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Abstract

Coexistence Theory and its Implications for Eco-evolutionary Dynamics

by

Kelly Marie Thomasson

Until recently, the sub-fields of ecology and evolution have existed as separate entities in

the broader field of biology. Ecologists focused their attention on community dynamics,

species interactions, abiotic contributions to the biological system, and conservation of

these systems. Evolutionary biologists preferred to devote their studies to population ge-

netics, selective pressures and the definition, identification and mechanism of evolutionary

events, including speciation. When viewing these topics from a broader vantage point, it

is clear there is discernible overlap between these topical niches. Community dynamics

are the phenotypic, multi-species versions of population genetics and species interactions

and abiotic contributions are, frequently, the selective agents of evolution and speciation.

Competition between and among species is one field that is overtly shared by ecologists

and evolutionary biologists. Competitive pressures both shape the species composition

of a community and the gene frequency of a population. Coexistence, the process by

which two or more species evade competitive exclusion of one of the species through

implementation of a coexistence mechanism, is an important component of the study of

competition; however, the mechanisms described in coexistence theory are not as readily

accepted as both ecological and evolutionary mechanisms. In this dissertation, I aim

to reconcile the disconnect of these fields with respect to coexistence theory, illustrating

that not only are coexistence mechanisms vital in preventing competitive exclusion of

one species or deme, so too are they facilitators of evolutionary events such as divergence

or even sympatric speciation. I first attempt to exemplify this by reviewing the literature
xxi



that discusses coexistence mechanisms (both ecologically and molecularly derived) that

also show evidence of facilitating evolutionary events. Next, I attempt to substantiate

these two outcomes of coexistence and divergence mechanisms empirically, by evaluating

one known coexistence mechanism, the competition-colonization trade-off, in microbial

communities. Using the yeast Saccharomyces cerevisiae as model of a species that exhibit

different competitive behavioral strategies, and the fruit fly Drosophila melanogaster as

an exemplary insect which participates in the gut-vectoring of yeasts and other microbes,

I describe how behavioral trade-offs of the yeast can allow two or more different pheno-

types to coexist. Further, I illustrate that this same behavioral trade-off can promote

change in the differing populations and may lead to further divergence of these two pop-

ulations. By expanding on Tilman’s competition-colonization trade-off model, we can

evaluated whether one possible coexistence mechanism functions in the model organism

Saccharomyces cerevisiae, using parameters derived from empirical work with the species

S. cerevisiae and D. melanogaster. Results from this dissertation will help to formulate a

mathematical model of the yeast-insect dispersal system based on Tilman’s competition-

colonization model and may offer breadth to the new field of eco-evolutionary dynamics

and evaluate coexistence theory’s applicability to species divergence and sympatric spe-

ciation.

xxii



Contents

Curriculum Vitae vi

Abstract xxi

1 Introduction 1
1.1 Community and Species Diversity . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Competitive Exclusion and Coexistence Theory . . . . . . . . . . . . . . 3
1.3 Levins-Tilman Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Species and Speciation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.5 Sympatric Speciation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.6 Yeasts as a model organism . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.7 Behavioral Strategies in the yeast Saccharomyces cerevisiae . . . . . . . . 15
1.8 Natural Interactions between S. cerevisiae and D. melanogaster . . . . . 17
1.9 Dissertation Goals and Chapter Layout . . . . . . . . . . . . . . . . . . . 19
1.10 Permissions and Attributions . . . . . . . . . . . . . . . . . . . . . . . . 21

2 Speciation and Coexistence Theory 22
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.2 Drivers of differentiation and speciation. . . . . . . . . . . . . . . . . . . 23
2.3 Coexistence and Sympatric Speciation . . . . . . . . . . . . . . . . . . . 30
2.4 Sympatric Speciation and Coexistence: The Missing Pieces . . . . . . . . 45
2.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3 Survivorship Assay of S. cerevisiae 49
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
3.6 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

xxiii



4 Experimental Evolution in S.cerevisiae 85
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
4.6 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

Concluding Remarks 122

A Reference Diagrams, Figures and Tables 124

xxiv



Chapter 1

Introduction

1.1 Community and Species Diversity

Diversity and the maintenance of diversity is a topic of great interest to both ecolo-

gists and evolutionary biologists [Cardinale et al., 2012, Cardinale, 2011, Hooper et al.,

2012]. On the ecological side, diversity levels are both drivers of and driven by commu-

nity structure and interaction [Chesson, 2000, Rueffler et al., 2006]. Diversity levels of

a community are driven by abiotic factors —water, temperature, substrate, disturbance,

and distance to biotic and abiotic resources— [Rosenzweig et al., 1995, Macarthur and

Levins, 1967, Rueffler et al., 2006], as well as biotic factors such as inter- and intra-species

competition for resources, prey diversity and abundance, sexual selection and adaptive

mutations to the environment [Oliveira et al., 2008, Orr, 2005, Chesson, 2000, Roughgar-

den and Feldman, 1975]. The community structure is in turn driven by diversity due to

niche partitioning, habitat restructuring and speciation events [Sage and Selander, 1975,

Bush, 1969, Carstens and Richards, 2007]. From an evolutionary perspective, research on

diversity tends to be focused on the adaptability of traits, mutation, selection and the ge-

netic drivers of diversification and speciation [Hou and Schacherer, 2016, Gonçalves et al.,
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Figure 1.1: Yeast populations are found in cool oak woodlands and hot dry vineyards
and at the interface of these two disparate environments. Drawing Credit: Stansilav
Cuseac

2011]. While mutation provides the initial material for diversity, it is how these mutations

interact –by regulation, alternative splicing and epigenetic factors—that reveal pheno-

typic diversity [Phillips, 2008, Price et al., 2003, Hayden et al., 2011, Barbosa-Morais

et al., 2012]. Speciation increases diversity and counteracts the continuous extinction

events on a global scale [Bush, 1975]. The mechanisms of speciation –not to mention the

definition of the term species—is a contested issue among evolutionary biologists [Coyne

and Orr, 2004, Chan et al., 2012, Mayr et al., 1963]; however, although we may not be

able to agree on where to draw the line of speciation in a diverging population, we can

all agree that the mechanism of speciation is some level of genetic separation, with the
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exception of one type of speciation: sympatric. Sympatric speciation is different from

all other mechanisms of speciation because it lacks a geographic or physical barrier be-

tween the two populations [Smith, 1966, Mayr et al., 1963]. Because there is no physical

boundary between populations in sympatry, they are subject to direct competition for

resources [Tilman, 1982]. Furthermore, due to the ecological similarity between these the

populations, the intensity of competitive pressure is increased and it is likely that one

population will competitively exclude the other [Roughgarden, 1974, Leimar et al., 2013,

Macarthur and Levins, 1967, MacArthur, 1970].

1.2 Competitive Exclusion and Coexistence Theory

Wright’s concept of the fitness landscape generated discussion of ecological similarity,

fitness and competition. These conversations gave rise to the theoretically based Com-

petitive Exclusion Principle. The Competitive Exclusion principle presents a theoretical-

empirical paradox of sorts. The competitive exclusion principle states that when two

species interact, one of these species will be slightly more fit than the other and that

individual will be able to competitively exclude the other [Gause, 1932, Hardin, 1960].

In other words, because of the axiom of inequality, one species will perform more poorly

in a direct competition and go extinct in that community [Hardin, 1960, Armstrong and

McGehee, 1980]. Despite theoretical support for the exclusion principle, many species

coexist in spatially similar habitats and in close proximity to one another, both spatially

and in niche alignment [Sage and Selander, 1975, Tilman, 1994, Roughgarden, 1974].

The concept of the competitive exclusion principle was first empirically supported by

Gause, although he was not the first to conceptualize it, and the topic has been debated

by mathematicians and biologists since then [Hardin, 1960, Hubbell, 2005]. For example,

Hubble finds no evidence for the necessity of competitive exclusion, claiming that by
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tenets of neutral theory, most species are functionally equivalent. Functional equivalence

implies that species may vary by morphology, niche space, or many other traits but do

not vary in their population dynamics [Hubbell, 2005]. It is based on a community-level

application of neutral theory, postulated by Kimura, who stated that based on the pre-

dicted number of mutations in a genome, most mutations must be neutral in order for

species to persist [Kimura et al., 1968]. Hubbell’s main argument with the competitive

exclusion principle is the dearth of observed, empirical evidence of absolute competitive

exclusion [Hubbell, 2005]. However, the lack of evidence may not indicate competitive

exclusion principle is invalid, but rather that there are other mechanisms counteracting

that competitive pressure Chesson [2000]. There is substantial evidence of competitive

exclusion in nature, however, this competitive exclusion is limited to the niche area in

which the species over lap and because these species are different, by definition, they

should not occupy identical niches, so complete competitive exclusion should be unlikely

[Mayr et al., 1963]. The limiting similarity of two species is the maximum amount of

niche overlap that will allow those two species to coexist [Macarthur and Levins, 1967].

Roughgarden investigated the types of limiting similarity that might allow two or more

species to coexist based on the shape of their resource curves. She found that the ability

for two or more species to coexist depends, not on the overlap, but on the distribution of

each species resource utilization curve. If the tails of the curve are thin, indicating there

is a low probability that resources came from the outer bounds of the resource area, then

the community will be closed to invading species attempting to coexist [Roughgarden,

1974]. Roughgarden’s work is an example of how resource variation—not just genetic

variation—plays a role in the ability for two species to coexist. Coexistence theory at-

tempts to explain how two species or populations of different fitnesses might evade the

fate predicted by the competitive exclusion principle. Coexistence theory remains a para-

dox among evolutionary theorists. Some have suggested that what we deem coexistence
4
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is a short term observation of a long term competition where one of the “coexisting” pop-

ulations will eventually be extinct [Chesson, 2000, Hardin, 1960, Geritz, 2005, Macarthur

and Levins, 1967]. Others have suggested that resolving this paradox is not a matter of

time scale but more so a matter of spatial scale [Bell and Gonzalez, 2009a, Grimm, 1994,

Tilman, 1994]. Based on the strength, but limited scope of each of these postulates, it

is far more likely that there are several contributing factors to coexistence rather than

just one. Chesson describes the effects of these coexistence mechanisms on population

models of competing species with respect to limiting similarity and community dynam-

ics. Using several mathematical models of competitive scenarios, Chesson explains that

competitive exclusion can be nullified with the addition of coexistence terms. With the

addition of these terms, there are many models that result in stable or unstable coex-

istence [Chesson, 2000]. Several mechanisms of coexistence have been proposed. Much

of the work published on coexistence discusses the coexistence of different species with

overlapping niches within a community; however, by Haldane’s logic, mechanisms of co-

existence are just as necessary in the case of two phenotypically different populations

of the same species. If differences between individuals of the same species are the same

as differences between individuals of different species [Haldane, 1957] then coexistence

models simulating between species competition can be expanded for use in genetically

diverging, within-species competition. The molecular mechanisms that can promote co-

existence in these diverging populations do so by reducing the phenotypic manifestation

of the genetic mutation and variation. These can include epigenetic silencing, epistasis,

or duplication [Hou and Schacherer, 2016, Hou et al., 2014, Qian et al., 2010] Ohno 1970.

The ecological mechanisms of coexistence include niche portioning [Chesson, 2000, Kre-

mer and Klausmeier, 2013, Sage and Selander, 1975, Bush, 1969, Stamps et al., 2012,

Price et al., 2010], density dependent selection [Cao et al., 2008, Roughgarden and Feld-

man, 1975, Nee and May, 1992, Bull and Harcombe, 2009] and the formation of trade-offs
5
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[Tilman, 1994, Garland, 2014]. As it is in density dependent mechanisms, in an ecological

trade-off, the fitness of an individual’s phenotype is context dependent; it depends its cur-

rent environment including abiotic factors and community interaction and competition.

Trade-offs are defined in ecological terms as the possession of a beneficial trait that can

be harmful in some circumstances (Garland 2014). Trade-offs may elicit coexistence be-

tween two populations because it halts complete competitive exclusion of one population

by the other because each population is better than the other in certain circumstances.

These coexistence mechanisms may additionally promote reproductive isolation because

many of these mechanisms discourage hybridization (create a gene flow barrier) or pro-

mote in-group divergence (cryptic genetic variation) allowing for more rapid reproductive

isolation [Price et al., 2010].

1.3 Levins-Tilman Model

Both Chesson and Kremer and Klausmeier ([Kremer and Klausmeier, 2013]) cite the

ecological trade-off as a key mechanism of coexistence. Indeed, many examples of niche

partitioning and frequency-dependent selection can be viewed as a trade-off [Chesson,

2000], and Chesson’s compensatory variables in his coexistence equations can be view

as trade-offs when considering the values are positive for one species and negative for

the other [Coluccio et al., 2008, Tilman, 1994, Chesson, 2000]. Hastings [Hastings, 1980]

and, later, Tilman described [Tilman, 1994] the coexistence mechanism as a tradeoff

between the two behavioral strategies of being a superior competitor for resources within

the current environment or being superior at colonizing new areas where competition is

less intense [Hastings, 1980, Tilman, 1994]. In order for these two strategies to engender

coexistence, they must exist as a trade-off: one individual cannot have the advantage of

being good at both. Tilman’s model was based on the Levins model which was designed
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(1969) in order to describe and predict the rate in which a species will fill a given number

of patches. The model (Equation 1.1) can be described in two terms: the colonization

term (green) and the extinction term (red). The colonization term describes the increase

in occupied patches, where colonization rate, c, is multiplied by the current percent

occupied patches, p, which is then multiplied by the percent available patches, 1 − p.

The extinction term describes mortality or decrease in occupied patches by multiplying

the mortality rate, m, by the percent occupied patches, p. The resultant value is the

change in patch occupancy; this value could be adjusted to represent absolute population

size by incorporating a carrying capacity value, K, which illustrates that the competitor’s

equation is simply the logistic growth equation (Hollings type II response; Equation 1.2).

dp

dt
= cp(1− p)−mp (1.1)

dn

dt
= c1n1(1− n

K
)−m1n1 (1.2)

Tilman adjusted the model by assuming the original model would apply only to the

competitively superior species because this competitively superior species would not be

affected by species interactions (Equation 1.3). Tilman used this concept to describe the

effect of competitively superior species interacting with competitively inferior species.

Assuming that the competitively superior species would always outcompete the com-

petitively inferior species, Tilman added a term that subtracts from the total based on

competitive displacement by a competitively superior species (Equation 1.4). The com-

petitive displacement term (blue) is indicated by colonization rate, c1, of the more fit

species multiplied by the percent occupancy of the competitively superior species and

then by the percent occupancy of the competitively inferior species. This term can

be added repeatedly, as competitively inferior species are added to the system (Equa-
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tion 1.5).

dp1

dt
= c1p1(1− p1)−m1p1 (1.3)

dp2

dt
= c2p2(1− p1 − p2)−m2p2 − c1p1p2 (1.4)

dpi
dt

= cipi(1−
i∑

j=1
pj)−m1p1 − (

i−1∑
j=1

cjpjpi) (1.5)

Calcagno and colleagues addressed models of the competition-colonization trade-off and

some of the criticized aspects of Tilman’s model. Most contentious, was the absolutism

of Tilman’s model: there was absolute competitive dominance by the more fit population

in any competitive interaction. Calcagno and colleagues point out that this is unrealis-

tic but also unnecessary to achieve stable coexistence. In their adaptation of Tilman’s

model, a scalar variable, α, was added that would adjust the competition strength of

the competitors allowing them to determine the minimum required α value that would

allow coexistence. The results showed stable coexistence but with greater limitations on

number of interacting populations and fitness disparities [Calcagno et al., 2006].

1.4 Species and Speciation

Scientists have long debated over how to define the term species. At least 26 def-

initions of the word species exist [Coyne and Orr, 2004], the existence of these many

definitions reflects the need for specific elements that were lacking in other definitions,

but are necessary for a particular field of biology [Coyne and Orr, 2004]. The biological

species concept is a widely accepted definition of the term species. It states that two

individuals are separate species when they experience some form of reproductive isola-

tion, resulting in no offspring or non-viable offspring [Mayr et al., 1963]. Even within the

biological species concept, there is debate as to what constitutes a breeding population.
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For example, some evolutionary biologists want to define a species as any populations

than could interbreed [Dobzhansky et al., 1956] whereas others want to define species as

only the distinct populations that will interbreed. Mayr points out the biological species

concept is about reproductive isolation in all forms, including two populations that do

not mate, even if they could. He is careful to clarify that reproductive isolation does not

equate to sterility. It is possible that two different species are able to interbreed and pro-

duce a hybrid offspring; however, this offspring may be sterile, or not capable of mating

with one or both of the parental species [Mayr et al., 1963]. Despite its widespread use,

the biological species concept is not accessible or functional across all taxa or within every

community. In microbial communities, in which offspring are often produced clonally,

sexual recombination is not necessary and therefore clear cases of reproductive isolation

are less common. In purely asexual lineages and in taxa where sexual recombination

is not essential for perpetuation of the lineage, scientists find other species definitions

more adequate. The genetic species concept defines species as a genetically compatible,

interbreeding group of populations that is genetically isolated from other groups. Per-

cent genetic similarity is used to determine species, and this percentage is specific to

taxonomic group [Baker and Bradley, 2006]. In bacteria, 16s ribosomal RNA is often

used to determine genetic similarity because it is present in most bacteria, its function is

conserved across bacteria, and it is large enough that it can be genetically informative.

However, this method is still lacking because it has low phylogenetic power at the species

level and many bacterial strains are uncultivable and therefore unable to be analyzed

(Janda and Abbott 2007). Mayr highlighted that the reproductive species concept and

other biological species concepts are centered on the concepts of distinctive differences,

population based groups and isolation from non-conspecifics rather than closeness to con-

specifics [Mayr et al., 1963]. Haldane points out that the differences we use to describe

individuals in two different species are the same as those used to describe variation within
9
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a species, just at a different scale and this change in scale can vary widely across taxa

[Haldane, 1957, Dobzhansky et al., 1956]. Thus, on the spectrum of genetic similarity,

where we chose to define individuals as two different species –rather than variants within

one species— is often a matter of opinion based on our intended use of the definition.

Speciation, the process by which, one species becomes two or more, is also a topic with

long-term points of contention. There are multiple mechanisms which can result in the

reproductive isolation of two individuals [Mayr et al., 1963]. In the modern synthesis, the

two factors that change the gene frequencies in a population —that promote evolution—

are genetic mutation and natural selection. If these changes, over short or long term,

result in the reproduction isolation of a population within the species, by the biological

species concept, this population has speciated. The manner by which these populations

arrive at a reproductively isolated state is defined by the type and strength of gene

flow barriers separating them [Bush, 1975]. Allopatric Speciation is defined as specia-

tion that occurs as a result of completely obstructed gene flow due to a geographical

barrier. This geographic barrier can be described as a landmass or distance beyond an

individual’s vagility (migration range ability). Conversely, Sympatric Speciation shows

no geographic separation or barrier; in fact the populations will often regularly inter-

act. Sympatric speciation is defined as speciation between two populations when there

is no genetic isolation [Bush, 1975]. Parapatric Speciation exhibits intermediate gene

flow between diverging populations and is defined by a narrow zone of interaction re-

ferred to as a hybrid zone [Bush, 1975]. While it is fairly uncontroversial as a speciation

type, parapatric speciation is often difficult to confirm with certainty because these hy-

brid zones could indicate historical sympatry that has separated or allopatry that has

rejoined [Coyne and Orr, 2004]. While the three widely-accepted categories of speciation

are allopatric, parapatric, and sympatric speciation, these three categories are often sub-

divided or redefined. In order to differentiate between two types of allopatric speciation,
10
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Bush divides the allopatric mechanism into Allopatric 1A and 1B. These two types are

separated based on the strength of the strength of the geographical barrier separating

the two populations. Bush also points out that different groups of taxa are more likely

to take part in certain type of speciation. Factors like reproductive rate, vagility and

whether the organism is an r- strategist or a K strategist may predispose that organism

to a certain type of speciation [Bush, 1975].

1.5 Sympatric Speciation

While Allopatric speciation, is the commonly described mechanism of speciation,

Bush suggests that far more speciation events are likely to be parapatric or sympatric.

He speculates that this inaccurate allocation of speciation events is due to our poor

understanding of the mechanisms and processes of sympatric and parapatric speciation

[Bush, 1975]. Allopatry and sympatry have been thought to be on a spectrum of gene

flow but perhaps it would be better to define them based on the order of the two events

taking place in any speciation process: some level of genetic and phenotypic divergence

and a reproductive isolation. In Allopatric circumstances, we describe the divergence as

a product of the populations being separated, with the process culminating in eventual

reproductive isolation. Under sympatric circumstances, the two events are reordered;

the reproductive isolation occurs first and this isolation drives the population to further

diverge [Bush, 1975]. Because of this, the process of sympatric speciation is often con-

sidered rapid while the process of allopatric speciation is considered slow [Bush, 1975].

There is, however, the possibility that sympatric speciation can occur as the result of

some genetic divergence prior to establishment of reproductive isolation [Rundle et al.,

2000, Sage and Selander, 1975]. The following sections represent three generally accepted

mechanisms of sympatric speciation: polyploidy, separation of morphological extremes
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in a population, and the formation of sexual preferences.

1.6 Yeasts as a model organism

Yeasts are single-celled members of the fungal phylum Ascomycota within the sub-

phylum of Saccharomycotina. The Saccharomyces sensu stricto complex includes the six

species within the genus Saccharomyces: S.cerevisiae, S. paradoxus, S. bayanus , S. car-

icanus, S. mikatae and S. kudriavzevii [Sniegowski et al., 2002, Warringer et al., 2011].

These six species are considered to be closely related and possibly recently speciated

[Warringer et al., 2011]. Despite their large distribution range, these species also are

commonly found in similar environments –typically oak and broadleaf woodlands will

often coexist with other members of the complex [Sniegowski et al., 2002]. Yeast cells

normally reproduce asexually by budding. This process can occur in both the haploid

and diploid states. Because of this, hybrid (allopolyploid) sterility is escapable by selfing,

but this sterility is still observable. Despite their ability to proliferate asexually, species

within yeasts are defined by the biological species concept and therefore function as a

model organism for other speciation mechanisms [Bush, 1975, Neiman, 2011, Tsai et al.,

2008]. Although yeasts can reproduce in both haploid and diploid states, in nature, yeasts

are constitutively diploid [Tsai et al., 2008]. The proximate mechanism of this diploidy

is the cell’s ability to change from one mating type to another. If the cell, by poor luck,

is in proximity to only cells of the same mating type, it is capable of changing to the

other mating type and then combining with that cell to form a diploid [Neiman, 2011].

The ultimate cause of this diploidy in nature likely stems from the need to sporulate

which can only be done in diploid form [Tsai et al., 2008]. Yeast traits have also been

studied extensively. Sporulation, the meiotic phase of reproduction in yeast, is initiated

by changes in pH, nitrogen, and acetate as a result of increased metabolic processes
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[Pizarro et al., 2008, Neiman, 2005]. Sporulation in yeasts is considered a quantitative

trait but the main genes that influence the initiation of the sporulation pathway are well

known and well-described [Tomar et al., 2013]. Additionally, evidence of gene duplica-

tion events, chromosomal rearrangements, and key loci leading to reproductive isolation

events in yeasts have also been described [Yona et al., 2012, Hou et al., 2014, Charron

et al., 2014]. The sporulation pathway in yeast is initiated by environmental stressors

but the threshold of pathway initiation is genetically based [Yona et al., 2012, Neiman,

2011]. Within one yeast community there is substantial variation between individual

sporulation rates and it is thus, sporulation rate within a yeast community is subject to

selective pressures. To what degree is this selective pressure due to insect ingestion and

digestion? Is the selective pressure of insect digestion sufficient to cause divergence and

speciation in the yeast Saccharomyces cerevisiae? Yeast has been widely touted as the

next big thing in experimental evolution because of its single-cellular eukaryotic state,

its high number of conserved genes with larger vertebrates and its simple culturing pro-

tocols. The genome of S. cerevisiae has been completely sequences and many aspects of

its genetic infrastructure have been analyzed. It contains 35-55 transposable elements

[Pretorius, 2000], is capable of single-gene, multiple-gene and whole genome duplication

[Yona et al., 2012], as well as chromosome rearrangement [Charron et al., 2014] and

epistatic regulation. Epistasis is currently estimated to account for approximately 9%

of the phenotypic variation. Epistasis in yeast is still not well understood and epistasis’

role in reproductive isolation is also poorly studied. However, Hou and Schacherer report

evidence of reproductive isolation events stemming from laboratory observations from

populations of 27 natural isolates of Saccharomyces cerevisiae due to negative epista-

sis. The analysis yielded two Dobzhansky-Muller incompatibilities, both involving the

respiratory abilities of these yeasts. They concluded that negative epistasis could lead

to reproductive isolation in yeasts in a condition-specific manner [Hou and Schacherer,
13
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Figure 1.2: Cladogram of the Saccharomyces sensu stricto complex and its well-studied
industrial hybrids. [Hittinger, 2013, Yu et al., 2017, 2018]

2016, Dettman et al., 2007]. In yeasts, there are copious examples of both coexistence and

sympatric speciation as a result of divergence of some spatial aspect of the natural histo-

ries of these two populations [Murphy and Zeyl, 2012, Gonçalves et al., 2011, Sniegowski

et al., 2002]. Speciation promotes further speciation by changing selection pressures due

to range partitioning. Once reproductive isolation has occurred, the need for coexistence

mechanisms does not dissipate. Rather, if possible these mechanisms continue until the

two incipient species have managed to carve out new niches for themselves, reducing

competitive interaction.

1.2
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Figure 1.3: Cladogram of the Saccharomyces sensu stricto complex and its well-studied
industrial hybrids. Hittinger [2013], Yu et al. [2017, 2018]

1.7 Behavioral Strategies in the yeast Saccharomyces

cerevisiae

Saccharomyces cerevisiae has two constitutive behavioral strategies, the timing of

which varies across strains and environments [Pizarro et al., 2008, Chopra et al., 1999].

The vegetative stage is what one would typically consider the “normal” phase, in which

the cell respires, grows, is reactive to stimuli, and is capable of both asexual budding

and sexual recombination [Madhani, 2007, Bergman, 2001]. In the more quiescent spore

phase, the cell performs minimal to no respiration, is less reactive to stimuli, and exists
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as a tetrad of four haploid spores within an ascus surrounded by a thick, protective cell

wall [Madhani, 2007, Codon et al., 1995, Neiman, 2005, 2011, Orlean, 2012, Tomar et al.,

2013]. These two phase strategies exist as a tradeoff; in order to be good at one strategy,

the individual must be less efficient at the other strategy.

Figure 1.4: Flow diagram of the yeast Saccharomyces cerevisiae moving between states
and interacting with available resources. Arrows represent state changes between the
resource pool, the vegetative state and the sporulated state.

The yeast, S. cerevisiae, serves as a potential example of the competition-colonization

trade-off in nature. In a given environment, it may be advantageous to sporulate earlier

than later especially if the organism is not the most competitive in the vegetative state.
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Sporulation offers two possible advantages: it allows the cell to shut down metabolically,

preserving itself in a dormant mode before starvation and it allows the cell to move

through less than ideal environments during transport and germinate only in suitable

conditions. In the case of the natural yeast environment, there is evidence that mecha-

nisms and rates of sporulation are environment dependent [Anderson et al., 2004, Gerke

et al., 2006, Gancedo, 2001, Magwene et al., 2011, Gonçalves et al., 2011, Warringer

et al., 2011, Sniegowski et al., 2002], indicating that sporulation rate is both under se-

lection and potentially adaptive in the right environment. Applying this species to the

concepts of coexistence theory, the cells with superior growth rates (competitors) may be

able to out-compete those with inferior growth rates; however, these slower growing cells

may be better at sporulating and colonizing new areas. Upon colonizing a new area, the

slow growing yeast has reduced competitive pressure and can proliferate with minimal

competition [Tilman, 1994, Wright, 1932].

1.8 Natural Interactions between S. cerevisiae and

D. melanogaster

The natural distributions of the yeast S. cerevisiae and the fruit fly Drosophila

melanogaster overlap ([Ort et al., 2012, Morais et al., 1994]. Drosophila feed on sugars

and microbia that are typically found in or around ripe and rotting fruits ([Anagnos-

tou et al., 2010]. Evolutionary evidence exists to support the long-standing relationship

between Drosophila and Saccharomyces ([Barker and Starmer, 1999, Dobzhansky et al.,

1956, Schiabor et al., 2014, Masek and Scott, 2010, Hill and Otto, 2007, Ito et al., 1995,

Deutschbauer et al., 2002]. There is even evidence that flies may play a role in the

community assemblage of yeasts by vectoring and propagating specific types of yeast
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Figure 1.5: Digestive tract of D.melanogaster which ingests and digests– to some
degree – yeasts including S. cerevisiae. When the fly defecates, it deposits yeast that
have survived the digestion process in a new area, resulting in a yeast dispersal event
by the fly. Figure credit: Fernanda Pett

near egg-laying sites [Stamps et al., 2012, Anagnostou et al., 2010]. Coluccio’s study

highlighted a trade-off in sporulation rate for yeasts that were frequently subjected to

ingestion and digestion by insects. Yeasts with slow sporulation rates have higher repro-

ductive success because they spend more time actively dividing rather than sporulating;

however, yeast survivorship was increased in sporulated cells relative to vegetative cells

when transferred through the gut of a fly. However, from a community perspective,

these survivorship values, it was unclear that differential consumption was not a fac-

tor in survivorship [Coluccio et al., 2008]. As an extension of this study Reuter and

colleagues suggested that this trade-off held and additional advantage for the spores be-

cause their outcrossing rate increased as a result of digestion by the fly [Reuter et al.,

2007, Otto and Lenormand, 2002]. Coluccio and colleagues [Coluccio et al., 2008] ex-

plored the differential survival rates of vegetative yeast cells relative to sporulated yeast

cells and found that vegetative yeasts tend to not survive the flies digestive tract, while

some spores are capable of surviving although their asci were well degraded by the time

they passed through the gut [Coluccio et al., 2008]. Again, applying these observations
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to theory, the colonization events are more successful as spores, which by the definition

of yeast competitive ability are no longer competing [Gause, 1932]. Coluccio went on

to analyze the elements of the tetrad itself, stating that vegetative cells were digested

except for their cell walls, while the cell walls of the spore were thinned, but the asci

remained intact [Coluccio et al., 2008]. Might this ingestion and digestion process allow

for a faster initiation of growth and a more competitive relative growth rate in the new

habitat where the digested spores are deposited? Reuter and colleagues [Reuter et al.,

2007] further investigated the phenomenon of flies vectoring yeast spores and found that

not only do the spores have a higher probability of surviving relative to vegetative cells,

but the rate of out-crossing between spores, seems to increase when vectored through the

fly gut [Reuter et al., 2007]. This increased rate of out-crossing may act as an adaptive

behavior as the recombination events may ensure at least some success in the newly col-

onized environment [Coyne and Orr, 2004]. In other words, this ability to out-cross upon

deposition is a type of bet-hedging against the environment roulette of colonization. Is it

possible that the ingestion of yeast by flies is an adaptive trait for the yeast? If ingested,

the yeast cell, normally lacking in motility, gains mobility using the fly as a vehicle, as

long as it survives the process. Applying this phenomenon to the previously discussed

theoretical work, the fly becomes the vehicle of colonization for the yeast cell. In light of

the preceding literature review, I would like to explore the evolutionary implications of

competition-colonization trade-offs as a theoretical model and with empirical research in

the model organism Saccharomyces cerevisiae.

1.9 Dissertation Goals and Chapter Layout

This dissertation aims to formulate a comprehensive analysis of one ecological system

by quantifying a critical aspect of the mechanism, evaluating possible empirical outcomes
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and fitting these outcomes to a model of coexistence. It begins with a comprehensive

review of the literature involving coexistence mechanisms. It postulates that coexistence

mechanisms may not only help evade competitive exclusion of one deme by another, but

these mechanisms may also promote divergence of the groups and incipient speciation.

Chapter 2 of this dissertation expands on the concept, introduced above, that coexis-

tence mechanisms often also promote divergence within incipient species. This review

paper address three key molecular and three key ecological mechanisms and discusses

how they play dual roles in this eco-evolutionary process of diversification and diversity

maintenance.

Chapter 3 focuses on the role insects play on the community composition of microbial

communities. Beyond confirming the result of previous studies in a way that reduces

confounding sources of noise in the insect-yeast system, this chapter begins to quantify

the differential mortalities of yeasts in the two life-stages of actively dividing vegetative

cells and metabolically quiescent spores using a survivorship assay of these cell types

passing through the gut of the fruit fly Drosophila melanogaster. Chapter 3 of the

dissertation aims to quantify the differential survival in yeasts of different life-history

stages passing through though the gut of an insect.

Chapter 4 of the dissertation reports on the results of a long-term evolution experi-

ment in which the yeast S. cerevisiae was repeatedly subjected to ingestion and digestion

selection pressures when being gut-vectored by the insect D. melanogaster. Results from

this experiment may be utilized as an example of microbe-insect interactions on a larger

scale. outcomes on microbial communities frequently vectored by insects. Chapter 4’s

goal in this dissertation is to infer the effects of long-term selective pressure on a pheno-

typically diverse or diverging population, and refer back to the focus of chapter 1: that

coexistence mechanisms can play a role in species divergence.

Lists of tables and figures are on a per chapter basis in the appendix. Appendices
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and references are together at the end of the dissertation.

1.10 Permissions and Attributions

1. This dissertation was produced using LATEX and Overleaf. The statistics were

performed using R studio (version 3.5.3). All data and code for analysis will be

archived at Dryad.org

2. The content of chapter 3 and associated supplementary material in appendix A is

the result of a collaboration with Alexander Franks who developed the Bayesian

analysis for this work.

3. Introductory art pieces in chapters 1 and 2 were created by Stansilav Cuseac. He

can be contacted directly at stancuseac@gmail.com.

4. Introductory artwork in chapter 3 is an adaptation of a James Bond Movie Mar-

quee by Hannah Plett. Please contact her directly for permissions to reuse at

hplett37@gmail.com.

5. Introductory artwork in chapter 4 is an adaptation of a scene from King Kong

adapted by Taom Sakal. Please contact him directly for permissions to reuse at

tsakal@ucsb.edu.

6. Chapters 1-4 include diagrams that are the artwork of Fernanda Pett. For copyright

requests, please contact Fernanda directly at fernandapett@gmail.com.
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Chapter 2

Speciation and Coexistence Theory:

Connections to and Considerations

on Evolutionary Mechanisms

2.1 Introduction

Speciation and extinction and competition are vital components to community di-

versity. Competition between two species vying for the same resource or other aspect

of an overlapping niche space can set the population sizes of each species or the allelic

frequency within a species. If competitive pressure is strong enough, or if two compet-

ing species differ that drastically in competitive fitness, one species may competitively

exclude the other from the community. On a global or regional scale, this competitive

exclusion may result in extinction. Extinction and competition reduces species diver-

sity and genetic diversity while speciation and mutation increases species and genetic

diversity [Alfaro et al., 2009]. Species are commonly defined based on their ability to

interbred with other conspecifics, but there are a multitude of definitions depending the
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purpose of the definition[Wilkins, 2006, Bush, 1975]. Just as the definition of species is

contested, so too is the process of speciation. The manner in which speciation is defined

(allopatric, parapatric, sympatric, or peripatric) is on a spectrum of gene flow allowance

[Bush, 1975]. How we chose to define speciation, therefore, can be taxon specific or based

on our scientific goals. To date there is not a master equation for the term species or

the process of speciation. We will use the biological species concept as the definition of

species and discuss the two processes that delineate a new species: genetic divergence

and reproductive isolation.

2.2 Drivers of differentiation and speciation.

In order to acquire a reproductively isolating mechanism that separates one popula-

tion from another, any one or a combination of a multitude of events must occur. The

process towards this isolation may be slow or rapid [Bush, 1975] and the isolation mecha-

nism may be defined as mechanical, physiological, behavioral, pre-zygotic or post-zygotic

[Coyne and Orr, 2004]. The following is brief overview of some of the key molecular and

ecological factors thought to promote reproductive isolation.

2.2.1 Molecular

Reproductive incompatibility at the molecular level begins with mutation. Accord-

ing to Drake mutation rate is estimated to be 10−3 to 10−4 per base pair per genome

per generation (replication) for many organisms, including prokaryotes. A more recent

estimate by Drake explains that there is large variation in the mutation rate ranging

from 10−4 in RNA viruses to a mean of 10−10 in H. sapiens, C. elegans, D. melanogaster

and S. cerevisiae. He also noted these values varied by locus in the eukaryotic genomes.

When considering that each cell represents a genome, it is easy to understand 1) why
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sophisticated proof-reading protein complexes evolved and 2) why, regardless of these

proof-reading protein complexes, there is still such a diversity of multi-cellular organisms

(Drake 1998). Even without the advantage of proof-reading protein complexes, the rate

of replacement of one allele in a species is thought to be very slow. Haldane made the

estimate that one single substitution may take 300 generations to replace the original

base pair in a population and the possibility of it not being immediately selected against

or removed stochastically is low [Haldane, 1957]. The rate at which the accumulation of

mutations leads to reproductive isolation is highly variable but may also be quite slow

–if the two species are able to both persist– or occur over as few as thirteen generations

[Hendry et al., 2000] or can be immediate [Ohno, 1970]. As an organism’s genome be-

comes larger and more inter-reliant on regulatory mechanisms and networks, the rate

and consequence of mutations become more dependent on genetic architecture [McDon-

ald et al., 2009] but these mutations may also arise de novo, shifting genetic architecture

or the regulation of the current genetic motif [Gresham, 2015]. Mutations may also give

rise to alternative splicing, which allows the same genetic architecture to be used to

transcribe multiple genes [Barbosa-Morais et al., 2012]. There have even been attempts

in the field of evolutionary biology to locate speciation genes: genes that both promote

reproductive isolation and are repeatedly involved in speciation events across taxa. Many

of the initial candidate genes for speciation genes involved intrinsic hybrid sterility; how-

ever, Nosil and Schluter’s findings indicate even genes causing reproductive isolation are

polymorphic and the affect size of any one of these genes on reproductive isolation is dif-

ficult to quantify in isolation. In some cases, the genes that cause divergence are separate

from the mutations that cause reproductive isolation [Nosil and Schluter, 2011]. More

tractable than a speciation gene, and a strong driver of genetic diversity is the mutator

gene. Mutator genes are genes that promote mutation within a genome. Often these

genes inhibit the abilities of proof-reading complexes but by definintion, a mutator gene
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can be any gene that increases the mutation rate within an organism. Investigation by

Taddei and colleagues speculates that these mutator alleles may become fixed by genetic

hitchhiking [Taddei et al., 1997]. Raynes and colleagues expanded on this confirming that

mutator alleles will persist in asexual (clonal) populations because of genetic hitchhiking

with beneficial mutations, but the frequency of mutator genes declines rapidly in sexual

populations. Recombination can often reduce the frequency of mutator genes as they are

not putatively linked to these beneficial mutations [Raynes et al., 2011].

2.2.2 Ecological

One ecological factor of speciation is a change in community composition. An example

of this is migration. Migration plays a substantial role in the definition and successful

completion of speciation [Mayr et al., 1963, Bush, 1975]. Migration can be viewed in

a similar manner to mutation: a new genetic variant invading the resident population

[Gaggiotti and Hanski, 2004]. Normally migrating individuals are thought to have lower

fitness than the resident population because it is expected that the resident population

would have adapted to its environment [Hendry et al., 2000]. The effects of migration on

speciation type and outcome are dependent on both the rate of migration [Mayr, 1970],

the relative fitness of the immigrant and the resident population [Bolnick and Nosil, 2007],

and presence of any selective preferences within the resident group. Bush explains that

in order speciation to occur between two groups, the rate of migration must be low or the

degree of homoselection must be high [Bush, 1975]. Community composition change can

promote rapid evolution, and with it, resultant speciation especially with populations

have specialized or coevolved with other species in their community. The establishment

of a preference for these other species or the removal of that species can have dramatic

fitness effects on the reliant population. One well-documented example is pollinator
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loss, where removal of pollinators results in the restructuring of the plant and animal

community. Bodbyl-Roels and Kelly examined the evolutionary effects of pollinator loss

in an empirical study on Mimulus guttatus. In this experiment, requisite out-crossing

flowers were denied their natural pollinators and the fitness of any propagating plants

was tracked. Researchers found that the loss of a pollinator, promoted rapid adaptive

divergence and that within two generations, selfing versions evolved from the normally

out-crossing plant [Bodbyl Roels and Kelly, 2011].

Polyploidy

A commonly accepted mechanism of sympatric speciation is instantaneous reproduc-

tive isolation by polyploidy [Coyne and Orr, 2004]. Polyploidy is the duplication of

the whole genome [Ohno, 1970]. It can occur spontaneously in single-celled organisms

like yeast [Yona et al., 2012], or in somatic cells within the body. In an assessment of

copy number variants (evidence of duplication), Gillooly states that at any given time,

the human body has cells with multiple levels of ploidy within it, and that this multi-

ploid state is possibly common among many multi-cellular organisms [Gillooly et al.,

2015]. When polyploidy arises in a gametic cell as a result of autopolyploidy [Ohno,

1970], or non-disjunction [Ohno, 1970], the individual can become immediately isolated

from other conspecifics. For this reason, Ohno believed polyploidy was well described in

hermaphroditic populations that are capable of selfing because in many cases the only

genetically compatible mate is itself [Ohno, 1970]. However, in analysis of polyploid

populations and self-compatible populations, Mable found no association with the two,

indicating that either there are many self-compatible plants that do not engage in poly-

ploidy or selfing is less essential for continuation of a polyploid lineage than previously

thought [Mable et al., 2005]. Complete polyploidy, while far more observed in plant

communities, is not constrained to plant communities. In animal taxa, polyploidy is
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incompatible with many species because of their chromosome-based sex determination

mechanisms [Ohno, 1970]. In vertebrates with genomes possessing regulatory feedback

networks, there is the added complication of dosage effects in the regulatory genes of a

duplicated genome. Because vertebrate genomes often consist of highly connected gene

networks with multiple sources of regulation, a change in gene dosage of a regulatory

gene may have multiple downstream affects in these systems, and so the possibility of

a normally developing polyploid becomes less likely [Ohno, 1970]. Tandem-duplication

is far more possible and is, in fact, ubiquitous and variable by taxonomic group [Ohno,

1970], tissue type [Gillooly et al., 2015] and environmental state [Yona et al., 2012].

There is evidence of some animal groups experiencing whole genome duplications. Many

of these examples are thought to be cased of autopolyploidy, when polyploidy occurs as

a result of abnormal gametogenesis, and many of the animal taxa that been observed to

be polyploid have less absolute chromosomal requirements for sex determination. Ohno

provides the example of amphibians and fish, which have multiple shared loci on the

pairs of sex determining chromosomes. He speculates that these sex chromosomes have

not differentiated from each other as much as mammalian sex chromosomes, resulting in

fewer complications as the result of polyploid events [Ohno, 1970]. Polyploidy plays a

role sympatric speciation because it creates an immediate reproductive barrier either by

requiring the organism to self or by limiting the reproductive options the organism has

[Ohno, 1970, Otto, 2007]. A mechanism that results in fewer reproductive options seems

like a poor strategy from the standpoint of fitness, but it is believed that polyploidy plays

a role in the organism’s survivorship when this process is activated. In yeasts, polyploidy

may enable yeast to harbor genes that incur fitness benefits for multiple environments

[Pretorius, 2000] or may function as a temporary and reversible response to stress [Yona

et al., 2012].
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Separation Extremes in Morphological Variation

In sympatric speciation not associated with instantaneous reproductive isolation (such

as polyploidy), divergent selection drives separation of two or more populations but gene

flow counteracts this separation, therefore it may be difficult to establish different niches

until the reproductive isolation event occurs [Kisel et al., 2012, Rundle et al., 2000]. In

some cases, however, there is evidence that niches are established before reproductive

isolation is complete [Price et al., 2010, Sage and Selander, 1975, Rundle et al., 2000].

The divergence and reproductive isolation of populations by morphological variation

within the larger population is less understood and more controversial [Rundle et al.,

2000]. These morphological changes can be the result of gene duplication [Ohno, 1970]

but can also stem from selection or separation of normal variation within a population,

or phenotypic plasticity [Sage and Selander, 1975, Rundle et al., 2000, Price et al., 2010].

Sage and Selander analyzed the four ecomorphs of cichlids existing sympatrically in

a lake. These four populations were thought to have speciated sympatrically, based

on their behavior and morphology [Sage and Selander, 1975]. Genetic analysis showed

that these populations were nearly identical to each other. Mating trials indicated that

despite lower fitness of the hybrids, all four populations were able to inter-mate with

each other [Sage 2016, personal communication]. Mouth morphology is considered a key

contributor to fish diversification and speciation [Price et al., 2010]. These morphological

differences are often plastic at first, but play a role in incipient speciation. These four

populations of cichlids exist sympatrically as populations of the same species, but exhibit

minimal interaction. For this reason, they may be considered incipient species [Sage

and Selander, 1975] but by Mayr’s definition can also be considered separate species

because they do not mate [Mayr et al., 1963]. Even if they are not currently species,

these cichlids may eventually establish a reproductively isolating mechanism. There is
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sufficient evidence from nature that sympatric speciation is possible by this method.

There are especially many cases of this pattern of divergence and speciation in fish, and

many of these fish exhibit complete reproductive isolation [Coyne and Orr, 2004]. One

well-known example is the diversification in jaw morphologies is found in Parrotfish in the

family, labridae. Price and colleagues assessed the evidence of divergence in this family

because it demonstrates evidence of a radiation event in sympatry. Price and colleagues

concluded that the jaw morphologies split into three groups based on the available food

substrate types. Once these three feeding groups were established, the groups further

diverged [Price et al., 2010]. Most evidence of divergence in sympatric species of fish point

to divergence by selection rather than drift and this evidence is supported by the diversity

of niches these fish now occupy [Hendry et al., 2000, Rundle et al., 2000]. A key factor

in this example was the reduced fitness in the hybrid form. This hybrid inferiority may

reinforce the separation of two populations [Coyne and Orr, 2004] because the hybrids

contribute fewer and less-fit offspring. It may also promote behavioral mutations for

preference within each population.

Preference and Behavioral Changes

Sympatric Speciation can also result from behavioral changes within a population,

such as the formation of preferences for food or mates. The textbook example of this is

Bush’s paper on Rhagoletis, in which members of two sibling species exist in sympatry

but show positive correlations between both food preferences and mates with similar food

preferences [Bush, 1969]. Although this is the commonly used, introductory example to

sympatric speciation, there are several additional interesting and informative examples

of how preference and behavior play a role in sympatric speciation. Sexual preference

behaviors may also evolve in the cases of diverging morphological variants, as well as

food preference formation. In Rundle and colleagues’ study, in addition to finding that
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Stickleback divergence was due to selection events, they believed this sympatric speciation

was reinforced by the evolution of preferences for self within each population. In other

words, the reproductive isolation was not simply due to divergence of genetic traits

alone, but included a behavioral (pre-zygotic) isolating mechanism prior to a genetic

(post-zygotic) one [Rundle et al., 2000]. The empirical evidence of Rundle and colleagues

is supported theoretically by Geritz and Kisdi, who analyzed simulations of divergence

models in sympatry and found that the establishment of mating preferences in a diverging

population, stabilized the post-divergent populations and resulted in only one possible

outcome rather than multiple as was seen when there was no mating preference [Geritz

and Kisdi, 2000].

2.3 Coexistence and Sympatric Speciation

2.3.1 Coexistence Theory

The competitive exclusion principle states that when two species interact, one of these

species will be slightly more fit than the other and that species will be able to compet-

itively exclude the other [Gause, 1932]. The concept was first empirically supported by

Gause, although he was not the first to conceptualize it, and the topic has been debated

by mathematicians and biologists since then [Hardin, 1960, Hubbell, 2005]. For example,

Hubble finds no evidence for the necessity of competitive exclusion, claiming that by

tenets of neutral theory, most species are functionally equivalent. Functional equivalence

implies that species may vary by morphology, niche space, or many other traits but do

not vary in their population dynamics [Hubbell, 2005]. It is based on a community-level

application of neutral theory, postulated by Kimura, who stated that simply based on the

predicted value of mutations in a genome, most mutations must be neutral in order for
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species to persist [Kimura et al., 1968]. Hubbell’s main argument with the competitive

exclusion principle is the dearth of observed, empirical evidence of absolute competitive

exclusion [Hubbell, 2005]. However, the lack of evidence may not indicate competitive

exclusion principle is invalid, but rather that there are other mechanisms counteracting

that competitive pressure [Chesson, 2000]. There is substantial evidence of competitive

exclusion in nature, however, this competitive exclusion is limited to the niche area in

which the species over lap and because these species are different, by definition, they

should not occupy identical niches, so complete competitive exclusion should be unlikely

[Mayr et al., 1963]. This idea of niche overlap is what is often referred to as limiting sim-

ilarity. The limiting similarity of two species is the maximum amount of niche overlap

that will allow those two species to coexist [Macarthur and Levins, 1967]. Roughgar-

den investigated the types of limiting similarity that might allow two or more species to

coexist based on the shape of their resource curves. She found that the ability for two

or more species to coexist depends, not on the overlap, but on the distribution of each

species resource utilization curve. If the tails of the curve are thin, indicating there is a

low probability that resources came from the outer bounds of the resource area, then the

community will be closed invading species attempting to coexist [Roughgarden, 1974].

Roughgarden’s work is an example of how resource variation—not just genetic varia-

tion—plays a role in the ability for two species to coexist. Chesson describes the effects

of these coexistence mechanisms on population models of competing species with respect

to limiting similarity and community dynamics. Using several mathematical models of

competitive scenarios, Chesson explains that competitive exclusion can be nullified with

the addition of coexistence mechanisms. With the addition of these mechanisms, there

are many equations that result in stable or unstable coexistence. Stable and unstable

coexistence may also be referred to as fluctuation-independent or fluctuation-dependent

coexistence and refers to the stability of the system over a range of normal population
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fluctuations due to environmental cycles or demographic stochasticity [Chesson, 2000].

In Hubbell’s 2005 paper on functional equivalence, he discusses neutral theory’s validity

by drawing an analogy to Boyle’s law and Lotka-Volterra equations: these two equations

are both approximations but considered valuable concepts despite their lack of precision

in describing real systems [Hubbell, 2005]. Interestingly, the same can be said for the

very concept Hubbell argued against: the competitive exclusion principle. If the com-

petitive exclusion principle always proceeded in biological systems as purported, there

would be far fewer extant species and each would occupy only one, well-delimited niche

space [Hardin, 1960]. However, this is not the case. It is more likely that the competitive

exclusion principle acts as a null theorem, much like the Hardy-Weinberg theorem or

the antecedent of Newton’s 1st law. Perhaps the competitive exclusion principle may

be more aptly worded: two species competing for exactly the same resources cannot

stably coexist, unless acted on by compensatory coexistence traits. These coexistence

traits may be defined as any trait that promotes a mechanism of coexistence. Given

the abundant evidence of coexistence in natural ecosystems, many ecologists set out to

explain these mechanisms that allow for coexistence, despite the apparent validity of the

competitive exclusion principle [Chesson, 2000, Roughgarden, 1974, Roughgarden and

Feldman, 1975, Tilman, 1994]. Much of the work published on coexistence discusses the

coexistence of different species with overlapping niches within a community; however, by

Haldane’s logic, mechanisms of coexistence are just as necessary in the case of two phe-

notypically different populations of the same species. If differences between individuals

of the same species are the same as differences between individuals of different species

[Haldane, 1957] then coexistence models simulating between species competition can be

expanded for use in diverging, within-species competition. In the case of incipient species

in sympatry, coexistence mechanisms are vital in maintaining the two populations prior

to reproductive isolation and after reproductive isolation when gene flow between the two
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populations has ceased but the two sister species still occupy a similar if not identical

niche. Just as the mechanisms of extinction can be grouped into molecular and ecological

types [Gaggiotti and Hanski, 2004], the mechanisms of speciation and coexistence can be

caused by molecular processes, ecological processes, or some combination of the two.

2.3.2 Molecular Mechanisms of Coexistence in sympatric incip-

ient species

At the molecular level, coexistence mechanisms involve genetic variation which is min-

imally expressed in the phenotype. Because competition and selection occurs at the level

of the phenotype of the individual [Mayr et al., 1963], two individuals with similar pheno-

types will experience equivalent competitive fitness and selective pressures. Furthermore,

in some cases the genes that cause divergence are separate from the mutations that cause

reproductive isolation Nosil and Schluter [2011], so it is possible for populations to spe-

ciate with minimal divergence genetically or phenotypically. There is already evidence of

this type of speciation, between two phenotypically identical individuals. Cryptic species

are species that are morphologically indistinguishable but are reproductively and genet-

ically isolated from each other. Hayden and colleagues describe several cases of cryptic

genetic variance [Hayden et al., 2011]. This concept of genetic neutrality has also been

described at the theoretical level [Kimura et al., 1968] as well as the community level

[Hubbell, 2005]. The following three molecular mechanisms have the potential to both

allow coexistence between incipient species and promote reproductive isolation between

those species [Coyne and Orr, 2004].
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Hybridization

Allopolyploidy is form of polyploidy, also known as hybridization. This can be in-

terspecies hybridization or hybridization between two members of the same species with

differing chromosomal ploidies. There are observed cases of hybrid offspring in mammals.

The offspring are sexed (non-hermaphroditic) and so it appears these hybrids have found

a way to overcome the initial obstructions with sex chromosome determination found in

standard polyploidy. The chromosomal compatibility in these hybrids is likely because

these cases are often between parents from two closely related species. However, all ob-

served cased are still sterile because of chromosomal pairing difficulties during meiosis.

Hybridization is, however, common in some vertebrate taxa such as fish, amphibians and

reptiles, and invertebrate animals as well as plants [Ohno, 1970]. Hybridization of two

species may generate new species that are reproductively isolated from their parental

phenotypes. Hybridization is common among closely related species, especially when

these two species have some degree of habitat overlap [Mayr et al., 1963]. The ability

for two species to reproduce viable offspring is commonly thought of as evidence that

the two species are actually conspecifics; however, Mayr [Mayr et al., 1963] points out

that there are numerous examples of hybridization among species and that “cross-fertility

does not prove conspecificity”. Hybridization can play a role in divergence of two pop-

ulations. Hybridization may also play a role in seemingly instantaneous reproductive

isolation among sympatric incipient species. In this case, however, the reproductive

isolation does not occur between the two parental populations but rather between the

parental populations and their offspring. Grant referred to this type of speciation as

recombinational speciation and because of the requirement of interaction in order to hy-

bridize, these events take place in sympatry or parapatry only [Grant, 1959]. Coyne and

Orr, go on to point out, however, that post-isolated species are more likely to experience
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stronger competitive exclusion pressures in sympatry than in parapatry because this new

hybrid species will more-frequently interact with the resident parental species when the

three are in sympatry [Coyne and Orr, 2004]. Hybridization may play a secondary role

in speciation: as a promoter of assortative mating when the hybrid offspring of the two

parental population have marked reduced fitness [Nagel and Schluter, 1998]. If the two

populations possess significant genetic differences, despite possibility limited phenotypic

differences, hybridization may result in a Dobzhansky-Muller incompatibility, when the

hybridization of two genotypes leads to reduced fitness because of new genetic interac-

tions between recombined genes [Nosil and Schluter, 2011]. Because of the potential

outcome of instantaneous reproductive isolation, hybridization plays its part in allowing

coexistence of diverging species.

Duplication

In 1970, Susumu Ohno wrote his work on Gene Duplication and its role in Evolution.

Since then, Gene Duplication has been considered of the most dramatic mutations with

the potential for a great deal of diversification [Mileyko et al., 2008, Marques et al., 2008],

if the duplication is sustainable [Ohno, 1970]. Gene duplication can be limited to one

gene or region (Tandem Duplication) or it can be genome wide (Polyploidy). One or both

forms of duplication are common across living taxa and are said to be complementary

to each other, meaning: when one form is not advantageous, the other form is. [Ohno,

1970]. While gene duplication can have substantial effects on protein concentration,

development and gene network motifs [Mileyko et al., 2008, Ohno, 1970], duplication

events can also occur in regions of D.N.A. that are expressed irregularly or in a manner

such that redundant expression has little effect on fitness [Ohno, 1970]. Duplications may

also be co-opted into new genes at which point the phenotype would likely be affected

[Ohno, 1970, Marques et al., 2008]. Joseph and Hall point out that duplicated genes may
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be able to mask new mutations because the duplicated pair would function in a manner

similar to a heterozygous trait: the new gene product exists but at low levels and not

in absence of the original gene product [Joseph and Hall, 2004]. In some cases, gene

duplication serves as a mechanism of both coexistence and sympatric speciation because

it can initiate sources of silent variation, but can also be the impetus for reproductive

isolation. Duplication events are also present in yeast. These duplications are initiated by

the yeast as a response to stress [Yona et al., 2012, Kondrashov, 2012]. In extreme cases,

yeast cells have opted to duplicate their entire genome and this has led to subsequent

lineage divergence [Kellis et al., 2003]. It is possible that yeast are capable of a range

of duplication events and types because they exhibit complete lifecycles in both haploid

and diploid states [Neiman, 2011]. Yeast are also capable of reducing expression of one

of the duplicated genes, an ability that allows the duplication to become effectively silent

[Qian et al., 2010].

Epistasis

The phenotypic effects of gene duplication may be neutralized by epigenetic silencing

or epistasis. Epistasis may also act as a mechanism of coexistence. Epistasis is defined

as the interaction of non-allelic genes, specifically in the regulatory sense. Much of the

research done on epistasis has focused on its role in genetic enhancements. Some of

the earliest work on epistasis addresses its synergistic effects on deleterious alleles in

Drosophila [Mukai, 1969]. Jasmine and Lenormand recently assessed the role of epistasis

in mutation accumulation experiments in yeasts and found epistasis did not have a sig-

nificant effect on the accelerated fitness decline experienced by these lines [Jasmin and

Lenormand, 2016]. In a separate experiment, however, epistatic interactions between

yeast nuclei and mitochondria were found to promote diversity within a wild population

of yeast [Paliwal et al., 2014]. Epistasis makes it possible to silence mutations and for
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that mutation to therefore proliferate in the population [Dettman et al., 2007]. Epistasis

may allow differing mutations to accumulate as they would in allopatrically diverging

populations, but without detection in an individual’s phenotype. This makes it possi-

ble for growth of two populations in sympatry without direct competition between the

two because phenotypically they are still similar. As long as the accumulated mutations

remain neutral there should be no differential application of selective pressure [Kimura

et al., 1968, Hubbell, 2005].

Rodin and Riggs recognized the potential for epistatic silencing to play a role in diver-

gence events when they assayed the prevalence of the larger regulatory field of epigenetics

in divergence events and found that duplication events were masked by cytosine methy-

lation in many taxa that were capable of DNA methylation [Rodin and Riggs, 2003].

While epigenetics involves regulation by non-DNA elements, it is likely that like epige-

netic silencing, antagonistic epistasis may reduce phenotypic traits that would normally

experience heavy selective pressure. In the yeast, Saccharomyces cerevisiae, epistasis is

currently estimated to account for approximately 9% of the phenotypic variation. Epista-

sis in yeast is still not well understood and epistasis’ role in reproductive isolation is also

poorly studied. However, Hou and Schacherer report evidence of reproductive isolation

events stemming from laboratory observations from populations of 27 natural isolates

of S. cerevisiae due to negative epistasis. The analysis yielded two Dobzhansky-Muller

incompatibilities, both involving the respiratory abilities of these yeasts. They concluded

that negative epistasis could lead to reproductive isolation in yeasts in a condition-specific

manner [Hou and Schacherer, 2016, Dettman et al., 2007].
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2.3.3 Ecological Mechanisms of Coexistence

If phenotypic differences are apparent between two populations, it is possible that the

less fit competitor within these two populations may prevent its extinction by migration

or dispersal. Dispersal alone may promote coexistence [Berkley et al., 2010] even if the

separation of the two populations is only temporary [Tilman, 1994]. However, if the

two populations remain together there are several mechanisms that may prolong time to

extinction or even promote stable coexistence.

Reduction of Limiting Similarity

One possible mechanism of coexistence is to reduce the limiting similarity of the

two incipient species. This is accomplished by splitting the niche that the two popula-

tions (incipient, cryptic or sister species) occupy or formation or movement by one of

the populations to a new niche [Chesson, 2000]. Referred to as resource partitioning

Chesson demonstrates that this mechanism can yield stable coexistence of two popula-

tions, but notes that the niche differences must be substantial and that not all niche

differences will yield stable coexistence. For example, if the niche difference intensify in-

traspecies competition, while reducing interspecies competition, then the coexistence will

be stable. Additionally, if the niche differences discourage hybridization between the two

populations, resulting in reduced separation, then the coexistence will become unstable

[Chesson, 2000]. Kremer and Klausmeier also note that in order for niche-partitioning

to promote coexistence, the segregation has to happen within a population-specific time

frame: the segregation must occur and begin to become effective before the populations

drop too far below effective population size [Kremer and Klausmeier, 2013]. These adjust-

ments in the niche overlap of these two populations can be spatial or temporal [Chesson,

2000] and may be based on the manifestation of behavior preferences or formation of
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morphological or physiological adaptations [Sage and Selander, 1975, Bush, 1969]. In

their work on yeast communities within fly fecal pools Stamps and colleagues indicate

that several members of the yeast group Saccharomycotina are capable of coexisting at

stable frequencies by utilizing different resources within the fecal pool [Stamps et al.,

2012]. While this example shows coexistence between species, it is analogous to coexis-

tence between populations of the same species [Hubbell, 2005, Hayden et al., 2011]. Niche

partitioning based on temporal variability, such as adjusting pollination times to different

sections of a larger season or choosing to sporulate within a different thermal range has

been demonstrated as a mechanism of coexistence as well as a driver of evolution [Kremer

and Klausmeier, 2013] and speciation [Murphy and Zeyl, 2012]. These niche separation

events can also promote coexistence, in yeasts, there are copious examples of both co-

existence and sympatric speciation as a result of divergence of some spatial aspect of

the natural histories of these two populations [Murphy and Zeyl, 2010, Gonçalves et al.,

2011, Sniegowski et al., 2002]. There are also notable examples where spatial separation

of niches lead to coexistence and potential incipient speciation [Sage and Selander, 1975]

or complete sympatric speciation [Price et al., 2010]. This mechanism of coexistence

reduces the competitive pressure between the two populations but also promotes further

divergence and acts as a potential isolating mechanism. This limited separation of these

two populations in even one aspect of their natural history is sufficient to elicit reproduc-

tive isolation. If the separation of the two populations is dramatic or absolute, these once

sympatric species may be considered allopatric or parapatric, with habitat segregation

occurring despite a very short distance between the two [Mayr et al., 1963]. In the case

that the separation between populations is not absolute, the two populations may still

experience what Mayr refers to as ethological barriers to mating, more modernly referred

to as sexual preferences or sexual selection [Mayr et al., 1963, Bush, 1969]. Speciation

promotes further speciation by changing selection pressures due to range partitioning.
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Once reproductive isolation has occurred, the need for Coexistence mechanisms does not

dissipate. Rather, if possible these mechanisms continue until the two incipient species

have managed to carve out new niches for themselves, reducing competitive interaction.

Density-dependent selection

The ability for two populations to coexist can also be attributed to the relative density

of the two population and the resultant effects of those densities on their environment

and other species within the community. In a predator prey cycle, as the population of

predators increase, the population of predators decrease [Cao et al., 2008]. Roughgarden

and Feldman investigated the effects of two prey coexisting and consumed by the same

predator. They found that this type of community composition can promote coexistence

of the prey types as long as the niche overlap between the two prey species is substantial

[Roughgarden and Feldman, 1975]. One explanation for this may be that the strong

niche overlap and the predation pressure results in these two species being treated as

one. The primarily selection pressure in the system is predation and this selection pres-

sure increases for the population with the higher density. Resources are not likely to

induce strong selective pressure on the two populations because the populations are kept

below carrying capacity by predation. Another variation of density-dependent selection

is habitat destruction, which Nee and May point out can also lead niche partitioning

or niche creation [Nee and May, 1992]. When population densities increase past their

carrying capacities there is the potential for temporary or long-term habitat destruction

because of exhausted resources or excessive waste product accumulation. This can be an

opportunity for selection of new phenotypes capable of utilizing the current resources or

finding new ways to extract and use previously unused resources [Bull and Harcombe,

2009]. In diversity studies, habitats with intermediate levels of disturbance typically

have the highest biodiversity, and opportunities, due to minor habitat destruction, are
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believed to be the causative factor [Rosenzweig et al., 1995]. Bull and Harcombe observed

of coexistence between two microbial species based on temporal niche separation due to

habitat disturbance caused by density-dependent selection. Because resources were de-

pleted by high population density, each species adapted to consuming some of the waste

by-products of the other species, thereby providing the two populations with different

resource needs. The resultant population dynamics were such that as one population

increased, its resources were depleted, and the amount of resource for the other popu-

lation increased and the frequencies of the populations oscillated [Bull and Harcombe,

2009]. This oscillation may eventually result in a stable coexistence with no change in

population frequencies, or it may coexist as an oscillation [Chesson, 2000]. This type of

waste-resource temporal niche partitioning is analogous to one of the most predominant

coexistence examples: the coexistence of autotrophs and heterotrophs.

Trade-offs

A third possible mechanism of coexistence between two populations is the existence of

phenotypic trade-offs. Like density dependence, trade-offs, the fitness of an individual’s

phenotype is context dependent; it depends its current environment including abiotic

factors and community interaction and competition. Trade-offs are defined in ecological

terms as the possession of a beneficial trait that can be harmful in some circumstances

[Garland, 2014]. Trade-offs may elicit coexistence between two populations because it

halts complete competitive exclusion of one population by the other because each popula-

tion is better than the other in certain circumstances. A well-known trade-off is between

egg size and clutch number [Guisande et al., 1996] Often known as the Smith-Fretwell

trade-off, this ecological trade-off describes the inverse relationship between the number

of eggs a parent can lay and the amount of resources that parent can allocate to that

offspring (egg size). This value is bounded by an egg-size maximum (based on physical
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Figure 2.1: If Hamlet were a yeast cell..."To spore or not to spore, that is the question!"
Illustration Credit: Stansilav Cuseac
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traits of the parent) and a resource maximum (based on the efficiency of the parent’s

metabolic system to take in nutrients and the maximum amount of resources a parent

could conceivably acquire). Using this model, this trade-off, like many trade-offs, can be

optimized based on environmental conditions and ideal resource values for the offspring

[Messina et al., 2013]. Colonization ability as a polymorphic trade-off can also allow for

coexistence between two competing species. Tilman suggested that a trade-off between

colonization ability and competitive fitness with multiple species of grass in one com-

munity could promote stable coexistence between two or more species. In his model,

populations were ranked based on their competitive ability an assigned a population dy-

namics equation based on that ranking. The competitive ability of the population was

inversely correlated with the colonization ability of the population, representing a trade-

off between these two characteristics. Tilman’s model was one of the first to illustrate

that the compettion-colonization trade-off could establish stable coexistence across mul-

tiple species, given the right colonization rate and mortality rate parameters [Tilman,

1994]. Calcagno and colleagues addressed models of the competition-colonization trade-

off and some of the criticized aspects of Tilman’s model. Most contentious, was the

absolutism of Tilman’s model: there was absolute competitive dominance by the more

fit population in any competitive interaction. Calcagno and colleagues point out that

this is unrealistic but also unnecessary to achieve stable coexistence. In their adapta-

tion of Tilman’s model, a scalar variable was added that would adjust the competition

strength of the competitors allowing for some demographic stochasticity. The result was

still stable coexistence but will greater limitations on number of interacting populations

and fitness disparities [Calcagno et al., 2006]. Coluccio’s study highlighted a trade-off in

sporulation rate for yeasts that were frequently subjected to ingestion and digestion by

insects. Yeasts with slow sporulation rates have higher reproductive success because they

spend more time actively dividing rather than sporulating; however, yeast survivorship
43



Speciation and Coexistence Theory Chapter 2

was increased in sporulated cells relative to vegetative cells when transferred through the

gut of a fly. However, from a community perspective, these survivorship values, it was

unclear that differential consumption was not a factor in survivorship [Coluccio et al.,

2008]. As an extension of this study Reuter and colleagues suggested that this trade-off

held and additional advantage for the spores because their outcrossing rate increased as

a result of digestion by the fly [Reuter et al., 2007, Otto and Lenormand, 2002]. Both

Chesson and Kremer and Klausmeier cite the ecological trade-off as a key mechanism

of coexistence. Indeed, many examples of niche partitioning and frequency-dependent

selection can be viewed as a trade-off [Chesson, 2000], and Chesson’s compensatory vari-

ables in his coexistence equations can be view as trade-offs when considering the values

are positive for one species and negative for the other [Coluccio et al., 2008, Tilman,

1994]. These mechanisms of coexistence aim to reduce competitive interaction between

the two populations of limiting similarity. The molecular mechanisms accomplish this by

reducing the notable phenotypic differences of the two populations, while allowing the

genotype to continue diverging. These three molecular mechanisms also make it possible

for reproductive isolation to occur with limited direct competition between the incipient

species. The ecological mechanisms reduce competitive interaction by decreasing limiting

similarity and thereby the selective pressures driven by competition for resources. These

ecological mechanisms promote speciation by reducing the amount of interaction between

the two populations, even though there is no geographical barrier between the two.

Of course, these mechanisms of coexistence may in fact just be a mechanism of pro-

longing the inevitable: competitive exclusion. In an analysis of species distribution across

vertebrates, Alfaro and colleagues concede that the three groups of slowly evolving lin-

eages did display higher species diversity over evolutionary time than they do currently,

that rather than experiencing an evolutionary event that slowed down the rate of diver-

sification, the diversity within these groups may have competitively excluded each other
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over deep time [Alfaro et al., 2009]. The applicability of these mechanisms is taxon-

specific and case-specific for the mechanism’s role in coexistence and in reproductive

isolation.

2.4 Sympatric Speciation and Coexistence: The Miss-

ing Pieces

In order for sympatric speciation to occur, two phenotypically similar populations of

the same species must coexist long enough to diverge into reproductively isolated pop-

ulations. Because of the unlikeliness of this successfully occurring, it is often believed

that many sympatric speciation events are the result of allopatry [Bush, 1975]. With

new information available regarding genetic regulation and genome sequencing and new

evidence of sympatry and coexistence, we should be evaluating our definitions of specia-

tion and its processes once more. With this new information, also comes new questions

and new ways to answer old questions.

2.4.1 Genetic Questions

Based on Sage and Selander’s discovery that many morphologically diverse species

were actually the same species and that these incipient species exhibited morphological

differences due to phenotypic plasticity, how much of a role does plasticity play in sym-

patric speciation? What role does alternative splicing, epigenetics or epistatic interaction

play in this phenotypic plasticity? Also in need of further study are the mechanisms hy-

bridization and the levels of introgression in sympatrically occurring species and whether

these events indicate sympatric species or incipient species [Sage and Selander, 1975,

Coyne and Orr, 2004]. Additionally, is it possible that repeated introgression or hy-
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bridization could lead to a completely new speciation event? Given that hybridization

can result in incomplete speciation or rapid speciation, [Ohno, 1970] are there traits other

than the ability to self that promote functional and viable hybrids? What other trait in-

compatibilities or compatibilities steer reproductive isolation? Both Kellis and Yona and

colleagues point out that duplication events in yeast can result in lineage divergence in

yeasts [Kellis et al., 2003, Yona et al., 2012]. What is unclear is the level to which epistasis

may have played a role in the maintenance of these duplications within diverging species.

There has been some work on the effects of negative epistasis on reproductive isolation

[Hou and Schacherer, 2016], but what role does positive epistasis play, particularly in

epistatic silencing of duplication events [Rodin and Riggs, 2003]? Beyond duplication

and epistasis, yeasts are capable of chromosomal rearrangement. Several studies have

indicated chromosomal rearrangements as a significant factor in the reduced viability of

hybrid offspring [Hou et al., 2014, Charron et al., 2014]. Do chromosomal rearrangements

complement epistatic regulation in yeasts similar to Ohno’s description of Polyploidy and

Tandem Duplication? Reuter and colleagues expanded on Coluccio’s yeast survivorship

study by measuring the difference in out-crossing rate of digested and undigested spore

cells. They found that out-crossing rates were increased and this genetic recombination

could lead to increased diversity in the founding colony where these surviving yeasts are

deposited [Reuter et al., 2007]. Reuter and colleagues findings on increased out-crossing

in yeasts promotes new questions in relation to the role of out-crossing as a mechanism

of blocking polyploidy. Despite a century of work on this topic, it is still not clear if

problems with dosage compensation are the primary drivers in the inability for some

taxa to out-cross between different ploidies [Coyne and Orr, 2004]. Additionally, Hendry

addressed the rapid divergence possible by Salmon colonizing new habitats [Hendry et al.,

2000]. How might dispersal enhance the effects of out-crossing in a yeast cell that has

been recently digested and dispersed by an insect?
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2.4.2 Ecological Questions

Hendry and colleague’s study was also substantial because it looked at the mecha-

nisms of divergence and speciation in natural habitats. Sniegowskii and colleague’s study

of coexistence and speciation in S. paradoxus also allows us to look at the processes spe-

ciation and coexistence within a natural system and begin to draw conclusions of the

affect size of the system variables. In their study, S. paradoxus was in the processes of

allopatric speciation from a diverging second population while coexisting with a popu-

lation of S. cerevisiae, which was isolated from its own second population, and showed

little evidence of divergence or speciation [Sniegowski et al., 2002]. In order to confirm

the validity of our theoretical and empirical findings, more work in natural habits are

necessary. In the case of yeasts and sporulation, it is unclear as of yet, if sporulation

rate is plastic, conditional or genetically constant. Sporulation timing is driven by the

environment [Neiman, 2011], but does the rate in a single yeast lineage fluctuate with

environmental conditions, does the timing per strain stay constant in one lineage despite

the environment, or does the yeast participate in a bet hedging strategy where some

offspring sporulate earlier and some offspring sporulated later [Chesson, 2000]. Finally,

despite evidence to support the idea [Tilman, 1994, Chesson, 2000, Coluccio et al., 2008,

Reuter et al., 2007], it is still unclear if the sporulation rate of yeasts act as a trade-off

with growth rate and whether this trade-off, if present, is a possible mechanism for sym-

patric speciation. This trade-off may be one of many mechanism that explain the high

rate of observed sympatric speciation events in this genus.

2.5 Conclusions

In their 2014 Nature debate, Laland and colleagues and Hoekstra and colleagues

debated whether the tenets of evolutionary biology and the key factors of the modern
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synthesis should be redefined given the plethora of new information and new understand-

ing that evolutionary biologists now possess about genetics, epigenetics and epistasis and

its effect on phenotype and variation. These developmental idiosyncrasies may not be

genetically constant across taxa or communities, but they can change the outcome of

selection events [Laland et al., 2014]. The same is true in tracking the mechanisms of

sympatric speciation. One mechanism may not work on its own, but many mechanisms

may, in combination, produce a reproductive barrier between two incipient species. The

effects of these mechanisms may not be constant in each speciation process, but they can

change the outcome of selection events by allowing for coexistence or promoting compet-

itive exclusion. Perhaps, in light of these findings, we should redefine our understanding

of the mechanisms of sympatric speciation. The molecular and ecological mechanisms

described above can promote both coexistence between species as well as divergence of

these species and potentially the formation of a reproductive barrier. The scope and

effect of each of these mechanisms is limited by the organism’s genetic architecture and

the other mechanisms at work as well as the level of competition between two popula-

tions. The overarching mechanism of all of these mechanisms is reduction of competitive

pressure and promotion of divergent traits or genetic variation.
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An Assessment of Differential

Survivorship in insect-vectored

Saccharomyces cerevisiae

3.1 Introduction

3.1.1 Ecological Factors of Community Composition

Community composition, the number of species populations and the relative size ra-

tios of these populations to each other, is a contributing factor to community stability

and resilience [Chesson, 1986, Rosenzweig et al., 1995, Kaneko, 2012]. It is controlled by a

multitude of factors including competitive pressures [Edwards et al., 2010, Gause, 1932,

Hardin, 1960, Roughgarden and Feldman, 1975], migration rates [Molina-Montenegro

et al., 2012] and resource and climate fluctuations [Abrams, 2000, Chesson, 1986, Ama-

rasekare and Nisbet, 2001]. Disturbance events facilitate the opportunity to change the

composition of a community because they allow new niche spaces to become available.

49



Survivorship Assay of S. cerevisiae Chapter 3

Species richness is maximized, for example, when disturbance in a community occurs at

intermediate levels [Rosenzweig et al., 1995]. Dispersal can be considered a form of mi-

gration to meta-communities; however, the nature of the dispersal can determine whether

the dispersed group of individuals can coexist with the residents of the new environment

or if one group will competitively exclude the other [Berkley et al., 2010].

In microbial communities, the role of insect phoresis, dispersal by insect vectoring,

may also play a role in each founder colony’s composition and the successive dynamics of

that community by selecting specific taxa to vector or inflicting differential mortality on

those vectored species [Stamps et al., 2012, Coluccio et al., 2008]. Insects that disperse

microbes by ingestion of one individual or population in one location and defecation of

that individual or population in another location, have evolved preferences to specific

microbes as well as to specific stages of the microbe [Schiabor et al., 2014, Barker and

Starmer, 1999]. A diversity of insects, ranging from vespids to coleopterans [Stefanini

et al., 2012, Klepzig and Hofstetter, 2011] to tephrids and Drososphila [Ito et al., 1995,

Reuter et al., 2007] are known to vector these immobile microbiota and each micro-

bial group may adapt to be more proficient at this vectoring process by physiological

mechanisms such as the development of protective coverings or excretions [Codon et al.,

1995, Orlean, 2012, Neiman, 2011], or through behavioral mechanisms such changing the

timing of sporulation or avoiding ingestion [Coluccio et al., 2008, Begon et al., 1982,

Madhani, 2007]. Insect phoresis is a common method of dispersal among sessile inver-

tebrates, microbes and plant gametes. This long-standing relationship between microbe

and insect is often beneficial for both participants [Anagnostou et al., 2010, Barker and

Starmer, 1999], but could affect the evolutionary trajectories of each population as well

[Reuter et al., 2007, Hyma and Fay, 2013]. Indeed, the coevolution of these interacting

organisms is so evident that many insect species have become dependent specializes to

specific microbia which they disperse [Morais et al., 1994, Ort et al., 2012].
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3.1.2 Competition and Coexistence

Once dispersed, the maintenance and richness of the existing microbial propagules are

determined by competition and competitive exclusion. Competition plays a substantial

role in community composition and phenotypic variance within a species [Stier et al.,

2013, Amarasekare, 2003, Bolnick]. In species with a high degree of limiting similarity,

competitive pressures can be reduced through functional equivalence [Hubbell, 2005] or

implementation of a coexistence mechanism [Chesson, 2000, Amarasekare and Nisbet,

2001]. These coexistence mechanisms will determine the ratio of one species to another

at equilibrium [Tilman, 1994] or the diversity of phenotypes within one species[Stamps

et al., 2012, Amarasekare and Nisbet, 2001]. For example, Stamps and colleagues found

that some species of the yeast genus Pichia spp. were found at higher-than-expected fre-

quencies in microbial communities that interacted with Drosophila. When communities

of similar species composition did not interact with Drosophila, these species existed at

lower frequencies. The ability for Pichia to utilize uric acid as metabolic resource allowed

these normally competitively-inferior species to gain the competitive advantage in insect

fecal pools. Thus, the species that normally might be competitively excluded are capable

of coexisting at different frequencies with this coexistence mechanism: the trade-off.

3.1.3 Ecological Trade-offs

The trade-off is one type of ecological mechanism that has been empirically and

theoretically shown to elicit coexistence between two competing species [Tilman, 1994].

Trade-offs occur when an individual or population is competitively superior to its com-

petitor in one aspect its life-history, but competitively inferior to its competitor in another

aspect of its life-history. Often, trade-offs occur when both life-history scenarios occur

at regular or alternating frequencies [Kneitel and Chase, 2004, Tilman, 1982]. Tilman’s
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competition-colonization trade-off has been shown to elicit universal coexistence between

two or more species of limiting similarity. The competition-colonization trade-off can

be initiated when two species differ inversely in their propensities to disperse and their

abilities access nutrients [Tilman, 1994].

3.1.4 Yeast

Members of the family Saccharmytina, commonly referred to as the yeasts, are exam-

ples of populations that both exhibit coexistence between two species of limiting similarity

[Frenkel et al., 2015, Nissen et al., 2004, Sniegowski et al., 2002] and utilize insects as a

method of dispersal. Yeasts, such as Saccharomyces cerevisiae, may have also adapted

to the process of insect vectoring by altering their phenotype to increase their chances

of survivorship when ingested and digested by insects such as Drosophila. Because col-

onization of a new patch space can be beneficial by reducing competitive pressure on a

less-fit competitor, it could be adaptive for microbia, like S. cerevisiae to become better

at colonization at the cost of reduced replication time [Bohannan et al., 2002].

While the fruit fly, Drosophila melanogaster is not the only insect that vectors yeast,

there is substantial evidence of its long history of doing so as well as its adaptation to

preferences for feeding from well-established metabolically late-stage yeast communities.

This preference may be due to specific metabolic products that the fly has evolved to

find attractive [Schiabor et al., 2014]. Insect biochemistry, including digestive processes,

has also been shown to be different based on the sex of the insect [Magwere et al.,

2004, Buchon et al., 2013, Dutta et al., 2015]. Furthermore, female insects may benefit

differently from the incomplete or complete digestion of the yeast that it ingests, relative

to the benefits a male insect may receive. For example, a female Drosophila that ovaposits

and defecates in the same area may have developed the strategy to allow surviving
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yeast to pass through the gut, so these yeasts can proliferate and become a resource

for the Drosophila’s hatching larvae [Barker and Starmer, 1999]. Conversely, it may be

advantageous for female flies to digest as much of the ingested yeast as possible in order

to convert this resource to energy to make more eggs [Anagnostou et al., 2010, Begon

et al., 1982]. Males may also benefit from the complete digestion on food in order to

have more energy for courtship rituals [Yuval et al., 1998].

Coluccio and colleagues [2009] established the potential of differential survivorship of

yeasts processed through the gut of fruit flies. This differential survivorship was based on

life-history phase of the yeast cell: metabolically active vegetative cell or metabolically

quiescent spore. Coluccio found that yeasts in the sporulated state where 4 times more

likely to survive the gut of a fruit fly than were yeasts in the vegetative state [Coluccio

et al., 2008]. What is unclear, however, is whether differential consumption of the two

yeast cell types affected this outcome. Is the extent to which a spore more effectively

traverses the insect gut relative to a vegetative cell and its differential survival the result

of yeast cell physiology or fly preference for spores?

3.1.5 The Sporulation Rate Trade-off as a behavioral strategy

It is possible that spores function as a mechanism of colonization in that they prevent

the yeast from being digested in the gut of insects that ingest the yeast. The sporulated

yeast cells are able to survive the gut at a higher rate relative to that of vegetative yeast

cells, and are deposited with higher frequency at founder sites. We set out to further

investigate the possibility of a competitive trade-off in yeasts. Based on the findings of

Coluccio and colleagues [Coluccio et al., 2008], we expected that yeast cells that have

undergone sporulation before ingestion and digestion of insects were more likely to survive

the process and be successfully dispersed by insect vectoring.
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Figure 3.1: Yeast behavioral strategies to survive fly gut ingestion: Live to die another
day... Drawing Credit: Hannah Plett

While there is sufficient empirical evidence to support the adaptive character of spores

when transferred through the fly gut [Coluccio et al., 2008, Reuter et al., 2007], the

extent to which this difference in survivorship incurs a competitive advantage is still

poorly understood. We first confirmed the result of Coluccio and colleagues using a

novel method of food administration known as the Capillary Feeder (CaFe) vial [Ja

et al., 2007, Deshpande et al., 2014]. We then quantified survivorship and used these

numbers to calculate the predicted likelihood of survivorship in each of the two states.

We predicted that differential survival in gut vectoring will result in sporulated strains

in a higher ratio to vegetatively growing strains relative to the ratio of the original 1-to-

1 sample. Moreover, our goal in this study was to directly quantify the probability of

survivorship of each cell type to explore the possibility of an existent trade-off between
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fast and slow sporulating strains of S. cerevisiae.

3.2 Methods

In order to test the relative survivorship of Saccharomyces cerevisiae in its sporulated

and vegetative states, an equal ratio of spores and vegetative cells were quantified and

then fed to Drosophila melanogaster. The surviving yeast were then collected from the

flies’ frass deposits, quantified and compared to the predigested values. Twenty to thirty

replicates of each of five regionally diverse strains were tested using male or female flies

and alternating fluorescent markers (Figure 3.4 figure) totaling in 800 independent trials.

3.2.1 Strain preparation

Using the strain set of S. cerevisiae acquired from five global regions and prepared

by Louvel and colleagues [Louvel et al., 2014, Cubillos et al., 2009], we homologously

tagged diploid strains with the fluorescent protein, GFP and Mcherry, by tagging hap-

loids of compatible mating types from the same strain set each with GFP and MCherry

markers [Amberg et al., 2005, Bergman, 2001]. The two GFP compatible strains were

then mated, yielding a homothallic diploid strain with homologous markers for GFP

[Amberg et al., 2005]. This mating process was then repeated for the MCherry strains of

the same strain and then for GFP and MCherry-transformed strains for four additional

strain sets from four other regions. These five regional strains were constructed from

five regionally diverse samples, using the same techniques to diversify and genetically

tag new sub-strains within each region. Each region contains newly derived laboratory

strains that have been adapted identically, so that each member of one region has four

sister strains (experimentally identical in laboratory adaptations), one from each other

region. These five regional strain groups were chosen both because of their diverse eco-
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logical backgrounds and because their phenotypic and genetic characters have been well

documented and studied. Additionally, because this strain set was derived by the same

working group at the same time [Louvel et al., 2014] we can be more certain that the

laboratory adaptations to these strains were performed uniformly across all five regional

groups. Because of this consistency in alteration, we can therefore have increased confi-

dence that the regionally-based differences from this spore-vegetative survivorship assay

(SVSA) are due to regional backgrounds and not different degrees of laboratory artifact

[Elena and Lenski, 2003, Rice and Hostert, 1993].

For each regional strain set, one diploid fluorescent transformant was sporulated to

over 95% sporulation using standard protocols with 0.6% Potassium Acetate (KAc) at

a pH value of 6.8 [McCusker and Haber, 1977] and refrigerated at 4°Celsius [Amberg

et al., 2005]. The other diploid fluorescent transformant of the same strain was grown

vegetatively overnight at 30°Celsius with shaking (230 RPM). In order to ensure the

strain cultured was the focal strain, vegetative cultures were always grown in Yeast-

Peptone-Dextrose (YPD) media with G418. As an additional protective measure, the

bacterial antibiotics tetracycline and ampicillin were added to the YPD with G418. This

antibiotic YPD (YPDA) helped ensure both the propagated and collected yeast culture

was the focal yeast and free from possible microbial contaminants.

Previously sporulated yeast cells with a different fluorescent protein marker were

then removed from refrigeration. To maintain the two cell groups in their sporulated

or vegetative states, the optical densities of the vegetative cells (in YPDA) and the

sporulated cells (in KAc) were pelleted, washed and re-suspended in spent YPDA (SYPD)

which is YPD media depleted of the majority of its accessible Carbon and Nitrogen

sources and then amended with the antibiotic cocktail [Bergman, 2001, Amberg et al.,

2005]. Both the vegetative and sporulated strains were then adjusted to equal optical

densities of 0.05, using the Tecan optical density reader and Magellan (V 7.2) software
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Figure 3.2: Fly bleaching method to reduce fly fungal and bacterial load.

set to a wavelength of 600 nanometers. Equal parts of each strain were mixed to create

a 1-to-1 solution of vegetative-to-spores [Mytilinaios et al., 2012, Seidel]. To ensure an

evenly proportioned mixture of spores and vegetative cells, serial dilutions of this 1-to1

mixture were plated on YPDA plates. These serial dilutions also acted as a pre-treatment

measurement, referred to as the Baseline. Antibiotics were included in this pre-treatment

measurement to maintain consistency with the post-treatment measurement, ensuring

that the presence of antibiotics did not play a role in any resulting changes.

3.2.2 Fly preparation

D. melanogaster stocks were created by out-crossing strains from isogenic Al-Ral,

Taiwanese, Santa Barbarian and Malaysian lines. This was done to increase robustness

of the fly lineage [Begon et al., 1982, Buchon et al., 2013]. Adult flies were allowed to

lay eggs on YPD agar plates. These flies were then removed and the eggs were bleached
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using a 10% bleach solution for 40 minutes. Fly eggs were then gathered by pipette,

washed with sterile water and, transferred using sterile technique to clean media that

was free of anti-fungal factors such as Tegosept TM (Figure 3.2). Clean flies were reared

and propagated on this media so that other yeasts, fungi and bacteria were minimized

and did not confound the results [Reuter et al., 2007], but also so that the ingestion of

antifungal elements did not reduce the viability of living yeasts traveling through the gut

[Buchon et al., 2013].

CaFe apparatus tops were assembled per design by Ja and colleagues [Ja et al., 2007,

Figure 3.3] using four 200 µL pipette tips which were cut to increase opening size, rubber

stoppers (See Appendix A for complete list of materials) and standard rubber bands.

These CaFe tops were then affixed to narrow fly vials each containing 3mL of 2% solidified

agarose solution to maintain humidity within the vial. The pipette tips within the CaFe

top were fitted to one 5µL capillary tube each; however, during treatment, only two

capillary tubes were used and two were left open for airflow. 24 hours prior to treatment,

four clean, sexed flies were added to each of four vials per replicate. This starvation period

was necessary to ensure sufficient consumption of yeast by the flies during treatment

[Reuter et al., 2007, Buchon et al., 2013].

3.2.3 Treatment

Using the CaFe apparatus, male only or female only flies were offered this one-to-one

mixture of spores and vegetative cells which were differentially tagged with fluorescent

markers and resistance to G418. Capillary tubes holding 5µl of the 1-to-1 mixture of

spores and vegetative cells were dispensed to four, clean, sexed flies that had been starved

for 24 hours in vials containing only 2% agarose. The flies were allowed to eat for 48 total

hours. At 24 hours the initial yeast consumption by flies was measured and at 48 hours,
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Figure 3.3: Diagram for the Fly Capillary Feeding (CaFe) vial designed by Ja and
colleagues [Ja et al., 2007] and adapted for this survivorship assay.See Appendix A
for complete list of materials. Capillary feeding vial contains four 5µL capillary tubes
affixed to the rubber stopper, so that flies can feed directly from the tube rather than
walking through the feeding substrate. The vial also contains 3mL of 2% agarose
to maintain the humidity in the vial but prevent the flies from eating any other
substrates.

the total yeast consumption by flies was measured and the flies were removed from the

vial using sterile technique. Vials were rinsed with 500µL of water and the rinse solutions

were then collected in Eppendorf tubes. The tubes were then mixed by pipetting and

100µ L of three serial dilutions (10−3, 10−4, 10−5) of each rinse were plated on antibiotic

(YPDA) plates.

After serial dilutions were made and plated, a 100µ L sample of each vortexed col-

lection Eppendorf was inoculated into fresh, sterile YPDA media and allowed to grow
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    10-3                  10-4                    10-5

    10-3                  10-4                    10-5    10-2                  10-3                    10-4

    10-3                  10-4                    10-5

Figure 3.4: Diagram of the experimental procedure for the spore-vegetative survivor-
ship assay (SVSA). Diagram moves from top to bottom and events in the same hor-
izontal space occur at the same time. Four plating events at three time points and
the transitions to the three stages of this experiment. On top, a fluorescent sam-
ple of sporulated yeast cells (red) and a fluorescent sample of actively growing yeast
cells (green) are mixed together in equal densities in an Eppendorf tube and 3 dilu-
tions of this solution are then plated on YPDA plates. These are the Baseline plates.
The Eppendorf is then used to inoculate the Treatment vials (containing 4 sexed D.
melanogaster and agarose) and Control vials (containing only agarose) which proceed
at room temperature for 48 each. These vials are then serially diluted and plated. At
the same time the Treatment vials are diluted and plated, a sample of the treatment
vial solution is transferred into fresh YPDA and grown for 24 hours, then diluted and
plated (Grow out Treatment or GoT). This process was repeated using fluorescently
tagged samples from strains from different regions and using red as spores and green
as vegetative cells to account for the possibility that the color change was a factor in
the change in outcome.
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for 24 hours at 30°Celsius without shaking in culture tubes [Mytilinaios et al., 2012].

Samples were then mixed by pipetting and serial dilutions were made (10−4, 10−5, 10−6)

and plated.

Plated dilutions of all treatments were then incubated for 24 hours from the time

of plating in order to allow any viable cells time to germinate and grow to a visible

colony forming unit (CFU). Each CFU on a plate represents one surviving and viable

cell. While there may have been some viable cells on the plate that required more than 24

hours to be visible to the counter, there is an upper boundary to acceptable incubation

time. Incubation time longer than 24 hours would increase the cell density on the plate

and the individual CFUs would no longer be distinguishable. Additionally, these slow-

starting cells would likely not have been competitively viable in natural systems because

they would have been quickly competitively excluded by other fast-germinating or fast-

growing cells.

3.2.4 Controls

To control for the effect of capillary tubes and ambient growth time, two capillary

tubes containing 5µL of the one-to-one mixture of spores and vegetative cells were in-

serted into a CaFe apparatus containing no flies. These tubes were allowed to sit adjacent

to the treatment vials for the 48 hour treatment period. For consistency and to confirm

vectoring was not occurring due to gravity, the change in capillary tube menisci were

measured for the controls as well at 24 and 48 hours. At the end the treatment time,

these capillary tubes were then dispensed into 550µL of water and serial dilutions (10−4),

10−5, 10−6) were plated to confirm a ratio similar to the pre-treatment ratio.
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3.2.5 Quantification of Consumption and Survival

Consumption of the yeast mixture was measured twice over the 48 treatment period:

at 24 hours by raising – but not removing– the capillary tubes from the CaFe vials,

measuring change in meniscus and lowering capillary tubes and 48 hours by removing

the capillary tubes, measuring total change in the meniscus and discarding the capillary

tubes. As a metric of consumption, these two consumption values were then averaged

to estimate the amount able to pass through the gut as a product of early and late

consumption. Consumption was calculated by converting millimeters in the capillary

tube to microliters of liquid to approximate number of cells [Deshpande et al., 2014].

This number was then divided by two under the assumption that approximately half

of the consumed cells made it through the gut [Buchon et al., 2013, Deshpande et al.,

2014]. To determine the number of each cell type consumed, the resulting value was

divided by two again under the assumption that each cell type represented 50% of the

total because the baseline solution was adjusted to a 1-to-1 mixture. Colony forming

units (CFUs) were then counted and spore to vegetative cell line ratios were determined.

Capillary tubes were checked for changes in spore and vegetative densities to eliminate

the possibility that one-to-one ratios were not administered evenly or that interactions

with the capillary tube alone –perhaps polarity-based– were responsible for the changes

found in the treatment.

Survival was calculated by comparing the estimated number of digested cells by the

time of collection to the cell counts on each plate scaled to appropriate dilution values.

These consumption values were then compared to the scaled approximation of the cells

of each type that survived the process, by counting colony forming units (CFUs) on each

plate and quantifying the number of GFP and Mcherry colonies.
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Quantification of Survivorship was performed by colony counts of serial dilutions

from the post-treatment vial wash. Red and green cells were counted using double-blind,

analogue counting, and each count was performed by two technicians.

3.2.6 Post-digestive Growth Assessment

To gain a more realistic description of the competitive interactions of the system in its

entirety, both vegetative and sporulated cells were assessed for their competitive ability

in a newly founded community, where spores must germinate from spores to vegetative

cells and vegetative cells must recover from potential damage incurred in the vectoring

process. Using a direct empirical assessment of the cells that survived the survivorship

assay treatment, we assessed the recovery time of these cells [Mytilinaios et al., 2012].

After the rinsing procedure of the post-treatment processing of the survivorship assay,

1mL of the remaining swish solution was transferred into 1mL of double strength YPDA.

These culture tubes were then allowed to grow for 24 hours, and then they were diluted

and plated. Counts relative to the immediately post-treatment plating were then assessed

for changes.

3.2.7 Assessment of the effects of fly sex on spore or vegetative

survival

In our analysis of the effects on survivorship based on the sex of the Drosophilae

in each tube, we compared the total counts and the ratios of spores to vegetative cells

between the trials using only male flies and the trials using only female flies, using a

logistic regression [Zuur et al., 2009, Townend, 2013].
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3.2.8 Statistical Analysis

The data set consisted of 690 independent trails (60 per week, except weeks 10 and

11 which had 75 trials per week) each containing 3 serial dilutions each of a baseline (pre-

treatment), control (CaFe apparatus with no flies)and treatment (CaFe apparatus with fly

consumption) as a plate set. Therefore the total plates that were processed (photographed

and counted) was 6243. Contaminated plates and high-density lawn culture plates (which

were not countable) were removed from the data set. With this reduction, the data set

totaled about 40 replicates a week, or 3960 plates. Quantification of survivorship was

performed by colony counts of serial dilutions from the post-treatment vial wash. Red

and green cells (CFUs) were counted using hand counters and transilluminators, and

without knowledge of which color represented spores or vegetative cells. Each plate was

photographed before counting and these photographs were filed for future validation and

analysis. Once colony forming units (CFUs) were counted, these values were entered

into a digital file where the known color associations per trial were listed and colors were

assigned to cell types. The spore to vegetative cell line ratios were then determined as

percent spores of total cells counted.

A model of the system was described using both sampling probability and three

functions of each potential treatment effect (capillary tube, fly ingestion, and rich media)

on differential mortality. The conceptual design of the experiment is described below

as a series of events and random draws from binomial and normal distributions. The

initial population, in which there is approximately a 1-to-1 ration of sporulated cells to

vegetative cells (each denoted as red or green) is named the baseline and is described as

the true population .

[[Ptrue]]→ Baseline
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This true population is then passed through the first function. The first function describes

the effect of the capillary tube on each cell type’s mortality and is given by the differences

between the benchmark plates and the control plates. The 15 control vials are inoculated

with a random sample from a normal distribution of the [[Ptrue]] with some degree of

deviance from that distribution (σc). Pci is the effect of the capillary tube and is the

central selective pressure in this function. The resulting solution (post-capillary tube) is

then plated based on a random draw from a binomial distribution with some degree of

error (ϕ).

[[Ptrue]]→ Controli=15 → Pci ∼ N(Ptrue, σc)

→ f(Pci, ϕ)
plate−−→ Bi (Ncount, f(Pci, ϕ)

The second function describes the effects of the fly ingestion and digestion on mortality

of each yeast cell type and is given by the differences between the control plates and the

treatment plates. The output of the first function, f (Control) is passed through the

treatment function, g, which is the effect of fly ingestion and digestion on the mortality

of the two cells types. Again, the resulting solution (post-digestion) is plated based on a

random draw from a binomial distribution with some degree of error (ϕ).
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[[Ptrue]]→ Treatmentj=60 → Ptj ∼ N(Ptrue, σc)
capillary−−−−→ f(Pci, ϕ)
treatment−−−−−→ g(f(Pci, ϕ), ϕ)
plate−−→∼ Bi(Ncount, g(f(Pci, ϕ), ϕ))

The third function, h, describes the effects of grow out time and nutrients on the mor-

tality of each cell type post digestion and is given by the differences between the treatment

plates and the grow out treatment plates. The resulting solution (post-incubation) is then

plated based on a random draw from a binomial distribution with some degree of error

(ϕ).

[[Ptrue]]→ Grow out Treatmentk=60 → Pgk ∼ N(Ptrue, σc)
capillary−−−−→ f(Pci, ϕ)
treatment−−−−−→ g(f(Pci, ϕ), ϕ)
media−−−→ h(g(f(Pci, ϕ), ϕ), ϕ)
plate−−→∼ Bi(Ncount, h(g(f(Pci, ϕ), ϕ), ϕ))

These three functions (labeled d1, d2 and d3 below) can then be compared to observe

the dynamics of the complete, experimental yeast-fly-interaction system from initial de-

cision to sporulate (or not), through digestion and germination to re-establishment of

the population and including effects of the experimental design (capillary tube).
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f(Pci, ϕ) = d1 = effect of capillary tube (control)

g(f(Pci, ϕ), ϕ) = d2 = effect of fly gut (treatment)

h(g(f(Pci, ϕ), ϕ), ϕ) = d3 = effect of post-treatment growth time (Grow out Treatment)

A Bayesian analysis of this 3-model system was then performed using the R program-

ming language (version 3.5.3) and R packages dplyer, tidyr, hexbin, rstan, and ggplot2.

(See supplement for complete R Markdown of statistical analysis). Additionally, fre-

quentist student’s t-tests were performed on the variables of fly sex and the post-hoc

biochemical analysis of aggregating and non-aggregating strains [Townend, 2013, Whit-

lock and Schluter, 2015].

In the Bayesian analysis, the response rate of sporulation rate was written as a re-

flection of the percent vegetative cells counted on the plates per treatment, and like

the conceptual models above, each model describing Baseline, Control, Treatment, and

Grow out Treatment, adapts the model that preceded it to reflect the added factor of

that treatment. The Baseline model was adapted in the Bayesian analysis to

θB(n) = logit−1(α(n))

where θB represents the percent of vegetative cells in the total number of cells, α repre-

sents a function of the initial level of bias towards vegetative cells in the starting dilution

per number of observations, n. This could be a factor of dilution error or mixing error,

but this value establishes the assumed true ratio for the remainder of the processes. The

value of n represents the number of observations in any given week or data grouping.

These observations are based on the number of weeks in the data group analyzed, mul-
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tiplied by and the number of regions analyzed that week. This function is logistically

transformed to reflect a percentage of the total cells (Colony Forming Units or CFUs)

counted.

The treatment models were then written as the preceding model multiplied by the

effect of the treatment. This was defined in the model as the relative rate of growth,

e, raised to the power of the selection pressure of the treatment factor, rhox. This

value was then divided by the total, represented by the cells affected by the treatment

(θx−1(n)×eρx) and the cells not affected by the treatment (1−θx(n)). The control model

was then written

θC(n) = θB(n)× eρC

(θB(n)× eρC + (1− θB(n))

where θC represents the percent of vegetative cells in the total number of cells, and rhoC

represents the effect of the capillary tube on growth, e, of the θB sample. The treatment

model was written as

θT (n) = θC(n)× eρT

θC(n)× eρT + (1− θC(n))

where θT represents the percent of vegetative cells in the total number of cells, and rhoT

represents the effect of the fly ingestion and digestion on θC . The Grow out Treatment

model was written as

θG(n) = θT (n)× eρG

θT (n)× eρG + (1− θT (n))

where theta, θG, represents the percent of vegetative cells in the total number of cells,

and rhoG represents the effect of rich media on the germinating cells of θT .

These four equations which represent the complete experimental design, are accessed

in the Bayesian model, based on four digit indicator vector that determines the treatment

level (B,C,T,or G) of each data point. The Bayesian model updates as more values are

added to each equation over three iterations but the outputs of each, above-described,
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sub-model are recorded. To account for effects of dilution and strain color (red or green)

as a source of bias, the parameters of β and Γ where respectively assigned to these factors

and were included in the overall model. Our main focus is on the effect of the fly treatment

and grow out treatment on the fraction of colonies from vegetative vs sporulated cells.

We examine the posterior distributions of ρT and ρG to see if they overlap with 0 and if

not in what direction they are biased.

3.3 Results

3.3.1 Quantification of Consumption

Consumption values averaged 2.48µL (27.29 mm of capillary tube volume). The

initial solution solution concentration can be calculated to contain approximately 5550

cells available to the flies in each vial. (OD 0.05 = 0.055x107 cells mL−1, ≈ 0.055x104

cells µL−1, 2 capillary tubes of 5µ L each). Each micro-liter (µL) theoretically contains

550 cells per muL [Seidel, Deshpande et al., 2014].

The average consumption of the flies per vial was, therefore, approximately 1364 cells

(per vial of 3 or 4 flies, see appendix A for per fly rates). The average ratio of cells

on the baseline plates were 36 % spores (variance = 2826.76) and 64% vegetative cells

(variance = 5304.69) so we would expect that of the 1364 theoretical cells that passed

through the fly, approximately 491 were spores and 873 were vegetative. The average

number of cells on the treatment plates were 71% spores (or initially sporulated cells;

variance = 35243) and 29% vegetative cells (or initially vegetative cells; variance = 8858),

meaning we can approximate the expected number of cells to be 968 cells from the spore

group and 396 cells from the vegetative group. Taking into consideration the dilutions,

we can approximate the probability of survival of spores passing through a fly gut is
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Table 3.1: Descriptive Statistics of the Spore-Vegetative Survivorship Assay. Mean
values of the total colony forming units (CFUs), CFUs representing the initially sporu-
lated group, CFUs representing the initially vegetative group and the mean percent
spores, per treatment plate type. Each CFU represents 1 suriving cell in the initially
plated culure (post-treatment).

Plate type mean
total
cells

var mean
spores

var mean
vegeta-
tive

var mean
%
spores

var

Baseline 83 15266 30 3255 53 5906 39.5 11.0
Control 311 218643 134 67241 176 105245 36.1 14.1
Treatment 96 51081 68 35243 28 8858 63.2 19.2
GOT 202 1116614 84 34735 118 54342 43.6 14.7

between 71% and 91.6% whereas the probability of survival of vegetative cells passing

through a fly gut is between 0.1% and 8%. These values are based on maximum and

minimum survival estimates that would yield the observed percentages on the treatment

plates, relative to the baseline percentages.

3.3.2 Quantification of Survival

An overall comparison of the four plate types, representing the four stages of this

experiment (see Table 3.5, 3.7) indicated high variance of the cell numbers counted, but

an overall trend of reduced vegetative cells in treatment, relative to the baseline and

control, and increased vegetative cells in control and grow out relative to the baseline

and the treatment, respectively.

3.3.3 Bayesian Analysis of Treatments

Bayesian analysis of the four treatments over all eleven weeks indicated a clear shift

from the baseline ratios of vegetative to spores in each sample to the treatment, as well

as a compensatory shift from the treatment to the grow out treatment (Figure 3.5).

All baseline samples exhibit at least a ratio of one-to-one vegetative-to-spores with some
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Figure 3.5: Bayesian Analysis of regionally based response from baseline plating
to experimental control ρc (rho_c), fly ingestion treatment (rho_t), and grow-out
treatment (rho_g). The effect of color assigned to the vegetative and sporulated
cell(gamma, γ) and the effect of dilution level (3 orders of magnitude between 10−3

and 10−6, beta, β. The y-value ρ (rho) represents the treatments while the x axis
lists the values of ρ ratio to spores on a natural log scale where the center value,
0, represents a 1-to-1 ratio of cells that started as spores to to cells that started as
vegetative cells. Increased values (up to 2) represent increased percentages of the veg-
etative group represented, while decreased values (down to −2) represent increased
percentages of the sporulated group represented
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Parameter Estimate sd 2.5% (lower
bound)

97.5% (upper
bound)

R̂

ρ Control 0.24 0.22 -0.20 0.67 1.03
ρ Treatment -1.96 0.22 -2.36 -1.50 1.00
ρ Grow out
Treatment

0.97 0.18 0.63 1.32 1.05

β -1.14 0.18 -1.48 -0.80 1.06
γ 1.49 0.35 0.83 2.15 1.01

Table 3.2: Bayesian Analysis of Survivorship of vegetative and sporulated S. cerevisiae
cells passed through the gut of D. melanogaster relative to those S. cerevisiae cells
that were passed through a capillary tube only (control) and initially mixed and plated
(baseline). 95% confidence boundaries are included as well as Bayesian estimates of
each variable.

strains exhibiting a higher number of vegetative cells than a one-to-one ratio. The control

group maintained this ratio range with a slight reduction of the vegetative values in

the more extreme ratios. The treatment values drastically shifted to favor spores over

vegetative cells in all regional groups. After the 24-hour grow out period, these strains

returned to values closer to the baseline or control. The data set, however, exhibited

high variance and contamination across the control, treatment and grow out treatment

data points, specifically in weeks 1-6 (Figure 3.5). Furthermore, weeks 1-9 tested only 1

or 2 regional strains per week.

In order to improve consistency in the experimental design, the data set was reduced

to include the data collected over two weeks when all 5 regions were used. Other weeks

showed higher contamination and only two regions per week. This inconsistency in the

first 9 weeks made it difficult to parse whether differences were due to regionality of

strain or to the trial week. This reduced data set contained 1350 data points maintained

the main effects of treatment but saw increased in the effects of dilution and color.

(Figures 3.7 and 3.6).
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Figure 3.6: Left panel: Bayesian Analysis of response from baseline plating to treat-
ment rho_x values indicate selection strength of each treatment. Beta and gamma
values represent the dilution and strain color respectively. Right panel: Posterior
distribution analysis of the control, treatment and grow out treatment (GOT) for all
strain regions, distributions represent data distributions for each treatment.

3.3.4 The effect of yeast Region on Survival

A Bayesian analysis of the effects of yeast region on the survivorship of the vegetative

cells, the spores, and the total cell count indicated there was a diverse response to the

treatments based on these regional differences. In the subsetted data that contained all

regions tested during the same weeks, the response of each strain to the treatment was

different in both direction and magnitude.

This variance began at the baseline assay, in which there were differences between the

starting ratios of the Wine strains, West African strains, and North American strains near

50%. Malaysian strains and Japan Sake strains closer to a 2:1 ratio favoring vegetative.

(Figure 3.7).

In the subsetted data group, the wine strain slightly dropped to favor spores in the

control group but returned to a one-to-one ratio in the treatment group. Overall, the

wine strains in the larger data set was minimally responsive to all treatments (Control,

Treatment and GOT). In the subsetted group containing only weeks that analyzed all

strain regions together, the European wine strain elicited a response similar to the overall
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Figure 3.7: Box-plot of the sub-setted data (weeks 10 and 11) of the four stages
of the survivorship assay. B represents Baseline (one-to-one mixture), C represents
Control (effect of capillary tube and transfer, no flies), T represents Treatment (effect
of capillary tube and flies), and GOT represents Grow out Treatment (paired effect
of post-digestion growth in rich media). The y-value φ represents the ratio to spores
on a natural log scale where the center value, 0, represents a 1-to-1 ratio of cells that
started as spores to to cells that started as vegetative cells. Increased values (log
scale, up to 2) represent increased percentages of the vegetative group represented,
while decreased values (log scale, down to -2) represent increased percentages of the
sporulated group represented

response. The control group showed slightly lower numbers of vegetative cells than the

overall response and a reduced response to the grow out treatment, having fewer overall

cells and only a two-old increase of vegetative cells rather than a four-fold increase as

seen in the larger data-set (See Appendix A).

The West African strain showed an increase in vegetative group strains in the control

group, but recovered back to a one-to-one ratio in the treatment group. In the grow

out, the vegetative cells again increased to favor the vegetative cell group. The response

was dramatic but began favoring the vegetative group. In the subsetted data set, the

West African strain showed more dramatic responses to both the treatment, favoring

sporulated strain groups, and the grow out treatment, favoring vegetative strain groups

(See Appendix A).

In the larger data set, the North American strain was minimally responsive to the

control group but dramatically responsive to both the treatment and the grow out treat-

ment groups showing a increase in the spore group in the treatment and an increase in

the vegetative group in the grow out treatment. North American strains in the subsetted
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group showed minimal response to treatments of the capillary tube (control) or ingestion

of the fly (treatment) but while the magnitude of the response was reduced, the direction

of the response was similar to the main effect: the control values raised to favor vegetative

cells in the ratio; treatment values lowered to favor sporulated cells in the ratio; and grow

out treatment values raised to favor vegetative cells in the ratio. In the North American

strain, there was no notable effect of dilution or color on the counts (See Appendix A).

The Japanese Sake strain’s control value dropped slightly toward a more equal ratio

of spores to vegetative cells in the larger data set as it began with higher relative values

of the vegetative cell group. The treatment set showed a decrease of the vegetative

cell group which rebounded to about a one-to-one ratio in the grow out treatment. In

the subsetted data, this strain showed some response to the treatment by reducing its

ratio value to favor the sporulated group, but this strain also responded to the grow out

treatment by returning to values almost identical to the control values (See Appendix A).

The Malaysian strain exhibited a minimal response to treatment in the larger data

set. There was some increase of the vegetative cell group in the control set but this was

reduced to about a one-to-one ratio in the treatment set. In the subsetted data set, the

Malaysian strain also showed a limited response to all treatments, with control and grow

out treatments remaining at the 1-to-1 ratio mark (rho=0, x axis) and the treatment

value reducing slightly to favor the sporulated strain group. (See Appendix A).

3.3.5 The effect of fly sex on survival

We found that the percent spores in the yeast treatment sample did not differ sig-

nificantly between the two sexes of flies (t = 0.66462, df = 1261.7, p-value = 0.5064).

There was also no significant difference between the total number of cells plated in the

treatment plates (t = −1.503, df = 1105.7, p-value = 0.1331).
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3.3.6 Grow out Treatment

The grow out treatment was an assessment of the ability of the cells that had passed

through the gut of the fly to recover and grow in rich media. In the Bayesian Analysis,

the main effect was that the mean total number of cells in the system doubled from the

post-digestion frass collection. The ratio of initially vegetative to initially sporulated

cell groups changed from a spore favored ratio to a vegetative-favored ratio, and closely

resemble the ratio of the control (Figure 3.7). When sub-setted into regions, the grow

out treatment effects varied in terms of both rate of growth (total number), ratio of spore

to vegetative groups (differential fitness) and variance of response as described above in

the regional analysis(Tables in Appendix A).

3.4 Discussion

3.4.1 The effect of Treatment

The limited change between the percent spores on the baseline plates and the control

plates is an indication that the change seen in sporulation percentage on the treatment

plates is due to the presence of the fly and not the time in the capillary tube. If anything,

time in the capillary tube seemed to increase the number of vegetative cells which is likely

due to some individuals in the vegetative group attempting to replicate despite extremely

limited resources.

The clear increase in the percent spores between the baseline or control and the

treatment plates substantiates Coluccio and colleagues’ claim that there is a strategic

advantage to being in the sporulated state when passing through the gut of the fly. It

may also support the work of Reuter and colleagues in that one spore, which is a tetrad

of haploid cells, may have become up to four free cells if the tetrad was freed from its
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ascus because of digesting [Reuter et al., 2007]. In short, the process of digestion capable

of quadrupling the number of cells in sporulated state, regardless of survival differences.

The overall increase in the vegetative cell group relative to sporulated cell group in

the grow out treatment is an indication that there is likely a lag in the germination time

of spores relative to re-initiated mitotic division of already vegetative cells. This lag time

may be small, but sufficient to allow one more doubling event in the vegetative cell group.

The grow out treatment results counter the benefits of survival of spores in that they show

that vegetative cells that do survive the gut –or perhaps are vectored to the new patch

space by corporeal transfer– are capable of proliferating in the new patch space rapidly,

surpassing the once-sporulated cells, despite their recent germination. This oscillation

of fitness values based on the varying environmental conditions of two events (dispersal

or growth) may facilitate a trade-off through the storage effect [Warner and Chesson,

1985] and therefore coexistence between the two, fast-sporulating and slow-sporulating

ecotypes. The relative population sizes on the treatment and grow-out-treatment plates

also suggest that the timing and frequency of the fly interaction with, and the ingestion

of, the yeast is a formative factor in the composition and coexistence of these two yeast

phenotypes in one community. It may be the case that there are communities, like

vineyards, that experience high rates of ingestion where slow-growing (fast-sporulating)

yeasts are the dominant phenotype in the species composition because they have a higher

probability of surviving frequent ingestion and deposition within the same community.

Conversely, yeast residing in Oak woodlands which may not experience frequent visitation

of and ingestion by insects may exhibit a community composition in which the slower

sporulating cells are dominant, or at least seasonally dominant. Thus, we would expect

that insect-facilitated coexistence between slow and fast-sporulating strains of yeast will

occur within a range of insect visitation frequencies.

In discussing the results of this experiment and how they apply to natural systems,
77



Survivorship Assay of S. cerevisiae Chapter 3

it is important that we address the unnatural state of this experiment. The goal of this

experiment was determine whether one aspect of the yeast cell’s phenotype: the cell’s

states of vegetative or spore, helped in survival of the yeast during gut vectoring. These

cells, were therefore, only different based on cell state. In nature, cells that sporulate

faster may have additional differences than cells that sporulate slower; thus, this study

can only infer outcomes based on cell state and not the physiology of the two different

phenotypes.

3.4.2 Regional effects

The regional strains that showed baseline deviations from the calculated one-to-one

ratio may have been due to experimentor error but also may have been a factor of the

individual strains. The Japan sake strain, for example, is a strain that has adapted to

evade sporulation and may be less efficient at germination.

The change in spore to vegetative ratio between baseline and control remained the

same for Malaysian strains. It is likely that these Malaysian strains remained in stasis,

waiting out the period of low resources as they would in nature. The Malaysian strain is

well-described for its atypically large amount of cellular aggregation [Louvel et al., 2014].

The Malaysian strains ability to aggregate may also increase its resilience to these low

resource environments, similar to the events of quorum sensing and bio-film formation.

The North American strain, which was expected to be the most responsive environmental

cues for sporulation, showed an increase in the number of spores even from baseline to

control. When considering that these cell types were already in their sporulated and

vegetative states and the end results do not represent necessarily who sporulated and

who was vegetative but who started as a spore and who started as vegetative, this

result requires more analysis, controlling for both starting state and monitoring of state
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throughout the protocol.

Both European (wine) and Japanese (sake) strain are commercial strains, artificially

selected to grow in minimal resource conditions without sporulating [Borneman et al.,

2013]. Whereas many strains might initiate sporulation or cease mitotic -entering qui-

escent latent stage, but not sporulating- in the absence of sufficient resources, these two

strains often attempt to remain metabolically active, even mitotically dividing pseudo-

hyphally [Zaragoza and Gancedo, 2000, Gancedo, 2001]. This trend might result in an

increase in vegetative cells; however, this limited additional pseudo-hyphal growth would

likely not be apparent as the pseudo-hyphal cells are only partially separated and thus,

would likely stay together on the plate, resulting in one C.F.U. counted for many pseudo-

hyphal divisions. At the same time, we might also expect a resultant increase in spores

in these commercial systems with already limited resources. The impetus of sporulation

is the presence of higher concentrations of metabolic byproducts and Nitrogen as well

as low concentrations of glucose. Even though this spent media is low enough to pre-

vent germination of spores, it is typically not low enough to initiate sporulation in the

vegetative cells, only to severely reduce further vegetative reproduction in most strains

[Neiman, 2005]. For these strains that are able to glean a few more reproductive events in

this media (like the commercial strains), the biochemical environment is further altered

by this metabolic activity and these changes may be enough to initiate some sporulation

in the vegetative cells. Such a scenario might be the case in the Japanese sake strain,

in which some of the vegetative cells may have sporulated, preserving resources and pro-

moting viable perceived vegetative cells at the time of plating. Thus, the resultant high,

but reduced value of vegetative to spore ratio in the Japanese Sake strain may be caused

by either or both of these idiosyncratic characteristics which could reduce the perceived

number of cells representing the vegetative group.

The European wine strain also shows a reduction in its relative number of vegetative
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cells, rather than an increase. This may be due to pseudo-hyphal growth misrepresenta-

tion (mentioned above), but may also be the result of weakening of the vegetative cells

who have used reserve stores of energy that normally would be used to sustain each cell

to germination. Therefore, in the case of the wine European strain, sustained metabolic

activity may have reduced the viability of the cells, resulting in few vegetative cells in

the control group.

Grow out treatment values were relatively consistent across regions, but there was a

regional difference in the rate of response from treatment to grow out treatment, indicat-

ing there may be regional differences in the ability for these yeast strains to participate

in storage-effect-based coexistence [Snyder and Adler, 2011] The most rapid recovery of

vegetative cells from the treatment to the grow out treatment was in the North Ameri-

can strain, a strain that is wild-derived and potentially more robust to harsh conditions

such as ingestion and digestion regardless of cellular state. Conversely, the commercially

adapted European Wine, for which selective pressures of this type have been relaxed over

its generations of artificial selection, showed the slowest recovery of vegetative cell ratio.

The other three regional strains showed similar vegetative response rates.

Regional differences suggest that differences in the genetic background have some

effect on the ability to survive a fly gut beyond the ability to sporulate [Louvel et al.,

2014, Mortimer, 2000, Pronk, 2002, Warringer et al., 2011]. Evidence of greater numbers

of vegetative cells in some strains may be an indication that fewer spores of that strain

survived overall or that more vegetative cells in that strain were able to survive. In

certain strains, where insect ingestion is a common selective pressure, some strains may

have evolved a strategy to reduce gut-passage mortality while preserving their ability

to proliferate. This adaptation would by-pass the potential sporulation rate trade-off

we propose typically occurs as a coexistence mechanism in phenotypically diverse yeast

communities. We expect this strategy to arise in yeasts regions that experience insect
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interaction at an intermediate or unpredictable frequency.

The true effects of regionality may be apparent in differences in sporulation rate or

each regional strains adaptability to change this rate. In this study, sporulation was

forced on cells and thus, the strategy of each region to sporulate earlier or later is not

addressed. It is well-documented, however, that these five strains do exhibit substantial

differences in their sporulation efficiency [Cubillos et al., 2009, Louvel et al., 2014, Liti

et al., 2009].

Another characteristic that Louvel and colleagues note in their analysis of these five

regional strains was the differing levels of aggregation ability [Louvel et al., 2014, Vallejo

et al., 2013]. Could this mysterious and variable secretion by the cells of different regions

be adaptive for protection against environmental hazards such as passage through the

fly gut?

Yeast cells, like most of their fungal relatives possess chitin-based structural molecules

and rely on chitin to provide protection and structure in their sporulated state [Orlean,

2012, Briza et al., 1990]. It is more likely that this aggregating secretion is at least par-

tially composed of chitin, given its already prolific usage in the yeast cell wall [Madhani,

2007, Neiman, 2005, 2011]. Rubin and Waite have shown the ubiquity of chitin as a pro-

tective structure in many taxonomic groups [Rubin et al., 2010]. In marine organisms,

these structures are often rigid externally but can be excreted in the dermal tissues as a

gelatinous liquid. We performed a post-hoc analysis on the aggregating cells to explore

the relationship to chitin and this protective excretion. In the case of the Malaysian

strain, which has the highest propensity to aggregate and previously described evidence

of changes in cellular chemistry relative to other regions [Lee et al., 2013], a compara-

tive analysis of the cells’ biochemistry was performed to indicate any differences in the

Nitrogen-to-Carbon ratios Comparison to a non-aggregating strain (Wine/European) in-

dicated that there was not a significant difference in Carbon values (two Sample t-test,
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Figure 3.8: Carbon and Nitrogen Analysis of severely aggregating (Malaysian, yellow)
and non-aggregating (European/Wine, blue) strains.

t = −1.9933, df = 6, p − value = 0.09329) or Nitrogen values (two Sample t-test,

t = 1.2526, df = 6, p−value = 0.257) when assessing the values as percentages of the to-

tal; although, there were significant differences in both Carbon and Nitrogen (Figure 3.8)

when considering only mass values (See Appendix A for table)

3.4.3 The effect of fly sex on survival

Insect biochemistry, including digestive processes, has been shown to be different

based on the sex of the insect [Ballard et al., 2007]. Furthermore, female insects may

benefit differently from the incomplete or complete digestion of the yeast that it ingests,

relative to the benefits a male insect may receive. For example, a female Drosophila

that ovaposits and defecates in the same area may have developed the strategy to allow

surviving yeast to pass through the gut, so these yeasts can proliferate and become a

resource for the Drosophila’s hatching larvae [Barker and Starmer, 1999]. Conversely, it

may be advantageous for female flies to digest as much of the ingested yeast as possible
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in order to convert this resource to energy to make more eggs [Alpatov, 1932]. Males

may also benefit from the complete digestion on food in order to have more energy for

courtship rituals [Yuval et al., 1998]. While there was no significant differences between

survivorship of spores and that of vegetative cells alone, when factoring in differences in

consumption, there may be a difference in these values. Overall, the female flies consumed

twice as much volume of food as the male flies, but the number of CFUs on the treatment

plate were not significantly different. It is likely that larva are capable of consuming both

live and dead yeast cells for nutrition as well as the raw materials digested by the mother

fly. Given the rapid replication rate of a yeast cell, even post-digestion, as shown by

the grow out treatment and our knowledge of the development time of a larval fruit fly,

it may not be necessary for female flies to adapt to allow yeast cells to survive the gut

as just one surviving cell can propagate sufficiently by the time the Drosophila’s eggs

hatch.

3.5 Conclusions

In consideration of these results, it is clear that both genetic background and current

environment of an S. cerevisiae cell affect its ability to survive fly-gut vectoring. The work

of Coluccio and colleagues and Reuter and colleagues give a more narrow, and perhaps

inaccurate, estimate of a yeast cell’s probability of survival. The results of this study

further support the results of many ecological and evolutionary studies [Calcagno et al.,

2006, Yu and Wilson, 2001]that illustrate eco-evolutionary processes are idiosyncratic to

the the system. The dynamics illustrated over the four sections of this study also illustrate

that the fly-gut vectoring process is adaptive to different yeast states at different stages

of the process. This is not an essential factor, but a common aspect of successfully

implemented ecological trade-offs that elicit coexistence [Tilman, 1990]. Essential in
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determining the level of coexistence capable of in this system is the lag time from spore

to dividing vegetative cell post-digestion. Based on the grow out time, it is clear that

despite the increased mortality in the vegetative cell group, that group was capable of

recovering its numbers in 24 hours, resulting in another coexistence strategy: the storage

effect [Warner and Chesson, 1985, Snyder and Adler, 2011]. Along with further analysis

of the germination lag-time of the spores, the frequency of ingestion also plays a clear role

in the the population’s phenotypic composition. If these yeasts are ingested frequently,

the system may already be exhibiting its coexistence frequencies, as the strategy for slow-

sporulating yeast cells may be to reproduce as much as possible allowing for increased

mortality as kin selection. Alternatively, the fast-sporulating yeast cells may utilize the

strategy of always having fewer overall cells in the population but with the benefit of

decreased mortality. These questions may be, and will be, further analyzed in a model

of coexistence with varying system parameters such as sporulation rate, growth rate and

resource utilization.
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Chapter 4

Experimental Evolution:

Evolutionary Effects of Long-term

insect vectoring in Yeasts of

Regionally Diverse Backgrounds

4.1 Introduction

Eco-evolutionary dynamics is the intersection of ecological and evolutionary processes;

they describe how ecological change affects evolutionary processes [Kremer and Klaus-

meier, 2013, Bolnick], and how evolutionary events reshape ecosystems [Webb et al., 2002,

Fussmann et al., 2007]. Rather than considering the fields of Ecology and Evolution sep-

arately, considering the two fields as one inter-connected system may improve purely

ecological or evolutionary viewpoints and provide scientists with answers to questions

not answered when addressing their study field in isolation [Webb et al., 2002], but are

these two fields always paired? At what point do ecological processes become evolution-
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ary process, or are they always both? Specifically, ecological mechanisms of coexistence,

those that deter or reduce competitive exclusion of one group by another, may contribute

to evolutionary processes such as divergence and speciation. Coexistence mechanisms are

diverse in their function and can reduce competitive pressures through niche portioning

[Sage and Selander, 1975, Levine and Rees, 2002], prey-switching [Kuang and Chesson,

2008, Roughgarden, 1974], and natural history effects such as trade-offs or the storage

effect [Tilman, 1982, Warner and Chesson, 1985, Chesson, 1986], but does this reduction

in competitive pressure always indicate a change in selection pressure, and if so, shouldn’t

all coexistence mechanisms lead to selection events?

Ecological trade-offs are one type of mechanism used to explain coexistence between

species with substantial niche overlap (limiting similarity) and populations of competi-

tive conspecifics which would, in the absence of a coexistence mechanism, competitively

exclude the inferior population [Tilman, 1982, Macarthur and Levins, 1967]. Trade-offs

in life-history traits – such as abilities to find or process food or the ability to successfully

disperse – can allow two or more types of competing species (or genotypes within one

species) to be competitively superior to the other in alternative environmental condi-

tions, so that when the environment itself fluctuates then both populations can increase

in density when rare [Cadotte et al., Kremer and Klausmeier, 2017]. Trade-offs can be

physiological, such a limitation of body size as a result of energy invested in a new feature,

or behavioral, such as using a mating strategy that increases mating opportunities but

decreases lifespan Alonzo and Warner [1999]. The competition-colonization trade-off,

as described by Tilman within a narrow range of parameter values, allows for univer-

sal, stable coexistence between two or more species in a grassland community [Tilman,

1994]. Trade-offs, like other ecological mechanisms of coexistence, may also promote

evolutionary processes such as divergence or speciation.

Yeasts are one group that may utilize trade-offs to maintain coexistence among species
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of limiting similarity in microbial communities. Yeasts are able to reproduce by mitotic

division in both their haploid and diploid states. Both haploids and diploids exist in na-

ture but only diploids are capable of initiating sporulation, the process by which the cell

undergoes meiotic recombination and forms a protective outer layer around the tetrad

of newly derived haploid cells [Neiman, 2005]. Sporulation is initiated in diploid yeast

cells when the cell senses both decreased levels of glucose and increased levels of Nitro-

gen [Madhani, 2007, Neiman, 2011]. The sensitivity to changes in these resources–and

the resource level at which the individual spore initiations sporulation– is genetically

derived and varies across individuals in the population. Furthermore, yeasts in the genus

Saccharomyces live frequently with other species within the genus and are all recently

diverged sister taxa, indicating a high likelihood of sympatric divergence. Thus, yeast are

ideally characterized to explore the intersections of ecological and evolutionary processes

[Botstein and Fink, 2011, Hittinger, 2013].

Yeasts exhibit a potential ecological trade-off based on their sporulation strategy

in that cells which transition through meiosis into the spore state do not continue to

consume available resources and divide, but spores are resistant to some negative envi-

ronmental conditions, including the gut environment of insects [Neiman, 2011]. Coluccio

and colleagues found that yeast cells in their sporulated state are over three times as

likely to survive ingestion by an insect [Coluccio et al., 2008]. Reuter and colleagues

also suggested that spores ingested by insects gain a genetic benefit from higher rates

of out-crossing, finding that yeasts passsaged through flies had a ten-fold increase in the

number of out-crossed individuals in the population [Reuter et al., 2007]. This signifi-

cant increase in out-crossing in spores passed through the fly gut may contribute to the

population’s adaptability by allowing diversification in the event of dispersal to new envi-

ronments [Berkley et al., 2010, Bell and Gonzalez, 2009b, Kremer and Klausmeier, 2013].

The studies of Coluccio and colleagues, and Reuter and Bell illustrate how ecological
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species interactions can result in differing selection pressures on the same species, and

promote changes in recombination within those species. Yeast, in particular, are likely

to show effects of these differing selection pressures through their evolutionary trajecto-

ries. Yeasts are capable of clonal reproduction in both haploid and diploid states but are

mostly diploid under natural conditions [Tsai et al., 2008]. Furthermore, haploid yeasts

in the Saccharomyces complex, such as Saccharomyces cerevisiae are capable of switching

between the two mating types (α and A) during replication, thereby producing a viable

mate with which to form a diploid [Madhani, 2007]. This ability to both self and recom-

bine allows individual yeast cells that have become isolated to persist without needing to

find a mate, but also allows the biological species concept to be used to determine new

species Mayr et al. [1963].

There is evidence of frequent divergence and speciation within the group of yeasts

in the Saccharomyces complex exhibited by a high degree of limiting similarity between

yeast species, with only one or two key differences in life-history, behavior or physiol-

ogy that separate them [Sweeney et al., 2004, Murphy and Zeyl, 2012]. It is likely that

they diverged in sympatry based on their closely aligned genetic and ecological profiles

[Gonçalves et al., 2011, Dettman et al., 2007]. These recently diverged sister taxa have

evolved different optimal growth temperatures [Gonçalves et al., 2011], or in the case

of S. paradoxus, have evolved to initiate different timing of reproductive events [Mur-

phy and Zeyl, 2012]. Both of these adaptations may allow the two populations to gain

competitive ground depending on the fluctuating environmental conditions [Bohannan

et al., 2002]. This differences may have initially functioned as mechanisms of coexistence,

but eventually gave rise to divergence and eventual reproductive isolation [Bush, 1994].

In natural settings, insects can act as vectors of yeasts and other microbes [Stefanini

et al., 2012, Klepzig and Hofstetter, 2011, Gibbs and Stanton, 2001]. Because genotypes

that sporulate earlier have fewer cell divisions but produce more spores (See section 3.1),
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there is a natural ecological trade-off that depends directly on the timing of sporulation.

The ecological connection between insects and microbes is well-studied and ubiquitously-

observed [Stefanini et al., 2012, Ort et al., 2012, Morais et al., 1994]. If spores survive

more often, the insect gut acts as a sufficient source of selective pressure, and insect in-

gestion is frequent enough then the ability of a yeast genotype to sporulate faster will be

under selective pressure and is expected to evolve analogously to a behavioral strategy.

Members of the Drosophila genus of tephrid flies have evolved to interact with yeasts.

They show differential preference for yeasts within the Saccharomytina clade [Dobzhansky

et al., 1956, Barker and Starmer, 1999], and preference for yeasts at specific life history

stages of the yeast [Schiabor et al., 2014]. The fly’s preferences for different yeast types

also change as the fly progresses from larval to adult stages itself [Morais et al., 1994].

The yeast can affect the fly’s development and adult food preferences [Anagnostou et al.,

2010]. The fly, in turn, affects the yeast species composition [Coluccio et al., 2008],

its out-crossing rate [Reuter et al., 2007] and the community composition of that yeast

[Stamps et al., 2012]. Although there is much evidence of the ability of insects to shape

these microbial communities [Stamps et al., 2012, Orlean, 2012], less is known about how

passaging through insect guts drives evolution of traits within a single species of yeast.

As Coluccio and her colleagues observed, there is differential survivorship between spores

and vegetative cells as they pass through the gut of D. melanogaster. This differential

survivorship facilitates a trade-off between being a better competitor and being better

at dispersing by gut-vectoring. This competition-colonization trade-off was described by

Tilman as a promoter of universal coexistence between groups [Tilman, 1994]. Moreover,

in populations that exhibit differential sporulation rates, the increase in recombination

rates in early sporulating portions of that population, paired with the differential success

of spores to vegetative cells, may promote divergence within the yeast population. In

order for increased sporulation rate to evolve in response to fly ingestion there must be a
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Figure 4.1: Yeast vectoring by insects can be traumatizing and dangerous, especially
if the yeast is not in its sporulated state. Fly-Kong and his yeast victim. Drawing
Credit: Taom Sakal
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net benefit of early sporulation as well as genetic variation for the sporulation strategy.

In order to explore the connection between ecologically-based coexistence mechanisms

and evolutionarily-based divergence processes, we performed evolution experiments as-

sessing if a trade-off in S. cerevisiae would reduce competitive pressure just enough to

promote coexistence, or enough to change the selective pressures in the system, facil-

itating evolution and divergence. We repeatedly exposed yeast cells to ingestion and

digestion by the fruit fly Drosophila melanogaster, over the course of 31 one-week cycles

and measured the phenotypic response in terms of sporulation timing. We used a set of

regionally diverse and genetically distinct strains of Saccharomyces cerevisiae with differ-

ent historical selection pressures cultured and adapted by Liti and Louvel [Cubillos et al.,

2013, Liti et al., 2009, Louvel et al., 2014]. We compared phenotypic characteristics of

yeast using multiple replicates of each of these regional strain lineages repeatedly exposed

to an insect vector (treatment) relative to those same characteristics of the same strains

repeatedly transferred by pipette (control).

4.2 Methods

4.2.1 Ancestral Strain production

We used a set of five genetically distinct strains of S. cerevisiae that were collected

from five global regions, haploids were transformed with a genetic barcode and antibiotic

marker, then cloned, and back-crossed to their transformed clones to form homozygous

diploids. All strains were wild isolates or wild-derived (commercial) isolates transformed

with resistance to Geneticin (G418) a yeast orthologue to Kanamycin [Louvel et al., 2014].

These five strains were chosen both because of their diverse ecological backgrounds and

because their phenotypic and genetic characters have been well documented and studied.
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Additionally, because this strain set was derived by the same working group at the same

time [Louvel et al., 2014] we can be more certain that the laboratory adaptations to

these strains were performed uniformly across all five regional groups. Because of this

consistency in alteration, we can be more certain that the regionally-based differences

from this evolution experiment are due to regional backgrounds and not laboratory ar-

tifact [Elena and Lenski, 2003, Rice and Hostert, 1993]. The five regional strains came

from an Oak woodland in the Northeast united states (North American strain, AM), a

winery in Western Europe (Wine European, WE), a recently formed brewery in West

Africa (West African, WA), a Sake brewery in Japan (Japanese Sake, JS) and a palm

blossom in Malaysia (Malaysian, MY).

For each ancestral strain, we created four replicates by inoculating into YPD (Yeast-

Peptone-Dextrose) broth culture and growing for five days with shaking (230 rpm) at

30° C. This allowed the population to utilize the majority of metabolic resources in the

rich media and created an environment where individuals in the population began to

sporulate based on biochemical cues of low glucose, high nitrogen and high metabolic

byproducts. The cells in each population are likely in one of three states at the end

of 5 days: late growth phase, when the cells are still attempting to divide mitotically

(vegetatively) but a slower rate because of limited resources, stationary phase, when cells

have ceased division and may be entering the meiotic process of sporulation but have not

formed spores yet, and the sporulated phase when the meiotic process is completed and

the protective outer covering of the spore is forming or formed. These five populations

were expected to exhibit different ratios of these three stages at five days of growth time.

These different ratios are based on the different genetic backgrounds of each strain.

However, each regional strain showed at least 20% but no more than 70% sporulated

cells at this five day period, and these percentages varied by strain. We chose to use

five days of incubation because based on observations from a pilot study and because
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of previous reports of the strains’ sporulation efficiencies [Liti et al., 2009, Louvel et al.,

2014]. In order to reduce chances of contamination from other yeasts or bacteria, cultures

were always grown in YPD media with G418, tetracycline, and ampicillin added. While

haploid cells are often used in long-term experimental evolution [Frenkel et al., 2015],

we used diploids because sporulation is only initiated in diploid cells [Madhani, 2007,

Neiman, 2011], and diploidy more accurately describes yeast in their natural state [Tsai

et al., 2008]. Additionally, using diploid cells in long-term evolution allows us to explore

the role of out-crossing in this system. In typical yeast systems, out-crossing plays a role

in approximately 1% of all reproductive events [Murphy and Zeyl, 2010, Magwene et al.,

2011], but in systems where yeast is vectored and dispersed by insects, this number may

be increased [Reuter et al., 2007] and therefore out-crossing may play a larger role in the

population genetics of vectored yeast communities [Ruderfer et al., 2006].

4.2.2 Fly rearing and CaFe apparatus assembly

D. melanogaster stocks were created by out-crossing strains from isogenic Al-Ral,

Taiwanese, Santa Barbarian and Malaysian lines. This was done to increase robustness

of the fly lineage [Wagner, 2000, Shull, 1948]. Flies were allowed to lay eggs on YPD

agar plates. Adult flies were then removed and the eggs were bleached using a 10%

bleach solution for 40 minutes at 22° C (See Figure 3.2). Fly eggs were then collected by

sterile pipette, washed with sterile water, and transferred using sterile technique to clean

media that was free of anti-fungal factors such as Tegosept TM. Clean flies were reared

and propagated on this media so that other yeasts, fungi and bacteria were minimized

and did not confound the results [Reuter et al., 2007], but also so that the ingestion of

antifungal elements did not reduce the viability of living yeasts traveling through the

gut.
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Fly Capillary Feeder (CaFe) apparatus tops were assembled per design adapted from

Ja and colleages ([Ja et al., 2007] (Figure 3.3) using four 200µL pipette tips which were cut

to increase opening size, rubber stoppers and standard rubber bands (See appendix A).

These CaFe tops were then affixed to narrow fly vials each containing 2ml of 3% solidified

agarose solution to maintain humidity within the vial. The pipette tips within the CaFe

top were fitted to one 5µL capillary tube each; however, during treatment, only two

capillary tubes were used and two were left open for filtered airflow. 18 hours prior to

treatment, four clean, sexed flies were added to each of four vials per replicate. This

starvation period was added to ensure sufficient consumption of yeast by the flies during

treatment [Reuter et al., 2007]

4.2.3 Selection Experiment

Diploid G418 resistant strains were grown in 2 milliliters of antibiotic media over a

120-hour (5 day) period. Samples of these initial strains were then frozen in 15% glycerol

solution at −80°C. Each strain’s optical density was measured using the Tecan optical

density reader and Magellan (V 7.2) software set to a wavelength of 600 nanometers.

These values were then recorded for analysis. All replicates were then appropriately

diluted to an optical density of 0.3 in an effort to both ensure adequate population size

throughout the experimental procedure [Shaffer, 1981] and to prevent blockage in the

capillary tube caused by high cell density. The dilution process was performed using

YPD that had been depleted of its sugar and Nitrogen by culturing yeast in the media

for 2 weeks, filter sterilizing, re-innoculating with yeast for 1 week and filter sterilizing

again. This spent YPD solution (SYPD) was then amended with the same antibiotic

cocktail of G418, Ampicillin and Tetracyclin (SYPDA). SYPDA was used instead of

YPDA to mimic carbon and nitrogen sources in a late growth stage population and to
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Figure 4.2: Experimental design of the Long-term Experimental Evolution Exper-
iment (LTEE). Each lineage was grown in nutrient-rich broth and then the initial
growth sample was adjusted to an optical density of 0.3 and split into control and
treatment Eppendorf tubes. From that point, the control and treatment went through
parallel procedures lasting 7 days: 2 days of exposure to treatment (control: 22°C in-
cubation; treatment: 22°C exposure to flies) and 5 days of growth at 30° C. Initial
(Ancestral) generations and all odd generations were frozen in 15% glycerol at −80°
C.
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prevent initiation of state change of any of the cells [Madhani, 2007, Neiman, 2005].

The five initial concentration-adjusted samples of the regional strains were then pro-

portioned into 4 replicates each. Each replicate was then split into two Eppendorf tubes:

a control sample and a treatment sample, and two cryotubes: a control sample and a

treatment sample, for freezing. Each control sample remained in the Eppendorf tube and

was placed in proximity to the treatment vials (same ambient conditions) for the duration

of the treatment time. After 48 hours, each control tube was vortexed and 10µL of each

control was moved to 1.49 mL of YPDA in a new culture tube (1.5 mL total volume).

This new culture tube was labeled with experimental replicate number (lineage), control

label, and the proceeding generation value (G+ 1).

Each concentration-adjusted treatment was offered to 3-4 clean, sexed flies using a

CaFe apparatus. Flies were allowed to feed for 48 hours and then removed from the

vials. Measurements of total fly food consumption were taken by recording the change

in meniscus of the two capillary tubes. The vials containing fly fecal material (frass)

and body transfer yeast were then rinsed with 1.6 mL YPDA media and the supernatant

(1.5 mL total volume because some volume is reabsorbed into the agar in the vial)

was collected. This new culture tube was labeled with experimental replicate number

(lineage), treatment label, and the proceeding generation value (G+ 1).

Each new generation of control and treatment tubes were then incubated at 30° C for

120 hours without shaking to allow yeast to form diploids and grow. After incubation, the

optical density adjustments, mentioned above, were repeated using established lineages

(1-20) of all strains, both control and treatment. This process was repeated for 30

generations (treatment cycles) freezing every odd sample (G1, G3 etc. . . ) of both the

treatment and control lineages after the initial (G0) samples in 15% glycerol at −80° C.
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4.2.4 Assessment of Sporulation Rate

Single colony isolates of the Ancestral (G0), and evolved treatment and control (both

at G31) strains were grown for 6 hours without shaking and then assessed for their optical

densities. Equal concentrations (2 mL of media at an Optical Density of 1.5) of each

ancestral, control, and treatment replicate were then washed and sporulated in 2mL of

Potassium Acetate ( 2% KAc at pH ≈ 6.7), and incubated at 30° C with shaking (230

rpm). Sporulation percentage was checked and recorded at 2.5 days (midpoint) and 5

days (endpoint).

The sporulation assay was performed in two experimental blocks with each block

containing samples of all treatment and control replicates at 31 generations. Two single

colony isolates for each of 20 experimental replicates (evolutionary lineages) were taken

for both the control and the treatment evolved strains. Two technical replicates were

taken of each colony isolate for a total of 160 samples. For the ancestral strain, three

single colony isolates were taken for each of the 5 represented lineage backgrounds, which

were previously frozen at the start of the experimental evolution procedure to ensure

comparison of a true ancestral strain. Two technical replicates were taken for each of

the single colony isolates, these samples were also repeated across two dates for a total

of 60 samples. At two time points in the sporulation process, midpoint and endpoint,

each sample was diluted to 10−2 concentration (5µL in 95µL), photographed at 40X

magnification and assessed for its sporulation rate by counting the number of spores

and vegetative cells in each similarly dense objective frame. The sporulation rate of the

evolved treatment and control strains were quantified by counting both the spores and

vegetative cells in a similarly diluted concentration of cells, which was photographed at

40X magnification. These counts were then compared to samples of the ancestral strain

which had been frozen at the start of the experimental procedure, and was quantified in

97



Experimental Evolution in S.cerevisiae Chapter 4

the same manner as the evolved strains.

4.2.5 Analysis of Morphological Change

Single colony isolates of the ancestral, midpoint and evolved strains were grown at

30° Celsius with shaking and colony morphology, cell size and cultural character were

observed at 12 hours, 24 hours and 36 hours. At 2 hours, 100µL of each sample was

plated on YPDA, to observe colony formation on a solid surface.

4.2.6 Statistical Analysis

We used a binomial-linked logistic regression model to estimate the evolved sporu-

lation efficiency in the 5 experimental strains. We utilized the R packages lme4, car,

multcomp, and emmeans (See supplement for complete code of the analysis) The full

model was written as described in the experimental design and then variants of this

model (with systematically removed terms) were assessed for their validity in the model.

[sporulated count |vegetative count] ∼ r + t+ (r ∗ t) + d+ ε (4.1)

where r represents region and each r is composed of the isolates and technical replicates

of each of 4 experimental lineages originating from the same regional strains for each of

five regions (See figure 4.7), t represents the two experimental treatments (control and

treatment) and the ancestral samples (considered a treatment level), the interaction of

region and treatment (r ∗ t) and the date, d on which the sporulation assay took place

(2 possible dates), plus un-modeled error (ε).

To determine the effect of fly sex on the resulting sporulation rates in the treatment,

a second weighted binomally-linked logistic regression model was assessed using Aikake

Information Criteria (AIC) values to optimize model fit. This model included region (5
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regions), sex of the consuming fly (2 sexes), and assay date (2 dates) and utilized only

the data from treatments that contained flies (treatment, not control or ancestral). We

analyzed the effects of fly sex using data from only the experimental treatment (not the

experimental control or the ancestral data) and the model:

[sporulated count |vegetative count] ∼ r + s+ (r ∗ s) + d+ ε (4.2)

where s represents the sex of the flies feeding on the yeast cells and the interaction of

the region and sex terms is r ∗ s.

The variables tested within the experimental design (represented in these models as

terms) included the experimental treatment (3 levels), strain region of origin (5 regions),

the assay date (2 dates) and interactions between the variables. Each region included 4

experimental lineages (20 lineages over 5 regions). Each lineage contained 8 data points

of 4 isolates with 2 technical replicates of each isolate. These data points were all nested

within the regional term in the model. This model was used to determine the effects of

treatment, region, assay date, and interactions between these variables on the resulting

sporulation rates of the yeast.

We used an ANOVA of the fitted logistic regression model to test for the effects

of treatment type and strain region. Post-hoc pairwise analyses were performed using

Tukey’s method for correcting p-values [Whitlock and Schluter, 2015, Zuur et al., 2009].

4.3 Results

4.3.1 Descriptive Results and Model Analysis

Over the 320 paired data points representing the experimental samples and the 60

samples from the ancestral populations of the five focal regions, the density of the samples
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Figure 4.3: Distribution of total counts of cells (vegetative and sporulated) in sporu-
lation assay across all three sample types: Ancestral, Experimental Control and Ex-
perimental Treatment. Roughly equal densities were achieved by starting with equal
concentrations at the time of inoculation into sporulation media, and subsequent di-
lution of 5µL of sample into 95µL of sterile water. Once sample settled in flat-bottom
96-well plate well, where photographs were taken at 40X magnification, the viewing
field was adjusted to an area with high density but limited cellular overlap. This
introduces a source of experimenter artifact but this potential bias was mitigated by
random counting of the data files while keeping the sample type obscured from the
counter.

were relatively similar within region groups and ranged from 266 to 765 (263-869) total

cells per sample (Figure 4.3). Values for the percent spores varied from nearly 0 (0.006

at 2.5 days and 0.014 at 5 days) to nearly 100% (0.915 and 1.00, respectively) and

showed separations between strain regions and experimental treatment (See Appendix A

for complete descriptive statistics table).

We tested for uncontrolled experimental effects by including a random effect of strain

isolate and technical replicate, and assessed these by comparing the AIC of models with

and without these random effects. Based on this analysis, we were able to conclude that
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Table 4.1: Aikake Information Criteria for Model 1, analyzing the effect of treatment,
region, interactions, and date. Model column defines either the Full model as described
by the experimental design, or a model with a missing term or terms, noted by the
minus (-) sign. AIC values are for the binomal data of vegetative and sporulated
counts of cells at day five of the sporulation assay.

Model AIC
Full 3489.1
-region (r) 16901.0
- interaction 6199.3
-treatment (t) 35539.4
-assay date (d) -interaction 6248.7
-treatment (t) -region (r) 41532.8
-region -assay date (d) 16986.0
-treatment (t) -assay date (d) 35611.7
-assay date (d) 3539.6

the random effects could be left out of the model (Figure 4.7;Table A.4). We decided on

a logistic regression model based on the count data as a percentage of a total being used

to asses the response variable of sporulation rate.

Aikake Information Criteria (AIC) Analysis of this model (Table 4.1) indicated that

the lowest AIC value was associated with the full model and therefore all the variables

were kept for analysis. A second model was described to test the effect of fly sex on the

sporulation rate of the yeast. This second model was necessary because it was based on

subsetted data containing only the treatment data points. A logistic regression model

was, again, used because the type of data measuring the response variable is the same.

Aikake Information Criteria (AIC) Analysis of this model (Table 4.2 indicated that

the lowest AIC score was associated with the model that included all parameters of the

experimental design.
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Table 4.2: Model analysis based on Akaike Information Criteria for Model2, analyzing
the effect of fly sex, region and date on the treatment data’s sporulation rate.Model
column defines either the Full model as described by the experimental design, or a
model with a missing term or terms, noted by the minus (-) sign. AIC values are
for the binomal data of vegetative and sporulated counts of cells at day five of the
sporulation assay.

Model AIC
Full 840.8
-assay date (d) 840.6
-assay date (d) -interaction 1107.7
-interaction 1108.4
-region (r) 11672.0
-region (r) -assay date (d) 11672.7
-fly sex (s) 1154.3
-fly sex (s) -assay date (d) 1154.7

Table 4.3: Treatment effects on sporulation response
treatment estimate SE z value p-value
ancestral -0.95935 0.02819 -34.036 < 0.0001
control -0.16371 0.03720 -4.401 < 0.0001

treatment 4.46351 0.07444 59.962 < 0.0001

4.3.2 Effects of Fly

There was a significant effect of fly ingestion and digestion on the sporulation rate

of the yeast cell (ANOVA estimate = 4.46351 se = 0.07444, z value = 59.962, p value

< 0.0001)

Repeated exposure to D. melanogaster(via ingestion) had a significant effect on the

mean sporulation rate of the S. cerevisiae strains (midpoint ANOVA x2 = 12728.1,

df = 2, p < 0.0001; endpoint ANOVA x2 = 29344.1, df = 2, p < 0.0001). This

effect was already significant at the midpoint of the assay and maintained significance

by the endpoint of the assay but the effect size increased from the midpoint (3.0) to

endpoint (4.6). Across all strains the main affect was an increase in sporulation rate

in the treatment when compared to the ancestral strains, and no significant change in
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Figure 4.4: The effects of treatment type on sporulation rate measured at 2.5 days (left
panel) and 5 days (right panel) of the sporulation assay. Box plots show percent spores
at these two time points for each treatment type: Ancestral, Control and Treatment.

Table 4.4: Treatment effects of Wine European strain at midpoint and endpoint of the
sporulation assay. Differences between any two treatments in one column indicates
effect size.

Estimate
at 2.5

SE at 2.5 Estimate
at 5

SE at 5

Ancestral 0.01564 0.00913 0.0296 0.0178
Control 0.05938 0.00878 0.0671 0.0165
Treatment 0.20271 0.00878 0.3640 0.0165

sporulation rate in the control when compared to the ancestral. This was true overall

(Figure 4.4) and when the strains were analyzed by region (Figure 4.5).

The effect of treatment was evaluated by region. While the effects remained signifi-

cant, the smaller regional sub-groups exhibited responses characteristic to their regions

(midpoint: ANOVA x2 = 1081, df = 3, p < 0.0001; endpoint: ANOVA x2 = 601, df = 3,

p < 0.0001). The European- wine strain showed a similar pattern of effect size increase

from the midpoint (0.14) to the endpoint (0.33) but both assay points were significantly

different in their sporulation percentages based on treatment (Table 4.4). This strain,

which is a commercially derived strain, was also the most reluctant to sporulate: with

the ancestral strain showing 1.8% spores at the endpoint assay and only reaching 36.4%

spores in the evolved treatment endpoint assay.
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Table 4.5: Treatment effects of West African strain at midpoint and endpoint of the
sporulation assay. Differences between any two treatments in one column indicates
effect size.

Estimate
at 2.5

SE at 2.5 Estimate
at 5

SE at 5

Ancestral 0.14835 0.00651 0.0943 0.0143
Control 0.14185 0.00618 0.0869 0.0136
Treatment 0.71034 0.00618 0.4472 0.0136

Table 4.6: Treatment effects of North American strain at midpoint and endpoint of
the sporulation assay. Differences between any two treatments in one column indicates
effect size.

Estimate
at 2.5

SE at 2.5 Estimate
at 5

SE at 5

Ancestral 0.1746 0.0154 0.2673 0.0352
Control 0.1548 0.0147 0.2459 0.0335
Treatment 0.8315 0.0147 0.9710 0.0335

Conversely, the effect size of the West African strain decreased from the midpoint in

the sporulation assay (0.57) to the endpoint (0.36) in the sporulation assay, but both

assay points were significantly different in sporulation percentage based on treatment

(midpoint: ANOVA x2 = 1779, df = 3, p < 0.0001; endpoint: ANOVA x2 = 19863,

df = 3, p < 0.0001 Table 4.5). From a morphological perspective, these cells also

reduced greatly in overall vegetative cell size after treatment.

The wild-derived North American strain exhibited a decreased effect size at the mid-

point (0.68) in the sporulation assay relative to the endpoint (0.72) at which point treat-

ment samples reached over 95% sporulated cells (Table 4.6). This region also showed

a more varied response to treatment overall (midpoint: ANOVA x2 = 5847, df = 3,

p < 0.0001; endpoint: ANOVA x2 = 1225, df = 3, p < 0.0001).

The commercially-derived Japanese-Sake strain indicated a significant difference in

percent spores based on treatment at both the midpoints (ANOVA x2 = 199, df = 3,

p < 0.0001) and endpoints (ANOVA x2 = 635, df = 3, p < 0.0001) of the sporulation
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Table 4.7: Treatment Effects of Japanese Sake stain at midpoint and endpoint of the
sporulation assay. Differences between any two treatments in one column indicates
effect size.

Estimate
at 2.5

SE at 2.5 Estimate
at 5

SE at 5

Ancestral 0.0518 0.0194 0.0929 0.0271
Control 0.1204 0.0189 0.1460 0.0267
Treatment 0.1898 0.0189 0.3730 0.0267

Table 4.8: Treatment effects of Malaysian stain at midpoint and endpoint of the
sporulation assay. Differences between any two treatments in one column indicates
effect size.

Estimate
at 2.5

SE at 2.5 Estimate
at 5

SE at 5

Ancestral 0.15599 0.00713 0.20503 0.00918
Control 0.13655 0.00618 0.18858 0.00861
Treatment 0.35117 0.00618 0.71116 0.00861

assay; however, the effect sizes for both the midpoint (0.07) and the endpoint (0.28) were

much smaller than the effect sizes of other regional strains, and the treatment lineages

were still resistant to sporulation, ending the assay at only 37% spores (Table 4.7).

The Malaysian strain showed the biggest effect size change between time points in

the sporulation assay with the midpoint in the sporulation assay showing an effect size

(0.21) that was much lower than the effect size at the endpoint (0.51), although both

were significant (midpoint: ANOVA x2 = 4198, df = 3, p < 0.0001; endpoint: ANOVA

x2 = 8293, df = 3, p < 0.0001). Most striking in the morphological differences in the

treatment strains relative to the evolves was the notable reduction of aggregation in the

cell matrix (Table 4.8).

Pairwise analysis of the effect of treatments separated by region confirmed that, within

each regional group, the assessed sporulation rate of the treatment group varied signifi-

cantly from both the ancestral and control groups but the ancestral and control groups

did not significantly differ from each other (Figure 4.5 and Table 4.9).
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Figure 4.5: The effect of Treatment when separated into regional subgroups. AM rep-
resents the North American group, JS represents the Japanese/Sake group. MY rep-
resents the Malaysian group. WA represents the West African group. WE represents
the Wine/European group. For a complete description of each strain’s idiosyncratic
characteristics and trait values, see the tables section of Appendix A

4.3.3 Regional Analysis

There was a significant effect of region on sporulation rate at both the midpoint of

the sporulation assay (ANOVA x2 = 25540.5, df= 5, p-value < 0.001) and the endpoint

of the sporulation assay (ANOVA x2 = 22843.7, df= 5, p-value < 0.001)

Regional background significantly affected both the response to treatment and the

variance of that response across treatments (Tables 4.12, 4.13 and 4.11). Pairwise analysis

revealed that in the ancestral group the there were three comparisons that were signif-
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Table 4.9: Pairwise analysis of differences in treatment by regional group
contrast estimate SE z value p-value
JS -AM -1.29670 0.06072 -21.356 < 0.001
MY -AM -0.37958 0.04198 -9.043 < 0.001
WA -AM -0.77863 0.04493 -17.331 < 0.001
WE -AM -2.57672 0.08942 -28.817 < 0.001
MY -JS 0.91712 0.06211 14.767 < 0.001
WA -JS 0.51807 0.06413 8.078 < 0.001
WE -JS -1.28002 0.10042 -12.746 < 0.001
WA -MY -0.39905 0.04679 -8.528 < 0.001
WE -MY -2.19714 0.09036 -24.317 < 0.001
WE -WA -1.79809 0.09176 -19.597 < 0.001

Table 4.10: Regional effects on sporulation response
region estimate SE z value p-value

North American -1.02273 0.02955 -34.613 < 0.0001
Japanese Sake -2.31943 0.05427 -42.736 < 0.0001
Malaysian -1.40231 0.03217 -43.594 < 0.0001

West African -1.80136 0.03586 -50.235 < 0.0001
Wine European -3.59945 0.08504 -42.326 < 0.0001

Table 4.11: Variance of the logit-transformed percent spores at the 2nd assay point
in the sporulation assay. These variances are listed per strain and per treatment for
comparison

Region variance ancestral
variance

control
variance

treament
variance

All Regions 3.1614 0.9485 0.4859 2.5599
North American 5.9099 0.2030 0.4920 0.4145
Japanese Sake 0.8208 0.3760 0.1886 0.1325
Malaysian 1.3036 0.04211 0.0084 0.0210
West African 1.7123 0.0050 0.0101 0.0165
Wine European 1.8396 0.1624 0.3836 0.1272
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icantly different from each other based on region (Tukey adjusted p values, df = 45.9;

Figure 4.6).

• North American strains to Japanese strains (ratio = 4.983, p-value = 0.008 )

• North American strains to Wine European strains (ratio = 6.789, p-value < 0.001).

• Malaysian strains to Wine European strains (ratio = 5.009, p-value =< 0.001).

After treatment, however, the number of significantly different comparisons between

strains increased from only three to eight (all p-values < 0.001). Only two pairs showed

no significant difference in sporulation rate based on region (Tukey adjusted p values,

df = 38.8; See appendix A for tables of pairwise analysis):

• Japanese strains to Wine European strains (ratio = 0.265, p-value = 1.00 )

• Malaysian strains to West African strains (ratio = 0.024, p-value = 1.00)

Individual lineage (experimental replicates 1-20) was evaluated for effects on sporu-

lation rate. Analysis of a model that used separate lineages (See Appendix A) instead

of those lineages combined into their respective regions, reported that lineage alone had

a significant effect on sporulation percentage (Estimate = 0.00478, SE = 0.00133, t-

value = 3.59, p-value = 0.0004). However, AIC values for models with lineages nested

within their respective regions indicated these lineages should not be considered inde-

pendently from their parent region. Closer analysis of the pairing of the significantly and

non-significantly different lineages showed that the lineages’ independent significance was

likely caused by the effect of their respective regions (Type I error) and therefore, lineage

was considered a factor of region that did not have effects independent of region. (Figure

4.7 and Appendix A).
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Figure 4.6: Ancestral sporulation rates separated by region. Individual points repre-
sent end point assay values of ancestral strains when subjected to KAc sporulation
media. Colors indicate different lineages, which at the ancestral level is expected to
be the same.

4.3.4 Interactions between Region and Treatment Response

There was a significant interaction of the yeast strain region and the treatment in the

response of sporulation rate at both the midpoint and endpoints of the sporulation assay.

The response was significant at the midpoint (ANOVA x2 = 25540.5, df = 8, p < 0.0001)

and the endpoint of the sporulation assay (ANOVA x2 = 2726.3, df = 8, p < 0.0001).

There was an effect of region on the response rate to the treatment. In the sporulation

assay the change in % spores from the midpoint of the sporulation assay to the endpoint
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Figure 4.7: The three treatments and their variances displayed as a function of both
region and lineage. Lineages of the same region are grouped together (AM: 5, 6, 15
& 16; JS: 7, 8, 17, 18; MY: 9, 10, 19, 20; WA: 3, 4, 13, 14; WE: 1, 2, 11 & 12) Colors
differentiate the three treatment types: Ancestral, Control and Treatment.

Table 4.12: Response to sporulation assay by region and treatment. Percent change of
sporulation rate (% spores) between midpoint and endpoint of the sporulation assay.

European
Wine

West
African

North
American

Japanese
Sake

Malaysian

Ancestral 89.26% 57.32% 53.09% 79.34% 31.44%
Control 13.00% 63.23% 58.85% 21.26% 38.10%
Treatment 79.57% 58.84% 16.78% 96.52% 102.51%

was a 53.13% increase for the ancestral (17.46% to 26.34%) and a 58.88% increase for

the control samples (15.48% to 24.59%), but only a 16.77% increase for the treatment

(83.15% to 97.10%). At a regional level these changes were not consistent with the main

effect (Table 4.12).

An analysis of the change between Ancestral and Control from the midpoint and the

endpoint revealed an 11.34% decrease in % spores (17.46% to 15.48%) at the midpoint

of the assay but only an 8.01% decrease in % spores (26.73% to 24.59%) at the endpoint
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Table 4.13: Response to sporulation assay by region and treatment. Percent change
of sporulation rate between Ancestral and Control (A → C), between Ancestral and
Treatment (A → T) and between (C → T) at the assay midpoint (2.5 days) and the
assay endpoint (5 days)

A→C 2.5 A→T 2.5 C→T 2.5 A→C 5 A→T 5 C→T 5
European Wine 279.7% 1196.1% 126.7% 1129.7%
West African -7.85% 374.2% -4.38% 378.8%

North American -11.34% 376.2% -8.00% 263.3%
Japanese Sake 132.4% 266.4% 57.16% 301.5%
Malaysian -12.46% 125.1% -1.64% 246.8%

of the assay. The change in % spores between the ancestral and treatment groups in

the midpoint of the sporulation assay was 376.2% spores (17.46% to 83.15%) and 263.2%

change (26.73% to 97.10%) in % spores at the endpoint. Regional analysis of these percent

changes of sporulation rate indicated variability by region of these response strengths

(effect sizes) and response timing (or when, during the sporulation assay, did the biggest

change happen, Table 4.13).

4.3.5 The effect of fly sex as a differential selective pressure

The role of the fly’s sex as a factor of selective pressure on the yeasts’ survival through

the gut was significant for both the endpoint of the assay (ANOVA x2 = 47.9, df = 1,

p < 0.001) and the midpoint of the assay (ANOVA x2 = 70.0, df = 1, p < 0.001; Figure

4.8).

4.3.6 The effect of assay on sporulation date

Assay date had a small but significant effect on the sporulation rate results from the

assay. This was true for both the endpoint of the sporulation assay (ANOVA x2 = 52.5,

df = 1, p < 0.0001) and the midpoint (ANOVA x2 = 32.6, df = 1, p < 0.0001)
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Figure 4.8: The effect of fly on sporulation rate. Data is separated by strain region.
Blue represents yeast passaged through male flies and red represents yeast passaged
between female flies.

4.4 Discussion

4.4.1 Adaptation to Insect Ingestion and Vectoring

The effects of ingestion support Coluccio and colleagues’ conclusions that the insect

gut is a type of selective pressure that yeasts are capable of adapting to survive through

sporulation. The changes in sporulation rate in the treatment lineages relative to the

control and ancestral lineages indicate that this selective pressure can shape the pheno-

typic landscape of future population of yeasts. Although the four isolates per lineage
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were originally from the same laboratory clone, this experiment indicates that despite a

lack of direct out-crossing prior to the experiment, there may have been some standing

variation between the regions, and even within the regions, or these differences may have

been from de novo mutations [Wright, 1932, Wagner, 2000].

The lack of significant change in sporulation rate between the control group and the

ancestral group indicated that the effect of the capillary tube and serial transfer of the

yeast sample offered little selection pressure, or the selection pressure of those factors did

not elicit a change in sporulation rate. It is possible that further testing of these groups

may reveal other selection-driven phenotypic or genotypic changes (such as temperature

preferences, metabolism, or growth rate) but these controlled factors did not shape the

behavioral strategy of sporulation rate with any significance.

Given that the state of yeast cell determines the degree of mortality within the in-

gested group, this behavioral strategy to sporulate early or late may meet the necessary

requirements of a trade-off. A yeast cell that sporulates before ingestion by insects is

more likely to survive the process of ingestion, digestion and transfer, but loses the oppor-

tunity to replicate up to the point of ingestion. The yeast cell that remains vegetative up

to the point of ingestion will gain more reproductive divisions, but has a higher chance of

mortality. This divergence of two ecotypes with either superior competitive abilities (slow

sporulators) or superior survival abilities during colonization of new areas (fast sporula-

tors) set up a framework for the coexistence strategy described by Tilman (Tilman [1994]

in which a competition-colonization trade-off pair of grass species exhibited stable coex-

istence. This same dynamical system may exist within populations of the same species

(Haldane [1957], allowing two ecotypes of one species to coexist. With the yeast system,

the stability of this coexistence, however, is dependent on the frequency of the visitation

and ingestion by the insect. If the insect visits a yeast patch with high frequency, then

we expect that the yeast population ratios of fast and slow sporulators will shift to a
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fast-sporulator-dominated population with very few cells remaining in their vegetative

state for longer periods. In this case, we would also expect a theoretical upper bound to

the frequency of insect ingestion, as the population must have time to germinate, form

diploids from their haploid spore states and replicate a few times before sporulating if

the population is to persist during the next insect ingestion. As frequency of insect visi-

tation and ingestion decreases, we would expect the slower sporulating cells to increase

increase in number because the benefit of reproductive time now outweighs the cost of

the infrequent mortality events associated with insect ingestion. Coexistence for this

yeast system would likely be achieved in cases when insects visited yeast patches with

intermediate frequency. It is also likely that the regularity (predictability) of the visits

may determine the rate of sporulation, as previous work by Dey and colleagues have

shown that uncertain environments effect reproductive (in this case sporulation) events

[Proulx and Teotonio, 2017]. If the yeast community is actually a meta-community of

diverse patch space types that experience different degrees of fly interaction, then at the

meta-community level, coexistence is likely. Spatial heterogeneity through both dispersal

and parapatry is well-documented as a promoter of coexistence [Amarasekare and Nisbet,

2001, Berkley et al., 2010].

4.4.2 Regional and Lineage differences

For anyone who has worked with yeasts in a laboratory setting, the idea that different

strains show different sporulation rates is not surprising. With substantially different ge-

netic backgrounds it should also not be surprising that these five strains showed different

evolutionary trajectories. In the ancestral group, the paired strains with significant dif-

ferences were between strains that we know to come from wild sources (North American

or Malaysian) or recently industrialized, or semi-wild sources (West African) and indus-

114



Experimental Evolution in S.cerevisiae Chapter 4

trialized strains that have been artificially selected to resist sporulation (Wine European

and Japanese Sake). These results are consistent with the findings of Louvel who as-

sessed the recent ancestors of these strains for their sporulation efficacy and found these

strains elicit sporulation rates based on their degree of industrialization with wild strains

sporulating most rapidly, industrialized commercial strains sporulating most slowly, and

the semi-wild West African strain sporulating at an intermediate rate (See Appendix A

for tables by [Louvel et al., 2014]).

The treatment group did not separate into different sporulation rate groups in the

same manner as the ancestral group; however there was a link to this same wild versus

industrial pattern. The three pairs that showed significant differences from in the ances-

tral group were the three to show the most striking differences in sporulation rate after

treatment. These changes were likely due to the resistance of the commercial strains to

increase sporulation rate paired with the instinct to respond to environmental stress in

the wild strains. These differences in response rate are due to the differences in genetic

background or standing genetic variation within each group.

The regionality of each strain also plays a role in achieving coexistence between fast

and slow sporulating ecotypes. Regional differences in the strains may indicate the

presence of preexisting coexistence strategies in some regions and the predominance of

one species eco-type over the other the species eco-type in other regions. This may be

directly influenced by the presence and frequency of insect interaction in these areas, or

it may be a response to other environmental factors acting as selection pressures that

have shaped each region genetic background.

The regionality of the strain affected both the response to treatment and the variation

to that response. This variation within the treatment and control may hold information

as to the environment’s variability in the region which each strain came from. For ex-

ample, in the European Wine strain, ancestral strains have been selected to persist in
115



Experimental Evolution in S.cerevisiae Chapter 4

vegetative states even at low levels of nutrients. This is evident in the ancestral and

control samples of the sporulation assay, in which the sporulation rates remained low

but increased in variance in the control group. In the European Wine treatment group,

we see a strong response to fly ingestion relative to the responses of other treatments

based on percent change from original, but the sporulation rate remains lower than that

of other treatments. This persistence is likely due to the long-term selection pressures

that established the genetic background of this strain in comparison to the short-term

selective pressures of this experimental evolution trial. In the wild-derived North Amer-

ican strain, we see a different response: a rapid and dramatic adaptation to the current

environment and large variance in the ancestral strain. Large variance may indicate a

historical selection pressure for variability or more generalist adaptations in a fluctuating

environment. If the variability is small in the regional strain (as it was in the European

Wine strain), we might expect that the strain typically experiences a narrow range of

environmental variation and has thus, specialized to be successful in this narrow range

of environmental parameters. These effect the coexistence of the two strains because

if a region’s selective pressures dictate specialization, this narrow range of ecotypes is

likely not going to elicit stable coexistence between two ecotypes: there is really only one

ecotype if the range of acceptable phenotypes is narrow.

Lineage Differences, although not considered in this study, may possess interesting

genetically-based facilitators of divergence. Especially in the case of a strong selection

pressures where populations repeatedly experience bottle-necking, these once identical

lineages may opt to rapidly diversify as a survival strategy, in consideration of kin se-

lection. Small populations should elicit multiple paths up a fitness peak for a single

repeated environment, whereas larger populations should be robust to a path based on

selection [Lachapelle et al., 2015], and in an environment where individuals have a high

degree of relatedness to others, diversification from your relatives to ensure one of you
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survives is both bet-hedging and kin selection [Otto and Lenormand, 2002, Otto, 2003].

This diversification strategy is also well-documented in species that commonly experience

new environments through dispersal or migration [Birdsell and Wills, 2003, Lenormand

and Otto, 2000]. The type of landscape also acts as a factor in each replicates evolution-

ary trajectory: in a rugged fitness landscape with several fitness peaks, the evolutionary

history of the strain (the region in which it evolved) matters as it is constrained to the

closest peak. If the fitness landscape is smooth, we would expect to see one or multi-

ple paths (depending on population size) up the same fitness peak, despite evolutionary

history [Lachapelle et al., 2015].

4.4.3 The effect of fly sex

The sex of the ingesting insect may shape the composition and evolutionary events of

microbial communities. In this study we measured the changes in the sporulation rates

when subjected to male or female flies and found a small, but significant effect, but this

analysis does not take into account the possibility of differential consumption by the two

sexes, or the change of this consumption rate as the lineages evolved throughout the

treatment. In other words, the effects of fly sex may be much larger than observed in

this experiment.

The sex of the insect ingesting the yeast could also affect the ability for two population

eco-types of yeast to coexist. If the two sexes of fly show differential selection pressure on

the yeast, this narrows or widens the range of phenotypes that can exhibit coexistence

based on which sex more commonly visits a patch of cells . The sex-based behavior of the

insects then dictates the ability for the two eco-types to coexist. If female or male flies

visit patches more frequently than the other sex, this could affect the range of acceptable

sporulation time frames. Conversely, if successful germination of surviving yeast cells is
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more beneficial to one insect-sex relative to the other, we might expect to see a change

in the range of the acceptable sporulation rates that incur coexistence.

4.4.4 Evolution, Evolutionary Rescue and Divergence

Rapid evolution can occur due to evolutionary rescue events as the result of repeated

extreme bottlenecking of the populations of each lineage [Bell and Gonzalez, 2009b].

Throughout the duration of the experimental evolution procedure, population sizes (de-

termined by optical densities) dropped and rebounded precipitously. In the later iter-

ations of the experiment, many five day growth samples did not reach the minimum

optical density to move forward with the next fly trial and these lineages had to be

stepped back to the previous generation’s sample and regrown. This experiment, thus,

exhibited evidence of extreme bottlenecking by selection pressure or stochasticity, but

eventually all populations recovered to a sufficient optical density and most populations

increased geometrically after one rescue by regrowth. This steep decline in population

size, followed by a bottleneck and then geometric increase follows the U-shaped recovery

curve discussed by Gomulkiewicz and Holt [Gomulkiewicz and Holt, 1995] and Bell and

Gonzalez [Bell and Gonzalez, 2009b], and may indicate evolutionary rescue-like processes

occurring during this experiment.

The result of this study clearly indicate genetic background, and life history phase

(spore or vegetative cell) are factors in the survival and transmission of gut-vectored

S. cerevisiae. This differential survival and resultant selective pressure may facilitate

coexistence through a trade-off mechanism centered around the alternating benefits of

the two life-history phases. These ecological events may also drive evolutionary events

such as population divergence. Exploitation of novel behavioral strategies have been

hypothesized as potential mechanism for divergence [Wilson and Turelli, 1986]. Reuter
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and colleagues indicated an increase in the rate of out-crossing in yeast spores that

had been vectored by flies. They demonstrated that the digestive process of the fly

facilitated deterioration of the outer spore wall, allowing the asci to break up more often,

and haploids to encounter and recombine with non-self haploids, rather than the inter-

ascus selfing that is typical in spores not ingested by insects [Reuter et al., 2007]. So

in a community of spores and vegetative cells that are experiencing fly-gut ingestion

and dispersal, there is the potential for reduction of gene flow between fast sporulators

and slow sporulators. Slow sporulators that remain vegetative will reproduce clonally by

mitosis, remaining diploid and will survive in fewer numbers during vectoring, while fast

sporulators are likely to recombine to form new haploids, then diploids at each dispersal

event [Tsai et al., 2008] and thanks to the digestive power of the fly, will out-cross a

higher than normal rate [Reuter et al., 2007, Tazzyman et al., 2012, Lang et al., 2011].

In other words, these two populations have, by choice of behavioral strategy reduced

opportunities to recombine with each other. Due to the reduction of gene flow between

these two populations (fast sporulators and slow sporulators) throughout the vectoring

process, insect vectoring may also promote the genetic divergence of these populations.

As Dey and colleagues described, new and uncertain environments often promote

recombination in order to hedge one’s bets for the diverse environmental options the

offspring might encounter [Dey et al., 2016]. In the case of two population states, the di-

gestive process of gut-vectoring may encourage differential rates of recombination among

each population. Populations that sporulate may experience more recombination than

populations that remain vegetative because only the sporulated population has the po-

tential to out-cross with other sporulated populations. If the yeast cell remains vegetative

and then manages to survive the fly ingestion process, it will not out-cross because it

has remained diploid throughout the process. A sporulated cell, on the other hand, has

gone through meiosis to become a spore and is thus, in the haploid state and capable of
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recombining by either method: out-crossing or selfing [Madhani, 2007, Murphy and Zeyl,

2010, Tazzyman et al., 2012, Lang et al., 2011].

4.5 Conclusions

Repeated vectoring of yeast cells by insects may promote coexistence by exploitation

of a sporulation rate trade-off as a behavioral strategy. In microbial habitats where insects

frequently pick up and vector cells, the selective pressure of digestion may play a key role

in the community and genetic composition of the species. In extreme cases, this selective

pressure may lead to divergence of an ancestral population into niche-distinctive popula-

tions and the eventual reproductive isolation of these populations. As meta-population

theory predicts, some lineage replicates in this study experienced multiple near-extinction

events before being rescued artificially, and some of these never showed rapid population

recovery: we were able to isolate very few yeast cells for the final assay. Part of this

difficulty in isolation was due to direct competition with bacterial strains from the fly

gut that had apparently evolved YPDA resistance over the course of the experiment, but

this antibiotic resistance was both expected and unavoidable. It was unexpected because

insects, like humans, must maintain a normal flora of gut bacterial in order to maintain

healthy functions that we would see in nature. Removing these gut bacteria would have

likely affected the behavior of the fly, the appetite of the fly, and the duration of the ex-

perimental trial because of increased fly mortality [Brooks, 2012]. None of these changes

would have improved the outcome of this protocol. A second option would have been to

remove the bacteria as it was released from the fly by selecting out the yeast in a plating

of each generation. This strategy, however, would have introduced substantial bias, even

artificial selection into the experiment because the yeast that grew large enough to be

visible on the plate would likely not represent all the yeast in the culture. Differences of
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growth rate or random sampling error may have unintentionally selected the populations

toward fast growth or conspicuous appearance and confounded the results. Despite these

setbacks, we were able to evolve and isolate these strains and reach the conclusion that

genetic background and current environmental conditions interact with varying strengths

and elicit both rapid, more gradual, and alternative responses to selection.
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Concluding Remarks

As we understand more about evolutionary processes, it becomes more apparent that the

process of speciation is not definable by a unifying theory, but rather the unifying theory

must remain basic enough to encompass all possible mechanisms. Accurate predictability

of the pathway or process of speciation in any one system is unlikely; however, with our

growing knowledge of the mechanisms of biologically similar outcomes, we should in

time be able to predict the probability of known mechanisms of speciation based on

ancestral extant species, and trends in environmental dynamics. The same is true for

theory relating to coexistence to interacting species: one unifying set of parameters and

circumstances will not elicit coexistence for every set of competing populations, but as

we further our understanding of the mechanisms of coexistence, we should eventually be

able to predict the stability and ratio of any pair of competitively interacting populations.

The four chapters of this dissertation represent the broader fields of biology, illustrat-

ing ecological, evolutionary, theoretical and empirical. I have attempted to describe and

connect the fields of ecology and evolution, not as two related fields but as elements of

the same interconnected larger field of eco-evolutionary dynamics.

I reviewed key elements of the two fields of ecology and evolution and described pro-

cesses that can lead to coexistence of two ecotypes in some cases and facilitate divergence

events in other cases. Chapter 3 empirically supported the findings of previous work but

added valuable information on the effects of the genetic background as a factor of sur-
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vivabiliy. Regionally-based strain differences affected a variety of response factors from

the ability for a strain’s vegetative cells to survive to the ability of both the vegetative

and sporulated cells to rebound and grow post-ingestion and digestion, to the magnitude

of response of these factors. These regionally-based differences in genetic background

were, again, important in the experimental evolution chapter (4), where these five strains

adapted differently to the repeated exposure to the fruit fly gut. Based on regional differ-

ences, both the direction response, the rate of response and the variability of this response

to each treatment was different, resulting in the potential for many possible evolutionary

trajectories for some strains and limited options for others. Further, I illustrated that the

same behavioral trade-off can promote coexistence between the differing populations and

may lead to further divergence of those populations. The results of this dissertation will

serve as the building blocks of a developing model of coexistence and divergence. Using

parameters and results from chapters 3 and 4, we intend to evaluate a model of the yeast

system that interacts with flies and defining the parameter values at which coexistence

is achieved, the parameter values where population divergence initiates, and evaluating

the validity of the competition-colonization trade-off as a mechanism for coexistence and

divergence in this system.

While there is clear evidence that the fields of ecology and evolution share many facets

of the same biological niche space, it is still unclear if this overlap constitutes a limiting

similarity of attributes in which these interacting fields must compete or coexist. Results

from this dissertation may offer breadth to the new field of eco-evolutionary dynamics and

evaluate coexistence theory’s applicability to species divergence and sympatric speciation.
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Appendix A

Reference Diagrams, Figures and

Tables

The following diagrams describe the yeast fly system of chapters 2,3, and 4 as well as

chapter 3 and 4’s materials and methods including the larger experimental design, the

CaFe apparatus used in both chapters and the data layout for both chapters.

A.2

The following figures are additional references for chapters 3-5 of the dissertation.

They are based on additional analyses of the data that was not focal to the dissertation.

Bayesian Analysis of regionally based response from baseline plating to experimental

control (rho_c), fly ingestion treatment (rho_t), and grow-out treatment (rho_g). The

effect of color assigned to the vegetative and sporulated cell(gamma, γ) and the effect of

dilution level (3 orders of magnitude between 10−3and10−6), beta, β.

The following tables represent the complete analysis of chapters 2-4 of this disserta-

tion. Some tables are complete versions of abridged versions in text. Other tables are

referenced in the text but not directly provided in the text.

124



Reference Diagrams, Figures and Tables Chapter A

Figure A.1: Graphical depiction of the complete yeast system without parameters for
two differing phenotypes within one population.

Table A.1: Estimated generation time (G) and growth rate (µ) for each clean lineage
from [Louvel et al., 2014]

Origin Strain G (hrs.) SD µ(h-1) SD
Wine/European YLF 186 1.19 0.07 0.59 0.03
West African YLF 188 1.16 0.08 0.6 0.04
North American YLF 189 1.1 0.06 0.63 0.03
Japan/Sake YLF 192 1.03 0.01 0.67 0.00
Malaysian YLF 194 ND ND ND ND

Table A.2: Estimated level of aggregation and sporulation efficiency for each clean
lineage from [Louvel et al., 2014]

Origin Strain estimated level of aggregation sporulation efficiency
Wine/European YLF 186 +++ 1-5 %
West African YLF 188 ++ 10-30 %
North American YLF 189 +++ 100 %
Japanese/Sake YLF 192 ++ 1-5 %
Malaysian YLF 194 ++++++ 100 %
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Figure A.2: Graphical depiction of the complete yeast system with parameters for two
differing phenotypes within one population. Phenotypes differ in their colonization
rates which is described by their sporulation rate and mortality rates in spore and
vegetative states. Phenotypes also differ in their competitive abilities which are de-
scribed by their resource utilization and reproductive rate. Resources affect the rates
of sporulation, germination and reproduction and are pulled from a single pool for
both phenotypes. Thus, the rate of utilization by one phenotype affects the rates of
several aspects of the other phenotype.

Table A.3: Results of Two Sample t-test of Carbon and Nitrogen differences between
aggregating (Malaysian) and non-aggregating (European) strains.

Parameter t-value df p-value
Mass N by region -7.8041 6 0.0002334
Mass C by region -4.6198 6 0.003616
N as Percent of total
by region

-1.9933 6 0.09329

C as Percent of total
by region

1.2526 6 0.257
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Figure A.3: Diagram of the Fly Capillary Feeder (CaFe) vial including its assembly.
List of materials available in supplement.
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Figure A.4: Fly bleaching method to reduce fly fungal and bacterial load. Flies were
allowed to lay eggs on agar plates. Adult flies were then removed and the eggs were
covered in a bleach solution. The eggs were then dislodged from the agar and collected
using a 1mL pipette and rinsed with sterile water. The clean, rinsed eggs were then
added to sterile media and allowed to hatch and proliferate.
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Figure A.5: Bayesian Analysis of response from baseline plating to treatment rho_x
values indicate selection strength of each treatment. Right panel: Posterior distribu-
tion analysis of the control, treatment and grow out treatment (GOT) for the North
American strain.

128



Reference Diagrams, Figures and Tables Chapter A

rho_c

rho_t

rho_g

beta

gamma

−2 −1 0 1 2

ControlTreatment GOT

0.0

0.5

1.0

1.5

2.0

−4 −2 0 2 4

Parameter Value

P
os

te
rio

r 
D

en
si

ty

Figure A.6: Bayesian Analysis of response from baseline plating to treatment rho_x
values indicate selection strength of each treatment. Right panel: Posterior distri-
bution analysis of the control, treatment and grow out treatment (GOT) for the
European/Wine strain.
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Figure A.7: Bayesian Analysis of response from baseline plating to treatment rho_x
values indicate selection strength of each treatment. Right panel: Posterior distribu-
tion analysis of the control, treatment and grow out treatment (GOT) for the West
African strain.
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Figure A.8: Bayesian Analysis of response from baseline plating to treatment rho_x
values indicate selection strength of each treatment. Right panel: Posterior distri-
bution analysis of the control, treatment and grow out treatment (GOT) for the
Japanese/Sake strain.
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Figure A.9: Bayesian Analysis of response from baseline plating to treatment rho_x
values indicate selection strength of each treatment. Right panel: Posterior distri-
bution analysis of the control, treatment and grow out treatment (GOT) for the
Malaysian strain.
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Figure A.10: Carbon-Nitrogen Analysis of aggregating and non-aggregating strains
showing differences in total mass of Carbon and Nitrogen in two strain types.

Table A.4: Model analysis based on Akaike Information Criteria for both midpoint
(2.5 days) and endpoint (5 days). AIC values indicated that random effects did not
yield the best fitting model in comparision to a purely fixed effect model. AIC value
analysis also prescribed that the lineage become a nested component within the region
and not be treated independently.

Model midpoint AIC endpoint AIC
A- one random value −889.1 −667.4
B- two random values −883.9 −667.4
C- two random values −885.9 −669.4
D- two random values −887.9 −671.4
E- two random values −884.5 −669.4
F- two random values −886.2 −671.4
G- one random value −888.2 −673.4
H- mostly random values −349.2 −372.1
I- all fixed values −919.1 −691.7
J- all fixed with nested lineage −1057.6 −761.1
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Table A.5: Complete Descriptive Statistics of LTEE. Group represents the three treat-
ment groups assessed in the sporulation assay: Ancestral (frozen original strain sam-
ple), Control (evolved lineage not subjected to fly ingestion, but only to repeated
serial transfer) and Treatment (evolved strain subjected to repeated fly ingestion and
digestion). P-value indicates a significant difference from Ancestral in pairwise anal-
ysis.

Group Sub-group Lineages % Spores Variance
Ancestral Total 62.59% 5.69%
Ancestral European 2.96% 0.01%
Ancestral West African 14.84% <0.01%
Ancestral North American 26.73% 0.71%
Ancestral Japanese 9.29% 0.17%
Ancestral Malaysian 20.50% 0.11%
Control Total 1-20 15.79% 0.81%
Control European 1,2,11,12 6.71% 0.10%
Control West African 3,4,13,14 14.18% 0.02%
Control North American 5,6,15,16 24.59% 2.00%
Control Japanese 7,8,17,18 14.60% 0.27%
Control Malaysian 9,10,19,20 18.86% 0.02%
Treatment Total 1-20 14.86% 0.89%
Treatment European 1,2,11,12 36.40% 0.70%
Treatment West African 3,4,13,14 71.03% 0.07%
Treatment North American 5,6,15,16 97.10% 0.03%
Treatment Japanese 7,8,17,18 37.30% 0.70%
Treatment Malaysian 9,10,19,20 71.12% 0.09%

Table A.6: Pairwise analysis of Ancestral strains. standard error= 0.0350, degrees of
freedom =45.9

contrast est t-ratio p-value
AM → JS 0.17447 4.983 0.0008
AM → MY 0.06231 1.780 0.8942
AM → WA 0.11899 3.398 0.0790
AM → WE 0.23771 6.789 < 0.0001
JS → MY -0.11216 -3.203 0.1244
JS → WA -0.05548 -1.585 0.9536
JS → WE 0.06324 1.806 0.8835
MY → WA 0.05668 1.619 0.9455
MY → WE 0.17540 5.009 0.0007
WA → WE 0.11872 3.391 0.0804
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Table A.7: Pairwise of Treatment. standard error = 0.0338, degrees of freedom = 38.8
contrast est t-ratio p-value
AM → JS 0.59802 17.704 < 0.0001
AM → MY 0.25982 7.692 < 0.0001
AM → WA 0.26065 7.716 < 0.0001
AM → WE 0.60697 17.969 < 0.0001
JS → MY -0.33820 -10.012 < 0.0001
JS → WA -0.33737 -9.988 < 0.0001
JS → WE 0.00895 0.265 1.0000
MY → WA 0.00083 0.024 1.0000
MY → WE 0.34715 10.277 < 0.0001
WA → WE 0.34632 10.253 < 0.0001

Table A.8: Pairwise of Treatment in European Wine region. degrees of freedom =
210.5. Tukey-adjusted p-values of α = 0.05

contrast est S.E. t-ratio p-value
ancestral → control -0.03743 0.0172 -2.170 0.6855
control → treatment -0.29695 0.0160 -18.597 0 < .0001
ancestral → treatment -0.33438 0.0172 -19.388 < 0.0001

Table A.9: Lineage Analysis European strains of LTEE. Group represents the three
treatment groups assessed in the sporulation assay: Ancestral (frozen original strain
sample), Control (evolved lineage not subjected to fly ingestion, but only to repeated
serial transfer) and Treatment (evolved strain subjected to repeated fly ingestion and
digestion). Lineages are listed as mean of total for region (all four lineages) and
then by individual lineage per group. P-value indicates a significant difference from
Ancestral in pairwise analysis.

Group Lineages % Spores Variance p-value
Ancestral 1,2,11,12 2.96% 0.01% –
Control 1,2,11,12 6.71% 0.10%
Control 1 3.44% < 0.01% *
Control 2 4.90% 0.09% **
Control 11 3.48% 0.01% *
Control 12 8.68% 0.04% ***
Treatment 1,2,11,12 36.40% 0.70%
Treatment 1 49.59% < 0.01% ***
Treatment 2 27.92% 0.02% ***
Treatment 11 33.54% 0.01% ***
Treatment 12 34.65% 0.02% ***
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Table A.10: Pairwise of Treatment in West African region. degrees of freedom =210.5.
Tukey-adjusted p-values of α = 0.05

contrast est S.E. t-ratio p-value
ancestral → control 0.00650 0.0172 0.377 1.0000
control → treatment -0.56849 0.0160 -35.602 0 < .0001
ancestral → treatment -0.56198 0.0172 -32.584 < 0.0001

Table A.11: Lineage Analysis West African strains of LTEE. Group represents the
three treatment groups assessed in the sporulation assay: Ancestral (frozen original
strain sample), Control (evolved lineage not subjected to fly ingestion, but only to
repeated serial transfer) and Treatment (evolved strain subjected to repeated fly in-
gestion and digestion). Lineages are listed as mean of total for region (all four lineages)
and then by individual lineage per group. P-value indicates a significant difference
from Ancestral in pairwise analysis.

Group Lineages % Spores Variance p-value
Ancestral 3,4,13,14 14.84% < 0.01% –
Control 3,4,13,14 14.18% 0.02%
Control 3 13.68% < 0.01% *
Control 4 15.42% 0.02% *
Control 13 14.32% 0.01%
Control 14 13.42% 0.01% *
Treatment 3,4,13,14 71.03% 0.07% ***
Treatment 3 68.98% 0.04% ***
Treatment 4 71.57% 0.05% ***
Treatment 13 74.21% < 0.01% ***
Treatment 14 69.37% 0.02% ***

Table A.12: Pairwise of Treatment in North American region. degrees of freedom =
210.5. Tukey-adjusted p-values of α = 0.05

contrast est S.E. t-ratio p-value
ancestral → control 0.02142 0.0172 1.242 0.9958
control → treatment -0.72507 0.0160 -45.408 0 < .0001
ancestral → treatment -0.70364 0.0172 -40.798 < 0.0001
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Table A.13: Lineage Analysis North American strains of LTEE. Group represents the
three treatment groups assessed in the sporulation assay: Ancestral (frozen original
strain sample), Control (evolved lineage not subjected to fly ingestion, but only to
repeated serial transfer) and Treatment (evolved strain subjected to repeated fly in-
gestion and digestion). Lineages are listed as mean of total for region (all four lineages)
and then by individual lineage per group. P-value indicates a significant difference
from Ancestral in pairwise analysis.

Group Lineages % Spores Variance p-value
Ancestral 5,6,15,16 26.73% 0.71% –
Control 5,6,15,16 24.59% 2.00% *
Control 5 14.86% 0.02% **
Control 6 17.48% 0.05% **
Control 15 17.98% 0.07% **
Control 16 48.08% 0.02% ***
Treatment 5,6,15,16 97.10% 0.03% ***
Treatment 5 97.64% 0.02% ***
Treatment 6 97.67% 0.03% ***
Treatment 15 97.66% < 0.01% ***
Treatment 16 95.47% 0.04% ***

Table A.14: Pairwise of Treatment in Japanese Sake region. degrees of freedom =
210.5. Tukey-adjusted p-values of α = 0.05

contrast est S.E. t-ratio p-value
ancestral → control -0.05313 0.0172 -3.080 0.1330
control → treatment -0.22696 0.0160 -14.214 0 < .0001
ancestral → treatment -0.28009 0.0172 -16.240 < 0.0001

135



Reference Diagrams, Figures and Tables Chapter A

Table A.15: Lineage Analysis Japanese strains of LTEE. Group represents the three
treatment groups assessed in the sporulation assay: Ancestral (frozen original strain
sample), Control (evolved lineage not subjected to fly ingestion, but only to repeated
serial transfer) and Treatment (evolved strain subjected to repeated fly ingestion and
digestion). Lineages are listed as mean of total for region (all four lineages) and
then by individual lineage per group. P-value indicates a significant difference from
Ancestral in pairwise analysis.

Group Lineages % Spores Variance p-value
Ancestral 7,8,17,18 9.29% 0.17% –
Control 7,8,17,18 14.60% 0.27% **
Control 7 9.38% 0.02%
Control 8 10.12% 0.01% *
Control 17 18.80% 0.02% ***
Control 18 20.10% 2.54% ***
Treatment 7,8,17,18 37.30% 0.70% ***
Treatment 7 30.13% 0.08% ***
Treatment 8 28.67% 0.01% ***
Treatment 17 43.66% < 0.01% ***
Treatment 18 46.72% < 0.01% ***

Table A.16: Pairwise of Treatment in Malaysian region. degrees of freedom = 210.5.
Tukey-adjusted p-values of α = 0.05

contrast est S.E. t-ratio p-value
ancestral → control 0.01645 0.0172 0.954 0.9998
control → treatment -0.52258 0.0160 -32.727 0 < .0001
ancestral → treatment -0.50613 0.0172 -29.346 < 0.0001
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Table A.17: Lineage Analysis Malaysian strains of LTEE. Group represents the three
treatment groups assessed in the sporulation assay: Ancestral (frozen original strain
sample), Control (evolved lineage not subjected to fly ingestion, but only to repeated
serial transfer) and Treatment (evolved strain subjected to repeated fly ingestion and
digestion). Lineages are listed as mean of total for region (all four lineages) and
then by individual lineage per group. P-value indicates a significant difference from
Ancestral in pairwise analysis.

Group Lineages % Spores Variance p-value
Ancestral 9,10,19,20 20.50% 0.11% –
Control 9,10,19,20 18.86% 0.02%
Control 9 19.24% < 0.01%
Control 10 17.87% 0.61% *
Control 19 20.02% 0.01%
Control 20 18.30% 0.02% *
Treatment 9,10,19,20 71.12% 0.09% ***
Treatment 9 69.20% 0.03% ***
Treatment 10 69.90% 0.19% ***
Treatment 19 73.26% 0.05% ***
Treatment 20 72.11% 0.03% ***
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Table A.18: Pairwise analysis of each lineage comparing individual lineages to the
mean percent spore value at the endpoint of the sporulation assay.

Lineage Estimate Standard Error t value P-value significance
1 0.02323 0.03139 0.74 0.4601
2 -0.05275 0.03139 -1.68 0.0945
3 0.16234 0.03139 5.17 5.7X10−7 ***
4 0.18116 0.03139 5.77 3.0X10−8 ***
5 0.28807 0.03139 9.18 < 10−16 ***
6 0.28968 0.03139 9.23 < 10−16 ***
7 -0.02162 0.03139 -0.69 0.4918
8 -0.00626 0.03139 -0.20 0.8422
9 0.19311 0.03139 6.15 4.2X10−9 ***
10 0.18990 0.03139 6.05 7.1X10−9 ***
11 -0.01016 0.03139 -0.32 0.7467
12 -0.00859 0.03139 -0.27 0.7847
13 0.18718 0.03139 5.96 1.1X10−8 ***
14 0.16310 0.03139 5.20 5.0X10−7 ***
15 0.34038 0.03139 10.84 < 10−16 ***
16 0.43595 0.03139 13.89 < 10−16 ***
17 0.08092 0.03139 2.58 0.0107 *
18 0.09552 0.03139 3.04 0.0027 **
19 0.22327 0.03139 7.11 2.0X10−11 ***
20 0.21851 0.03139 6.96 4.8X10−11 ***
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