
UC Berkeley
Research Reports

Title
New Hardware and Software Design of a Field-Deployable Real-Time Laser-Based Non-
Intrusive Detection System for Measurement of True Travel Time on the Highway

Permalink
https://escholarship.org/uc/item/4t2701qf

Authors
Cheng, Harry H.
Shaw, Ben
Palen, Joe
et al.

Publication Date
2001-06-01

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4t2701qf
https://escholarship.org/uc/item/4t2701qf#author
https://escholarship.org
http://www.cdlib.org/

ISSN 1055-1425

June 2001

This work was performed as part of the California PATH Program of the
University of California, in cooperation with the State of California Business,
Transportation, and Housing Agency, Department of Transportation; and the
United States Department of Transportation, Federal Highway Administration.

The contents of this report reflect the views of the authors who are responsible
for the facts and the accuracy of the data presented herein. The contents do not
necessarily reflect the official views or policies of the State of California. This
report does not constitute a standard, specification, or regulation.

Report for MOU 3005

CALIFORNIA PATH PROGRAM
INSTITUTE OF TRANSPORTATION STUDIES
UNIVERSITY OF CALIFORNIA, BERKELEY

New Hardware and Software Design of a Field-
Deployable Real-Time Laser-Based Non-Intrusive
Detection System for Measurement of True Travel
Time on the Highway

UCB-ITS-PRR-2001-15
California PATH Research Report

Harry H. Cheng, Ben Shaw, Joe Palen, Bin Lin,
Xudong Hu, Bo Chen, Jason Parks
University of California, Davis

CALIFORNIA PARTNERS FOR ADVANCED TRANSIT AND HIGHWAYS

Technical Report TR-IEL-2000-102

New Hardware and Software Design
of a Field-Deployable Real-Time

Laser-Based Non-Intrusive Detection System for
Measurement of True Travel Time on the Highway1

Harry H. Cheng
Ben Shaw
Joe Palen
Bin Lin

Xudong Hu
Bo Chen

Jason Parks
Integration Engineering Laboratory

Department of Mechanical and Aeronautical Engineering
University of California, Davis

Davis, CA 95616

December 30, 2000

The project is funded by the Caltrans through the California PATH Program

2

Contents

Chapter 1 Introduction ..4
1.1 Comparison of Different Detection Schemes ..5
1.2 Previous Work ...6
1.3 System View of the Field Prototype..6

Chapter 2 Field Prototype system ...9
2.1 Laser and Optics ..9

2.1.1 Laser ...9
2.1.1.1 Laser safety ...9
2.1.1.2 Laser Spectrum and Filter ...11
2.1.1.3 Profile of Laser Beam ...13

2.1.2 Sensor Optics..15
2.2 System Electronics ..17

2.2.1 Data Acquisition and Computer System ..22
2.3 Mechanical Design ..22

Chapter 3 Real-Time Data Acquisition and Processing Software ..24
Chapter 4 Field Test Results ...26
Chapter 5 Future Work ...28
Chapter 6 Conclusions ..29
Chapter 7 Appendix ..31

7.1 Device Driver for Digital I/O on Windows NT...31
7.2 Application Program on Windows NT ..35

3

Abstract

A new version of a field-deployable real-time laser-based detection system has been developed using new
techniques of electronics and optics. The laser-based non-intrusive detection system uses a laser line that is
projected onto the ground as a probe. The reflected light is collected and focused into a photodiode array by an
optical system. Vehicle presence is detected based on the absence of reflected laser light. By placing two
identical laser/sensor pairs at a known distance apart, the speeds of both the front and rear of a vehicle are
measured based on the times when each sensor is triggered. The length of each vehicle is determined by using
these speed measurements and the residence time of the vehicle under each sensor. A new version field
prototype of a detection system for real-time measurement of delineations of moving vehicles for highway
testing has been developed based on our previous research on the laboratory prototype of the system. The new
version utilizes new techniques in electronics, optics and software. The testing results show that the new
system can obtain the accuracy of measurement necessary to distinguish moving vehicles on the highway. It is
an important step to approach the final goal of this project, described in the last report as developing a
roadway detection system that can be used to gather reliable travel time data non-intrusively. The new system
quantitatively proved that the principle of measurement is feasible, instead of qualitatively as did the last
version system. Several tests have been done with the field prototype system on the highway. The software for
real-time data acquisition, data processing and graphical user interface has been developed in the Windows
NT system with RTX real-time extension. In the software, the speed, acceleration, and length of a detected
vehicle can be calculated and displayed simultaneously. This document describes the design and
implementation of each functional component and software of the new field prototype system. The
measurement and calculation of laser power has been performed to ensure that the system is safe to expose to
the public during field tests and future operation on the highway.

4

Chapter 1 Introduction

Both CalTrans and the US Department of Transportation have come to the conclusion that it is impossible to
build our way out of traffic congestion. The solution is to run the transportation system more intelligently,
which is known as the “Intelligent Transportation System” or ITS. Travel time is the most important aspect of
the Intelligent Transportation System (ITS). Travel time is a good indicator of other direct constraints on ITS
efficiency: cost, risk, and attentive workload. The importance of travel time is verified in ATIS user surveys
which indicate that what travelers most want from a transportation system is (almost always) reduced travel
time and higher reliability (e.g. reduced travel time variance and reduced risk) [1]. Every traveler must
implicitly or explicitly make an assessment of these various travel time options before embarking on every
trip; therefore this information is definitely of high value. Because trip travel time is the parameter the public
most wants to minimize, this is the parameter that is most important for transportation service providers to
measure and minimize.

Speed is commonly used as an indicator of the travel time across a link. In current practice, speed is measured
at one or more points along a link and extrapolated across the rest of the link [1]. This extrapolation method is
used regardless of the mechanism of detection. Example detection methods are loops---which determine speed
from two elements twenty feet apart; radar---which can directly determine speed from the carrier frequency
shift (Doppler effect); or video image processing---which tracks vehicles across the pixel elements within the
field of view. The extrapolation from a point to a line is not necessarily valid. At the onset of flow
breakdown, the speed variations along the length of a link can be quite large. Also, the onset of flow
breakdown is when routing decisions are most time-critical and accurate information has the highest value, so
inaccurate extrapolations could have detrimental effects to the traveler.

An alternate method to determine the traverse travel time (e.g. the true link speed) is to use Vehicles As
Probes (VAP). A VAP system determines travel time directly by identifying vehicles at the start of the link
and re-identifying them at the end of the link, with the time difference being the true travel time. The problem
with VAP systems is that they require large numbers of both vehicle tags and tag readers to be effective, and
the cost justification of such a system seems unwarranted in the light of other options. The key aspect to
measuring the actual travel time is simply to identify some distinguishing characteristic on a vehicle at the
beginning of a link and then to re-identify that same characteristic on the same vehicle at the end on the link.
This is the basic idea of VAP, however the characteristic does not have to be entirely unique (as in a vehicle
tag), and it does not necessitate the infrastructure set-up costs of VAP. If a characteristic can be found to
separate the fleet into (say) 100 classifications, ``the maximum probability fit" can be determined for the same
sequence of classifications at the downstream detector as was identified at the upstream detector. This is what
is currently being done in Germany with the low-resolution imaging provided by (new high speed) loops [1].
If a higher-resolution detector is used so that it is possible to get a few thousand classes, then it should be
quite possible to perform a 100% upstream-downstream Origin and Destination (O/D) analysis (even if a
significant percentage of the vehicles switch lanes) using time gating and other relatively straight-forward
signal processing techniques. The mechanism of detection must allow highly resolved delineations between
commonly available “commuter” vehicles, because commuter vehicles represent the majority of the vehicle
stream during the period that travel time information is most needed (e.g. the peak hours).

Any mechanism to measure travel time, by definition, is only determining the “past state” of the transportation
system. Collecting data on what happened in the past has no utility except if it is used to infer what may
happen in the future. All decisions, by definition, are based on an inference of future consequences. When a
traveler learns that speed on a route is 50 MPH, the traveler generally infers that the speed will remain 50
MPH when she/he traverses it. This may or may not be an accurate inference. Travelers want to know the

5

“state” of the system (in the future) when they traverse it. In the simplest case, this is just a straight
extrapolation of current “state”. More sophisticated travelers may develop their own internal conceptual
model of the typical build up and progression of congestion along routes with which they are familiar. A
major benefit of ITS will be to provide travelers with a much more valid and comprehensive “look ahead”
model of the (short-term) future state of the transportation system. Validation of any traffic model requires
(either implicitly or explicitly) traffic O/D data. The lack of valid O/D data has been the major impediment in
the calibration, validation and usage of traffic models. In this research project we are developing a roadway
detection system that can directly determine O/D data non-intrusively without violating the public's privacy
(as in license plate recognition systems).

1.1 Comparison of Different Detection Schemes

Our detection system has a number of advantages over other systems currently in use. In current practice,
vehicle features are most commonly measured using inductive loops or video image processing. An advantage
of our system over loop detectors is the relative ease of installation and maintenance. Because loops are
buried beneath the pavement, installation requires heavy equipment, and traffic must be re-routed [2]. It is for
this reason that loops are expensive to install and repair. Because our system is mounted above the road, once
installed, it can be maintained without disrupting the flow of traffic. More importantly, loop detectors cannot
be relied upon to produce accurate speed (and therefore length) measurements because the inductive
properties of the loop and loop detectors vary [2]. Video can be used to directly measure the length of
vehicles. However, the use of real time video image processing is problematic due to its computationally
intensive nature. Our system operates on a simple “on/off” basis, requiring much less computation for vehicle
detection, and consequently much less computational hardware. Because video is a passive system (gathering
ambient light), video images are dependent on the lighting conditions. Vehicle length measurements taken
from video, even on the same vehicle, may not produce consistent results depending on time of day and
weather conditions. For truly site and time independent vehicle length measurements, video would require an
external source of illumination. Because our system is active, it produces its own signals to be sensed and it
does not suffer from these limitations.

One system that bears some similarity to the system we have developed is the Automatic Vehicle Dimension
Measurement System (AVDMS) developed by the University of Victoria [3]. The AVDMS uses laser time-of-
flight data to classify vehicles based on length, width, or height, and is based on the Schwartz Electro-Optics
Autosense III sensor [4][5][6][7]. The Schwartz systems are entirely dependent on time-of-flight laser
measurements with moving parts, similar to conventional lidar (laser radar) in the principle of measurement.
There are some significant functional differences between our system and Schwartz's. For example, the
fundamental mechanism of detection is that the Schwartz detector determines the range (or distance) from the
detector to the objects being detected. Our detector functionally does not determine the range (or distance)
from the detector to the objects being detected. The laser of the Schwartz's detector reflects off the vehicle to
determine the size, shape, and "presence" of the vehicle. In our detector, the laser reflects off the pavement.
The lack of a reflection determines the size, shape, and "presence" of the vehicle. Therefore, our system will
be more reliable because of its simplicity.

In comparison with other conventional traffic detection techniques, our system will offer the following salient
features:

• The system is mounted above the road and is relatively easy to install. Traffic need not be rerouted.
• The system is insensitive to ambient lighting conditions due to the active lighting source (the laser). It

detects every passing object more than 46 cm (18 in) tall in all lighting conditions. No vehicles are
missed, yielding nearly 100% accuracy.

6

• The laser and detector have no moving parts, giving the system high reliability. The primary raw data
gathered by the sensor are computationally easy to process.

• Not only does the detector produce local vehicle speed, vehicle volume, and vehicle classifications, but it
also allows highly deterministic re-identification of vehicles between sites, even under high flow
conditions. Point-to-point travel time, incident detection, and Origin/Destination data can easily be
determined with this detector.

• The system has very low power and communication bandwidth requirements, allowing the development
of a stand-alone detector untethered from hard-wired infrastructure.

Therefore, our laser-based detector has much higher resolution and is much more accurate than conventional
traffic detectors, allowing the determination of point-to-point travel time which currently deployed traffic
detection systems do not generate.

1.2 Previous Work

Laboratory and field prototypes were developed to verify the principle the detection system in the previous
project. The detection system hardware was constructed using off-the-shelf parts for rapid assembly and easy
modification [12]. The laser chosen for use in the indoor prototype system was a Melles Griot model 56 DIL
452/P1 laser line projector. This product has a 30 mW red laser diode and all of the necessary optics for line
projection built into a single package. In the laboratory prototype system, the current output from the sensor is
amplified and conditioned for interfacing with a Delta Tau PMAC digital I/O board. The data are then
collected in real-time by a computer for processing. Sensor software performs low-level gathering of the
detector data and an application programmers interface (API) provides a standard way of accessing the data.
Applications use this sensor API to display the data in various ways. The X window program shows the time
history of the sensor data, displaying multiple detector values at regular intervals and profiles of vehicles as
they pass under the sensor. The text based interface displays raw data. The laboratory and field prototype was
tested in the laboratory and on the roof of a building in a simulation environment and on the highway in real
traffic. The experimental results showed that the principle of the detection was feasible. But the accuracy of
measurement was not high enough to distinguish the moving vehicles on the highway, because of their low
optical resolution and slow time response.

1.3 System View of the Field Prototype

In the field prototype system, vehicle length is used as the primary identifying feature and is measured using
two laser-based vehicle detectors. The system operates in the following manner, as illustrated in

Figure 1.1. The basic detector unit consists of a laser and a spatially offset photodetector positioned above the
plane of detection. The laser is a pulsed infrared diode laser that utilizes line-generating optics, which project
to a flat planar surface where objects are to be detected. The detector consists of imaging optics and a linear
photodiode array. The offset photodiode array receives the laser light that is reflected back from the region of
detection. The signal from the photodiode is amplified and sent to a computer for processing. Vehicle
presence is detected based on the absence of reflected laser light. Two of these units are integrated and placed
a known distance apart, allowing the velocity of the object and its residence time under each detector to be
measured, giving the object's length and top-down outline profile.

7

Sensor
Electronics

Power
Supply

Sensor
Optics Laser

C om puter System

Data Processing

User Interface

RTX Device D river

Digital I/O

Figure 1.1: System Overview

Figure 1.2 shows the positioning of the system hardware. The detector is mounted at a distance of about 6.4m
(21 ft) (the height of a typical highway overpass) above the highway. The distance between each component
of a laser/sensor pair is 30.5 cm (1.00 ft). The offset between the two sensor pairs is 10 cm (4 in). The sensors
are mounted in a fixed vertical position, pointing downward, and are focused on the ground, forming two
detection zones. The lasers are pointed towards the detection zones and are mounted at an adjustable angle,
allowing the system to be mounted at different heights. The detection zones stretch across the width of the
lane and are each about 13 mm (0.5 in) wide in the direction of traffic flow. In this configuration the minimum
detectable object height, also called the critical height, is about 46 cm (18 in). This is lower than the bumper
height of most common vehicles. For objects below this height, the laser line will still be visible by the sensor.
This can result in the object remaining undetected or can cause signal spike due to reflections, depending on
the surface properties and geometry or the object. In either case, for vehicle bumper heights below the critical
height, the speed and length measurements will be incorrect due to the fact that one or more of the vehicle
edges will be incorrectly found.

8

4 inches

Laser 1

Sensor 2

Sensor 1 Laser 2

1.0 ft

Critical Height

Not to scale

1.
5

ft

21
 f

t

1.0 ft

Figure 1.2: System Hardware Configuration

When a vehicle moves into a detection zone, it blocks the laser from being received by the sensor. When the
first beam is blocked the current time is recorded. When the second beam is blocked, a second time is
recorded. These times give the speed of the front of the car. In a similar manner, when each of the beams is no
longer blocked, the times are recorded and the speed of the rear of the vehicle can be calculated. The time that
each detector is blocked is also recorded and is used to calculate the vehicle length, assuming constant vehicle
acceleration. A more detailed description of the speed and length measurement algorithms is presented in the
software section. The assumption of constant acceleration is valid for free-flow traffic conditions, where there
is negligible acceleration, and for conditions where the vehicle is accelerating or decelerating uniformly
during the time it is in the detection zone. These cover the majority of situations, but there are a few situations,
such as stop-and-go traffic, where this basic detection method will not work well.

9

Chapter 2 Field Prototype system

2.1 Laser and Optics

2.1.1 Laser
Two off-the-shelf integrated diode laser systems, ML20A15-L2 high power diode laser systems from Power
Technology Inc are used as the laser source in the current prototype. This is an integrated laser system that
incorporates a DC/DC voltage converter, voltage regulator, pulse generator, laser diode and line generation
optics into a single unit. Operation requires only a +9V - +14.5V DC power supply and a trigger pulse. The
system has a peak power output of 20W at 905nm, with a pulse width of 15ns. It can be pulsed at a maximum
rate up to 10 kHz. The line generating optics produces a beam with a full fan angle of 15 degrees. Its high
performance and small size make it a good candidate for use in the field deployable prototype system.

A wavelength of 905nm for the laser was chosen for a number of reasons. Infrared light has good
transmittance through fog, giving the system better performance under a larger range of weather conditions.
Furthermore, the intensity of sunlight around the wavelength of the laser is a local minimum, giving the
system better rejection of noise due to sunlight. An infrared laser was also thought to be more appropriate for
outdoor use because it is invisible to the human eye, and would therefore cause no distraction to passing
motorists.

2.1.1.1 Laser safety
In the field-deployable prototype it is necessary that the laser be eye-safe. The ML20A15-L2 has a pulse
width of 15ns, a maximum output power of ~20 W and a maximum frequency of 10 kHz. With the
assumptions that the laser is located 6 m above the roadway, the laser line is 4 m long and 5 mm wide, and
that a potential observer is 2 m above the roadway as shown in Figure 2.1, the safety of the laser is verified in
this section.

.1 cm

.15 cm

5 m

6 m

2 m

333 cm

Figure 2.1 Projection Area of the Laser

10

maxP

16 ns

Power (W)

T (s)
1 ns 5 ns

Figure 2.2: Laser Pulse Waveform

Assuming the laser pulse has the form shown in Figure 2.2 and the area of exposure is 267 cm x 0.33cm, the
radiant exposure per pulse of the laser system can be calculated by:

2
92

1
2
1

exp 1033.5
20)165(

cm
J

WL

Wnsns

pulse

H osure −×=
⋅

⋅⋅+⋅=

For the pulse width of 32×10-9s, the single pulse maximum permissible exposure (MPE) for a 905nm laser
expressed as radiant exposure (H) is given by [10]:

2
7105:

cm
JCHMPE A

−×⋅=

With CA = 2.56 for our laser, this becomes

2
61028.1

cm
JH −×=

The MPE per pulse for repetitively pulsed intra-beam viewing is n-1/4 times the MPE for a single pulse
exposure where n is the number of pulses found from the viewing time (Tviewing) and the pulse frequency
(fpulse). Assuming a pulse frequency of 10 kHz, the maximum safe viewing time can be found by equating the
MPE per pulse and the radiant exposure per pulse.

pulse

H
H

pulse

MPE osureexp: =

2
9

2
64/1 1033.51028.1

cm
J

cm
Jn −−− ×=×⋅

91032.3 −×=n
91032.3 −×=⋅ pulseviewing fT

hsTviewing 921032.3 5 ≈×= −

The laser is safe for viewing times up to 92 hours. Although it is unlikely that a driver would stop on the
highway and stare into the beam for this long, warning signs will be posted to prevent it.

In the June 1999, we measured the laser power of our prototype detection system at both UC Berkeley and UC
Davis, and performed extensive calculations using computer software for laser safety with the laser safety
officer at UC Davis. The calculation results indicate that the laser power of our detection system is below the
minimum national laser safety standard by a large margin.

11

2.1.1.2 Laser Spectrum and Filter
A bandpass filter that is matched with the wavelength of the laser is used to reduce the level of ambient light
received by the sensor. The wavelength of the most of diode lasers varies with temperature in the rate of 0.2-
0.5nm/C°. When a filter is used to eliminate the ambient light, it is important to ensure that the wavelength of
laser is within the window of the band-pass filter. According to the specifications of the manufacture, the
wavelength range of the laser diodes we used is 905±5nm at room temperature. In order to operate our system
in wide temperature range, i.e. in the hot summer and cold winter, the window of filter should cover the whole
range of laser wavelength when temperature changing. The wavelength does not change too much when the
temperature goes lower than room temperature, but it changes a lot at high temperature. The characteristics of
a laser spectrum varies for lasers from different manufacturers and manufactured at different times, so it is
necessary to measure the real spectrum of laser diode before the filer is chosen. In our laboratory the laser
spectrum was measured by a portable fiber optic spectrometer from Ocean Optics, Inc. The laser was guided
into the spectrometer by an optical fiber. The measurements were carried out for temperature of 25-47C°. The
calibration error is shown in Table 1. The tolerance of calibration is less than 0.6nm.

 True
Wavelength

Pixel Pixel 2 Pixel 3 Predicted
Wavelength

Difference

922.45 796 633616 504358336 922.447848 0.002152

912.3 775 600625 465484375 912.535575 -0.235575

852.14 650 422500 274625000 852.1652 -0.0252

842.46 629 395641 248858189 841.793027 0.666973

826.45 598 357604 213847192 826.360824 0.089176

811.53 568 322624 183250432 811.289184 0.240816

800.62 548 300304 164566592 801.166424 -0.546424

794.82 536 287296 153990656 795.063968 -0.243968

772.4 492 242064 119095488 772.503496 -0.103496

763.51 475 225625 107171875 763.709175 -0.199175

750.39 450 202500 91125000 750.6976 -0.3076

738.4 426 181476 77308776 738.118288 0.281712

727.29 405 164025 66430125 727.040515 0.249485

Table 1: Calibration Results of Spectrometer in infrared Range

Figure 2.3 shows a typical spectrum of diode laser with an advertised wavelength of 905nm; the actual peak
(central) wavelength was about 916nm. The spectra were also measured with two different filters, as shown in
Figure 2.4. The filters A and B are 904-DF-15 and 904-DF-30 from Omega Optical, Inc., respectively. The
central wavelength increased at the rate of 0.3nm/C° when the temperature increased. The central wavelength
was almost unchanged when the temperature was lower than 25C°. In Figure 2.4, the central wavelength with
the filter is lower than without the filters. This is due to that the filters blocked the higher part of wavelength.
We can see from this figure that the tolerance of central wavelength and half bandwidth is big and the filter
can block some of laser when temperature going up. In order to overcome this problem, two new filters were
ordered. Two 910-DF-30 filters with central wavelength of 910nm and half bandwidth of 30nm were chosen
according to the measurement of laser spectrum. The filters were tested by the manufacturer before they were
shipped to ensure the proper central wavelength and half bandwidth.

12

2000

2100

2200

2300

2400

2500

2600

2700

2800

2900

880 890 900 910 920 930 940

Wavelength (nm)

C
o

u
n

ts

Figure 2.3: Typical Spectrum of Diode Laser

905.00

906.00

907.00

908.00

909.00

910.00

911.00

912.00

913.00

914.00

915.00

20 25 30 35 40 45 50

Temperature (C)

W
a

v
e

le
n

g
th

 (
n

m
)

Wavelength, No Filter Wavelength, Filter A Wavelength, Filter B

Figure 2.4: Central Wavelength of Diode Laser vs. Temperature

13

Figure 2.5: Typical profile of a diode laser

2.1.1.3 Profile of Laser Beam
A diode laser is a multi-mode emitter and sometimes the beam profile is not a real Gaussian distribution, as
shown in Figure 2.5. The setup shown in Figure 2.6 was designed to verify this analysis. We placed a reflector
A, which has good diffusive reflectance, in the field of view of sensor. The position of the reflector is much
higher than the critical height, but does not block the laser. In this case, we can get the reflection signal of the
sensor in the same side of the laser. This reflection signal is comparable to the signal reflected from road (or
the wall in the lab). When we move the laser closer to the reflector, we get higher reflection. Figure 2.7 shows
the relationship between amplitude of reflection signal and d, distance between reflective material and laser
beam. Figure 2.8 indicates the amplitude of reflection signal vs. H , the distance of the reflector from the
detection system. In the highway situation it is possible the reflectance of some vehicles is higher than that of
the reflector we are using in the lab.

Figure 2.6: Experimental Setup for Side-laser Test

14

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

100 150 200 250 300 350

Distance H (inch)

O
u

tp
u

t
(V

)

Figure 2.7: Amplitude of reflection as a function of distance between laser and reflector

Reflectance outside the Laser Beam

0
0.2

0.4

0.6
0.8

1

1.2

1.4
1.6

0 50 100 150 200 250 300

Distance d (mm)

O
u

tp
u

t
(V

)

Figure 2.8: Amplitude of reflection vs. distance between reflector and detection system

The solution for reflection from the higher order beam is to place a slot a certain distance from the opening of
laser. The slot will block the higher-order beam as long as the distance is suitable. The distance depends on
the beam shape and mode. Fortunately, for our laser we can place the slot about 8 inches away from the laser
and it blocks 90% of the side beam. Figure 2.9 shows the new system configuration we have designed. There
are some diffractive light and/or high-order peaks outside the width of Gaussian profile. This diffractive side
beam is hard to see, but we observed a high order laser beam beside the main laser beam by using an IR
detection card. This side laser beam could be much lower than the laser peak. If the vehicle has high
reflectance, we can still get significant reflection from this portion of beam. This reflection could be
comparable to the reflection from the road.

15

Figure 2.9: Configuration of System for Side-Laser Blocking

2.1.2 Sensor Optics
The sensor optics consists of an imaging lens system and a telescopic lens system. The imaging lens system
focuses the reflected laser light onto the active area of the sensor array. The imaging lens was selected based
on the criteria that it should have an adjustable focal length within a range around the desired focal length, and
that it should have a field-of-view large enough to capture the width of an entire lane and that it should be
compact for easy integration into the outdoor system.

Based on the assumptions that the lane width (ho) is around 3.05 m (10.0 ft) and that the unit will be mounted
about 6.40 m (21.0 ft) above the roadway (so) and given that the sensor is 7.5 mm (0.295 in) long (hi), an
image distance (si) was calculated for the sensor using Equation 2, where it was determined that s i = 15.8 mm

(0.620 in).

Figure 2.10: Lens Parameter

16

o

i
oi h

h
ss = (2-1)

The desired focal length (f) of the lens was then calculated using Equation (2-2)

oi ss

f
11

1

+
= (2-2)

The focal length was calculated to be 15.7 mm (0.616 in). As a practical matter, the sensor array is placed at
the focal point of the imaging lens system. Because so is large in comparison with si, f is nearly equal to si.

The lens we selected, a Tamron 23VM816, has an adjustable focal length of between 0.315 in (8 mm) and
0.630 in (16 mm) and was selected because of this feature. The Tamron lens is also suitably compact and has a
field of view that should be large enough to capture the entire lane width. Any lens system that has the correct
focal length and an acceptable field-of-view could be used.

The telescopic lens system is mounted in front of the imaging lens system. It is designed to restrict the field-
of-view of the imaging lens along the width of the laser line, but not alter the field-of-view along the length of
the line. Because the laser line is much longer than it is wide, use of the imaging lens alone would result in a
much wider strip of pavement being visible to the sensor than is desired. The telescopic lens system is used to
match the dimensions of the laser line image with those of the sensor array. Figure 2.10 shows the imaging
lens and the cylindrical lenses used in our system.

The telescopic lens system consists of one positive plano-cylindrical lens and one negative plano-cylindrical
lens. The prototype uses a 150mm focal length cylindrical lens and a -19 mm focal length cylindrical lens
both manufactured by Melles Griot Inc. These lenses are positioned to form a Galilean telescope. When
positioned correctly the cylindrical lenses will not effect the proper operation of the imaging lens. The ratio of
the focal length of these lenses is approximately equal to the ratio of the uncorrected field-of-view of the
width of the sensor to the desired field-of view. The desired field-of-view, X, is determined based on Equation
2.3, where Y is the separation of the sensor and laser, H is the height of the system above the road, and Hc is
the desired minimum detectable object height, as shown in Figure 2.11. To insure reliable vehicle detection, it
is important that Hc be below the bumper height of most common vehicles.

c

c

H

HHX
Y

)(−= (2-3)

The uncorrected field of view, about 13cm (5 in), results in a critical height of about 1.8 m (6.0 ft). To ensure
vehicle detection it is necessary to have a critical height somewhere below the bumper height of the vehicles.
A height of around 46cm (18 in) was thought to be acceptable. To achieve this it is necessary to restrict the
field of view X to about 2.3cm (0.92 in). This is a factor of reduction of about 5. In our case, where f1 = 150
mm and f2 = -19 mm, the factor of reduction is equal to about -7.9 (the negative sign indicates an inverted
image), giving us a field of view of about 16 mm (0.63 in). The factor of reduction is commonly referred to as
the angular magnification of the system. As shown in Figure 2.12, a ray of light entering the system from the
left at an angle Θ1 exits the system at the right at an angle Θ2 equal to Θ1*(f1/f2). Because of this, objects to
the left appear to be larger than they actually are. This is how the field of view is reduced. A sensor on the
right of the telescopic system will have its field of view reduced by a factor equal to the angular magnification
of the system. The telescopic system does not alter the position or focus of the image. Objects that are
properly focused by the imaging lens remain in focus when the telescopic system is added.

17

c

H

Receiver Laser Line Generator

Field of View
Receiver

Y

X

H

Figure 2.11: Minimal Object Height

θ2

1θ

= ∗ θ
25.4
150θ

d

2 1

f = 150 mm f = -25.4 mm1 2

Figure 2.12: Telescope Lens System

The filter is mounted between the telescopic and imaging lens systems. This filter is mounted on a ring that is
threaded onto the front of the imaging lens.

2.2 System Electronics
According to the principle of detection, the system needs only to distinguish vehicle presence under the laser
lines. It is good to simplify the system by providing a digital output signal from the electronic circuitry. Using
a digital signal as output from the hardware will significantly simplify the signal processing in the software,
therefore reducing the requirements of the computer system. The implementation of this method is based on
the high signal-to-noise ratio of the new circuitry. A block diagram of the new version of the field prototype
hardware construct is shown in Figure 2.13. The hardware consists of five parts: the power supply, the clock
generator, the laser components, the amplifiers and signal processing circuit, and the digital I/O board and
computer.

18

Power Supply

Clock
Generator

Sample &
Hold

Infrared
Laser Line
Generator Telescopic Lens

Peak detector

-12V

Cap coupler

AMP AMP

+12V

-12V

+5V

A/D board

Industrial Computer

Single Element Amplifier Circuit

Optical Filter

APD array

Image Lens

Figure 2.13: Diagram of Electronics Hardware

The power supply section delivers power to both the drivers of the diode lasers and sensor circuits. There are
several different voltages needed by the system. A triple output switch-type power supply provides ±12 V, and
+5 V. The advantages of using a switch-type power supply are small size, low ripple and high efficiency,
compared to a voltage regulator. The +5 V output is used to power the clock generator and digital part of
sensor circuit. The +12 V output supplies power to the laser system and the DC/DC converter required by the
sensor array. A high voltage DC/DC converter changes 12 V DC to 250-350 V DC, which is used to bias the
sensor array from –290V to -310V. The amplifiers use the ± 7.5 V power, which is obtained by two adjustable
voltage regulators LM317 and LM318. The input of the voltage regulator is ± 12V from a switch-type power
supply.

The high voltage pulse generator for the laser diode is built into the laser unit, which is powered by 12 V DC.
Because the pulse generator is isolated by a transformer and is well shielded, there is very low noise induced
by the pulse. The power supply for the laser units is well isolated by filters. As a result, even though we used
only one power supply for both laser and sensor electronics, there is no interference between the parts. This
reduces the cost of the system.

The clock generator provides a clock signal that is used to trigger the laser. An NE555 is used as the oscillator,
as shown in Figure 2.14. The frequency can be adjusted from the range of 1Hz to 50kHz. The frequency and
width of the pulse can be chosen by adjusting the values of resistors Ra and Rb.

19

2

R
Q

DIS

THR

TRIG

CVolt
GND

VCC

LM555

5

4 8

3

7

6

5V

Ra

Rb

C

Figure 2.14: Clock Circuit

A 25-element avalanche photodiode (APD) array is used as the sensor in our detection system. The sensor
converts the reflected laser light into a current signal. The sensor circuit is the main part of the electronic
hardware in the detection system. In this new version of electronic hardware, some low-cost amplifier chips
with suitable bandwidth which can meet the high demand of our detection system were chosen for signal
amplification. The time response of the new circuit provides a good match to the pulse length of the laser.
The high-frequency signal can be amplified effectively without oscillation. The new circuit increases the
signal-to-noise ratio by a factor of 5 relative to the previous one. A new method using a TTL logic circuit,
instead of a sample-and-hold amplifier, has been used to handle the short signal pulse. Using this method, a
TTL logic circuit is triggered by the amplified signal and the output is a digital signal. Usually, the sample-
and-hold amplifier is the bottleneck of the time response of the circuitry, so this method will improve the time
response reliability of the system and allow us to gather more channels of the signal, for example up to 24
channels. Using a digital signal as output from the hardware will significantly simplify the signal processing
in the software. The implementation of this method is based on the high signal-to-noise ratio of the new
circuitry. The new circuitry is based on simple, cheap, commonly available electronic components, so the cost
of new circuitry is only one-fifth of that of the previous one. This is meaningful for the commercialization of
our system in the future.

The circuit can be divided into three stages: signal amplification, interface and signal conditioning, and digital
output, as shown in Figure 2.15.

Figure 2.15: Circuitry of Sensor Electronics

20

The current generated by laser light reflected onto the sensor element is amplified by a video amplifier U1.
The output of this amplifier is about 1 volt. A high-speed transistor T1 is used for signal conditioning and
provides an interface between analog and digital parts of the circuit. A Multi-Vibration Mono-Stable
Oscillator U2 is triggered by the pulses from amplifier and generates high level output when there is no
vehicle under the system. When the moving vehicle blocks the laser, there is no pulse to trigger the U2, and
the output will be low. Capacitors are used to isolate DC signals between different parts of circuit, so that a
continuous signal can not pass through the circuit. Normally, ambient lights generate continuous signals. After
intensive tests and adjustment, the interference between different part of circuits are eliminated to the lowest
level, so that the system has a signal/noise ratio 5 times higher than the previous version. Figure 2.16
shows a typical signal from the amplifiers.The transition time is an important factor to the accuracy and
consistency of data measured. Because the new version of electronic circuitry generates signals directly in the
digital mode, the transition time, which contributed to the error in the measurement in the previous version of
the prototype, is no longer a problem in the new system.

-1

-0.5

0

0.5

1

1.5

2

0 200 400 600 800 1000

Time (ns)

V
o

lt
ag

e
(V

)

Figure 2.16: Output of Amplifier

-4

-3

-2

-1

0

1

2

3

4

5

6

-10 -5 0 5 10

Time (us)

V
o

lt
a

g
e

 (
v

)

Figure 2.17: Transition of Digital Output

21

Because of the use of surface mounted chips and simplicity of the circuitry, the new version electronics has a
compact size. This makes it possible to place all amplifiers for 24 channels on a small printed circuit board
without long connection wires. This is important because the signal from the photodiode array is very weak.
The longer the connection wires between the photodiode array and amplifiers, the more noise and oscillation
will be introduced into the signal. Figure 2.18 and Figure 2.19 are the printed circuit boards for
amplifiers and sensor mount. The circuit board layouts are optimized to reduce cross talk between channels.

Figure 2.18: Printed Circuit Boards for High-Speed Amplifiers

Figure 2.19: Printed Circuit Board for Sensor Mount

Figure 2.20 illustrates the modularized printed circuit board mount. This structure allows us to use all 24
elements of the sensor array and is easy to maintain.

Figure 2.20: Mount of Print Circuit Boards

22

2.2.1 Data Acquisition and Computer System

Since the outputs of the sensor circuits are digital signals, the A/D converter is no longer needed. A general-
purpose low-cost digital I/O board PCI-DIO-96 from National Instruments is used an input interface between
the sensor circuitry and the computer system. This digital I/O has 96 channels of configurable input/output, so
it is suitable for our system when all 48 channels of signal are required. Normally digital I/O is fast enough to
transfer data on the order of kHz.

2.3 Mechanical Design
Even though all the optical components used in the new version of the system are the same as the previous
system, the mechanical structure holding the optical components is completely redesigned. The new
mechanical design of optics is flexible and allows the optical components to be adjusted to optimize alignment
and focus of the laser beam. The mechanical configuration of system is shown in Figure 2.21. The
cylindrical lenses, image lenses and APD sensors are mounted on optical rails, which are placed in the base
plate. Each optical component and sensor is clamped by a holder that is adjustable in two dimensions. The
image lenses can be swung around an axis with an optical cell. The sensor is clamped by a ring which is
mounted on a rotation lens holder. As a result the sensor can be adjusted via both translation and rotation.

Figure 2.21: Mechanical Configuration of the Detection System

Because the new optical system is flexible, it is necessary to have the procedures to adjust the system. In the
optical system shown in Figure 2.22, the adjustment includes optimizing the cylindrical telescope,
focusing, lining up optical components and lasers. We have developed procedures for optical adjustment of
the system as following:
• Line-up telescope lenses.
• Adjust the vertical alignment of the two sensor arrays.
• Adjust the magnification of the optical system.
• Align the laser to the optic’s centerline.
• Find the image focusing distance.

23

Figure 2.22: Optical System

After adjustment following the defined procedures, a clear image of the reflecting laser can be obtained. The
optimization of the optics significantly improves the critical height and eliminates the unexpected reflections
when some reflective vehicle surfaces are present under the detector. A visible laser and a CCD are used to
verify the image quality of the optical system. Figure 2.23 shows the image of a reflected laser line on the
position of a sensor from different heights. The principle of critical height is clearly demonstrated in this
figure.

Figure 2.23: Image of Laser on the Sensor

24

Chapter 3 Real-Time Data Acquisition and Processing Software

The data acquisition software is used to collect, process and display data from hardware of the detection
system. The data has to be read from the output of sensor electronic circuit periodically. All tasks have to be
done at the same time. However the data has to be acquired in a same interval from the hardware. In other
words the data acquisition task should be deterministic, otherwise the information will loss. The concurrence
of the deterministic tasks requires real-time performance of operating system. Previously we were using a
real-time operating system Lynx OS. Because of its incompatibility with other systems, lack of third party
support and high-cost, we have developed new software based on the Microsoft Windows NT system with
real-time extension form RTX from Venture.com, Inc. The new software utilizes the hard real-time character
of the RTX subsystem, while taking advantage of the convenience of API from Windows NT system for non-
real-time processing of data.

The architecture of the RXT real-time extension is shown in Figure 3.1. RTX adds a real-time subsystem,
known as RTSS, to Windows NT. RTSS is conceptually similar to other Windows NT subsystems (such as
Win32 and DOS). Instead of using the Windows NT scheduler, RTSS performs its own real-time thread
scheduling. Furthermore, all RTSS thread scheduling occurs ahead of all Windows NT scheduling. By this
way RTX delivers a hard real-time on the NT system. In our detection system, data from the sensors are
collected using real-time process running in the RTX environment, and are then processed in a non-real-time
Win32 process.

Figure 3.1: System Architecture of RTX Real-Time Extension

RTX provides a set of APIi for accessing hardware from RTX real-time process. This makes development of
device drivers easier. The device driver has been developed for the PCI-DIO-96 digital I/O board in the real-
time RTX subsystem to acquire the data at a rate up 10 kHz with highest priority. The driver provides a shared
memory for inter-process communication and semaphore for synchronization with Win32 non-real-time
process. The double-buffering technique is used to collect data in the shared memory so that no data will be
lost.

25

The data processing includes calculation of speeds and lengths of vehicles, displaying graphic data on the
screen and storing data to the disk. Figure 3.1 is the graphical user interface running on Win32 processing.
The application program accesses real-time RTX processes though shared memory and semaphore. The
program can acquire data from the I/O board, calculate lengths and speeds of vehicles, and store to data to
disk (for later replay), exactly the same as the last version software based on the Lynx OS.

Equation 3-1: User Interface on Windows NT

Software simulation of signals from detection system has been developed for testing of the data acquisition
and processing software. The simulation software has been written in the RTX real-time subsystem and the
simulation signals can be output from the parallel port of the PC. It accurately simulates 8 channels of signals
and can be extended to 48 channels by increasing the count number of the loop. This simulation software
allows a developer to test and debug data acquisition software separately from the hardware of the detection
system.

26

Chapter 4 Field Test Results

Field tests have been made on the highway with real traffic near the junction of highway I-5 and I-80 in
Sacramento. Figure 4.1 is a picture of the test site and the detection system mounted on the bridge across the
highway.

Figure 4.1: Detection System Mounted Above the Highway

In the current phase, only four of twenty-four elements of each sensor were used for testing. The front and rear
speeds, length and acceleration were obtained in the tests according to the measured data. In the last highway
test, the older data acquisition system was still used (in conjunction with the new detector system). The
sampling rate of data acquisition was set to 1.8kHz to avoid loss of data. The frequency of the laser was 7kHz.
The results indicated that the signals of the new version of the system are clear and the transition is fast
enough in the system. The maximum error of the measurement is less than 10%, which is caused by the low
sampling rate. The error will decrease at higher sampling rate. The asynchronicity between sampling in the
computer and clock of laser pulse also partly contributed to the errors. Figure 4.2 demonstrates the typical
signals and measurements of highway test. Because the distance between the two lasers was not calibrated
accurately, the speed displayed in the figure is higher than the actual speed. Comparing with the results from
previous version of detection system, as shown in Figure 4.3, the signals from new system are much
clearer and faster than the old one. This makes it possible to obtain the measurement accuracy required by this
project.

27

Figure 4.2: Test Results

Figure 4.3: Test Results from Previous Version of Detection System

28

Chapter 5 Future Work

We will continue to improve the field prototype system according to the problems that surfaced in the
highway tests. For example, we will modify the current mechanical design so that it will be rigid enough to
keep the optical alignment unchanged when the system is moved from the lab to the highway. The new
version of the system will be able to gather more channels of the signal, for example up to 24 channels, which
is necessary to obtain precise profiles of moving vehicles and to deal with the boundary effects that occur
when the vehicles are changing lanes.

The electronics will be tested in wide ranges of temperature and humidity. The Signal/Noise ratio changes in
different road materials and conditions will be obtained for further improvement of electronic circuitry
including gain control and circuit board layout. We will assess different ways of assuring weather resistance
while allowing component accessibility for maintenance, such as box designs, gasket enclosures, and nitrogen
pressurization.

Future study will also be aimed at reducing the cost, building a robust system, and dealing with some extreme
road and weather conditions. For the software we will develop new software and algorithms to handle
different situations of moving vehicles and calibration of reflectance signatures of moving vehicles. Various
scenarios of motion will be studied. For example, the laser beam may be adjusted so that it is not exactly
orthogonal to the vehicle velocity vector.

We are developing software for the new version of the system using a free Linux operating system. RTlinux
will be used as a real-time kernel, as it is becoming more popular in real-time embedded applications. RTlinux
allows deterministic real-time and non-real-time processing within the same computer. The device driver for
the data acquisition board will be developed in RTlinux and the data processing and display program will be
ported from LYNX OS to the Linux system.

29

Chapter 6 Conclusions

We have developed and tested a new version of field prototype of a laser-based real-time, non-intrusive
detection system for measurement of delineations of moving vehicles in real traffic environments. This field
prototype has substantial improvement in both electronics and optics over the previous system. The signal
level and transition time are no longer a problem in the new system. This enables us to concentrate on the
higher level objectives of the project, such as dealing with different traffic scenery and some kinds of special
vehicles. The test results quantitatively verified that the principle of our detection system is technically sound
and indicated that the algorithm implemented in the software works in most cases. The simple method of
detecting vehicle presence based on the absence of reflected laser beam works reliably in the real traffic
environment. The real-time data acquisition software has been developed to gather and process the data from
system hardware based on Windows NT operation system with RTX real-time extension. The vehicle
delineation library was used to convert data from the sensor library, which was developed in previous project,
to vehicle delineation data, such as front and real velocities of vehicle, average acceleration and length. The
speed, acceleration, and length of a detected vehicle can be displayed on the screen simultaneously. All these
data of the detected vehicle can be saved with a time stamp to a disk in real time. The new software possesses
the same functionality while having much more simplicity.

30

Bibliography

[1] Palen, J., Roadway Laser Detector Prototype Design Considerations, personal communications, 1996.
[2] Tyburski, R.M., A Review of Road Sensor Technology for Monitoring Vehicle Traffic, ITE journal. Vol.

59, no. 8 (Aug. 1989)
[3] Halvorson, G. A., Automated Real-Time Dimension Measurement of Moving Vehicles Using Infrared

Laser Rangefinders, MS Thesis, University of Victoria, 1995.
[4] Olson, et al., Active Near-Field Object Sensor and Method Employing Object Classification Techniques,

U.S. Patent No. 5,321,4990, 1994.
[5] Wangler, et al., Intelligent Vehicle Highway System Sensor and Method, U.S. Patent No. 5,546,188,

1996.
[6] Wangler, et al., Intelligent Vehicle Highway System Sensor and Method, U.S. Patent No. 5,757,472,

1998.
[7] Wangler, et al., Intelligent Vehicle Highway System Multi-Lane Sensor and Method, U.S. Patent No.

5,793,491, 1998.
[8] Graeme, J., Photodiode Amplifiers: Op Amp Solutions, McGraw-Hill, New York, 1996.
[9] Horowitz, P. & Hill, W., The Art of Electronics, 2nd Ed., Cambridge University Press, New York, 1989.
[10] American National Standard for the Safe Use of Lasers, Laser Institute of America, Orlando, 1986.
[11] Kirk Van Katwyk, Design and Implementation of Real-time Software for Open Architecture Integration

of Mechantronic System, thesis for Master of Science, Department of Mechanical and Aeronautical
Engineering, University of California at Davis, 2000.

[12] Jonathan E. Larson E. Kirk Van Katwyk, Cheng Liu, Harry Cheng, Ben Shaw, Joe Palen, A Real-Time
Laser-Based Prototype Detection System for Measurement of Delineation of Moving Vehicles,
California PATH Working Paper, UCB-ITS-PWP-98-20, September 1998.

31

Chapter 7 Appendix

7.1 Device Driver for Digital I/O on Windows NT
/*
 * Nodule Name:
 *
 * DIO96_gather.c
 *
 * Abstract:
 *
 * Gather data from DIO-96 board in a RTX process
 *
 * Author:
 *
 * Bin Lin, 20-April-2000
 *
 * Environment:
 *
 * RTX real-time extension.
 *
 * Revision History:
 *
 */

#include "windows.h"
#include "stdio.h"
#include "rtapi.h"
#include "DIO96.h"

#define NO_ERRORS 0
#define ERROR_OCCURED -1
#define PTL(x) (*(PLONG)(x))

PCHAR _base_addr;
PCI_SLOT_NUMBER SlotNumber;
PPCI_COMMON_CONFIG PciData;
UCHAR buffer[PCI_COMMON_HDR_LENGTH];

int index = 0;

//for IPC
static HANDLE hShm, hSemPost, hSemAck;
static BOOL bInit = FALSE;
static PMSGSTR pMsg;
LONG abandoned = 0;
int finished = 0;
LONG lReleaseCount = 1;
UCHAR Data;

int RTFCNDCL TimerHandler (PVOID unused);

PCHAR SetupDIO96(); //Setup DIO-96 board

PCHAR vBAR0;

int
main(int argc, char *argv[])
{
LARGE_INTEGER Period; // Timer period

 HANDLE hTimer;
Period.QuadPart = 100;

//Setup DIO96
_base_addr = SetupDIO96();

32

printf("_base_addr = 0x%p\n", _base_addr);

//set port A, B and C as input
*CNFG_ADDR = 0x80;

printf("CNFG_ADDR = 0x%x\n", *CNFG_ADDR);

 // Open the required IPC objects upon first call.
 if (!bInit)
 {

hShm = RtOpenSharedMemory(PAGE_READWRITE, FALSE, MSGSTR_SHM, (LPVOID) &pMsg);
if (hShm==NULL)
{

printf("DIO96_gether.c: Error: Could not open Shared Memory. GetLastError =
 %d\n", GetLastError());

return FALSE;
}

hSemPost = RtOpenSemaphore(SYNCHRONIZE, FALSE, MSGSTR_SEM_POST);
if (hSemPost==NULL)
{

printf("DIO96_gather: Error: Could not open Semaphore. GetLastError = %d\n",
 GetLastError());

RtCloseHandle(hShm);
return FALSE;

}
}

hSemAck = RtOpenSemaphore(SYNCHRONIZE, FALSE, MSGSTR_SEM_ACK);
if (hSemAck==NULL)
{

printf("MsgClient: Error: Could not open Semaphore. GetLastError = %d\n",
 GetLastError());

RtCloseHandle(hShm);
RtCloseHandle(hMutex);
RtCloseHandle(hSemPost);
return FALSE;

}

bInit = TRUE;
 }

//Setup and start a periodic timer.

if (!RtSetThreadPriority(GetCurrentThread(), RT_PRIORITY_MAX-1))
printf("WARNNING: Can't set to highest RTAPI priority. \n");

if (!(hTimer = RtCreateTimer(NULL, // Security - NULL is none
 0, // Stack size - 0 is use default
 TimerHandler, // Timer handler
 NULL, // NULL context (argument to handler)
 RT_PRIORITY_MAX, // Priority
 CLOCK_2))) // Always use fastest available clock
 {
 printf("Srtm: Error: Could not create the timer. GetLastError = %d\n",
 GetLastError());

return ERROR_OCCURED;
 }

 if (!RtSetTimerRelative(hTimer, &Period, &Period))
 {
 printf("SRTM: ERROR: Could not set and start the timer. GetLastError = %d\n",
 GetLastError());

RtDeleteTimer(hTimer);
return ERROR_OCCURED;

 }

*PORTA_ADDR=0x0;

33

// Wait for the sampling time and then stop the timer.
 Sleep(5000);

if(!RtDeleteTimer(hTimer))
{

printf("Srtm: Error: Could not delete timer. GetLastError = %d\n",
 GetLastError());

return ERROR_OCCURED;
}

printf("PORTA_ADDR = %p\n", PORTA_ADDR);
printf("PORTA = 0x%x\n", *PORTA_ADDR);
printf("vBAR0 = 0x%x\n", *vBAR0);

 printf("vBAR0+3 = 0x%x\n", *(vBAR0+0x03));
printf("Buffer[0] = 0x%02x\n", *(pMsg->Buffer));
return NO_ERRORS;

}

//
// timer handler function
//
int RTFCNDCL TimerHandler (PVOID unused)
{
// Test sampling rate
*PORTC_ADDR = 0x00;

pMsg->Buffer[index] = *PORTA_ADDR;
index++;

if(index == BUFFER_SIZE/2)
{

pMsg->BufFull = 0;
if(!RtReleaseSemaphore(hSemPost, lReleaseCount, NULL))
{
printf("DIO96_gather: Error: Could not release semaphore. GetLastError = %d\n",

 GetLastError());
return FALSE;
}

}

if(index == BUFFER_SIZE)
{

pMsg->BufFull = 1;
if(!RtReleaseSemaphore(hSemPost, lReleaseCount, NULL))
{
printf("DIO96_gather: Error: Could not release semaphore. GetLastError = %d\n",

 GetLastError());
return FALSE;
}

index=0;
}

*PORTC_ADDR = 0xff;
return NO_ERRORS;

}

PCHAR SetupDIO96()
{
 ULONG i; // logical slot number for the PCI adapter
 ULONG f; // function number on the specified adapter
 ULONG bytesWritten; // return value from RtGetBusDataByOffset
 ULONG bus; // bus number
 BOOLEAN flag;
ULONG Offset= 0;
ULONG nothingWritten = 0;
ULONG AddressSpace = 0;
ULONG window_data_value;
//PCHAR vBAR0;
PCHAR vBAR1;

34

LARGE_INTEGER BAR0;
LARGE_INTEGER BAR1;
LARGE_INTEGER tBAR0;
LARGE_INTEGER tBAR1;

BAR0.QuadPart = 0;
BAR1.QuadPart = 0;
tBAR0.QuadPart = 0;
tBAR1.QuadPart = 0;

PciData = (PPCI_COMMON_CONFIG) buffer;
 SlotNumber.u.bits.Reserved = 0;
 flag = TRUE;

 for (bus=0; flag; bus++) {

 for (i=0; i<PCI_MAX_DEVICES && flag; i++) {
 SlotNumber.u.bits.DeviceNumber = i;

 for (f=0; f<PCI_MAX_FUNCTION; f++) {
 SlotNumber.u.bits.FunctionNumber = f;

 bytesWritten = RtGetBusDataByOffset (
 PCIConfiguration,
 bus,
 SlotNumber.u.AsULONG,
 PciData,
 Offset,
 PCI_COMMON_HDR_LENGTH
);

 if (bytesWritten == nothingWritten) {
 // out of PCI buses
 flag = FALSE;
 break;
 }

 if (PciData->VendorID == PCI_INVALID_VENDORID) {
 // no device at this slot number, skip to next slot
 break;
 }

if((PciData->VendorID == 0x1093) &&(PciData->DeviceID == 0x0160))
{

 BAR0.QuadPart = PciData->u.type0.BaseAddresses[0];
 BAR1.QuadPart = PciData->u.type0.BaseAddresses[1];

 //Traslate the base port address
 if(!RtTranslateBusAddress(PCIBus,0,BAR0,&AddressSpace,&tBAR0))
 {

 printf("tBAR0 translation failed\n");
}

 else
 {

printf("tBAR0:SystemMappedAddress: 0x%08x\n", tBAR0.LowPart);
printf("BAR1.QuadPart = 0x%08x\n",BAR1.QuadPart);

 }
 if(!RtTranslateBusAddress(PCIBus, 0,BAR1,&AddressSpace,&tBAR1))

 {
printf("tBAR1 translation failed\n");

 }
 else
 {

printf("tBAR1:SystemMappedAddress: 0x%08x\n", tBAR1.LowPart);

 }

 //Map the address to virtual address the software can use

 vBAR0 = RtMapMemory(tBAR0, 4*1024,0);
 if (vBAR0==0)

35

 {
printf("vBAR0:Failure on RtmapMemory\nError=n", GetLastError());

 }
 else
 {

printf("vBAR0: Virtual Memory Address: 0x%08x\n", vBAR0);
 }
 vBAR1 = RtMapMemory(tBAR1, 4*1024,0);
 printf("vBAR1 = 0x%x\n", vBAR1);
 if (vBAR0==0)
 {

printf("vBAR1:Failure on RtmapMemory\nError=n", GetLastError());
 }
 else
 {

printf("vBAR1: Virtual Memory Address: 0x%08x\n", vBAR1);
 }

 //Setup
 PciData->Command = (PCI_ENABLE_IO_SPACE|

PCI_ENABLE_MEMORY_SPACE|
PCI_ENABLE_BUS_MASTER|
PCI_ENABLE_WRITE_AND_INVALIDATE);

 RtSetBusDataByOffset(PCIConfiguration, bus,
SlotNumber.u.AsULONG, PciData,0,
PCI_COMMON_HDR_LENGTH);

 window_data_value =((0xffffff00&(ULONG)BAR1.LowPart)(0x00000080));
 PTL(vBAR0+0x000000c0) = window_data_value;

// A device is found, print out the PCI configuration information
 printf("\nPciData: -------------------------\n");
 printf("VendorID:\t\t0x%x\n", PciData->VendorID);
 printf("DeviceID:\t\t0x%x\n", PciData->DeviceID);
} //dio96

 }
 }
 }
return vBAR1;

}

7.2 Application Program on Windows NT
/**
 * main.cpp
*
 * Laser-Detector System: Main Program
 *
 **/
#include "stdafx.h"
#include "resource.h"
#include "rtapi.h"
#include "daq.h"
#include "daqlib.h"

#define DX 8 //Displacement of scrollwindow
#define T0 (1L) //receive the first edge
#define T1 (1L)<<1 //receive the second edge
#define T2 (1L)<<2 //receive the third edge
#define T3 (1L)<<3 //receive the fourth edge
#define N_DIODE 8 //number of photodiode
#define N_PAIR 4 //pair of photodiode
#define DISTANCE 254/(1609*1e3) //distance of two array (mile)
#define APP_NAME "RTX Detector System"
#define ERROR_CODE 1

#ifdef DEBUG
#define debug(a) printf a
#else
#define debug(a)

36

#endif

char szAppName[] = "menudemo" ;
struct //the type and name of child window
 {
 long style ;
 char *text ;
 }
 button[] =
 {

BS_AUTOCHECKBOX, "CH1",
BS_AUTOCHECKBOX, "CH2",
BS_AUTOCHECKBOX, "CH3",
BS_AUTOCHECKBOX, "CH4",
BS_AUTOCHECKBOX, "CH5",
BS_AUTOCHECKBOX, "CH6",
BS_AUTOCHECKBOX, "CH7",
BS_AUTOCHECKBOX, "CH8",

 } ;
HWND hwnd ; //the handle of window
HDC hdc; //the handle of device context
static HRGN hrgnu, //handle of curve region

hrgnd, //handle of pair-1 -- pair-4 data region
hrgnd1, //handle of pair-1 data region
hrgnd2, //handle of pair-2 data region
hrgnd3, //handle of pair-3 data region
hrgnd4, //handle of pair-4 data region
hrgnd5, //handle of pair-1 data region + pair-2 data region
hrgnd6; //handle of pair-3 data region + pair-4 data region

HANDLE ThreadU, ThreadD; //handle of thread
HMENU hMenu ; //handle of menu
HWND hDlgModeless;
RECT RePaint; //scrollwindow rect
PAINTSTRUCT ps;

BOOL Pen1=FALSE, //flag of pen1
Pen2=FALSE, //flag of pen2
Pen3=FALSE, //flag of pen3
Pen4=FALSE, //flag of pen4
Pen5=FALSE, //flag of pen5
Pen6=FALSE, //flag of pen6
Pen7=FALSE, //flag of pen7
Pen8=FALSE; //flag of pen8

BOOL bkill=FALSE; //flag of thread
BOOL exmove=FALSE; //flag of extra move
BOOL DAQ=FALSE; //flag of data acquisition
BOOL NoPlay=FALSE; //File dosen't exsist

int Lastpoint=0; //last drawing point
int qwrite=0, //input location

qread=0, //output location
qsize=1280; //queue size

static int point1[BUFFER_SIZE/2], //channel-1 array for paint
point2[BUFFER_SIZE/2], //channel-2 array for paint
point3[BUFFER_SIZE/2], //channel-3 array for paint
point4[BUFFER_SIZE/2], //channel-4 array for paint
point5[BUFFER_SIZE/2], //channel-5 array for paint
point6[BUFFER_SIZE/2], //channel-6 array for paint
point7[BUFFER_SIZE/2], //channel-7 array for paint
point8[BUFFER_SIZE/2]; //channel-8 array for paint

static int pointLast[8];

double v[N_PAIR][2], //front and back velocity of vehicle
a[N_PAIR], //acceleration
l[N_PAIR]; //length of vehicle

//char old = 0xFF; //the last data
//unsigned long edge_status[N_PAIR]; //status of edge, xxxxT3T2T1T0
//int e[N_PAIR]; //the order of edge, 0,1,2,3
//unsigned long t[N_PAIR][4]; //edge timing information
enum{ //vehicle direction

37

None,
Presence,
Trigger

} edge[N_PAIR];
//double delta_t, //dt
// delta_v; //dv
int iFile=0;
static char szFile[256]="", szFileTitle[256]="";

GLOBALHANDLE /*hpt1,hpt2,hpt3,hpt4,
hpt5,hpt6,hpt7,hpt8,*/
hqueue = NULL;

//int *pt1,*pt2,*pt3,*pt4,*pt5,*pt6,*pt7,*pt8;
unsigned char **dpqueue = NULL;
static unsigned char onebuf[BUFFER_SIZE/2];

LRESULT CALLBACK WndProc (HWND, UINT, WPARAM, LPARAM) ;
BOOL CALLBACK AboutDlgProc (HWND, UINT, WPARAM, LPARAM) ;
void MAlloc();
void MFree();
void Plot();
void MsgAndExit(PCHAR string);
void DaqStart();
void DaqEnd();
void Play();
void Record();
void RPStop();
void GetFileName();

int APIENTRY WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
 PSTR szCmdLine, int iCmdShow)
{
 MSG msg ;
 WNDCLASSEX wndclass ;

 wndclass.cbSize = sizeof (wndclass) ;
 wndclass.style = CS_HREDRAW | CS_VREDRAW ;
 wndclass.lpfnWndProc = WndProc ;
 wndclass.cbClsExtra = 0 ;
 wndclass.cbWndExtra = 0 ;
 wndclass.hInstance = hInstance ;
 wndclass.hIcon = LoadIcon (NULL, IDI_APPLICATION) ;
 wndclass.hCursor = LoadCursor (NULL, IDC_ARROW) ;
 wndclass.hbrBackground = (HBRUSH) GetStockObject (WHITE_BRUSH) ;
 wndclass.lpszMenuName = MAKEINTRESOURCE(IDR_MENU1);
 wndclass.lpszClassName = szAppName ;
 wndclass.hIconSm = LoadIcon (NULL, IDI_APPLICATION) ;

 RegisterClassEx (&wndclass) ;

 hwnd = CreateWindow (szAppName, "Real-Time Detect System for Moving Vehicle",
 WS_OVERLAPPEDWINDOW,
 CW_USEDEFAULT, CW_USEDEFAULT,
 CW_USEDEFAULT, CW_USEDEFAULT,
 NULL, NULL, hInstance, NULL) ;

 ShowWindow (hwnd, iCmdShow) ;
 UpdateWindow (hwnd) ;

 s=sensorOpen();

 while (GetMessage (&msg, NULL, 0, 0))
{
 if(hDlgModeless==NULL || !IsDialogMessage (hDlgModeless,&msg))

{
 TranslateMessage (&msg) ;

 DispatchMessage (&msg) ;
}

 }
 return msg.wParam ;
}

38

void MsgAndExit(PCHAR string)
{
 MessageBox(NULL, string, APP_NAME, MB_OK | MB_ICONERROR | MB_SYSTEMMODAL);
 ExitProcess(ERROR_CODE);
}

unsigned long WINAPI Thread96U (PVOID pvoid)
{
DWORD dwMaximumSizeHigh = 0;
LONG lInitialCount = 0;
LONG lMaximumCount = 1;
DWORD retcode=0;
int i=0, j=0;

SetThreadPriority(GetCurrentThread(), PRIO_DAQU);

hShm = RtCreateSharedMemory(PAGE_READWRITE, dwMaximumSizeHigh, sizeof(DAQSTR), DAQ_SHM, (void
**) &pDaq);

if(GetLastError()==ERROR_ALREADY_EXISTS)
 MsgAndExit("Warning!\nThe shared memory does already exist.");

 if (hShm==NULL)
 MsgAndExit("RtCreateSharedMemory failed.");

 hSemPost = RtCreateSemaphore(NULL, lInitialCount, lMaximumCount, DAQ_SEM_POST);

 if (hSemPost==NULL)
MsgAndExit("RtCreateSemaphore for posting failed.");

qwrite=0;
qread=0;

for(i=0; i<BUFFER_SIZE/2; i++)
{

point1[i] = 100;
point2[i] = 100;
point3[i] = 100;
point4[i] = 100;
point5[i] = 100;
point6[i] = 100;
point7[i] = 100;
point8[i] = 100;

}

/*for (i=0;i<qsize;i++)
{

for (j=0;j<100;j++) dpqueue[i][j] = 0xFF;
for (j=100;j<102;j++) dpqueue[i][j] = 0xFE;
for (j=102;j<500;j++) dpqueue[i][j] = 0xEE;
for (j=500;j<501;j++) dpqueue[i][j] = 0xEF;
for (j=501;j<513;j++) dpqueue[i][j] = 0xFF;

}*/

while(!bkill)
{
if(RtWaitForSingleObject(hSemPost, INFINITE) == WAIT_FAILED)

MsgAndExit("RtWaitForSingleObject failed.");
if(pDaq->HalfBufFull == 1)

for(i=0;i<BUFFER_SIZE/2;i++)
dpqueue[qwrite][i]=pDaq->Buffer[i];

if(pDaq->HalfBufFull == 2)
for(i=0;i<BUFFER_SIZE/2;i++)

dpqueue[qwrite][i]=pDaq->Buffer[BUFFER_SIZE/2+i];
qwrite++;
qwrite%=qsize;

if (s->status & RECORD)
{
if(pDaq->HalfBufFull == 1)

39

 fwrite(pDaq->Buffer,sizeof(unsigned char),BUFFER_SIZE/2,s->file);
if(pDaq->HalfBufFull == 2)

fwrite(pDaq->Buffer+BUFFER_SIZE/2,sizeof(unsigned char),BUFFER_SIZE/2,s->file);
if(ferror(s->file))
 perror("Record: fwrite()"), exit(1);
fflush(s->file);
}

}
//InvalidateRgn (hwnd, hrgnu, TRUE) ;
ResumeThread(ThreadD);
RtCloseHandle(hShm);
RtCloseHandle(hSemPost);
ExitThread(retcode);
//CloseHandle(ThreadU);
MFree();
return 0;
}

unsigned long WINAPI Thread96D(PVOID pvoid)
{
LARGE_INTEGER Period; // Timer period
 HANDLE hTimer;
static BOOL bInit = FALSE;
DWORD retcode=0;

Period.QuadPart = 100;
_base_addr = SetupDIO96();
//printf("_base_addr = 0x%p\n", _base_addr);

//set port A, B and C as input
*CNFG_ADDR = 0x92;
//printf("CNFG_ADDR = 0x%x\n", *CNFG_ADDR);

if (!RtSetThreadPriority(GetCurrentThread(), PRIO_DAQD))
MsgAndExit("WARNNING!\nCan't set to highest RTAPI priority.");

 // Open the required IPC objects upon first call.
 if (!bInit)
 {

hShm = RtOpenSharedMemory(PAGE_READWRITE, FALSE, DAQ_SHM, (VOID **) &pDaq);
if (hShm==NULL)
{

MsgAndExit("Could not open Shared Memory.");
return FALSE;

}

hSemPost = RtOpenSemaphore(SYNCHRONIZE, FALSE, DAQ_SEM_POST);
if (hSemPost==NULL)
{

MsgAndExit("Could not open Semaphore.");
//RtCloseHandle(hShm);
return FALSE;

}
}

pDaq->index = 0;

// Setup and start a periodic timer.
if (!(hTimer = RtCreateTimer(NULL, // Security - NULL is none
 0, // Stack size - 0 is use default
 TimerHandler, // Timer handler
 NULL, // NULL context (argument to handler)
 RT_PRIORITY_MAX, // Priority
 CLOCK_2))) // Always use fastest available clock
 {
 MsgAndExit("Could not create the timer.");

return ERROR_OCCURED;
 }

40

 if (!RtSetTimerRelative(hTimer, &Period, &Period))
 {
 MsgAndExit("Could not set and start the timer.");

RtDeleteTimer(hTimer);
return ERROR_OCCURED;

 }

SuspendThread(ThreadD);

if(!RtDeleteTimer(hTimer))
{

MsgAndExit("Could not delete timer.");
return ERROR_OCCURED;

}
RtCloseHandle(hShm);
RtCloseHandle(hSemPost);
ExitThread(retcode);
//CloseHandle(ThreadD);
return 0;
}

void RTFCNDCL TimerHandler (PVOID unused)
{
// Test sampling rate

*PORTC_ADDR = 0x00;

pDaq->Buffer[pDaq->index] = *PORTA_ADDR;
pDaq->index++;
if(pDaq->index == BUFFER_SIZE/2)
{

pDaq->HalfBufFull = 1;
if(!RtReleaseSemaphore(hSemPost, lReleaseCount, NULL))
{
 MsgAndExit("Could not release semaphore.");
 //return FALSE;
}

}

if(pDaq->index == BUFFER_SIZE)
{

pDaq->HalfBufFull = 2;
if(!RtReleaseSemaphore(hSemPost, lReleaseCount, NULL))
{
 MsgAndExit("Could not release semaphore.");
 //return FALSE;
}

 pDaq->index=0;
}

*PORTC_ADDR = 0xff;
}

PCHAR SetupDIO96()
{
 ULONG i; // logical slot number for the PCI adapter
 ULONG f; // function number on the specified adapter
 ULONG bytesWritten; // return value from RtGetBusDataByOffset
 ULONG bus; // bus number
 BOOLEAN flag;
ULONG Offset= 0;
ULONG nothingWritten = 0;
ULONG AddressSpace = 0;
ULONG window_data_value;
PCI_SLOT_NUMBER SlotNumber;
PPCI_COMMON_CONFIG PciData;
UCHAR buffer[PCI_COMMON_HDR_LENGTH];
PCHAR vBAR0;
PCHAR vBAR1;

41

LARGE_INTEGER BAR0;
LARGE_INTEGER BAR1;
LARGE_INTEGER tBAR0;
LARGE_INTEGER tBAR1;

BAR0.QuadPart = 0;
BAR1.QuadPart = 0;
tBAR0.QuadPart = 0;
tBAR1.QuadPart = 0;

PciData = (PPCI_COMMON_CONFIG) buffer;
 SlotNumber.u.bits.Reserved = 0;
 flag = TRUE;

 for (bus=0; flag; bus++) {

 for (i=0; i<PCI_MAX_DEVICES && flag; i++) {
 SlotNumber.u.bits.DeviceNumber = i;

 for (f=0; f<PCI_MAX_FUNCTION; f++) {
 SlotNumber.u.bits.FunctionNumber = f;

 bytesWritten = RtGetBusDataByOffset (
 PCIConfiguration,
 bus,
 SlotNumber.u.AsULONG,
 PciData,
 Offset,
 PCI_COMMON_HDR_LENGTH
);

 if (bytesWritten == nothingWritten) {
 // out of PCI buses
 flag = FALSE;
 break;
 }

 if (PciData->VendorID == PCI_INVALID_VENDORID) {
 // no device at this slot number, skip to next slot
 break;
 }

if((PciData->VendorID == 0x1093) &&(PciData->DeviceID == 0x0160))
{

BAR0.QuadPart = PciData->u.type0.BaseAddresses[0];
BAR1.QuadPart = PciData->u.type0.BaseAddresses[1];

//Traslate the base port address
if(! RtTranslateBusAddress(PCIBus,0,BAR0,&AddressSpace,&tBAR0))
{

printf("tBAR0 translation failed\n");
}
else
{

printf("tBAR0:SystemMappedAddress: 0x%08x\n", tBAR0.LowPart);
}

if(! RtTranslateBusAddress(PCIBus,0,BAR1,&AddressSpace,&tBAR1))
{

printf("tBAR1 translation failed\n");
}

else
{

printf("tBAR1:SystemMappedAddress: 0x%08x\n", tBAR1.LowPart);
}

//Map the address to virtual address the software can use
vBAR0 = (char*)RtMapMemory(tBAR0, 4*1024,0);
if (vBAR0==0) MsgAndExit("Failure on RtmapMemory");

42

//Setup
PciData->Command = (PCI_ENABLE_IO_SPACE|

PCI_ENABLE_MEMORY_SPACE|
PCI_ENABLE_BUS_MASTER|
PCI_ENABLE_WRITE_AND_INVALIDATE);

RtSetBusDataByOffset(PCIConfiguration,bus,SlotNumber.u.AsULONG,
PciData,0,PCI_COMMON_HDR_LENGTH);

window_data_value = ((0xffffff00 &
 (ULONG)BAR1.LowPart) | (0x00000080));

PTL(vBAR0+0x000000c0) = window_data_value;
} //dio96

 }
 }
 }
return vBAR1;
}

void MAlloc()
{
int i;
dpqueue = (unsigned char **) GlobalAlloc(GPTR, qsize * sizeof(unsigned char *));
if (dpqueue == NULL)

MsgAndExit("Couldn't allocate memory");
for (i=0;i<qsize;i++)
{

dpqueue[i] = (unsigned char *)GlobalAlloc(GPTR, BUFFER_SIZE/2 * sizeof(unsigned
char));

if (dpqueue[i] == NULL)
MsgAndExit("Couldn't allocate memory");

}
}
void MFree()
{
int i;
if (dpqueue != NULL) GlobalFree (dpqueue);
for(i=0;i<qsize;i++)

if (dpqueue[i] != NULL) GlobalFree (dpqueue[i]);
}

#ifdef MALLOC
void MAlloc()
{
int i;
/*hpt1 = GlobalAlloc(GMEM_MOVEABLE, BUFFER_SIZE/2 * sizeof(int));
hpt2 = GlobalAlloc(GMEM_MOVEABLE, BUFFER_SIZE/2 * sizeof(int));
hpt3 = GlobalAlloc(GMEM_MOVEABLE, BUFFER_SIZE/2 * sizeof(int));
hpt4 = GlobalAlloc(GMEM_MOVEABLE, BUFFER_SIZE/2 * sizeof(int));
hpt5 = GlobalAlloc(GMEM_MOVEABLE, BUFFER_SIZE/2 * sizeof(int));
hpt6 = GlobalAlloc(GMEM_MOVEABLE, BUFFER_SIZE/2 * sizeof(int));
hpt7 = GlobalAlloc(GMEM_MOVEABLE, BUFFER_SIZE/2 * sizeof(int));
hpt8 = GlobalAlloc(GMEM_MOVEABLE, BUFFER_SIZE/2 * sizeof(int));*/
hqueue = GlobalAlloc(GMEM_MOVEABLE, qsize * BUFFER_SIZE/2 * sizeof(unsigned char));
/*for(i=0;i<qsize;i++)
 hqueue[i] = GlobalAlloc(GMEM_MOVEABLE, BUFFER_SIZE/2 * sizeof(char));*/

if ((hqueue == NULL))
 {
 //sprintf(szTemp,"Couldn't allocate memory");
 MFree();
 return ;
 }

/*pt1 = (int *)GlobalLock(hpt1);
pt2 = (int *)GlobalLock(hpt2);
pt3 = (int *)GlobalLock(hpt3);
pt4 = (int *)GlobalLock(hpt4);
pt5 = (int *)GlobalLock(hpt5);
pt6 = (int *)GlobalLock(hpt6);
pt7 = (int *)GlobalLock(hpt7);
pt8 = (int *)GlobalLock(hpt8);*/

43

 dpqueue = (unsigned char **)GlobalLock(hqueue);
for(i=0;i<qsize;i++)

dpqueue[i] = (unsigned char *)Globalloc(hqueue[i]);

if (dpqueue == NULL)
 {
 //sprintf(szTemp,"Couldn't allocate memory");
 MFree();
 return ;
 }

}

void MFree()
{

/*if (pt1 != NULL)
{

GlobalUnlock(pt1);
pt1 = NULL;

}*/

if (dpqueue != NULL)
{

GlobalUnlock(dpqueue);
dpqueue = NULL;

}

/*if (hpt1 != NULL)
{

GlobalFree(hpt1);
hpt1 = NULL;

}*/

if (hqueue != NULL)
{

GlobalFree(hqueue);
hqueue = NULL;

}

}
#endif

void Plot()
{
HBRUSH hbrush[8], hbrushb1;
HPEN hPen1, hPen2, hPen3, hPen4, hPen5, hPen6, hPen7,hPen8, hOldPen;
RECT rect,rect1[8];
char szbuffer[100];
//static char pointLast[8];
int iLength, i;

hdc = BeginPaint(hwnd, &ps);
hbrush[0] = CreateSolidBrush(RGB(255, 0, 0));
hbrush[1] = CreateSolidBrush(RGB(0, 255, 0));
hbrush[2] = CreateSolidBrush(RGB(0, 0, 255));
hbrush[3] = CreateSolidBrush(RGB(250, 150, 0));
hbrush[4] = CreateSolidBrush(RGB(0, 255, 255));
hbrush[5] = CreateSolidBrush(RGB(255, 0, 255));
hbrush[6] = CreateSolidBrush(RGB(255, 255, 0));
hbrush[7] = CreateSolidBrush(RGB(0, 0, 0));
hbrushb1 = CreateSolidBrush(RGB(200, 200, 200));
hPen6 = CreatePen(PS_SOLID, 2, RGB(100, 100, 100));
hPen4 = CreatePen(PS_SOLID, 2, RGB(150, 150, 150));
hOldPen = (HPEN) SelectObject(hdc, hPen6);
rect.left = 0 ;
rect.right = 760 ;
rect.top = 2 ;
rect.bottom = 512 ;
FillRect(hdc, &rect, hbrushb1);

44

SelectObject (hdc,GetStockObject(WHITE_BRUSH));
Rectangle (hdc, 160, 60, 720, 230); //Curve Rect
Rectangle (hdc, 25, 60, 120, 230); //Child Rect
Rectangle (hdc, 15, 270, 185, 475); //Pair-1 Rect
Rectangle (hdc, 200, 270, 370, 475); //Pair-2 Rect
Rectangle (hdc, 385, 270, 555, 475); //Pair-3 Rect
Rectangle (hdc, 570, 270, 740, 475); //Pair-4 Rect

for(i=0;i<8;i++)
{

rect1[i].left = 30 ;
rect1[i].right = 43;
rect1[i].top = 68 + 20*i;
rect1[i].bottom = 80 + 20*i;
FillRect(hdc, &rect1[i], hbrush[i]);

}

SelectObject(hdc, hPen4);
MoveToEx (hdc, 0, 40, NULL);
LineTo (hdc, 760, 40);
SelectObject (hdc,hPen6);
MoveToEx (hdc, 0, 258, NULL);
LineTo (hdc, 760, 258);
MoveToEx (hdc, 0, 482, NULL);
LineTo (hdc, 760, 482);
MoveToEx (hdc, 193, 275, NULL);
LineTo (hdc, 193, 465);
MoveToEx (hdc, 378, 275, NULL);
LineTo (hdc, 378, 465);
MoveToEx (hdc, 563, 275, NULL);
LineTo (hdc, 563, 465);
SelectObject (hdc,GetStockObject(WHITE_PEN));
MoveToEx (hdc, 0, 255, NULL);
LineTo (hdc, 760, 255);
MoveToEx (hdc, 0, 485, NULL);
LineTo (hdc, 760, 485);
MoveToEx (hdc, 190, 275, NULL);
LineTo (hdc, 190, 465);
MoveToEx (hdc, 375, 275, NULL);
LineTo (hdc, 375, 465);
MoveToEx (hdc, 560, 275, NULL);
LineTo (hdc, 560, 465);
MoveToEx (hdc, 718, 61, NULL);
LineTo (hdc, 718, 228);
LineTo (hdc, 160, 228);

SetBkMode (hdc, TRANSPARENT); //Ignore the background color
SelectObject (hdc,hPen6);
for (i=0; i<4; i++)
{

rect.left = 18 + 185 * i ;
rect.right = 182 + 185 * i;
rect.top = 273 ;
rect.bottom = 298 ;
FillRect(hdc, &rect, hbrushb1);
MoveToEx (hdc, 18 + 185 * i, 298, NULL);
LineTo (hdc, 181 + 185 * i, 298);
iLength=wsprintf(szbuffer,"Pair-%d",i+1);
TextOut(hdc,73+185*i,275,szbuffer,iLength);
iLength=sprintf(szbuffer,"v1= %-6.2f",v[i][0]);
TextOut(hdc,25+185*i,320,szbuffer,iLength);
iLength=sprintf(szbuffer,"(mile/h)");
TextOut(hdc,120+185*i,320,szbuffer,iLength);
iLength=sprintf(szbuffer,"v2= %-6.2f",v[i][1]);
TextOut(hdc,25+185*i,370,szbuffer,iLength);
iLength=sprintf(szbuffer,"(mile/h)");
TextOut(hdc,120+185*i,370,szbuffer,iLength);
//iLength=sprintf(szbuffer,"a = %-6.2f",a[i]);
//TextOut(hdc,25+185*i,390,szbuffer,iLength);
//iLength=sprintf(szbuffer,"(mi/h^2)");

45

//TextOut(hdc,120+185*i,390,szbuffer,iLength);
iLength=sprintf(szbuffer,"L = %-6.2f",l[i]);
TextOut(hdc,25+185*i,420,szbuffer,iLength);
iLength=sprintf(szbuffer,"(m)");
TextOut(hdc,120+185*i,420,szbuffer,iLength);

}

 for(i=0;i<8;i++)
DeleteObject(hbrush[i]);
DeleteObject(hbrushb1);
SelectObject(hdc, hOldPen);
DeleteObject(hPen6);
DeleteObject(hPen4);

SelectObject(hdc,hrgnu); //Curve

 if (Pen1)
hPen1 = CreatePen(PS_SOLID, 3, RGB(255, 0, 0));

 else
hPen1 = CreatePen(PS_NULL, 3, RGB(255, 0, 0));

 if (Pen2)
hPen2 = CreatePen(PS_SOLID, 3, RGB(0, 255, 0));

 else
hPen2 = CreatePen(PS_NULL, 3, RGB(0, 255, 0));

 if (Pen3)
hPen3 = CreatePen(PS_SOLID, 3, RGB(0, 0, 255));

 else
hPen3 = CreatePen(PS_NULL, 3, RGB(0, 0, 255));

 if (Pen4)
hPen4 = CreatePen(PS_SOLID, 3, RGB(250, 150, 0));

 else
hPen4 = CreatePen(PS_NULL, 3, RGB(250, 150, 0));

 if (Pen5)
hPen5 = CreatePen(PS_SOLID, 3, RGB(0, 255, 255));

 else
hPen5 = CreatePen(PS_NULL, 3, RGB(0, 255, 255));

 if (Pen6)
hPen6 = CreatePen(PS_SOLID, 3, RGB(255, 0, 255));

 else
hPen6 = CreatePen(PS_NULL, 3, RGB(255, 0, 255));

 if (Pen7)
hPen7 = CreatePen(PS_SOLID, 3, RGB(255, 255, 0));

 else
hPen7 = CreatePen(PS_NULL, 3, RGB(255, 255, 0));

 if (Pen8)
hPen8 = CreatePen(PS_SOLID, 3, RGB(0, 0, 0));

 else
hPen8 = CreatePen(PS_NULL, 3, RGB(0, 0, 0));
hOldPen = (HPEN) SelectObject(hdc, hPen1);

 if (exmove)
 {

MoveToEx(hdc, 710-1, pointLast[0], NULL);
LineTo(hdc, 710, point1[0]);
SelectObject(hdc, hPen2);
MoveToEx(hdc, 710-1, pointLast[1], NULL);
LineTo(hdc, 710, point2[0]);
SelectObject(hdc, hPen3);
MoveToEx(hdc, 710-1, pointLast[2], NULL);
LineTo(hdc, 710, point3[0]);
SelectObject(hdc, hPen4);
MoveToEx(hdc, 710-1, pointLast[3], NULL);
LineTo(hdc, 710, point4[0]);
SelectObject(hdc, hPen5);
MoveToEx(hdc, 710-1, pointLast[4], NULL);
LineTo(hdc, 710, point5[0]);
SelectObject(hdc, hPen6);
MoveToEx(hdc, 710-1, pointLast[5], NULL);
LineTo(hdc, 710, point6[0]);
SelectObject(hdc, hPen7);
MoveToEx(hdc, 710, pointLast[6], NULL);
LineTo(hdc, 710-1, point7[0]);

46

SelectObject(hdc, hPen8);
MoveToEx(hdc, 710-1, pointLast[7], NULL);
LineTo(hdc, 710, point8[0]);
exmove = FALSE;

 }
 else
 {

MoveToEx(hdc, 710-DX, point1[Lastpoint], NULL);
for(i=0; i<DX; i++)
 LineTo(hdc, i+710-DX+1, point1[i+Lastpoint+1]);
SelectObject(hdc, hPen2);
MoveToEx(hdc, 710-DX, point2[Lastpoint], NULL);
for(i=0; i<DX; i++)
 LineTo(hdc, i+710-DX+1, point2[i+Lastpoint+1]);
SelectObject(hdc, hPen3);
MoveToEx(hdc, 710-DX, point3[Lastpoint], NULL);
for(i=0; i<DX; i++)
 LineTo(hdc, i+710-DX+1, point3[i+Lastpoint+1]);
SelectObject(hdc, hPen4);
MoveToEx(hdc, 710-DX, point4[Lastpoint], NULL);
for(i=0; i<DX; i++)
 LineTo(hdc, i+710-DX+1, point4[i+Lastpoint+1]);
SelectObject(hdc, hPen5);
MoveToEx(hdc, 710-DX, point5[Lastpoint], NULL);
for(i=0; i<DX; i++)
 LineTo(hdc, i+710-DX+1, point5[i+Lastpoint+1]);
SelectObject(hdc, hPen6);
MoveToEx(hdc, 710-DX, point6[Lastpoint], NULL);
for(i=0; i<DX; i++)
 LineTo(hdc, i+710-DX+1, point6[i+Lastpoint+1]);
SelectObject(hdc, hPen7);
MoveToEx(hdc, 710-DX, point7[Lastpoint], NULL);
for(i=0; i<DX; i++)
 LineTo(hdc, i+710-DX+1, point7[i+Lastpoint+1]);
SelectObject(hdc, hPen8);
MoveToEx(hdc, 710-DX, point8[Lastpoint], NULL);
for(i=0; i<DX; i++)
 LineTo(hdc, i+710-DX+1, point8[i+Lastpoint+1]);
Lastpoint = Lastpoint + DX;

 }
if (Lastpoint == BUFFER_SIZE/2-1)
{

pointLast[0]=point1[BUFFER_SIZE/2-1];
pointLast[1]=point2[BUFFER_SIZE/2-1];
pointLast[2]=point3[BUFFER_SIZE/2-1];
pointLast[3]=point4[BUFFER_SIZE/2-1];
pointLast[4]=point5[BUFFER_SIZE/2-1];
pointLast[5]=point6[BUFFER_SIZE/2-1];
pointLast[6]=point7[BUFFER_SIZE/2-1];
pointLast[7]=point8[BUFFER_SIZE/2-1];

}

SelectObject(hdc, hOldPen);
DeleteObject(hPen1);
DeleteObject(hPen2);
DeleteObject(hPen3);
DeleteObject(hPen4);
DeleteObject(hPen5);
DeleteObject(hPen6);
DeleteObject(hPen7);
DeleteObject(hPen8);

SelectObject(hdc,hrgnd); //v1,v2,a,l
for (i=0; i<4; i++)
{

iLength=sprintf(szbuffer,"%-6.2f",v[i][0]);
TextOut(hdc,55+185*i,320,szbuffer,iLength);
iLength=sprintf(szbuffer,"%-6.2f",v[i][1]);
TextOut(hdc,55+185*i,370,szbuffer,iLength);
//sprintf(szbuffer,"%-6.2f",a[i]);
//TextOut(hdc,55+185*i,390,szbuffer,6);

47

iLength=sprintf(szbuffer,"%-6.2f",l[i]);
TextOut(hdc,55+185*i,420,szbuffer,iLength);

}
EndPaint(hwnd, &ps);

}

void GetFileName()
{
char szFilter[256], chReplace;
//static char szFile[256]="", szFileTitle[256]="";
UINT i,cbString;
static OPENFILENAME ofn;

strcpy(szFilter,
 "All files (*.*)|*.*|"
 "Header files (*.h)|*.h|"
 "C++ (*.cpp)|*.cpp|"
 "Data files (*.dat)|*.dat||");

 cbString = strlen(szFilter);
 chReplace = szFilter[cbString-1];
 for (i=0; szFilter[i]; i++)
 if (szFilter[i] == chReplace) szFilter[i] = '\0';

 memset(&ofn, 0, sizeof(OPENFILENAME));
 ofn.lStructSize = sizeof(OPENFILENAME);
 ofn.hwndOwner = hwnd;
 ofn.lpstrFilter = szFilter;
 ofn.nFilterIndex = 4;
 ofn.lpstrFile = szFile;
 ofn.nMaxFile = sizeof(szFile);
 ofn.lpstrFileTitle = szFileTitle;
 ofn.nMaxFileTitle = sizeof(szFileTitle);
 ofn.lpstrInitialDir = NULL; // szDirName;
 GetOpenFileName(&ofn);

 //filename = szFileTitle;
}

/********************************
 * sensorOpen() *
 * *
 * Open sensor communication *
 * return sensor instance *
 ********************************/
filesys_t* sensorOpen()
{
 //int i;
 filesys_t *s; /* file instance */

/* allocate sensor */
 /*s = (filesys_t*)calloc(1,sizeof(filesys_t));
 if (!s)
 printf("sensorOpen(): calloc() error\n"), exit(1);*/

s = (filesys_t *)GlobalAlloc(GPTR, sizeof(filesys_t));
if (s == NULL)

MsgAndExit("Couldn't allocate filesys_t memory");

 /* init sensor */
 //s->queue = (short***)NULL;
 //s->tick = (clock_t*)NULL;
 s->status = 0;
 //s->qsize = 0;

 return s;
}

/********************************
 * sensorClose() *
 * *
 * close sensor communication *

48

 ********************************/
void sensorClose(filesys_t* s)
{
 //int i;

 debug(("sensorClose() {\n"));

 if (!s) return;
 /* clear bits */
 s->status &= ~(PLAY|RECORD);

 if (s->file)
fclose(s->file);

s->file = (FILE*)NULL;

/* free memory */
 /*for (i=0; i<s->qsize; i++)
 free(s->queue[i]);

 if (s->queue)
 free(s->queue);

 if (s->tick)
 free(s->tick);

 free(s);

 memset(s, 0x0, sizeof(filesys_t));*/

if (s != NULL) GlobalFree (s);

 debug(("} sensorClose()\n"));
}

/* ------------------------ File Record/Play ------------------------ */

/**
 * FileOpen() *
 * *
 * open filename for record/play *
 **/
int FileOpen(filesys_t *s, char *szFileTitle)
{
 int file_status;
 //header_t header;

 if (!s || !szFileTitle)
return -1;

/* check if file exists */
 errno = 0;
 file_status = _access(szFileTitle, 0);
 debug(("\tfile_satus: %d\n",file_status));

 /*if (errno && errno!=ENOENT) {
perror("access()");
return -1;
 }*/

 if (file_status==0) {
/* file exists -> read */

s->file = fopen(szFileTitle, "rb+");
if (!s->file) {
 perror(szFileTitle);
 return -1;
}

/* read header */

/*fread(&header, sizeof(header_t), 1, s->file);

49

if (ferror(s->file)) {
 perror(filename);
 return -1;
}
fflush(s->file);*/

/* check if same as sensor */

/*if (header.n_diode != N_DIODE) {
 fprintf(stderr,"%s: %d, %d: N_DIODE mismatch\n",

 filename, header.n_diode, N_DIODE);
 return -1;
}*/

/*if (header.n_scan != s->n_scan) {
 fprintf(stderr,"%s: %d, %d: n_scan mismatch\n",

 filename, header.n_scan, s->n_scan);
 return -1;
}*/
 } else {

/* no file exists -> write */
NoPlay = TRUE;
debug(("\tfopen(%s,\"wb\")\n",szFileTitle));
s->file = fopen(szFileTitle, "wb");

if (!s->file) {
 perror(szFileTitle);
 return -1;
}

/* write header */
//header.n_diode = N_DIODE;
//header.n_scan = s->n_scan;

/*#ifdef FILE_DATA_TIME
header.time = s->start_time;
#endif

fwrite(&header, sizeof(header_t), 1, s->file);
if (ferror(s->file)) {
 perror(filename);
 return -1;
}
fflush(s->file);*/
 }

 s->block_size = BUFFER_SIZE/2;
 if((s->curr_pos = ftell(s->file))==-1L)

MsgAndExit("ftell error.");;
 s->data_pos = s->curr_pos;

 if (fseek(s->file, s->data_pos, SEEK_SET)<0) {
perror("FileOpen(): fseek()");
return -1;
 }
 /* playback timeout */

 //s->play_timeout = (long)(s->n_scan * s->period * 1e6);

 return 0;
}

/********************************
 * FileClose() *
 * *
 * close record/play file *
 ********************************/
int FileClose(filesys_t *s)
{
 debug(("FileClose() {"));

 if (!s)

50

return -1;
/* stop record/play */

 s->status &= ~(RECORD|PLAY);

 debug(("} FileClose()\n"));

 /* close file if open */
 if (s->file)
fclose(s->file);

 s->file = (FILE*)NULL;

 return 0;
}

/**
 * FileBegin() *
 *

*
 * move read/write position to beginning of file *
 **/
int FileBegin(filesys_t *s)
{
 debug(("FileBegin() {"));

 if (!s || !s->file)
return -1;

/* stop record/play */
 s->status &= ~(RECORD|PLAY);
 /* move to starting position */
 fflush(s->file);
 if (fseek(s->file,s->data_pos,SEEK_SET)<0) {
perror("FileBegin(): fseek()");
return -1;
 }
 /* get position */
 s->curr_pos = ftell(s->file);

 debug(("} FileBegin()\n"));

 return 0;
}

/**
 * FileEnd() *
 * *
 * move read/write position to end of file *
 **/
int FileEnd(filesys_t *s)
{
 debug(("FileEnd() {"));

 if (!s || !s->file)
return -1;

/* stop record/play */
 s->status &= ~(RECORD|PLAY);

/* move to end of file */
 fflush(s->file);
 if (fseek(s->file,0L,SEEK_END)<0) {
perror("FileEnd(): fseek()");
return -1;
 }
 /* get position */
 s->curr_pos = ftell(s->file);

 debug(("} FileEnd()\n"));

 return 0;
}

51

/**
 * FileBack() *
 * *
 * move read/write position backwards *
 * n data blocks *
 **/
int FileBack(filesys_t *s, int n)
{
 long offset;
 int mode = SEEK_CUR;

 debug(("FileBack() {"));

 if (!s || !s->file || n<=0)
return -1;

 fflush(s->file);
/* get position */

 s->curr_pos = ftell(s->file);
/* check if beginning */

 if (s->curr_pos==s->data_pos)
return 0;
 /* move n data blocks */
 offset = n * s->block_size;

 /* check if too far */
 if ((s->curr_pos - offset) <= s->data_pos) {
 /* set to beginning */
offset = s->data_pos;
mode = SEEK_SET;

 } else offset = -offset;

 /* move backwards */
 if (fseek(s->file,offset,mode)<0) {
perror("FileBack(): fseek()");
return -1;
 }
 /* get position */
 s->curr_pos = ftell(s->file);

 debug(("} FileBack()\n"));

 return 0;
}

/**
 * FileForward() *
 * *
 * move read/write position forward *
 * n data blocks *
 **/
int FileForward(filesys_t *s, int n)
{
 long offset;

 debug(("FileForward() {"));

 if (!s || !s->file || n<=0)
return -1;

 fflush(s->file);

 /* move n data blocks */
 offset = n * s->block_size;

 /* move forwards */
 if (fseek(s->file,offset,SEEK_CUR)<0) {

52

perror("FileForward(): fseek()");
return -1;
 }
 /* get position */
 s->curr_pos = ftell(s->file);

 debug(("} FileForward()\n"));

 return 0;
}

/************************
 * FileStop() *
 * *
 * stop record/play *
 ************************/
int FileStop(filesys_t *s)
{
 if (FilePause(s)<0)
return -1;

 Sleep(1);

 if (FileBegin(s)<0)
return -1;

 return 0;
}

/************************
 * FilePause() *
 ************************/
int FilePause(filesys_t *s)
{
 debug(("FilePause() {"));
 if (!s)
return -1;

 s->status &= ~(RECORD|PLAY);
s->status |= PAUSE;

 if (s->file) {
//fflush(s->file);

s->curr_pos = ftell(s->file);
 }

 debug(("} FilePause()\n"));
 return 0;
}

/********************************
 * FilePlayEOF() *
 * *
 * check if at End Of File *
 ********************************/
int FilePlayEOF(filesys_t *s)
{
 if (!s)
return -1;

 if (s->status & PLAY_EOF)
return 1;
 else
return 0;
}

53

/********************************
 * FilePosition() *
 * *
 * return current file position *
 ********************************/
long FilePosition(register filesys_t *s)
{
 if (!s || !s->file)
return -1;

 return (s->curr_pos = ftell(s->file));
}

/********************************
 * FileSetPlayTimeout() *
 ********************************/
int FileSetPlayTimeout(filesys_t *s, long timeout)
{
 if (!s || timeout<=0)
return -1;

 s->play_timeout = timeout;

 return 0;
}

/********************************
 * FileGetPlayTimeout() *
 ********************************/
long FileGetPlayTimeout(filesys_t *s)
{
 if (!s)
return -1;

 return s->play_timeout;
}

/* ---------------------------- Record ------------------------------ */

/********************************
 * FileRecord() *
 * *
 * start recording to file *
 ********************************/
int FileRecord(filesys_t *s)
{
 debug(("FileRecord() {"));
 if (!s || !s->file || (s->status & PLAY))
return -1;

 s->status |= RECORD;

 debug(("} FileRecord()\n"));
 return 0;
}

/* ----------------------------- Play ------------------------------ */

/************************
 * FilePlay() *
 * *
 * start playing file *
 ************************/
int FilePlay(filesys_t *s)

54

{
 debug(("FilePlay() {"));

 if (!s || !s->file || (s->status & RECORD))
return -1;

 s->status &= ~(PLAY_EOF);
 s->status |= PLAY;

 debug(("} FilePlay()\n"));
 return 0;
}

/****************************
 * FileCont() *
 * *
 * continue playing file *
 ****************************/
int FileCont(filesys_t *s)
{
 debug(("FilePlay() {"));

 if (!s || !s->file || (s->status & RECORD))
return -1;

 s->status &= ~(PLAY_EOF);
s->status &= ~PAUSE;
 s->status |= PLAY;

 debug(("} FilePlay()\n"));
 return 0;
}

void DaqStart()
{
InvalidateRgn (hwnd, hrgnu, TRUE) ;
if (SetTimer (hwnd, 1, 10, NULL))
 {

EnableMenuItem (hMenu, IDM_DAQSTART, MF_GRAYED) ;
EnableMenuItem (hMenu, IDM_DAQEND, MF_ENABLED) ;

 }
Lastpoint = 0;
bkill=FALSE;
MAlloc();
ThreadU=CreateThread(NULL,0,Thread96U,NULL,0,NULL);
ThreadD=CreateThread(NULL,0,Thread96D,NULL,0,NULL);
DAQ = TRUE;
}

void DaqEnd()
{
KillTimer (hwnd, 1) ;
EnableMenuItem (hMenu, IDM_DAQSTART, MF_ENABLED) ;
 EnableMenuItem (hMenu, IDM_DAQEND, MF_GRAYED) ;
bkill=TRUE;
DAQ = FALSE;
}

void Record()
{
FileClose(s);
FileOpen(s,szFileTitle);
NoPlay=FALSE;
FileRecord(s);
if (!DAQ) DaqStart();
}

void RPStop()
{
if(s->status & PLAY)

55

{
FileClose(s);
KillTimer (hwnd, 1) ;

}
if(s->status & RECORD)
{

DaqEnd();
FileClose(s);

}
}

void Play()
{
int i;
for(i=0; i<N_PAIR; i++)
{

v[i][0] = 0;
v[i][1] = 0;
l[i] = 0;

}
InvalidateRgn (hwnd, hrgnu, TRUE) ;
InvalidateRgn (hwnd, hrgnd, TRUE) ;
FileClose(s);
FileOpen(s,szFileTitle);
if(!NoPlay)
{

FilePlay(s);
for(i=0; i<BUFFER_SIZE/2; i++)
{

point1[i] = 100;
point2[i] = 100;
point3[i] = 100;
point4[i] = 100;
point5[i] = 100;
point6[i] = 100;
point7[i] = 100;
point8[i] = 100;

}
SetTimer (hwnd, 1, 10, NULL);
Lastpoint = 0;
iFile = 0;

}
else MsgAndExit("File Dosen't Exsist.");
}

LRESULT CALLBACK WndProc (HWND hwnd, UINT iMsg, WPARAM wParam, LPARAM lParam)
{
 //HMENU hMenu ; //handle of menu
 static HWND hwndButton[8]; //handle of Child window
 TEXTMETRIC tm ;
 static int cxChar, cyChar ;

 int i,j,k;
 static char old = 0xFF; //the last data
 static unsigned long edge_status[N_PAIR]; //status of edge, xxxxT3T2T1T0
 static int e[N_PAIR]; //the order of edge, 0,1,2,3
 static unsigned long t[N_PAIR][4]; //edge timing information
 /*enum{ //vehicle direction

None,
Presence,
Trigger

 } edge[N_PAIR];*/
 static double delta_t, //dt

delta_v; //dv

 static HINSTANCE hInstance ;
 static WNDPROC lpfnAboutDlgProc ;

 switch (iMsg)
 {

56

case WM_CREATE:
 hdc = GetDC (hwnd) ;
 SelectObject (hdc, GetStockObject (SYSTEM_FIXED_FONT)) ;
 GetTextMetrics (hdc, &tm) ;
 cxChar = tm.tmAveCharWidth ;
 cyChar = tm.tmHeight + tm.tmExternalLeading ;
 ReleaseDC (hwnd, hdc) ;

 for (i = 0 ; i < 8 ; i++) //Child window
 hwndButton[i] = CreateWindow ("button", button[i].text,
 WS_CHILD | WS_VISIBLE | button[i].style,
 5 * cxChar, cyChar * (3.1 + i),
 6 * cxChar, 5 * cyChar / 4,
 hwnd, (HMENU) (200+i),
 ((LPCREATESTRUCT) lParam) -> hInstance, NULL) ;

hInstance = ((LPCREATESTRUCT) lParam)->hInstance ;
 return 0 ;

case WM_PAINT:
Plot();
break;

case WM_COMMAND :
 hMenu = GetMenu (hwnd) ;

 switch (LOWORD (wParam))
 {
 case IDM_CH1 :

 if (Pen1) Pen1 = FALSE;
 else Pen1 = TRUE;
 return 0;

 case IDM_CH2 :
 if (Pen2) Pen2 = FALSE;
 else Pen2 = TRUE;
 return 0;

 case IDM_CH3 :
 if (Pen3) Pen3 = FALSE;
 else Pen3 = TRUE;
 return 0;

 case IDM_CH4 :
 if (Pen4) Pen4 = FALSE;
 else Pen4 = TRUE;
 return 0;

 case IDM_CH5 :
 if (Pen5) Pen5 = FALSE;
 else Pen5 = TRUE;
 return 0;

 case IDM_CH6 :
 if (Pen6) Pen6 = FALSE;
 else Pen6 = TRUE;
 return 0;

 case IDM_CH7 :
 if (Pen7) Pen7 = FALSE;
 else Pen7 = TRUE;
 return 0;

 case IDM_CH8 :
 if (Pen8) Pen8 = FALSE;
 else Pen8 = TRUE;
 return 0;

 case IDM_RECORDSTART :
 /*FileClose(s);
 FileOpen(s,szFileTitle);

57

 NoPlay=FALSE;
 FileRecord(s);
 if (!DAQ) DaqStart();*/
 Record();
 return 0;

 case IDM_RECORDEND :
 /*DaqEnd();

 FileClose(s);*/
 RPStop();

 return 0 ;

 case IDM_PLAYSTART :
 /*for(i=0; i<N_PAIR; i++)
 {

v[i][0] = 0;
v[i][1] = 0;
l[i] = 0;

 }
 InvalidateRgn (hwnd, hrgnu, TRUE) ;
 InvalidateRgn (hwnd, hrgnd, TRUE) ;
 FileClose(s);
 FileOpen(s,szFileTitle);
 if(!NoPlay)
 {

FilePlay(s);
for(i=0; i<BUFFER_SIZE/2; i++)
{

point1[i] = 100;
point2[i] = 100;
point3[i] = 100;
point4[i] = 100;
point5[i] = 100;
point6[i] = 100;
point7[i] = 100;
point8[i] = 100;

}
SetTimer (hwnd, 1, 10, NULL);
Lastpoint = 0;
iFile = 0;

 }
 else MsgAndExit("File Dosen't Exsist.");*/
 Play();
 return 0;

 case IDM_PLAYEND :
 /*FileClose(s);
 KillTimer (hwnd, 1) ;*/
 RPStop();
 return 0;

 case IDM_EXIT :
 SendMessage (hwnd, WM_CLOSE, 0, 0L) ;
 return 0 ;

 /*case IDM_CHAN1 :
 if (Pen1)
 { Pen1 = FALSE;
 CheckMenuItem (hMenu, LOWORD (wParam), MF_UNCHECKED)

;
 }
 else
 { Pen1 = TRUE;
 CheckMenuItem (hMenu, LOWORD (wParam), MF_CHECKED) ;
 }
 return 0;*/

 case IDM_RP :
 /*if (SetTimer (hwnd, 1, 30, NULL))
 {
 EnableMenuItem (hMenu, IDM_START, MF_GRAYED) ;

58

 EnableMenuItem (hMenu, IDM_STOP, MF_ENABLED) ;
 }*/

 hDlgModeless=CreateDialog (hInstance, "DDDIALOGBAR",
hwnd, AboutDlgProc) ;

 ShowWindow (hDlgModeless,SW_SHOW);
 return 0 ;

 case IDM_STOP :
 /*KillTimer (hwnd, 1) ;
 EnableMenuItem (hMenu, IDM_START, MF_ENABLED) ;
 EnableMenuItem (hMenu, IDM_STOP, MF_GRAYED) ;*/
 return 0 ;

 case IDM_DAQSTART:
 if (!DAQ) DaqStart();
 return 0;

case IDM_DAQEND :
 if (DAQ && !(s->status & RECORD)) DaqEnd();
 return 0 ;

case IDM_HELP :
 MessageBox (hwnd, "Help not yet implemented!",
 szAppName, MB_ICONEXCLAMATION | MB_OK) ;
 return 0 ;

 case IDM_ABOUT :
 MessageBox (hwnd, "Menu Demonstration Program.",
 szAppName, MB_ICONINFORMATION | MB_OK) ;
 return 0 ;
 }
 break ;

 case WM_SIZE :
//ScrollWindow Rect

 RePaint.left = 180;
 RePaint.right = 710;
 RePaint.top = 70;
 RePaint.bottom = 220;

 if (hrgnu)
 DeleteObject (hrgnu);

 hrgnu = CreateRectRgn(160,60,720,230); //Curve Region
 if (hrgnd)

 DeleteObject (hrgnd);
 hrgnd1 = CreateRectRgn(55,320,117,450); //data Region of Pair-1
 hrgnd2 = CreateRectRgn(240,320,302,450); //data Region of Pair-2
 hrgnd3 = CreateRectRgn(425,320,487,450); //data Region of Pair-3
 hrgnd4 = CreateRectRgn(610,320,672,450); //data Region of Pair-4
 hrgnd = CreateRectRgn(0, 0, 1, 1);
 hrgnd5 = CreateRectRgn(0, 0, 1, 1);
 hrgnd6 = CreateRectRgn(0, 0, 1, 1);
 CombineRgn (hrgnd5, hrgnd1, hrgnd2, RGN_OR);
 CombineRgn (hrgnd6, hrgnd3, hrgnd4, RGN_OR);
 CombineRgn (hrgnd, hrgnd5, hrgnd6, RGN_OR); //Pair-1 -- Pair4 data

Region

 //InvalidateRect (hwnd, NULL, TRUE) ;
 return 0 ;

 /*case WM_USER+1 :
 hdc=GetDC(hwnd);
 iLength=sprintf(szbuffer,"%d Half buffers acquired.",iLoopCount);
 TextOut(hdc,10,30+20*iLoopCount,szbuffer,iLength);

 ReleaseDC(hwnd,hdc);
 return 0;*/

 case WM_TIMER :
if(!(s->status & PAUSE))
{

59

if ((Lastpoint==BUFFER_SIZE/2-1) & !(s->status & PLAY_EOF))
{

if (s->status & PLAY) { //read from file
//struct timespec rqtp; //for nanosleep()
if (feof(s->file)) { //check if end of file

s->status &= ~(PLAY);
s->status |= PLAY_EOF;

}
else {

fread(onebuf, sizeof(unsigned char),

BUFFER_SIZE/2, s->file);
iFile++;
if (ferror(s->file))

//MsgAndExit("File Read Error.");
perror("File Read Error: fread()"), exit(1);
/*rqtp.tv_sec = 0L;
rqtp.tv_nsec = s->play_timeout;
if (nanosleep(&rqtp,(struct timespec*)NULL)<0)
perror("Thread(): nanosleep()");*/

}
}
else
{

for(i=0;i<BUFFER_SIZE/2;i++)
onebuf[i]=dpqueue[qread][i];

}

//for drawing curve
exmove = TRUE;
Lastpoint = 0;
for(i=0; i<BUFFER_SIZE/2; i++)
{
if(onebuf[i]& 0x01)

point1[i] = 100;
else point1[i] = 190;
if(onebuf[i] & 0x02)

point2[i] = 100;
else point2[i] = 190;
if(onebuf[i] & 0x04)

point3[i] = 100;
else point3[i] = 190;
if(onebuf[i] & 0x08)

point4[i] = 100;
else point4[i] = 190;
if(onebuf[i] & 0x10)

point5[i] = 100;
else point5[i] = 190;
if(onebuf[i] & 0x20)

point6[i] = 100;
else point6[i] = 190;
if(onebuf[i] & 0x40)

point7[i] = 100;
else point7[i] = 190;
if(onebuf[i] & 0x80)

point8[i] = 100;
else point8[i] = 190;
}

//for calculate v,a,l

for (i=0; i<BUFFER_SIZE/2; i++) {
 for (j=0, k=N_PAIR; j<N_PAIR && k<N_DIODE; j++, k++) {

 //array1 leading edge

 if ((old&(1L<<j)) && !(onebuf[i]&(1L<<j))) {
 if ((edge_status[j]&T0)&&(edge_status[j]&T1)) //spike
 {

 edge_status[j] &=~(T2|T3);
 }

60

 else {
if ((edge_status[j]&T0) && edge[j]==Trigger)
{

e[j] = 1; //second edge
edge_status[j] |= T1;

}
else
{

e[j] = 0; //first edge
edge_status[j] = T0;
edge[j]=Presence;

}
if (s->status & PLAY) t[j][e[j]]=((iFile-

1)*BUFFER_SIZE/2+i);
else t[j][e[j]]=(qread*BUFFER_SIZE/2+i);

 }
 }

//array2 leading edge

 if ((old&(1L<<k)) && !(onebuf[i]&(1L<<k))) {
 if ((edge_status[j]&T0)&&(edge_status[j]&T1)) //spike

 {
 edge_status[j] &=~(T2|T3);

 }
 else {

if ((edge_status[j]&T0) && edge[j]==Presence)
{

e[j] = 1; //second edge
edge_status[j] |= T1;

}
else {

e[j] = 0; //first edge
edge_status[j] = T0;
edge[j]=Trigger;

}
if (s->status & PLAY) t[j][e[j]]=((iFile-

1)*BUFFER_SIZE/2+i);
else t[j][e[j]]=(qread*BUFFER_SIZE/2+i);

 }
 }

// array1 trailing edge

 if (!(old&(1L<<j)) && (onebuf[i]&(1L<<j))) {
 if ((edge_status[j]&T0)&&(edge_status[j]&T1))
 {

if (edge[j]==Presence) {
e[j] = 2; //third

edge
edge_status[j] |=T2;

}
else {

e[j] = 3; //fourth edge
edge_status[j] |=T3;

}
if (s->status & PLAY) t[j][e[j]]=((iFile-

1)*BUFFER_SIZE/2+i);
else t[j][e[j]]=(qread*BUFFER_SIZE/2+i);

 }
 else edge_status[j] &=~(T0|T1); //spike
 }

 //array2 trailing edge

 if (!(old&(1L<<k)) && (onebuf[i]&(1L<<k))) {
 if ((edge_status[j]&T0)&&(edge_status[j]&T1)) {

if (edge[j]==Presence) { //fourth edge
e[j] = 3;
edge_status[j] |=T3;

}

61

else { //third edge
e[j] = 2;
edge_status[j] |=T2;

}
if (s->status & PLAY) t[j][e[j]]=((iFile-

1)*BUFFER_SIZE/2+i);
else t[j][e[j]]=(qread*BUFFER_SIZE/2+i);

 }
 else edge_status[j] &=~(T0|T1); //spike
 }

//calculate velocity, acceleration, length

 if (edge_status[j]==(T0|T1|T2|T3)){

//front velocity
delta_t = (t[j][1]-t[j][0])/(3600*1e4);
if (delta_t<0) delta_t =

delta_t+qsize*BUFFER_SIZE/2/(3600*1e4);
if (delta_t == 0) v[j][0] = 0;
else v[j][0] = DISTANCE/delta_t;

//back velocity
delta_t = (t[j][3]-t[j][2])/(3600*1e4);
if (delta_t<0) delta_t =

delta_t+qsize*BUFFER_SIZE/2/(3600*1e4);
if (delta_t == 0) v[j][1] = 0;
else v[j][1] = DISTANCE/delta_t;

//acceleration
delta_t = (t[j][3]-t[j][1])/(3600*1e4);
if (delta_t<0) delta_t =

delta_t+qsize*BUFFER_SIZE/2/(3600*1e4);
/*delta_v = v[j][1]-v[j][0];
if (delta_t == 0) a[j] = 0;
else a[j] = delta_v/delta_t;*/

//length
//l[j] = (v[j][0]*delta_t +

0.5*a[j]*delta_t*delta_t)*1609;
l[j] = (0.5*(v[j][0]+v[j][1])*delta_t)*1609;

edge_status[j] = 0x0;
InvalidateRgn (hwnd, hrgnd, TRUE) ;

 }
 }
 old = onebuf[i];
}

#ifdef METER
for (i=0; i<BUFFER_SIZE/2; i++) {
 for (j=0, k=N_PAIR; j<N_PAIR && k<N_DIODE; j++, k++) {

 //array1 leading edge

 if ((old&(1L<<j)) && !(onebuf[i]&(1L<<j))) {
 if ((edge_status[j]&T0)&&(edge_status[j]&T1)) //spike
 {

 edge_status[j] &=~(T2|T3);
 }
 else {

if ((edge_status[j]&T0) && edge[j]==Trigger)
{

e[j] = 1; //second edge
edge_status[j] |= T1;

}
else
{

e[j] = 0; //first edge
edge_status[j] = T0;
edge[j]=Presence;

}

62

t[j][e[j]]=(qread*BUFFER_SIZE/2+i);
 }
 }

//array2 leading edge

 if ((old&(1L<<k)) && !(onebuf[i]&(1L<<k))) {
 if ((edge_status[j]&T0)&&(edge_status[j]&T1)) //spike

 {
 edge_status[j] &=~(T2|T3);

 }
 else {

if ((edge_status[j]&T0) && edge[j]==Presence)
{

e[j] = 1; //second edge
edge_status[j] |= T1;

}
else {

e[j] = 0; //first edge
edge_status[j] = T0;
edge[j]=Trigger;

}
t[j][e[j]]=(qread*BUFFER_SIZE/2+i);

 }
 }

// array1 trailing edge

 if (!(old&(1L<<j)) && (onebuf[i]&(1L<<j))) {
 if ((edge_status[j]&T0)&&(edge_status[j]&T1))
 {

if (edge[j]==Presence) {
e[j] = 2; //third

edge
edge_status[j] |=T2;

}
else {

e[j] = 3; //fourth edge
edge_status[j] |=T3;

}
t[j][e[j]]=(qread*BUFFER_SIZE/2+i);

 }
 else edge_status[j] &=~(T0|T1); //spike
 }

 //array2 trailing edge

 if (!(old&(1L<<k)) && (onebuf[i]&(1L<<k))) {
 if ((edge_status[j]&T0)&&(edge_status[j]&T1)) {

if (edge[j]==Presence) { //fourth edge
e[j] = 3;
edge_status[j] |=T3;

}
else { //third edge

e[j] = 2;
edge_status[j] |=T2;

}
t[j][e[j]]=(qread*BUFFER_SIZE/2+i);

 }
 else edge_status[j] &=~(T0|T1); //spike
 }

//calculate velocity, acceleration, length

 if (edge_status[j]==(T0|T1|T2|T3)){

//front velocity
delta_t = (t[j][1]-t[j][0])/1e4;
if (delta_t<0) delta_t =

delta_t+qsize*BUFFER_SIZE/2/1e4;
if (delta_t == 0) v[j][0] = 0;

63

else v[j][0] = 0.2/delta_t;

//back velocity
delta_t = (t[j][3]-t[j][2])/1e4;
if (delta_t<0) delta_t =

delta_t+qsize*BUFFER_SIZE/2/1e4;
if (delta_t == 0) v[j][1] = 0;
v[j][1] = 0.2/delta_t;

//acceleration
delta_t = (t[j][3]-t[j][1])/1e4;
if (delta_t<0) delta_t =

delta_t+qsize*BUFFER_SIZE/2/1e4;
delta_v = v[j][1]-v[j][0];
if (delta_t == 0) a[j] = 0;
else a[j] = delta_v/delta_t;

//length
l[j] = v[j][0]*delta_t + 0.5*a[j]*delta_t*delta_t;

edge_status[j] = 0x0;
InvalidateRgn (hwnd, hrgnd, TRUE) ;

 }
 }
 old = onebuf[i];
}

#endif

qread++;
qread %= qsize;

}

if(!(s->status & PLAY_EOF))
{
 if (exmove)
 ScrollWindow (hwnd, -1, 0, &RePaint, NULL);
 else
 ScrollWindow (hwnd, -DX, 0, &RePaint, NULL);
}

}
 return 0 ;

 case WM_DESTROY :
PostQuitMessage (0) ;
//MFree();
//sensorClose(s);
DeleteObject (hrgnu);

 return 0 ;
 }
 return DefWindowProc (hwnd, iMsg, wParam, lParam) ;
}

BOOL CALLBACK AboutDlgProc (HWND hDlg, UINT iMsg, WPARAM wParam, LPARAM lParam)
{
//HWND hwndParent;
//HDC hdcParent;
 //hwndParent = GetParent (hDlg);
 switch (iMsg)
 {
 case WM_INITDIALOG :
 return TRUE ;

 case WM_COMMAND :

 switch (LOWORD (wParam))
 {

case IDD_RECORD :
 Record();
 return 0;

case IDD_PLAY :
 Play();

64

 return 0;
case IDD_STOP :

 RPStop();
 return 0;

case IDD_PAUSE :
 FilePause(s);
 return 0;

case IDD_CONT :
 FileCont(s);
 return 0;

case IDD_INPUTP :
case IDD_INPUTR :

 GetFileName();
 return 0;

case IDD_END :
 case IDCANCEL :

 EndDialog (hDlg, 0) ;
 return TRUE ;

 }
 break ;

 case WM_CLOSE :
 DestroyWindow (hDlg);
 hDlgModeless=0;
 KillTimer (hwnd, 1) ;
 FileClose(s);
 sensorClose(s);
 break;

 }
 return FALSE ;
}

	Introduction
	
	
	Comparison of Different Detection Schemes
	Previous Work
	System View of the Field Prototype

	Field Prototype system
	
	
	Laser and Optics
	
	
	Laser

	Laser safety
	Laser Spectrum and Filter
	Profile of Laser Beam
	
	Sensor Optics

	System Electronics
	
	
	Data Acquisition and Computer System

	Mechanical Design

	Real-Time Data Acquisition and Processing Software
	Field Test Results
	Future Work
	Conclusions
	Appendix
	
	
	Device Driver for Digital I/O on Windows NT
	Application Program on Windows NT

