Number of simulations Na 106

Bins used for statistics Nbin 10

plot shows the simulated contrast as a function of the Rabi frequency – where it becomes
apparent that more than the theoretical π/2 pulse intensity is required for maximum contrast.
Additionally, the lower and upper interferometer have different optimal intensities, which is
consistent with the fact that the lower interferometer has the majority of the hotter atoms.
Also plotted is a comparison to the data from Fig. 5.4, where the Rabi frequency of the
simulation has been scaled to match the data. The contrast vs. intensity simulations agree
fairly well, assuming the simulated upper interferometer contrasts are scaled by 53% and the
lower contrasts are scaled by this and another 88% (for a total of 46%). The overall scaling
of 53% is most likely due to a combination of background atoms and other decoherence
sources which are not accounted for in the simulation. The extra contrast loss in the lower
interferometer is probably due to the sample being less ideal than the simulated parameters.

To check the sensitivity of the diffraction phase to the individual pulse intensities, the
Monte Carlo simulation was run with n = 5 and N = 0 or N = 25 to compare with the
results from Fig. 2.19 for a single atom interferometer. The same atom parameters described
in Table 5.1 are used, with T = 160 ms for N = 0 and T = 80 ms for N = 25. The intensity
Ω0 used for the Bragg pulses was chosen to be 5% higher than the π/2 pulse intensity Ωπ/2

in order to operate at the maximum observed contrast. The third and last pulse intensities
were then varied proportional to 1.05Ωπ/2, with results plotted in Fig. 5.17. The immunity
to the last pulse intensity is no longer present, but the variation is still suppressed when
compared to the third pulse intensity. Also plotted is the diffraction phase as a function of
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Figure 5.17: Monte Carlo simulated diffraction phases for an n = 5 interferometer as a
function of the third and last pulse intensities. Left: The diffraction phase for N = 0 and
T = 160 ms using an overall intensity of Ω0 = 1.05Ωπ/2 for all pulses except the one being
varied, either the third (blue) or last (red). Center: The same simulation but with N = 25.
Right: A comparison of diffraction phase vs. last pulse intensity for several overall intensities
Ω0 for N = 25.

the last pulse intensity for several overall intensities Ω0. At a Rabi frequency of Ω0 = 1.1Ωπ/2,
the diffraction phase sensitivity to the last pulse diminishes, which might end up being a
promising operating point to reduce systematics.

5.4.1 Parasitic Interferometers

Since Bragg diffraction has the potential to populate momentum states other than the de-
sired orders, it is possible to create parasitic interferometers that can cause shifts in the
measurements [79]. Due to the momentum selectivity of the Bloch oscillations, the most
likely parasitic interferometers are Ramsey-Bordé like, where the momentum of the atom
matches the lattice velocity (|0〉 or |n〉) during T ′, as shown in Fig. 5.18. The phase accu-
mulated along these parasitic Ramsey-Bordé trajectories can be calculated as

φp = ±8np(np +N)ωrT ± npωmT + φc(np),

where the plus and minus corresponds to the lower and upper parasitic interferometers,
respectively, np is the Bragg order, and φc(np) is the common mode phase due to vibrations.
The modulation frequency ωm is unchanged, which means that when the phase of the main
Ramsey-Bordé interferometer is canceled with ωm ≈ 8(n + N)ωr, then the parasitic phase
reduces to

φp = 8np(np +N)ωrT − 8np(n+N)ωrT + φc(np)

φp = 8np(np − n)ωrT + φc(np).

Since the effective Rabi frequency decreases as the Bragg order increases, the parasitic in-
terferometers that are most likely to occur are those with np = 1. This corresponds to a



CHAPTER 5. EXPERIMENT 141

Ψ
uu

Ψ
u�

Ψ
�u

Ψ
��

|n–n
p
〉

|n
p
〉

|n+n
p
+N〉

|–n
p
–N〉

T1
' T2

' TT

BO

2 2±m2±m2

1 1 1 1

Ψ
up

Ψ
�p

Po
sit

io
n

Time

Figure 5.18: A space-time diagram for a Ramsey-Bordé interferometer with Bloch oscilla-
tions, showing a few possible parasitic interferometer trajectories (dashed) in addition to the
desired paths (solid).

Ramsey-Bordé interferometer where the atom gets kicked by 2~k from rest and the conju-
gate interferometer where the atom gets kicked by 2(n − np)~k at the first beam splitter
(followed by kicks of only 2~k). The conjugate interferometer will most likely have a smaller
amplitude since the first transition from |0〉 → |n− np〉 is suppressed, but it is included here
for symmetry.

To investigate the influence of these parasitic interferometers on the recoil measurement,
the Monte Carlo simulation was modified to include these unwanted interferometer paths.
The resulting amplitudes of the four interferometer outputs including the parasitic trajecto-
ries are then

|Ψuu|2 =
∣∣cuuu + cu`ue

−i(nφc+φm) + cupue
i(φr−npφc)

∣∣2 ,
|Ψu`|2 =

∣∣cuu` + cu``e
−i(nφc+φm) + cup`e

i(φr−npφc)
∣∣2 ,

|Ψ`u|2 =
∣∣c`uuei(nφc+φm) + cu`u + c`pue

i(φr+npφc)
∣∣2 ,

|Ψ``|2 =
∣∣c`u`ei(nφc+φm) + cu`` + c`p`e

i(φr+inpφc)
∣∣2 ,
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Figure 5.19: Population transfer to the first diffracted order vs. Gaussian pulse width σ
for n = 5 and Gaussian cutoffs of τ = 3.272σ. The intensity Ωπ/2 is recalculated at each
Gaussian width to give an optimal π/2 pulse. The blue and yellow curves show the population
transfer for ±5% the π/2 intensity. The dashed line indicates the usual experimental value
of σ = 0.188ω−1

r = 14.48µs.

where φr = np(np − n)ωrT + npφm/n and the probability amplitudes cipk for the i = [`, u]
interferometer and the k = [`, u] output port are given by the matrix elements:

cupu = 〈2n+N | Ĥn,N |n+ np +N〉 〈n+ np +N | Ĥn,N |n+N〉 〈n| , Ĥn |n− np〉 〈n− np| Ĥn |0〉 ,
cup` = 〈n+N | Ĥn,N |n+ np +N〉2 〈n| Ĥn |n− np〉 〈n− np| Ĥn |0〉 ,
c`pu = 〈−N | Ĥn,N |−np −N〉2 〈np| Ĥn |0〉2 ,
c`p` = 〈−n−N | Ĥn,N |−np −N〉 〈−np −N | Ĥn,N |−N〉 〈np| Ĥn |0〉2 .

Since the common mode phase φc is different for the parasitic trajectory due to the number
of photons transferred from the laser field, the vibrations are rescaled to nφc and npφc for the
two interferometer orders. It is no longer valid to assume that the vibrations will cause an
evenly distributed set of points around the ellipse and therefore, the distribution of phase will
have an effect on the interferometer pattern due to the n vs. np scaling. The vibration phase
distribution was estimated based on seismometer data taken from a neighboring experiment
in the lab. For a pulse separation time of T = 20 ms, the distribution of φc is estimated to
be Gaussian with a standard deviation of σφ = 1.2.

The atom population that gets transferred to the undesired order np = 1 is a strong func-
tion of the Bragg pulse width σ as shown in Fig. 5.19. For typical experimental parameters
of σ = 0.188ω−1

r = 14.5 µs, the population transferred to the first order by the Bragg beam
splitter can be as much as a few percent. There does exist a local minimum at a slightly
longer pulse length, but it is dependent on the intensity used. As a compromise, a value of
σ = 0.216ω−1

r = 16.6 µs is simulated as a comparison to the typical σ = 0.188ω−1
r value.

Some results of the Monte Carlo simulation with parasitic interferometers are shown in
Fig. 5.20 for n = 5 and N = 0 for pulse separation times near T = 20 ms (in steps of 2 µs).
Simulations for both the typical σ = 0.188ω−1

r and the optimized σ = 0.216ω−1
r (with the
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Figure 5.20: Left: The residual diffraction phase obtained by Monte Carlo simulation when
parasitic interferometers are included for n = 5, N = 0, np = 1, and T varied between 20
and 20.02 ms. Right: The experimentally measured residual diffraction phase for 95 µs and
109 µs Gaussian pulse lengths, which correspond to σ = 0.188ω−1

r and σ = 0.216ω−1
r pulse

widths, respectively. Also plotted are sinusoidal best fits (with all parameters free, except
for the 109 µs experimental data where the period is fixed).

same pulse cutoffs of τ = 3.272σ) are plotted for comparison. The Monte Carlo parameters
are the same as before, except that an intensity of Ω0 = Ωπ/2 is used. The simulations show
a fringe with a period of 8np(n − np)ωr = 2π · 66 kHz, which is suppressed by almost an
order of magnitude for the optimized pulse length. In general, if the common mode phase
distribution is made to be smaller than σφ = 1.2 radians, then the oscillations get stronger
(and suppressed for a distribution larger than 1.2 radians). Additionally, decreasing the Rabi
frequency has the effect of increasing the oscillation amplitude, as one would expect from
the calculations in Fig. 5.19.

Also plotted in Fig. 5.20 is experimental data for a Ramsey-Bordé interferometer when
using a 95 µs (σ = 0.188ω−1

r ) Bragg pulses and the optimized 109 µs (σ = 0.216ω−1
r )

pulse length. To observe any potential parasitic interferometers, ellipses were measured
at Tshort = 5 ms and Tlong = 80 ms in addition to values near 20 ms. The diffraction
phase was then extracted by fitting the measured frequencies to a 1/T curve, and then the
resulting phase fit residuals are plotted. The observed oscillation for the σ = 0.188ω−1

r pulse
data has the same frequency as predicted from theory (66 kHz), which confirms that the
observed parasitic interferometer has order np = 1. The peak-to-peak amplitude of the fitted
oscillation for the σ = 0.216ω−1

r data is zero within experimental error (2.4 ± 2 rad) and
is consistent with the reduction seen in the simulation. While the fitted amplitude of the
oscillation in the 95 µs pulse length data does not agree entirely with the simulation, the fact
that the oscillation is larger is not surprising since any misalignments are likely to increase
the size of the parasitic interferometers.
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5.4.2 Time Dependent Diffraction Phase

One possible source of systematic error that has yet to be discussed is a diffraction φ(T )
that is a function of the pulse separation. Since the only real way to eliminate the diffraction
phase systematic is to extrapolate the measured frequency ωm as T approaches infinity (as
was discussed in Section 5.2), a linear T dependence in φ will result in a systematic shift
in the inferred value of ωr. Consider a zero phase measurement from Eq. (5.1), where
φ0 → φ(T ) is instead written as a power series in T such that

2nωmT = 16n(n+N)ωrT +

[
φ0 +

∂φ

∂T
T +O(T 2)

]
, (5.5)

where φ0 is the usual constant diffraction phase. If higher order powers in T are ignored,
then (5.5) can be rewritten as

ωm
8(n+N)

= ωr +
1

16n(n+N)T

(
φ0 +

∂φ0

∂T
T

)
=

[
ωr +

1

16n(n+N)

(
∂φ

∂T

)]
+

φ0

16n(n+N)

1

T
,

where the linear dependent part of the diffraction phase is grouped with the recoil phase for
clarity. If the pulse separation time is extrapolated to infinity, then there will be a systematic
error in ωr of

δωr =
1

16n(n+N)

(
∂φ

∂T

)
,

which cannot be determined with a Ramsey-Bordé measurement as it is indistinguishable
from the recoil signal. The only two options to deal with this type of systematic are to
either perform the experiment at different parameters (n, N , etc.) and assume the linear
dependence of the diffraction phase is not constant or instead estimate the size of the effect
with theoretical calculations. Since the Monte Carlo simulation already deals with the time
dependent dynamics of the atoms, one can use it to estimate the size of φ1 ≡ ∂φ/∂T for a
given set of parameters.

Some examples of systematic searches using Monte Carlo simulation are shown in Fig.
5.21 for n = 5, N = 25, σ = 0.216ω−1

r and the usual parameters listed in Table 5.1 (un-
less otherwise noted). A value of φ1 was determined by calculating the phase at T =
{5, 10, 20, 40, 60, 80} ms and using a linear 1/T fit. The intensity dependent systematic
shows a minimum shift in the region of 1.05Ωπ/2±5% with errors below 0.2 ppb in ωr.
Large variations are seen if the detection region is factor of 2 larger, with systematic errors
approaching 1 ppb. Therefore it is very important to detect only the central-most atoms
through heavy spatial filtering of the signal. By spatially filtering the sample during velocity
selection using a smaller beam waist (Fiber:VS in Fig. 4.9) rather than using the Bragg
beam fiber-port, the sensitivity to intensity can be reduced slightly. Therefore, this might
be a viable strategy to reduce position dependent systematic phase shifts.
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Figure 5.21: Monte Carlo simulated shifts in the measured recoil frequency ωr due to a linear
diffraction phase term (∂φ/∂T ) as a function of experimental parameters, with σ = 0.216ω−1

r

and the usual parameters listed in Table 5.1. Left: The systematic shift in ωr as a function
of the overall intensity in units of Ωπ/2, for different velocity selection beam waists. Right:
The shift as a function of detection radius for different overall intensities, for the normal
velocity selection waist of 6.2 mm.

5.5 Compensation

One factor preventing the use of more Bloch oscillations is the large contrast decay at longer
pulse separation time, limiting the number of Bloch oscillations to around N = 25. To
investigate the cause of the decoherence, interferometer data was taken with varying Bloch
lattice depths U0 and Bloch ramp times tbloch. Fig. 5.22 shows the measured interferometer
contrasts and the observed Bloch transfer efficiencies for n = 4, N = 50, T = 80 at 15
GHz blue-detuned, where the efficiency was measured as the fraction of atoms transferred
to the |−N〉 state from |0〉. Universally, a deeper lattice or a longer ramp rate decreases
the contrast while simultaneously increasing the transfer efficiency. While this might seem
consistent with decoherence due to single photon scattering

Ploss = 1− exp

(
− Γ3

8∆2

I

Isat

t

)
= 1− exp

(
− ΓU0

2~∆
t

)
from (4.2), the theoretical rate is much too low. In Section 4.5 it was determined that a single
Bloch lattice had a depth of approximately 6~ωr. The single photon scattering intensity then
is a factor of 3 larger to account for the two other simultaneous lattices. With parameters
of Γ = 2π · 5.2 MHz, ∆ = 2π · 15 GHz, U0/~ ≈ 20ωr, and a Bloch time of 1.5 ms, the
single photon scattering rate should only be 6%. Additionally, this would not explain why
the contrast decreases for increased pulse separation time T , which should be independent
of the single photon scattering.
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Figure 5.22: A plot of the measured transfer efficiencies of the Bloch oscillations (blue) as a
function of lattice depth (left) and Bloch ramp time (right) for n = 4, N = 50, T = 80 ms
and ∆= 15 GHz. Plotted in red are the measured contrasts of the upper interferometer of
the Ramsey-Bordé interferometer for the same parameters.

Instead, a differential ac-Stark shift mechanism dominates the contrast loss as proposed
and experimentally solved by Kovachy et. al. [55]. It is normally assumed that during the
interferometer, each part of the atom superposition experiences the same optical intensity
along each interferometer path since any transverse motion is common mode between the
atom superposition states. However, if the Gaussian beam intensity is not translationally
invariant due to divergence, diffraction or scatter, then the ac-Stark shift will be different
between the paths causing a phase shift in the interferometer. When the differential ac-
Stark shift is common to all atoms in the ensemble, then the ac-Stark shift will cause a
systematic shift in the measured phase. On the other hand, if each atom in the ensemble
sees a different ac-Stark shift, then the effective contrast will decrease due to the averaging
of many interference patterns.

Consider a scenario where the Gaussian beam is diffracted by a circular aperture (lens,
window, fiber-port etc.) or from dust on an optical component. The intensity distribution
across the beam will change as a function of distance with larger variations occurring at
longer distances. As the pulse separation time increases in a Ramsey-Bordé interferometer,
so does the spatial separation and thus the intensity variation, decreasing the measured
contrast of the ensemble. With an effective intensity of 20ωr for all of the Bloch lattices, a
1 ms Bloch pulse causes 20ωr · 10−3s ≈ 260 radians of common mode phase due to ac-Stark
shifts. If the intensity variation across the atom cloud is only 1%, then the phase difference
between different parts of the cloud will nearly exceed π and no interference will be observed.

To compensate for this decoherence effect, a second laser frequency is added to the Bloch
beam during the Bloch oscillation pulse. Since the second beam travels along the exact same
path into the chamber, it will also (to first order) get diffracted and scattered in the same
way. If the second laser has the opposite single photon detuning, then the ac-Stark shift
caused by the second beam will have the opposite sign. Therefore, by selecting the intensity
appropriately, the two ac-Stark shifts can cancel and the contrast will be restored.

In order to generate the compensation light, a free running external cavity diode laser is
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Figure 5.23: The measured upper interferometer contrast of a Ramsey-Bordé interferometer
with n = 5, N = 25 (blue) and N = 75 (red) showing the improved contrast resulting from
the ac-Stark compensation beam.

amplified by a tapered amplifier, coupled into a fiber (Fiber:ac-Stark), and mixed with the
Bloch beam as shown in Fig. 4.3. To overlap the beams, AOM19 is run at 50% efficiency
and the compensation beam is sent into the other AOM input port. Since 50% of the Bloch
power is now lost, the intensity of the Bloch beam is increased by a factor of 2 to compensate.
The intensity of the compensation beam is controlled by measuring the intensity at PD9 and
feeding back to the TA current.

The results of using ac-Stark shift compensation are shown in Fig. 5.23 where the upper
interferometer contrast was measured at different pulse separation times with and without
compensation for n = 5, N = 25 and N = 75. The compensation beam improves the
contrast significantly at long T , especially for N = 75. The small loss of contrast at short T
is most likely due to additional single photon scatter from the compensation beam. Further
improvements to this method might enable the use of higher order Bloch oscillations at
longer T for improved sensitivity in the future.

5.6 Recoil Measurement

The ultimate goal of this experimental apparatus is a measurement of the recoil frequency
ωr = ~k2/2mCs in order to determine ~/mCs for cesium to better than 0.5 ppb uncertainty.
To that end, this chapter concludes with data from an attempt at a final measurement and
the reason why more work needs to be done.

After completing a fresh alignment of the fountain and Bragg beams, a series of recoil
measurements with n = 5, N = 25, and a Gaussian pulse length of 95 µs (σ = 0.188ω−1

r )
was taken between November 15 and November 31, 2015. To check for possible T dependent
diffraction phases, modulation frequency measurements were made at pulse separation times
of T = {5, 10, 20, 40, 60, 80} ms. For each T , 30 ellipse points were taken for both plus
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Figure 5.24: All of the +π/4 modulated ellipse data taken on November 23rd, 2015 for an
interferometer with n = 5 and n = 25.

and minus modulation frequencies, at which point the ellipses were fit and the next T was
measured in the same way. After all 6 pulse separation times were completed, the set of
measured modulation frequencies were fit to a 1/T line and extrapolated (as was done in
Section 5.2) to obtain a measurement of the recoil frequency. These fits took into account all
currently known systematics including gravity gradients, laser frequency, beam alignment,
etc. (which are described in Chapter 6). This was then repeated continuously until the
experiment failed, at which point it was fixed, realigned, and a new measurement cycle was
started over. By repeatably measuring the set of T s, drifts in the diffraction phase slower
than the repetition rate (60× 6× 2.1 seconds = 12.6 minutes) are canceled.

Some of the measured ellipses from the November 23rd dataset are shown in Fig. 5.24 for
each pulse separation time used. The plotted dataset consists of just the +π/4 modulated
ellipses and shows only 21600 out of the 202260 total ellipse points taken over the month.
Every few days, the measured recoil frequencies were binned and a statistical error bar was
calculated. The result of all 6 measurement sets are shown in Fig. 5.25, along with a
weighted average of the entire set. The weighted average has a statistical error bar of 0.6
ppb in ωr and thus in ~/mCs.

When calculating the 1/T fits to the ωm(T ) data, the residuals were also calculated; the
average of all residuals are shown in Fig. 5.25. It is very clear that some pulse separation
times deviate significantly from the fit line, which indicates that those T s have a slightly
different diffraction phase than the baseline (fit value). This “anomalous” residual phase
poses a serious problem for a recoil measurement and was the main motivation for the
Monte Carlo simulation and the work done to reduce the parasitic interferometers. Despite
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Figure 5.25: Recoil measurement data taken over the month of November (2015) for an
interferometer with n = 5 and N = 25. Top: The relative error in ωr for the six mea-
surement sets and a final weighted average with an uncertainty of 0.6 ppb. Bottom: The
residual diffraction phase (as measured from the fitted constant diffraction phase) for each
pulse separation time used. Several points statistically deviate from zero, which indicates a
diffraction phase that is not constant for all T .

the work done since this measurement was taken, including the ultimate change in the pulse
length to 109 µs (which was not used in this data), this anomalous diffraction phase is still
present. There are some hints that this anomaly is related to fountain and Bragg alignment,
but the results are still preliminary. For this reason, the value of the averaged measurement
in Fig. 5.25 will not be listed in this thesis so that the final measurement can remain blind.
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Chapter 6

Systematics

6.1 Wave-vector Systematics

When obtaining a measurement of ~/m from the recoil frequency ωr = ~k2
eff/8m, one needs

to be very careful about the treatment of the effective wave-vector ~keff = ~k1 +~k2. The exact
momentum transferred to the atoms during a beam splitter is influenced by four factors:
laser frequency, beam alignment, the Gouy phase, and the wavefront curvature.

6.1.1 Laser Frequency

The conversion between ωr and h/m requires a very precise measurement of the laser fre-
quencies which determines keff. For a laser frequency uncertainty of δωL = cδkeff/2, the
resulting uncertainty in ~/m is

δ(~/m)

~/m
= 4

δωL
ωL

.

Therefore, a fractional uncertainty of 0.1 ppb in ~/m requires the laser’s frequency to be
accurate to 10 kHz for 852 nm light. Since all function generators are referenced to a rubidium
frequency standard (which is calibrated by the GPS 10-MHz signal), the frequency shifting
from AOMs and the offset lock are known to much better than 1 Hz accuracy. This only
leaves the uncertainty of the spectroscopy which determines the reference laser frequency.

In theory, the spectroscopy should be stabilized exactly to the 3 → 2′ D2 transition in
cesium which has a frequency of 351.73054961(11) THz (from Fig. 3.2). However, there
are inevitably systematic shifts and drifts despite the resilience of the modulation transfer
spectroscopy. To measure the exact frequency of the reference laser, a small amount of light is
coupled into a fiber after TA1 (see Fig. 3.3) and sent to a Menlo Systems Titanium:Sapphire
frequency comb. The frequency comb generates thousands of laser frequencies that are all
equally spaced by the laser repetition rate of frep = 200 MHz with a known frequency offset
foffset from zero [127]. By overlapping the reference laser with one of the comb teeth and
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Figure 6.1: The measured reference laser frequency and correlation with the spectroscopy
photodiode voltage. Top: The reference laser frequency as measured by the comb, with
gaps occurring when the frequency comb was non-functional. Bottom: The spectroscopy
photodiode voltage as a function of time. As the voltage decreases, the measured frequency
increases. Right: The correlation between the voltage and the frequency as measured by the
comb. The correlation is approximately quadratic, with a best fit shown in black.

detecting the resulting beat frequency, a measurement of the laser frequency difference ∆f
between the comb tooth and the reference can be made. With knowledge of the absolute
comb tooth number from a rough laser frequency measurement (from a wave-meter), the
absolute frequency of the reference can then be calculated as

fref = foffset + nfrep + ∆f,

where n is the comb tooth number. Since both foffset and frep are also referenced to the
rubidium frequency standard, they are known to approximately 0.01 ppb. The reference
laser can then be measured to roughly 3.5 kHz with the frequency comb.

A plot of the measured reference frequency over the course of a month is shown in Fig. 6.1,
which shows a drift in the spectroscopy locked frequency of 100 kHz. The drift is correlated
with the total photodiode signal voltage (not the demodulated signal) and, thus, drifts in
the absolute power of the spectroscopy seem to be causing a drift in the reference laser
frequency. Since the long term stability of the spectroscopy is determined by modulation
transfer spectroscopy, this drift is most likely caused by the EOM1 modulated light being
parasitically reflected off the vapor cell and detected by PD2. The parasitic modulated light
will be demodulated and cause a DC offset in the lock that changes with laser power.

Without improving the alignment, this drift can be calibrated out by recording the pho-
todiode signal and correcting the recoil data in post processing using the calibration curve
shown in Fig. 6.1. To determine the effectiveness of this approach, the extrapolated fre-
quency is compared to the comb measured frequency and the difference is plotted in Fig.
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Figure 6.2: The residual frequency difference between the frequency as measured by the
comb and the extrapolated value using the calibration curve in Fig. 6.1. The spread has a
1-sigma standard deviation of 10 kHz.

6.2. The frequency residual has a mean of 0 kHz ±10 kHz, which is good enough for a 0.03
ppb measurement of the laser frequency.

Ideally, the frequency of the laser would be measured directly during the experimental
run to provide a more accurate measurement of the frequency for post correction. However,
the comb has proven to be somewhat unreliable and thus this calibration method can serve
to bridge the gaps when the comb fails.

6.1.2 Beam Alignment

The magnitude and direction of the momentum kick during the beam splitter are dependent
on the relative direction of the two wave-vectors ~k1 and ~k2 (which are ideally perfectly
counter-propagating). When taking into account the direction of these wave-vectors, the
recoil frequency can be written as

ωr =
~

8m
k2

eff

=
~

8m
(~k1 + ~k2) · (~k1 + ~k2)

=
~

8m
(k2

1 + k2
2 + 2|k1||k2| cos θ),

where θ is the angle between the two wave-vectors. Since the frequency difference between
the lasers is small compared to the absolute laser frequency, we can approximate k1 ≈ k2 ≡ k
so that

k2
eff ≈ 2k2(1 + cos θ)

≈ 4k2 − k2θ2 +O(θ4)
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Figure 6.3: The measured back-coupling efficiency of the retro-reflect mirror (blue) as a
function of the mirror tilt piezo voltage. The measured data is also plotted against the
theoretical mirror angle assuming the piezo actuates on a lever arm of 185 mm and has a
displacement of 0.166 µm/V. The coupling efficiency data is normalized to be equal to one
at the maximum. The theoretical coupling efficiency (red) is plotted as a function of the
theoretical mirror angle for comparison.

for a small relative θ. The error in k2
eff from the ideal value of keff = (ω1 + ω2)/c based on

the measured laser frequencies is then

δk2
eff = −k2θ2

=⇒ δk2
eff

k2
eff

≈ −θ
2

4

and therefore the error in ~/m due to the relative angle between the beam splitter lasers is

δ(~/m)

~/m
= −θ

2

4
. (6.1)

The experiment is set up such that the two wave-vectors k1 and k2 originate from same
fiber with opposite polarization. To create the counter-propagating lattice, the lasers are
retro-reflected off a mirror at the top of the chamber. The relative angle θ between the
two wave-vectors is then twice the angle the mirror makes with the up-going wave-vector,
2θm = θ. To determine the angle the mirror makes with the laser, the light is back-coupled
into the launching fiber and monitored on PD8 in Fig. 4.3. When the fiber coupling is
maximized, the retro-reflected light must be perfectly counter-propagating and therefore the
angle is zero. As the mirror is tilted away from zero degrees, the coupling efficiency will
decrease. By measuring the coupling efficiency during the experimental run, the relative
angle can be determined which allows for post correction of the data to reduce the beam
alignment systematic.



CHAPTER 6. SYSTEMATICS 154

The retro-reflect mirror angle is adjustable by two large micrometers and two piezoelectric
actuators to control the x and y tilt. To calibrate the mirror tilt against the coupling
efficiency, the retro-reflect coupling was measured as a function of the applied piezo voltage
and fitted to a Gaussian function as shown in Fig. 6.3. The angle of the mirror was estimated
based on the lever arm of the piezo to the rotation axis (185 mm) and the theoretical piezo
displacement of 17 ± 2 µm/150 volts. To compare this measurement with the theoretical
back-coupling efficiency, assume that the launched laser is a plane wave with a Gaussian
electric field amplitude of

E1 = |E|e−(x2+y2)/w2
0

and the retro-reflected laser is approximated by the wave tilted by an angle 2θm about the
y-axis such that

E2 ≈ |E|e−(x2+y2)/w2
0e−i2kxθm ,

where φ = 2kxθm is a spatially dependent phase term along x-axis resulting from the tilted
plane wave. The coupling efficiency η is then defined as the overlap integral of the two
electric fields

η =
1

E2

∣∣∣∣∫∫ E1E
∗
2 dx dy

∣∣∣∣2
= exp

[−4π2w2
0θ

2
m

λ2

]
.

The theoretical coupling efficiency is also plotted in Fig. 6.3 using the estimated angle of
the mirror from the piezo voltage. The two agree reasonably well with λ = 852 nm and
w0 = 6.2 mm, although it seems that the mirror angle might be somewhat overestimated.1

The two would match if the mirror angle was 25% smaller than the estimate based on the
piezo displacement. The larger of the two estimates is used as an upper bound and the angle
as a function of coupling efficiency can be fitted from the data to be

|θm| =
√

ln η · 25.2 µrad.

Some sample retro-reflect data is plotted in Fig. 6.4 showing the measured retro-reflect
efficiency as a function of time. Also plotted is the corresponding error in ~/m from (6.1)
using the inferred angle based on the coupling data. The error has a mean of 0.22 ppb and
can have a maximum deviation of 0.6 ppb; therefore, post correction on the data is required.
The post correction is limited by the standard deviation of the back-coupling efficiency over
the timescale required to take a single measurement (two ellipses), which gives an error of
0.03 ppb.

Coriolis Compensation: The Coriolis compensation from Section 4.4.3 requires that the
mirror be rotated to compensate for Earth’s rotation. For an interferometer with a pulse

1An actual tilt measurement with a calibrated tilt sensor might be required.
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Figure 6.4: Left: A plot of the retro-reflect coupling as a function of time, normalized to
the maximum signal size. Each point is the average coupling over a period of one minute.
Right: The corresponding errors in ~/m due to the inferred mirror angle based on the data
in Fig. 6.3.

separation time of T = 160 ms and T ′ = 10 ms, the mirror will rotate by only 3.8 µrad. This
corresponds to an error of 0.01 ppb in ~/m and can be ignored.

6.1.3 Gouy Phase

The last corrections to consider come from the Gaussian beam nature of the beam splitters.
If we take the surface of the retro-reflect mirror to be at z = 0, then the electric field
describing the beam splitter laser traveling in the +ẑ direction can be written as

E1 (z, r) = |E(z, r)| ei
[
k(z−z0)−ωt+ kr2

2R(z−z0)
−ζ(z−z0)

]
,

where w0 is the Gaussian waist, z0 is the location of the waist, and k = k1 ≈ k2 is the laser’s
wave-vector. The last two terms in the exponential are a curvature phase term kr2/2R(z−z0)
and a Gouy phase term ζ(z − z0), where R(z) = z(1 + z2

R/z
2) and ζ(z) = tan−1(z/zR). The

Rayleigh range zR = πw2
0/λ is the distance over which the Gaussian beam is approximately

collimated.
After the laser beam reflects off the retro-reflect mirror, the downward traveling electric

field can be written as

E2 (z, r) = |E(z, r)| ei
[
−k(z+z0)−ωt− kr2

2R(z+z0)
+ζ(z+z0)

]
,

where the signs of some terms have changed to indicate the change in beam direction. The
incoming and reflected beams are diagrammed in Fig. 6.5, as are the effective locations of
the waists.
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Figure 6.5: A diagram of the Gaussian beam reflecting off the mirror in the chamber. The
incoming beam (blue) has a virtual waist at z = z0 and the reflecting beam (purple) has a
real waist at z = −z0.

The wave-vector that interacts with the atoms can be thought of as the gradient of the
laser phase with respect to z and, therefore, the total effective wave-vector keff is

keff =
∂

∂z

[
k (z − z0)− ωt+

kρ2

2R (z − z0)
− ζ (z − z0)

]
− ∂

∂z

[
−k (z + z0)− ωt− kρ2

2R (z + z0)
+ ζ (z + z0)

]
.

Since we care about the behavior of the effective wave-vector near the mirror, keff is expanded
with z/zR << 1 and to first order in z0/zR, which yields

keff ≈ 2k − 2

zR
+ 2

z2
0

z3
R

+
kr2

z2
R

+O(z2
0/z

2
R).

In the plane wave limit where w0 and zR are large, the effective wave-vector reduces to
keff = 2k as expected. The first two corrections are from the Gouy phase which modify the
wave-vector in the vicinity of the waist and the last correction is the wavefront curvature
and is only relevant when the atoms interact with the laser away from the beam center. The
fractional change in keff can be expressed as

δkeff

keff

= − λ2

2π2w2
0

(
1− z2

0

z2
R

− r2

w2
0

)
. (6.2)

Ignoring the r2 dependence for now, we can see that the correction depends on the waist
w0 of the laser and the position of the waist z0 relative to the mirror at z = 0. (Ideally the
waist would be very close to the mirror, z0/zR � 1, but this may not always be the case if
the beam is slightly defocused due to collimation errors.)

To characterize the Bragg laser beam, knife edge measurements were taken along the x
and y axes of the beam before it goes into the chamber and as it exits the chamber after
the retro-reflect. The results of the measurements are shown in Fig. 6.6, with each set of
data fitted to an error function to obtain the waist. The x and y waist measurements differ
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Figure 6.6: Knife edge measurements of the Bragg beam along each axis as it goes into the
vacuum chamber (incoming) and as it exits the vacuum chamber after being retro-reflected
(outgoing). Each measurement is fit to an error function (integrated Gaussian) to determine
the waist at the location of measurement. Both the incoming and outgoing measurement
were done approximately 2.5 meters from the retro-reflect mirror.

by about 1.5% and the waist expands by approximately 1.5% between the two measurement
positions. (The distance from the first measurement position to the retro-reflect mirror
and back is about 2zm = 5 meters.) The waist of a Gaussian beam changes with distance
according to

w(z) = w0

√
1 +

z2

z2
R

.

Therefore, the waist parameter w0 and the waist position z0 can be determined by solving
the set of equations:

w(−zm − z0) = (w1 + w2)/2, w(zm − z0) = (w3 + w4)/2,

for w0 and z0, which gives w0 = 5.70(7) mm and z0 = −52(5) meters. These values result in
a correction to the effective wave-vector (6.2) equal to δkeff/keff = −0.90(3) ppb and thus a
correction to ~/m of −1.80(6) ppb.
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Table 6.1: Monte Carlo simulations of the wavefront curvature phase for n = 5, N = 25,
T = 80 ms, and σ = 0.216ω−1

r . The detection radius rdet and displacement of Gaussian beam
from the atoms ∆x is varied to get a sense for the upper bound of the phase. At each set of
parameters rdet and ∆x, the intensity is optimized (in units of Ωπ/2) for maximum contrast.

rdet[mm] ∆x [mm] Intensity [Ωπ/2] Contrast Phase [mrad]
2 0 1.05 96% 0.15
2 2 1.10 90% 0.25
2 4 1.25 78% 0.60
4 0 1.05 90% 0.20
4 2 1.10 83% 0.29
4 4 1.30 74% 0.66

6.1.4 Wavefront Curvature

The last term in Eq. (6.2) depends on the radial location of the atoms relative to the beam
center. To estimate the size of this effect, the Monte Carlo simulation from Section 5.4 was
used to determine the average wavefront curvature phase of the ensemble. Since the atoms
can potentially have a different radial position for each beam splitter, we must first have
some way of quantifying the effect of the wavefront curvature term.

If the Ramsey-Bordé interferometer phase is calculated with a small perturbation δk to
the effective wavenumber at each beam splitter pulse, then the resulting phase shift is equal
to

δΦ =
8nωr
keff

(
n [T (δk2 + δk3 + 2δk4) + (T ′1 + T ′2)(δk4 − δk3)]

+ 2N [T ′2(δk4 − δk3) + T (δk4 + δkB)]

)
, (6.3)

where δkB is the wave-vector perturbation during the Bloch oscillations and δki is the cor-
rection for the ith Bragg beam splitter (and noting that the first beam splitter has no
contribution). During the Monte Carlo simulation, the radial position ri is recorded for
all beam splitters and used to calculate the wavefront curvature correction to the effective
wave-vector

δki = − λ2

2π2w4
0

r2
i .

The wave-vector perturbation is then used to calculate the phase shift (6.3) for each atom and
the Monte Carlo takes the weighted average of the phase, taking into account the relative
interference contrasts. Since the wavefront curvature is quadratic in r, the simulation is
performed with different values of the detection radius rdet and different Gaussian beam
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displacements ∆x (from the center of the atoms), with results presented in Table 6.1. Even
for very extreme parameters (rdet = 4 mm, ∆x = 4 mm), the wavefront curvature systematic
shifts ωr by less than 0.25 ppb. For more typical parameters with rdet = 2 mm and ∆x = 0
mm, the wavefront curvature systematic is less than 0.1 ppb.

6.2 Sagnac Effect

The Ramsey-Bordé interferometer configuration ideally has zero enclosed spatial area if the
atom launch direction and the Bragg beams are aligned with gravity such that all motion
takes place in the vertical dimension. If there is a misalignment such that the two interfer-
ometer paths enclose a spatial area A and the entire interferometer is rotating at a rate Ω
relative to the inertial frame of the atoms, then there will be an extra phase shift applied to
the atoms equal to

ΦΩ =
4πm

~
~A · ~Ω

due to the Sagnac effect [128]. The magnitude of this phase is proportional to the dot product
~A · ~Ω, where the direction of ~Ω is the axis of rotation and the direction of ~A is normal to
the enclosed area. This effect can be quite large and is often used in gyroscopes to measure
rotational effects [5], but presents itself as a possible systematic effect in our experiment.
The enclosed areas of the upper and lower interferometers should mostly cancel in the case of
a simultaneous conjugate Ramsey-Bordé, but any residual difference needs to be calculated
for possible systematic shifts.

The piecewise trajectory in the x-z plane of all four paths (upper/lower path for the
upper/lower interferometer) are easily calculated parametrically as a function of time t us-
ing the equations of motion and the relevant momentum kicks of the beam splitters. The
resulting trajectories {xij(t), zij(t)} can then be used to calculate the enclosed area of an
interferometer by computing

Ai =

∫
xiu(t)

d

dt
ziu(t)dt−

∫
xi`(t)

d

dt
zi`(t)dt,

where Ai is the area of the i = [u, `] interferometer and {xij(t), zij(t)} are the parametric
coordinates for the j = [u, `] path for each interferometer i. Each integral computes the
area under the parametric curve; the difference is the total area of the interferometer. Any
difference in area between the upper and lower interferometer, Au −A`, then contributes to
a Sagnac phase. For completeness, atom trajectories were calculated with the atoms having
an initial velocity v0 and a launch angle of φ relative to vertical. The beam splitter laser is
treated as being at an initial angle θ (with respect to gravity) and rotating in the atom’s
inertial frame at an angular rate ω. The laser rotation rate is zero if there is perfect Coriolis
compensation and ω = Ωe (i.e. the rotation rate of the Earth) if there is no compensation.
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The full calculation is much too long to show here, but for the simplified case of when
θ = 0 and T ′1 = T ′2 = 0, the difference in area between the upper and lower interferometers
can be written as

Au − A` = −n(n+N)v2
rT

2

[
4

3
(12 + γT 2)− (12 + 5γT 2) cosωT

]
sinωT,

which is a result of any residual rotation ω of the Earth that is not canceled with the
Coriolis compensation. In general, the initial atom velocity v0 and the launch angle φ do
not contribute to the area difference and the angle of the Bragg beam θ only contributes at
a level below 0.01 ppb. For typical interferometer parameters of n = 5, N = 25, T = 80 ms,
T ′1 = T ′2 = 5 ms, and γ = 2.2 × 10−6 s−2, the resulting differential Sagnac phase is below
0.25 ppb in ωr when ω = Ωe. The Earth’s rotation is easily canceled to below 10% using the
techniques outlined in [119] and, therefore, the systematic should be negligible.

6.3 Zeeman Effect

Even though the atoms are in the mF = 0 state (which is mostly insensitive to magnetic
fields), there is still a small energy shift due to the quadratic Zeeman shift. If the arms
of the interferometers travel through different magnetic field regions, then there will be a
systematic phase shift proportional to energy differences caused by the fields.

For intermediate strength magnetic fields, the Breit-Rabi formula [129, 130] can be used
to calculate the energy shift of the 62S1/2 hyperfine levels as

∆EF=I±1/2 = − ∆Ehfs

2(2I + 1)
+ gIµBmFB ±

∆Ehfs

2

(
1 +

4mFx

2I + 1
+ x2

)1/2

,

where the factor x = (gJ − gI)µBB/∆Ehfs, µB is the Bohr magneton, gJ = 2.002540 is the
fine-structure Landé g-factor, and gI = −0.000398 is the nuclear g-factor [131]. For the
special case of the magnetically insensitive mF = 0 state, the leading order B-field term in
the Breit-Rabi formula is

∆EF=I±1/2 = ±(gI − gJ)2µ2
B

4∆Ehfs

B2(z), (6.4)

where gJ ≈ 2 for the 62S1/2 state and the nuclear g-factor can be neglected (gI ≈ 0).
The magnetic field in the interferometer region can be modeled as having a constant

magnetic field B0 due to the bias-coil, in addition to a magnetic gradient B′ and curvature
B′′ which are caused by external fields and bias-field imperfections [132]:

B(z) ≈ B0 +B′z +B′′z2 +O(z3).
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For atoms in the F = 3 ground state, the Lagrangian of the system can then be modified by
adding a contribution LB due to the magnetic field energy (6.4),

LB(z, ż) =
g2
Jµ

2
B

4∆Ehfs

B2(z)

= ~β
[
B2

0 + 2B0B
′z +

(
B′

2
+ 2B0B

′′
)
z2
]

+O(z3), (6.5)

where β = 2π · 213.1 Hz/G2 for cesium. The B2
0 term is common mode to all arms of the

interferometer and can be ignored. For the other terms, it is useful to compare (6.5) to
the Lagrangian due to gravity (2.24). One can see that terms scaling with z look similar
to a linear gravitational potential and terms that scale with z2 look like gravity gradients.
Therefore, the phase shift caused by magnetic fields are identical in form to (2.25) with

g → 2~β
m

B0B
′

γ → 2~β
m

(B′
2

+ 2B0B
′′).

Since acceleration terms cancel in the simultaneous conjugate Ramsey-Bordé interferometer,
we can also ignore the B0B

′ magnetic field terms. The terms that act like gravity gradients
do not cancel, however, but can be explored in two different ways. First, any measurement
of the gravity gradient, such as in Section 5.3, also measures the curvature of the magnetic
field. By applying gravity gradient corrections from the gradiometer measurements, we have
also already dealt with these magnetic gradients. However, the B0B

′′ term can be studied
independently by varying the bias field strength B0 and looking for a shift in the measured
recoil frequency.2

To test the sensitivity of the experiment to bias field current, one measurement of the
recoil frequency was taken at normal operating parameters with a bias current of 27.7 mA
(0.38 G) between Nov. 27th and Nov. 30th in 2014. Then a second measurement was
performed with 271.4 mA (3.7 G) on Dec. 2nd, 2014, where the field was increased by a
factor of ten approximately 5 ms after velocity selection (which was done so that all atom
preparation stages use the nominal field strength). Both measurements used alternating
pulse separation times of 2 ms and 80 ms, with n = 5, N = 20. The difference between the
two measurements was 1.5(1.4) ppb in ωr, which corresponds to a possible systematic shift
of 0.15(14) ppb for the normal operating conditions with a current of 27.7 mA.3

2The B′
2

term is insensitive to varying the bias field unless the bias coil itself has a magnetic gradient
component.

3The exact dates these experiments were performed are explicitly listed above, since the external field
which contributes to B′′ could possibly change as our lab or neighboring labs modify their experiments. For
this reason it is recommended to either monitor the external field for changes or to perform this type of
magnetic field sensitivity experiment close to the date of the final measurement.
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6.4 Density Shifts

Typically the atom source of an interferometer is treated as non-interacting when calculating
the interferometer phase and equations of motion. However, there is a small self-energy
associated with the cloud that scales with the density which contributes to the phase along
a particular interferometer path. Since the energy is proportional to density, this shift will
cancel if the beam splitters diffract the atoms with exactly 50% probability, as each arm
will have an equal population. More realistically, the beam splitters efficiency is not perfect,
resulting in a population imbalance in the interferometer arms. Additionally, shot-noise will
always cause an atom number imbalance proportional to

√
N , where N is the number of

atoms.
The atom-atom interaction energy can be estimated based on the Gross-Pitaevskii equa-

tion [110], with a self-interaction Hamiltonian equal to

Hρ = 4π~2as/m|Ψ(~r)|2,
where as is the s-wave scattering cross section, m is the mass of the atom, and |Ψ(~r)|2 ≈ ρ
is the number density of the atom ensemble. While the Gross-Pitaevskii equation only
applies to ensembles at very low temperatures where collisions can be treated as pure s-wave
scattering, corrections due to d-wave scattering at higher temperatures can be neglected for
our purposes. For example, at 7 µK it was found that including d-wave collisions changes
the theoretical energy shift by only 5% [133].

The energy shift in our atom cloud due to the density shifts can then be approximated
as Eρ = ρ4π~2as/m, where as = 280(10)a0 for cesium [134] and a0 is the Bohr radius. The
density of the atom cloud can be estimated based on the detection efficiency from Section
3.5, which approximates the signal as 5500 atoms/volt with a detection volume of less than
(6 mm)2× 600 µm. For typical interferometer signals of 1 volt, this corresponds to an atom
number density during detection of approximately 2.5 × 105 atoms/cm3. Since the clouds
expand for roughly 500 ms before being detected, the density during the interferometer
sequence is closer to ρ = 106 atoms/cm3. If we assume a huge beam splitter imbalance such
that the two atom clouds have a splitting ratio of 3:1, then the differential density shift will
cause a net interferometer phase of

δΦρ =
∆Eρ
~

(2T + T ′)

=

(
3ρ

4
− ρ

4

)
4π~as
m

(2T + T ′).

For typical parameters of T = 80 ms and T ′ = 10 ms, this gives a phase of 8 µrad corre-
sponding to a negligible 0.003 ppb shift in ωr. This phase is more of a concern for inter-
ferometers that use Bose-Einstein condensates as a source, where the density shifts can be
significant [112].
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6.5 Differential ac-Stark Shifts

During Bloch oscillations, the atoms are shifted in energy by an amount

δEac =
~Ω2

4∆
due to the ac-Stark effect, where Ω is the Rabi frequency and ∆ is the single photon detuning.
This energy shift applies for each component of the Bloch lattice beam for a total of 6 possible
beams (where the frequencies {ω1, ω±} travel up and the same 3 frequencies after retro-reflect
travel down). Since the Bloch lattice is blue-detuned, the atoms sit at a potential minimum
and do not experience an ac-Stark shift from the accelerating lattice to first order. Instead,
they only see a time averaged energy shift from the other 4 off-resonant beams. To calculate
the energy shifts on the arms of the interferometer, first we need to know the intensity at
the location of the atoms.

The intensity of the laser beam as a function of height for the up-going beams is given
by

I↑(z) = I0
w0

w(z − z0)
,

where w(z) = w0

√
1 + z2/z2

R. The parameters w0 and z0 are the waist and waist position,
respectively, found in Section 6.1.3 with z = 0 being defined at the mirror surface. Similarly,
the intensity of the downward moving laser is given by

I↓(z) = I0
w0

w(z + z0)
.

For the atoms being accelerated upwards, the frequencies that contribute to the Bloch lattice
consist of ω1 traveling upwards and ω− traveling downwards. Therefore, the frequency com-
ponents that contribute to the ac-Stark shift are ω± traveling upwards and ω1, ω+ traveling
downwards. The differential ac-Stark shift for the atoms accelerated upwards is then

δEu(z) =
~

4∆

[
(Ω2

+ + Ω2
−)

w0

w(z − z0)
+ (Ω2

1 + Ω2
+)

w0

w(z + z0)

]
.

Similarly, for the atoms accelerated downward:

δE`(z) =
~

4∆

[
(Ω2

+ + Ω2
−)

w0

w(z − z0)
+ (Ω2

1 + Ω2
−)

w0

w(z + z0)

]
,

where the only difference is that the Rabi frequency of the ω+ frequency is replaced with ω−
for the downward accelerated atoms since they get loaded into the ω+ frequency lattice.

Since the atoms are separated by a distance ∆z = 2nvrT during the Bloch pulse, the
differential ac-Stark shift between the arms of each interferometers is

∆Eu = δEu(z + 2nvrT )− δEu(z),
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∆E` = δE`(z + 2nvrT )− δE`(z)

and thus the total differential ac-Stark shift for the full conjugate interferometer is

∆Eu −∆E` ≈
~
∆

zR

(√
z2
R + z2

0 −
√
z2
R + (2nvrT + z0)2

)
√
z2
R + z2

0

√
z2
R + (2nvrT + z0)2

(Ω2
− − Ω2

+)

for z/zR � 1 (near the mirror surface). The systematic phase shift in the interferometer due
to the differential ac-Stark shift is then

δΦac =
1

~
(∆Eu −∆E`)tbloch,

where tbloch is the length of the Bloch pulse. If the intensities of the two modulated frequency
sidebands Ω± are equal, then all phase shifts cancel and there is no systematic. However,
let us assume that the power balance is off by 10% and that each lattice beam has a Rabi
frequency of around Ω2/4∆ ≈ 3ωr (from Section 4.5) such that (Ω2

− − Ω2
+)/∆ ≈ ωr. Then

for the interferometer parameters of n = 5, T = 80 ms, tbloch = 1 ms, and beam parameters
{z0 = −52 m, w0 = 5.8 mm}, the phase shift comes out to

δΦac =
(
−7.5× 10−6

) (Ω2
− − Ω2

+)

∆
tbloch

≈
(
−7.5× 10−6

)
ωrtbloch

≈ 100 µrad

or less than 0.04 ppb in ωr. Since the two frequencies ω± are generated from the same AOM,
the power balance is probably much better than 10% and the systematic is negligible.

6.6 Index of Refection

The laser phase derived in Section 2.2 is proportional to the phase accumulated while trav-
eling in the vacuum chamber and thus is sensitive to the refraction index of the medium in
which the laser propagates. Since the inside of the chamber is an ultra-high vacuum environ-
ment, the only significant contribution to the index of refraction comes from the dispersion
due to the background cesium atoms.

The refractive index in an atomic vapor is related to the complex absorption coefficient
α by the relation

n− 1 =
Im(α)

k

=
σ0ρ

k

(
2

Γ

)
∆

1 + s+ 4∆2/Γ2
,
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where σ0 is the resonant scattering cross section, ρ is the atom number density, Γ is the
natural linewidth, ∆ is the single photon detuning, and s is the saturation parameter I/Isat

[135]. In the limit of a far detuned laser, ∆/Γ� 1, the index of refraction simplifies to

n− 1 =
ρσ0

4k

Γ

∆
.

As an upper bound, we can assume that the cesium partial pressure is equal to the vacuum
pressure of 10−9 torr and thus has a background density of 107 atoms/cm3 at 300 K. For
a laser detuning of ∆ = 15 GHz and a resonant cross section for the cesium D2 line of
σ0 ≈ 2.5 × 10−9 cm2, the index of refraction shift is at most n − 1 = δk/k = 0.03 ppb.
The background cesium density is realistically much lower since the background fluorescence
is smaller than the atom cloud signal (which was estimated to have a density of 2.5 × 105

atoms/cm3 in Section 6.4). Therefore the index of refraction shift in the wave-vector is
negligible and can be ignored.

6.7 Modulation Frequency Wavenumber

During the third and fourth beam splitters of a simultaneous conjugate Ramsey-Bordé inter-
ferometer, the effective wave-vector for the upper and lower interferometers differ by ±ωm/c
due to the extra modulation frequency added to the laser to drive both Bragg orders. This
perturbation in the wave-vector causes a systematic phase shift δΦωm of

δΦωm =
ωm
c

(
−ngT (3T + 2T ′) + 2n2vrT

)
,

where g is the gravitational acceleration and vr is the recoil velocity. The fractional shift in
ωr is

δωr
ωr

=
ωm

16(n+N)ωrc
(−g(3T + 2T ′) + 2nvr)

≈ 1

2c
(−g(3T + 2T ′) + 2nvr)

for ωm ≈ 8(n + N)ωr. The term proportional to vr is negligible and contributes less than
0.0006 ppb, but the gravity term is quite large. For typical parameters of T = 80 ms and
T ′ = 10 ms, the correction is −4.25 ppb. Since the value of g = ~g · ~k/|k| is the projection of
gravity onto the wave-vector, the Bragg beam should be within 70 mrad of vertical for less
than a 0.01 ppb uncertainty in the correction.

6.8 Carrier-Envelope Phase

The system of equations used to calculate the transition matrix elements 〈b| Ĥn,N |a〉 for the
multi-frequency optical Bloch equation in Section 2.5.2 was derived as
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Figure 6.7: The intensity profile of a multi-frequency Gaussian pulse as a function of time.
The dashed curve shows the intensity stabilized Gaussian envelope and φm is the carrier
envelope phase offset.

iġn = 4 cos(ωmt)Ω̄(t)
[
gn+1e

i2δte−i4(2n+1)ωrt + gn−1e
−i2δtei4(2n−1)ωrt

]
,

where ωm is the modulation frequency. However, this makes the assumption that the modu-
lation frequency phase is always zero relative to the peak of the Gaussian intensity envelope,
Ω̄(t). In general, this carrier envelope phase φm is non-zero and therefore the system of
equations (2.46) should be generalized to

iġn = 4 cos(ωmt+ φm)Ω̄
[
gn+1e

i2δte−i4(2n+1)ωrt + gn−1e
−i2δtei4(2n−1)ωrt

]
,

where the envelope function cos(ωmt)Ω̄(t) has been replaced with cos(ωmt + φm)Ω̄(t) as
diagrammed in Fig. 6.7. The carrier envelope phase slightly modifies the effective Rabi
frequency seen by the atoms and can therefore change the diffraction phase. When running
the Ramsey-Bordé interferometer sequence with a pulse separation time of T , the relative
carrier envelope phase between the third and fourth pulse is

∆φm =
(
ωm ±

π

4nT

)
T mod 2π,

where the ±π/4nT comes from the modulation phase used to shift the ellipses away from
zero phase.

The theoretical diffraction phase of the Ramsey-Bordé interferometer is shown in Fig. 6.8
as a function of the carrier envelope phase of the third pulse.4 With n = 5 Bragg diffraction
and no Bloch oscillations, the diffraction phase can vary by several milliradians, dependent
on the relative carrier envelope phase ∆φm. When Bloch oscillations are used, the total
diffraction phase variation decreases to a few hundred µrad. As the modulation frequency

4In order to extract the diffraction phase from the calculation, one must first subtract out the phase
φL = 2nωmT = 2n∆φm caused by the modulation frequency imprinting the laser phase on the atoms directly
(as discussed in Section 2.2).
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Figure 6.8: The simulated diffraction phase as a function of the third pulse carrier envelope
phase for n = 5, N = 0 (left) and N = 25 (right). The diffraction phase is obtained by
subtracting the induced laser phase 2n∆φm from the simulated interferometer phase Φ. The
relative carrier envelope phase ∆φm is plotted for two different values to show the variation
when modulating ωm by ±π/4nT , which corresponds to a phase of ±π/20 for n = 5. The
relative carrier envelope phase of ∆φm = 1 is arbitrary for this simulation and will change
with the pulse separation time T .

increases, the oscillations inside of the Gaussian envelope are more uniform and the variation
of the effective Rabi frequency gets smaller (thus reducing the diffraction phase variation).

This carrier envelope induced diffraction phase can be taken care of in one of two ways.
Firstly, if the third pulse phase is left to vary randomly from shot to shot, then the diffraction
phase will average out and produce no net systematic shift (and is the method used in the
experiment). This has the downside of introducing phase noise on the ellipses, but this effect
is small compared to the phase noise in our ellipses from other sources. Secondly, for future
generations of the experiment, it might be beneficial to stabilize the carrier envelope phase,
alternating between φm = 0 and φm = π/2 as two separate ellipses. In this way the average
diffraction phase is obtained without increasing the phase noise.

6.9 Finite Pulse Length

When deriving the interferometer phase, it was assumed that the beam splitter pulses have
zero length such that the pulse separation time T is well-defined. In the actual experiment,
the beam splitter pulses take about 95 µs from start to finish with a Gaussian envelope that
has no well defined start and stop. Therefore it is possible that the relevant timescale for
the free evolution phase of the atom is slightly shorter than T by an amount τ such that the
interferometer phase is actually

Φ = 16n(n+N)ωr(T − τ)− 2nωmT + φ0,
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where φ0 is the usual diffraction phase. Since τ is independent of the pulse separation time,
that phase can be rewritten as

Φ = 16n(n+N)ωrT − 2nωmT + (φ0 + 16n(n+N)ωrτ).

Therefore, any finite pulse length effects will look just like a diffraction phase and are taken
care of by extrapolating T to infinity.
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Chapter 7

Future Prospects

While a determination for the value of ~/mCs for cesium was not finalized over the course
of this thesis, great improvements have been made in both the interferometer sensitivity
and understanding sources of systematic error. Increasing the Ramsey-Bordé momentum
transfer to n = 5 Bragg diffraction with N = 25 Bloch oscillations has increased the total
phase of the interferometer to nearly 2.5 million radians at a pulse separation time of T = 80
ms. The largest (known) systematic corrections are characterized with an uncertainty below
0.1 ppb and great improvements have been made in our understanding of the Bragg induced
diffraction phase. A table of the current experimental systematics is shown in Fig. 7.1, which
are by far dominated by the unknown anomaly discussed in Section 5.6. The future of our
recoil measurement will hinge on understanding this additional systematic and suppressing
its contribution to the error budget.

There are several promising ways to move forward in the experiment beyond what is
presented in this thesis. Improving the ac-Stark shift compensation described in Section 5.5
will enable even higher-order Bloch oscillations to increase the total interferometer phase
and reduce the fractional contribution of the anomalous diffraction phase. Increasing the
Bloch oscillations to N = 100 could potentially suppress the anomaly systematic to a relative
uncertainty of 0.5 ppb in ~/mCs, thus enabling a competitive measurement of α. There is
also some preliminary evidence suggesting that better alignment of the atomic fountain and
Bragg beam reduces the size of the anomalous phase; therefore, with better characterization
of the system, the systematic might be eliminated entirely.

Beyond improvements to the current system, there are other possible avenues to pur-
sue for future measurements by increasing the total momentum splitting (and not just the
common mode momentum) and cleaning up the Bragg beams. After compensating for the
ac-Stark shift dephasing, the momentum splitting is mostly limited by the intensity require-
ments of Bragg diffraction. Splittings larger than n = 6 for our beam waist will require a
new high-power laser system and/or a different splitting method such as differential Bloch
oscillations [125] to accelerate both interferometer arms in different directions. The power
requirements and ac-Stark compensation can also be improved by using a cavity to reso-
nantly enhance the beam splitter electric field [136]. The cavity increases the power while
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Table 7.1: Systematic corrections and errors in the determination of ~/mCs for n = 5 Bragg
diffraction, N = 25 Bloch oscillations, and T = 80 ms.

Systematic Correction (ppb) Uncertainty (ppb)

Gravity Gradient -2.78 0.04
Laser Frequency 0.04

Gouy Phase 1.80 0.06
Beam Alignment 0.22† 0.03

Modulation Wave-vector 4.25 0.01
Wavefront Curvature 0.1

Sagnac Effect < 0.02
Zeeman Effect -0.15 0.14
Density Shift < 0.003

Differential ac-Stark Shift < 0.04
Index of Refraction < 0.03

Linear Diffraction Phase < 0.1

Statistical 0.6

Total 0.64
Diffraction Phase Anomaly†† < 2.5

† The beam alignment correction is an average for the data listed in Section 6.1.2 and varies for each data
set.
†† The diffraction phase anomaly from Section 5.6 is a most 6 mrad and would, by far, dominate the error
budget, if included.

also cleaning up the laser mode to reduce differential ac-Stark effects and scatter.
However, the most significant improvement that can be made to the experiment that

would enable a competitive fine structure constant measurement is reducing the interferom-
eter noise. If the system was shot-noise limited, then a single interferometer ellipse would be
enough to measure ~/m to the desired accuracy, thus allowing for much more rapid system-
atic checks. As it stands now, a 24 hour data set is needed to measure the diffraction phase
anomaly which limits our ability to check for potential solutions. Unfortunately, the cause
of the noise is somewhat of a mystery as the cause does not seem to be tied to the detection
or to the atom number.
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[94] V. Vuletić, C. Chin, A. J. Kerman, and S. Chu, “Degenerate raman sideband cooling of
trapped cesium atoms at very high atomic densities,” Physical Review Letters, vol. 81,
no. 26, p. 5768, 1998.

[95] A. Rauschenbeutel, H. Schadwinkel, V. Gomer, and D. Meschede, “Standing light
fields for cold atoms with intrinsically stable and variable time phases,” Optics Com-
munications, vol. 148, no. 13, pp. 45 – 48, 1998.

[96] P. Treutlein, K. Y. Chung, and S. Chu, “High-brightness atom source for atomic
fountains,” Phys. Rev. A, vol. 63, p. 051401, Apr 2001.

[97] V. Malinovsky and J. Krause, “General theory of population transfer by adiabatic
rapid passage with intense, chirped laser pulses,” The European Physical Journal D -
Atomic, Molecular, Optical and Plasma Physics, vol. 14, no. 2, pp. 147–155, 2001.

[98] S. Merlet, L. Volodimer, M. Lours, and F. Pereira Dos Santos, “A simple laser system
for atom interferometry,” Applied Physics B, vol. 117, no. 2, pp. 749–754, 2014.



BIBLIOGRAPHY 179
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Appendix A

Phase Calculation

The Mathematica code used to calculated the various interferometer phases and corrections
is listed here. The global variable state is used to store all of the interferometer trajectories,
and the functions pulse() and evolve() are used for the beam-splitter pulses and free
evolution respectfully. Once the entire interferometer is completed, the interfere() function
is called to interfere the spatially overlapped momentum states. The phase difference for
each output is then calculated using the function phase().



Note: The global variable [state] is used to hold the interferometer 

trajectories. Call the PrepareState[] function to re-initialize the vector 

before each interferometer calculation.

Definitions

Reserved variables

Clear@g, Γ, m, z0, v0, Ñ, keffD;

Clear@Dk, k1, k2, k3, k4, kBD;

gravity = True;

gradient = True;

xOffset = True;

vOffset = True;

useIntegratedL = True;

Replacement list for any pertibations that cause the interferometer to not 

close

zero = 8Γ ® 0, Dk ® 0, k1 ® 0, k2 ® 0, k3 ® 0, k4 ® 0, kB ® 0, ∆t ® 0<;

Equations of motion and Largangian needed for free evolution phase 

calculation

X@x_, v_, t_, g_, Γ_D := Hx + v * t - g * t^2 � 2L + Γ * t^2 * Hx � 2 + v * t � 6 - g * t^2 � 24L;

V@x_, v_, t_, g_, Γ_D := Hv - g * tL + Γ * t * Hx + v * t � 2 - g * t^2 � 6L;

If@useIntegratedL,

iL@x_, v_, t_, g_, Γ_D :=

g^2 m t^3 � 3 - g m t^2 v + m t v^2 � 2 - g m t x + H2 g^2 m t^5 - 10 g m t^4 v +

10 m t^3 v^2 - 20 g m t^3 x + 30 m t^2 v x + 15 m t x^2L Γ � 30,

L@x_, v_, t_, g_, Γ_D := m � 2 * V@x, v, t, g, ΓD^2 - m * g * X@x, v, t, g, ΓD +

m * Γ � 2 * X@x, v, t, g, ΓD^2

D;

Initial State {position,  velocity,  complex amplitude,  diffraction order}

state = 88z0, v0, 1, 0<<;

PrepareState@n_: 0D := Module@8x, v<,

If@xOffset, x = z0, x = 0D;

If@vOffset, v = v0, v = 0D;

state = 88x, v, 1, n<<
D;
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Evolve states by a time T

Evolve@T_D := Module@8x, v, Φ, i, z, Φnew, new<,

new = 8<;

For@i = 1, i <= Length@stateD, i++,

Φ = statePi, 3T;

H* Only calculate evolution if the amplitude is non-zero *L
If@! SameQ@Φ, 0D,

z = statePiT;

x = statePi, 1T;

v = statePi, 2T;

zP1T = Simplify@X@x, v, T, If@gravity, g, 0D, If@gradient, Γ, 0DDD;

zP2T = Simplify@V@x, v, T, If@gravity, g, 0D, If@gradient, Γ, 0DDD;

If@useIntegratedL,

Φnew = iL@x, v, T, If@gravity, g, 0D, If@gradient, Γ, 0DD � Ñ,

Φnew =

Integrate@L@x, v, t, If@gravity, g, 0D, If@gradient, Γ, 0DD, 8t, 0, T<D � Ñ;

D;

zP3T = Φ * Exp@I * ΦnewD;

AppendTo@new, zD;

D;

D;

state = new

D
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Perform a Θ beam splitter between orders n1 and n2 on the state vector, with 

an optional ∆k pertibation

Pulse@Θ_, n1_, n2_, ∆k_: 0D := Module@8x, v, Φ, n0, i, new<,

new = state;

H* Loop through each element in the

state and check if the beam splitter applies to it *L
For@i = 1, i £ Length@stateD, i++,

8x, v, Φ, n0< = statePiT;

H* Is the order of the state

element equal to one side of the beam splitter *L
If@TrueQ@n0 == n1D,

H* split state by Θ *L
AppendTo@new, 8x, v, Φ * Cos@Θ � 2D, n0<D;

newPi, 2T = v + Hn2 - n1L � 2 * Hkeff + ∆kL * Ñ � m;

newPi, 3T = I * Sin@Θ � 2D * Φ * Exp@I * Hn2 - n1L � 2 * HHkeff + ∆kL * xLD;

newPi, 4T = n2;,

H* Is the order of the state

element equal to the other side of the beam splitter *L
If@TrueQ@n0 == n2D,

H* split state by Θ *L
AppendTo@new, 8x, v, Φ * Cos@Θ � 2D, n0<D;

newPi, 2T = v - Hn2 - n1L � 2 * Hkeff + ∆kL * Ñ � m;

newPi, 3T = I * Sin@Θ � 2D * Φ * Exp@-I * Hn2 - n1L � 2 * HHkeff + ∆kL * xLD;

newPi, 4T = n1;

D
D

D;

state = new

D
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Interfere any overlapping states

Interfere@D := Module@8x, ∆x, v, Φ, Φ2, n0, i, j, k, assumptions, in, new, Φ∆x<,

in = state;

new = state;

H* Loop through each element in the

state and check if the beam splitter applies to it *L
For@i = 1, i £ Length@inD, i++,

8x, v, Φ, n0< = inPiT;

H* Check if the state interferes

with another state Hsame position and orderL *L
k = 0;

For@j = 1, j £ Length@inD, j++,

If@TrueQ@Simplify@HinPj, 1T == xL �. zeroDD && HinPj, 4T � n0L �. n ® 1,

If@i ¹ j, k = jD
D

D;

If@k > 0,

H* Two states are interfering, new state is combination of the two *L
Φ2 = inPk, 3T;

∆x = Hx - inPk, 1TL;

Φ∆x = ∆x HinPk, 2T + vL � 2 * m � Ñ; H* separation phase *L
newPi, 3T = Φ + Exp@I * Φ∆xD * Φ2;

in = Delete@in, kD;

new = Delete@new, kD;

D;

D;

state = new

D

Calculate the real amplitude of a wavefunction (slow)

SlowAmplitude@D := Module@8i, a, new, s<,

s = state;

new = 8<;

For@i = 1, i £ Length@sD, i++,

a = sPi, 3T;

AppendTo@new, FullSimplify@ComplexExpand@a * a­DDD;

D;

new

D;
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Find the location of the exponentials for faster phase and amplitude 

caclulations

FindExp@a_D := Module@8result, i<,

result = 8<;

If@Length@aD > 0,

For@i = 1, i £ Length@aD, i++,

If@Length@aPiTD > 1,

result = FindExp@aPiTD;

If@Length@resultD > 0, result = Join@8i<, resultDD;

,

If@aPiT � E, result = 8i + 1<; Return@resultD;D;

D;

D;

,

If@a � E, result = 81<, result = 8<;D;

D;

result

D;
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Calculate the phase of output states only (sign of phase not well defined)

Phase@D := Module@8i, a, new, Φ1, Φ2, pos, s<,

s = state;

new = 8<;

For@i = 1, i £ Length@sD, i++,

a = Expand@sPi, 3TD;

If@Length@aD > 1,

If@TrueQ@aP0T � PlusD,

pos = FindExp@aP1TD;

Φ1 = Extract@aP1T, posD � I;

If@Φ1 == 8<, Φ1 = 0D;

pos = FindExp@aP2TD;

Φ2 = Extract@aP2T, posD � I;

If@Φ2 == 8<, Φ2 = 0D;

,

Φ1 = 0;

Φ2 = 0;

D;

If@gradient,

AppendTo@new, 8Simplify@Normal@Series@Φ1 - Φ2, 8Γ, 0, 2<DDD, sPi, 4T<D
,

AppendTo@new, 8Simplify@Φ1 - Φ2D, sPi, 4T<D
D
,

AppendTo@new, 80, sPi, 4T<D;

D;

D;

new

D;

Calculate the real amplitude of a wavefunction

Amplitude@D := Module@8i, a, new, Φ1, Φ2, pos, s, A1, A2, ∆Φ<,

s = state;

new = 8<;

For@i = 1, i £ Length@sD, i++,

a = Expand@sPi, 3TD;

If@Length@aD > 1,

Print@iD;

If@TrueQ@a@@0DD � PlusD,

pos = FindExp@a@@1DDD;

Φ1 = Extract@a@@1DD, posD � I;

If@TrueQ@Φ1 == 8<D,

Φ1 = 0; A1 = a@@1DD;,

If@Length@posD > 1,

A1 = a@@1, 1 ;; pos@@1DD - 1DD * a@@1, pos@@1DD + 1 ;; -1DD, A1 = 1D;

D;

pos = FindExp@a@@2DDD;

;
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Φ2 = Extract@a@@2DD, posD � I;

If@TrueQ@Φ2 == 8<D,

Φ2 = 0; A2 = a@@2DD;,

If@Length@posD > 1,

A2 = a@@2, 1 ;; pos@@1DD - 1DD * a@@2, pos@@1DD + 1 ;; -1DD, A2 = 1D;

D;

,

pos = FindExp@aD;

Φ1 = Extract@a, posD � I;

If@TrueQ@Φ1 == 8<D,

Φ1 = 0; A1 = a;,

If@Length@posD > 1,

A1 = a@@1 ;; pos@@1DD - 1DD * a@@pos@@1DD + 1 ;; -1DD, A1 = 1D;

D;

Φ2 = 0;

A2 = 0;

D;

If@gradient,

∆Φ = Simplify@Normal@Series@Φ1 - Φ2, 8Γ, 0, 2<DDD;

,

∆Φ = Simplify@Φ1 - Φ2D;

D;

If@FreeQ@A1 * A2, _ComplexD,

AppendTo@new,

8Simplify@ComplexExpand@A1 * A1­ + A2 * A2­ + 2 * A1 * A2­ Cos@∆ΦDDD, sPi, 4T<D,

AppendTo@new, 8Simplify@ComplexExpand@A1 * A1­ + A2 * A2­ + 2 * A1 * A2­ Sin@∆ΦDDD,

sPi, 4T<D
D;

,

AppendTo@new, 8a, sPi, 4T<D;

D;

D;

new

D;

Example Caclulations

Ramsey-Borde Interferometer with Bloch Oscillations
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gravity = True;

gradient = True;

xOffset = False;

vOffset = False;

PrepareState@D;

Pulse@Π � 2, 0, 2 * nD;

Evolve@TD;

Pulse@Π � 2, 0, 2 * nD;

Evolve@Tp1D;

H* Bloch Oscillation Momentum Transfer *L
Pulse@Π, 0, -2 * NND;

Pulse@Π, 2 * n, 2 * n + 2 * NND;

Evolve@Tp2D;

Pulse@Π � 2, -2 * NN, -2 * n - 2 * NN, DkD;

Pulse@Π � 2, 2 * n + 2 * NN, 4 * n + 2 * NN, -DkD;

Evolve@TD;

Pulse@Π � 2, -2 * NN, -2 * n - 2 * NN, DkD;

Pulse@Π � 2, 2 * n + 2 * NN, 4 * n + 2 * NN, -DkD;

Interfere@D;

ΦdB = Phase@D;

ΦdB = Simplify@Normal@Series@ΦdB, 8Γ, 0, 1<DDD;

Expand@Simplify@ΦdB@@2, 1DD + ΦdB@@1, 1DDDD �. Dk * Γ ® 0 �. Dk^2 ® 0
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Gravity Gradiometer

gravity = True;

gradient = True;

xOffset = True;

vOffset = True;

PrepareState@D;

H* Initial splitting *L
Pulse@Π � 2, 0, 2 * nD;

Evolve@Tp1D;

H* Bloch Oscillation Momentum Transfer *L
Pulse@Π, 2 * n, 2 * n + 2 * NND;

Pulse@Π, 0, -2 * NND;

Evolve@Tp2D;

H* MZ for top and bottom trajectories *L
Pulse@Π � 2, 2 * n + 2 * NN, 4 * n + 2 * NN, -DkD;

Pulse@Π � 2, -2 * NN, 2 * n - 2 * NN, DkD;

Evolve@TD;

Pulse@Π � 2, 2 * n + 2 * NN, 4 * n + 2 * NN, -DkD;

Pulse@Π � 2, -2 * NN, 2 * n - 2 * NN, DkD;

Evolve@TD;

Pulse@Π � 2, 2 * n + 2 * NN, 4 * n + 2 * NN, -DkD;

Pulse@Π � 2, -2 * NN, 2 * n - 2 * NN, DkD;

Interfere@D;

Φdmz = Phase@D;

Φdmz = Simplify@Normal@Series@Φdmz, 8Γ, 0, 1<DDD;

Expand@Simplify@Φdmz@@2, 1DD - Φdmz@@1, 1DDDD �. Dk * Γ ® 0 �. Dk^2 ® 0
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