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Abstract—The multispecies coalescent has provided important progress for evolutionary inferences, including increasing
the statistical rigor and objectivity of comparisons among competing species delimitation models. However, Bayesian species
delimitation methods typically require brute force integration over gene trees via Markov chain Monte Carlo (MCMC), which
introduces a large computation burden and precludes their application to genomic-scale data. Here we combine a recently
introduced dynamic programming algorithm for estimating species trees that bypasses MCMC integration over gene trees
with sophisticated methods for estimating marginal likelihoods, needed for Bayesian model selection, to provide a rigorous
and computationally tractable technique for genome-wide species delimitation. We provide a critical yet simple correction
that brings the likelihoods of different species trees, and more importantly their corresponding marginal likelihoods, to the
same common denominator, which enables direct and accurate comparisons of competing species delimitation models using
Bayes factors. We test this approach, which we call Bayes factor delimitation (*with genomic data; BFD*), using common
species delimitation scenarios with computer simulations. Varying the numbers of loci and the number of samples suggest
that the approach can distinguish the true model even with few loci and limited samples per species. Misspecification of
the prior for population size 6 has little impact on support for the true model. We apply the approach to West African forest
geckos (Hemidactylus fasciatus complex) using genome-wide SNP data. This new Bayesian method for species delimitation
builds on a growing trend for objective species delimitation methods with explicit model assumptions that are easily tested.

[Bayes factor; model testing; phylogeography; RADseq; simulation; speciation.]

Genomic data are having a dramatic impact on our
ability to resolve the tree of life (Faircloth et al. 2012), but
delimiting species at the tips of the tree has yet to see
comparable gains. New species delimitation methods
are increasing in statistical rigor and objectivity as
a result of adopting a multispecies coalescent model
(Fujita et al. 2012), although expanding these methods
to truly embrace genome-scale data may be limited
by their reliance on gene trees. Individually, gene
trees can be estimated quickly using fast heuristic
methods (Stamatakis 2006), but combining hundreds or
thousands of gene trees into a single species delimitation
framework presents serious computational challenges
and a poor prognosis for genome-wide species
delimitations. Thus far, species delimitation studies
using gene trees have been limited to approximately 20
loci (Carstens et al. 2013), but as many studies trend
toward large phylogenomic datasets exceeding 100s of
loci (O'Neill et al. 2013; Wagner et al. 2013; Smith et al.
2014) there is a real need for genomically enabled species
delimitation approaches.

New methods for estimating species trees without
gene trees (Bryant et al. 2012; Patterson et al. 2012)
open the door for a remedy. The SNAPP method (Bryant
et al. 2012) estimates species trees directly from biallelic
markers (e.g.,, SNP or AFLP data), and bypasses the
necessity of having to explicitly integrate or sample
the gene trees at each locus. The method works by
estimating the probability of allele frequency change
across ancestor/descendent nodes. Given a species tree,

the probability of the allele frequencies at a given locus
is the probability of a site given a gene tree multiplied
by the probability of the gene tree given the species
tree, summed over all possible gene tree topologies and
integrated over all possible gene tree branch lengths
(Bryant et al. 2012). The result is a posterior distribution
for the species tree, species divergence times, and
effective population sizes, all obtained without the
estimation of gene trees.

Comparisons among candidate species delimitation
models that contain different numbers of species is
relatively easy with the use of Bayes factors (Grummer
et al. 2014), and the existing approach (Bayes factor
delimitation; BFD) uses traditional DNA sequence data
to simultaneously estimate gene trees and species trees.
The approach requires the estimation of marginal
likelihoods for each competing model, and recent
work provides a number of solutions for estimating
these values (Baele et al. 2012). Bayes factor species
delimitation has a number of advantages over other
Bayesian species delimitation approaches (Yang and
Rannala 2010). A significant advantage is the ability
to integrate over species trees during the species
delimitation procedure, which removes the constraint
of specifying a guide tree that represents the true
species relationships. The species tree is usually
uncertain, and incorrect guide trees can bias Bayesian
species delimitation (Leaché and Fujita 2010). Another
advantage is the ability to compare nonnested models
that contain different numbers of species, or different
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assignments of samples to species (Grummer et al. 2014).
Currently, the approach has several limitations. Its use
for heuristically searching among all possible species
assignments is hampered by the need to predefine the
number of species and sample assignments. Methods
including the GMYC (Pons et al. 2006), SpeDeSTEM (Ence
and Carstens 2011), and BROWNIE (O’Meara 2010) are
more appropriate heuristic tools for producing species
assignments when the researcher has no preconceived
species delimitation models to test. Finally, BFD, as
well as the other species delimitation methods listed
previously, rely at some point on gene tree estimation,
and are therefore not easily extended to genome
data.

Here, we incorporate Bayesian multispecies coalescent
species delimitation using genome-wide SNP data
(or other types of biallelic markers, including AFLP
data) into the SNAPP method, but with a critical
new addition. First, we describe the approach and
show that marginal likelihoods for alternative species
delimitation models are not directly comparable. We
solve this problem by adding proportionality constants
that bring marginal likelihoods to the same scale for
comparing competing species assignments with Bayes
factors. Second, we use computer simulations to verify
that our approach works over broad parameter and data
quantity values when the number of species is known.
Finally, we conduct empirical species delimitation using
genome-wide SNP data for West African forest geckos
(Hemidactylus fasciatus complex). We test a four-species
hypothesis for this group that was supported by a
previous study (Leaché and Fujita 2010) based on
five independent nuclear loci and Bayesian species
delimitation (BPP).

Species Delimitation Without Gene Trees

We start with n individuals and m unlinked biallelic
markers typed in these individuals, with alleles
designated as 0 and 1. Suppose each individual is
assigned to one of k populations/species. A Bayesian
method implemented in the software package SNAPP
Bryant et al. (2012) uses the marker data and species
assignments to estimate the species phylogeny. However,
the assignment of individuals to species and the
number of species is often uncertain, so we would like
to compare multiple species delimitations that make
different assumptions about sample assignments and
k. Such comparisons are straightforward to accomplish
in a Bayesian framework using Bayes factors (Kass
and Raftery 1995). Suppose we want to use an nx
m matrix of biallelic markers y to compare two
competing species assignments aj=(ay1,...,41,) and
ar =(ap1,...,a7,), where ayj and ayj are the corresponding
species indicators for individual j. For example, an
assignment a=(1,1,2,2,3,3,1) says that individuals 1,
2, 7 belong to species 1, individuals 3 and 4 belong to
species 2, and individuals 5 and 6 belong to species 3.

The Bayes factor comparing the two assignments is

_ Pr(yla)
2= Py )’ W
where
Pr(y|aj) =/Pr(y 18;,a;)Pr(6;)d8; (2)

isamarginallikelihood, 0; is a set of all model parameters
that define a species tree model corresponding to species
assignment a;, Pr(y 6;,a;) is the likelihood function, and
Pr(6;) is a prior density of model parameters (we will
use Pr(-) to designate both probability and density). In
order to compare multiple species delimitation models,
one can rank these models by their corresponding
marginal likelihoods (2). Selecting the highest ranked
model is a statistically consistent procedure, meaning
that the highest ranked model is guaranteed to be
the correct model as the amount of data increases,
assuming the correct model is being considered. The
software package SNAPP has an implementation of path
sampling to approximate marginal likelihoods of the
form (2), but the current implementation of the software
rescales these likelihoods in a way that makes marginal
likelihoods incomparable. We explain this rescaling and
the corresponding remedy below.

Proportionality Constants for Bayes Factor Species
Delimitation

We use SNAPP (Bryant et al. 2012; RoyChoudhury
et al. 2008) to bypass the explicit integration over the
space of gene trees using an algorithm for computing
the likelihood

m
Pr(y|0;.a)=] [Pr(y;|0;.a).
I=1

where [ indexes one of m unlinked loci under study, y;
is a vector of markers at locus I and y=(yq,...,ym). The
above algorithm starts by compressing the data matrix
y into sufficient statistics. For each locus I, sufficient
statistics for species tree estimation are s;=(syq,...,Sj)
and n;=(nyq,...,n5), where sj; is the number of 1 alleles
at locus / in individuals belonging to species i and ny; is
the number of individuals with nonmissing data at locus
lin species i, and k is the number of species (Bryant et al.
2012; RoyChoudhury et al. 2008). Therefore, associated
with these sufficient statistics is the likelihood

m
Pr(s,n| 0]', a]) = HPI‘(Sl,nl | 0]', a])
I=1

As a result, the path sampling implemented in SNAPP
computes the marginal likelihood,

m
Pr(s,n| aj):/HPr(sl,nl 19,a;)Pr(8;)d6;,
=1
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that also corresponds to the sufficient statistics rather
than to the original data. This procedure does
not affect the estimation of the species tree, the
original objective of SNAPP, but since different species
assignments change the allele counts within species
(i.e., the sufficient statistics), the marginal likelihoods
provided by SNAPP for different species delimitation
models are incomparable. However, the original marker
data likelihood is equal to the sufficient statistics
data likelihood up to a proportionality constant. By
computing this constant for each species assignment,
we can bring SNAPP marginal likelihoods to the same
scale and perform model ranking and Bayes factor
calculations.

Let ”]li be the number of individuals with nonmissing
data at locus ! in species i under species assignment

a and let sél. be the number of 1 alleles at locus I

in individuals belonging to species i under species
assignment a;. Notice that the number of species k;

depends on j. Then, for locus [ and assignment j,
k; nj

. ’
Pr(s]l,n]l|0j,aj)= H(S]l) Pr(yll(-)j,aj),

i=1 "l

1o
that we can compute the corrected marginal likelihood
of species assignment a; as

where n]l = ("51’ ""n]lk]-) and s& =(37 .,s;kj). This means

Pr(s/,n/ | a;)
Pr(y |aj) = ———,

ki m
M ()

where s/ :(sjl,...,s]m), n :(njl,...,nin) and Pr(s/,n/ | a;) is
the marginal likelihood that can be approximated by
SNAPP. Marginal likelihoods of two species delimitation
models can be plugged into formula (1) to compare the
models using Bayes factors.

MATERIALS AND METHODS

Computer Simulations

The multispecies coalescent SNP simulator SimSNAPP
(Bryant et al. 2012) was used to generate polymorphic
biallelic markers on a predefined species tree (100
replicates per simulation). The species tree is asymmetric
and contains four species (Figure 1), and is equivalent
in divergence times and population sizes to a species
tree used in two other simulation studies (Liu and Pearl
2007; Bryant et al. 2012). We alter the species assignments
of the true model to test several common species
delimitation scenarios, including species lumping (two
species are combined into one), splitting (one species is
arbitrarily split into two species), and misclassification of
samples to different species. We simulated SNP data sets
containing either 100, 500, or 1000 polymorphic biallelic
characters. Each separate marker is unlinked given

a) True model b) Splitting

Ancestor A B

A
ABCD EEE -

s

c) Lumping

A A+B
]}
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B (O5[m)
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“ “ em
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FIGURE 1.  The fully specified species tree used to simulate SNP data
for Bayes factor species delimitation (a). Perturbations to the true model
include (b) splitting a species into two false species, (c) lumping two
distinct species into one, and (d) reassigning a sample into the wrong
species. Simulations are conducted with SNP matrices of different sizes
(100, 500, 1000), variable sampling within species (2, 5, 10), and with
different theta priors (correct, high, low). Species tree divergence times
are in units of expected mutations per site.

the species tree. We conducted additional simulations
sampling either two, five, or ten samples per species
to examine the influence of sampling design on species
delimitation.

Our simulation framework allows us to properly
specify the prior distributions for parameters that
most empiricists typically must estimate from the
data. In most cases, we specified prior distributions
to closely match the values used during simulation.
Doing so allowed us to focus on the performance of
the species delimitation framework instead of problems
associated with prior misspecification. We analyzed the
simulated data using the correct prior for the population
size parameter, 6 (gamma(2,333)), which results in an
accurate prior mean = 0.006. However, we are also
interested in understanding how misspecified priors
might impact our ability to accurately delimit species.
Therefore, we also conducted simulations with a gamma
prior off target by orders of magnitude to result in a
“low” prior mean = 0.0001 (gamma(2,20000)), and a
“high” prior mean = 0.01 (gamma(2,200)).

We analyzed the simulated data sets using a
modified version of SNAPP thatincludes proportionality
constants. Posterior probability distributions for the
species tree, divergence times, and population sizes
are a product of the analysis, yet estimating the
marginal likelihood is the immediate goal for Bayes
factor model comparison. Estimating the marginal
likelihood requires extra computation compared to
typical Bayesian inference (Baele et al. 2012), and path
sampling and stepping-stone methods work well in the
context of Bayes factor delimitation of species using
multilocus DNA sequence data (Grummer et al. 2014).
We conducted path sampling with 48 steps to estimate
the marginal likelihood. Each path sampling step is a
power posterior differing only in its power, 8. When = 1
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FIGURE 2. Geographic sampling of Hemidactylus fasciatus complex geckos (numbers in symbols indicate sample sizes), and our preferred

current taxonomy (a). BFD* is used to test the alternative species delimitation models outlined in b—g.

the samples are taken from the posterior and the analysis
is informed by the data. When p = 0, the prior is sampled
without any influence of the data (Baele et al. 2012).
Intermediate p values alter the ratio of data and prior,
and therefore path sampling can accurately estimate
the marginal likelihood (Baele et al. 2012). An Markov
chain Monte Carlo (MCMC) chain length of 200000 with
a pre-burnin of 50000 was sufficient to achieve large
effective sample sizes and apparent stationarity.

The strength of support from Bayes factor (BF;
equation 1) comparisons of competing models was
evaluated using the framework of Kass and Raftery
(1995). A positive BF test statistic (2xlog,) reflects
evidence in favor of model 1, whereas negative BF
values are considered as evidence favoring model 2.
The BF scale is as follows: 0 <2 x log,BF <2 is not worth
more than a bare mention, 2 <2 xlog,BF <6 is positive
evidence, 6 <2 xlog,BF <10 is strong support, and 2 x
log,BF > 10 is decisive.

Empirical Data

We applied BFD* to new SNP data collected for
West African forest geckos in the Hemidactylus fasciatus
complex. A previous species delimitation study utilizing
five nuclear loci found strong support for at least
four unique evolutionary lineages within Hemidactylus
fasciatus using the Bayesian species delimitation method
BPP (Leaché and Fujita 2010). The validity of the
four species was debated (Bauer et al. 2011; Fujita
and Leaché 2011), but we consider the four species
scenario (Figure 2a) a logical starting point for testing
competing species delimitation models (Figure 2b-g).

The alternative species delimitation models that we test
include lumping species (Figure 2b—d), splitting species
(Figure 2e and f), and reassigning samples between
species (Figure 2g).

To collect genome-wide sampling of SNPs, we
followed the laboratory protocols for double-digest
RADseq (ddRADseq) described in (Peterson et al. 2012).
We collected data for 46 West African forest geckos
in the Hemidactylus fasciatus complex, allocated into
our preferred taxonomy as follows: H. coalescens (n=6;
Cameroon, Congo, Gabon), H. eniangii (n =9; Cameroon,
Equatorial Guinea, Nigeria), H. fasciatus (n=16; western
Ghana), and H. kyaboboensis (n=15; Ghanas Togo
Hills). For each individual, we extracted high-molecular
weight genomic DNA from liver or muscle tissue,
checked the quality on agarose gels and measured the
concentration using a Qubit. Overnight double digestion
with Sbfl and Mspl used 0.5 pg of DNA. Fragments were
purified with Agencourt AMPure beads before ligation
of barcoded Illumina adaptors onto the fragments.
Equimolar amounts of each sample were pooled prior
to size selection using a Blue Pippin Prep. Final library
amplification used proofreading Taq and Illumina’s
indexed primers. We kept the number of amplification
cycles to a minimum to reduce PCR clonality, which
can lead to biased read coverage across haplotypes. We
used two quality control measures prior to sequencing,
including quantitative PCR to accurately measure DNA
concentration of adaptor-associated fragments, and a
BioAnalyzer run to confirm the sizes of fragments. The
final libraries were sequenced (50-bp, single-end run) on
one [llumina HiSeq 2000 lane at the Vincent J. Coates QB3
Genomic Sequencing Facility at UC Berkeley.
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Raw Illumina reads were filtered for contaminating
adaptors and primers using the FASTX-Toolkit
v0.0.13.2. We processed the filtered data using
STACKS (Catchen et al. 2011), a group of programs
and scripts that perform additional filtering based
on sequence quality and identifies putative loci and
haplotypes for each individual, and organizes them
into a MySQL database. Working per individual, we
used ustacks to create putative loci by grouping reads
that differ by a threshold of three mismatches. This
threshold amounts to 7.7% nuclear divergence for
39-bp fragments (50-bp sequence minus the five-bp
barcode and partial Sbfl site), which we view as
high for intraspecific diversity but necessary to capture
potential admixture between divergent populations. The
barcodes differed by at least two base pairs to reduce
the chance of demultiplexing errors. The program
ustacks then uses a maximum likelihood algorithm to
determine haplotypes for each individual (Hohenlohe
et al. 2010). We removed putative loci with more than
twice the standard deviation of coverage depth to filter
out repetitive elements and stacks of paralogous loci.
Unique loci from all individuals were aggregated into a
“Catalog” using cstacks, keeping track of the haplotype
diversity within each locus with a mismatch threshold
of three, which reflects a range of divergences that
could constitute potential cryptic species. We resolved
haplotypes for each individual for each locus in the
catalog using sstacks. The program populations outputs
haplotype files from which we reconstituted alignments
for downstream analyses using our own scripts. Since
each RAD locus may contain multiple linked SNPs, we
assembled a final data matrix containing a single SNP
selected at random from each locus.

We analyzed two assemblies of the empirical
data that differed in the level of missing data. One
assembly contained no missing data, and therefore had
only a small number of loci (57), whereas lowering
our tolerance for missing data to 7% resulted in a
matrix containing 1087 loci. We analyzed these data
using the modified version of SNAPP, which was
implemented as a plug-in to the BEAST 2 (Bouckaert
et al. 2014). We conducted path sampling with 48
steps (100,000 MCMC steps, 10,000 pre-burnin steps)
to estimate the marginal likelihood. The software
is open source and is available for download from
http://code.google.com/ p/snap-mcmc/ (last accessed
March 21, 2014). We have created a wiki-page for BFD*
that provides detailed steps on how to install the
program, set up the XML file, and run the analyses
(http:/ /www.beast2.org/wiki/index.php/BFD*, last
accessed March 21, 2014).

REsuLTS
The Importance of Proportionality Constants in Species Tree
Comparisons

A comparison of marginal likelihood values estimated
both with and without proportionality constants,

VOL. 63
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FIGURE 3. Comparisons of the behavior of corrected and

uncorrected marginal likelihoods (a), and their influence on Bayes
factor comparisons of candidate species trees (b). The simulated data
used in this comparison include 500 SNPs and 5 samples per species.

and their influence on Bayes factor comparisons
of species trees, is shown in Figure 3. Under
simulation, uncorrected marginal likelihoods are higher
compared to their corrected counterparts estimated
with proportionality constants (Figure 3a). Arbitrarily
lumping species reduces the number of parameters
in the model, yet the uncorrected marginal likelihood
values increase, which is a counterintuitive result that is
rectified with the use of corrected marginal likelihoods.
The incorrect estimation of marginal likelihoods leads to
a strong bias in BF comparisons of species delimitation
models, and the uncorrected values tend to reject the true
model in favor of less complex models containing fewer
species (i.e., models that lump species) with decisive
support (Figure 3b).

Bayes factor comparisons of candidate species
delimitation models with corrected marginal likelihoods
consistently favor the true model over the competing
models as reflected by the positive BF values (Table 1).
Reassigning samples to the wrong species, or lumping
species together are rejected decisively across all
simulations (2xlog, BF > 70; Table 1). Arbitrarily
splitting a species into two putative sister species
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TaBLE 1.  Simulation results for BED* species delimitation
Marginal likelihood (log,) Bayes factor (2 xlog,)

Loci Samples 6 prior true reassign lump split reassign lump split
500 5 correct —2228.3(45.8) —2411.2(53.3) —2527.4(58.7) —2234.0(50.0) +365.8 (41.2) +598.2(61.8)  +8.4(14)
500 5 low — —22244(459) —2411.1(54.1) —2531.8(60.2) —2228.6(46.0) +373.5 (42.9) +614.9 (64.8)  +8.5(15)
500 5 high  —2229.8(38.0) —2411.4(43.9) —2527.2(47.2) —2234.1(39.0) +363.2 (33.0) +594.8 (62.1)  +8.5(17.2)
100 5 correct  —449.7 (20.5) —486.3 (23.0) —508.0 (24.9) —452.9 (20.4) +73.3 (20.9) +116.6 (29.7)  +6.4 (1.8)
1000 5 correct —4441.1(73.8) —4797.8(87.1) —5028.2(98.5) —44459 (73.7) +713.3(72.0)  +1174.2 (108.4) +9.5(1.6)
500 2 correct —1072.2(35.3) —1139.1(40.7) —1136.1(40.7) —1075.6 (35.2) +133.8 (27.2) +127.8 (27.1)  +6.8(1.2)
500 10 correct —3143.3(81.4) —3358.0(82.8) —3746.7(105.6) —3148.2(81.8) +429.3 (59.3)  +1206.8 (148.6) +9.8(17)

Results are mean values (and standard deviations) across 100 simulation replicates.

produces strong 2 xlog, BF values (>6), and although
most simulation replicates supported the true model,
some replicates supported the alternative model
when the 6 prior was misspecified (Table 1). This
result indicates that species delimitation models that
incorrectly parse weakly diverged populations, or that
split populations connected by moderate to high gene
flow, could be difficult to distinguish using BFD*.
Acquiring decisive BF support for these spurious
groupings may be quite difficult.

Sampling Intensity

We might expect that fluctuations in sampling
intensity (i.e., loci or individuals) might impact our
ability to discriminate alternative species delimitation
models. Species tree simulation studies have demon-
strated that accuracy increases with the number of loci
(Heled and Drummond 2010; Leaché and Rannala 2011;
Bryant et al. 2012), and we expect that discriminating the
true species delimitation model from alternatives should
become easier with more data. Under the simulation
conditions used here, species delimitation with as few as
100 SNPs is adequate for at least strong (split model) or
decisive (reassignment and lump models) BF support for
the true model (Table 1). Increasing the number of SNPs
results in more decisive BF support for the true model.
However, BF support for the true model in relation to the
split model provides only marginal improvement with
even up to 1000 SNPs (Table 1).

Coalescent methods can also gain information by
including more individuals for each species (Maddison
and Knowles 2006). We find that increasing the number
of samples for each species increases the BF support
for the true model (Table 1). This pattern is strongest
under models that reassign samples or lump species,
which become easier to distinguish from the true model
as the number of samples increases (while holding
the number of loci constant). For instance, lumping
species produces an average 2 xlog, BF score of +27.1
when including only two samples per species, but the
2xlog, BF score increases to +61.8 and +148.6 when
sampling five or 10 samples per species, respectively
(Table 1). Arbitrarily splitting a species is the most
difficult scenario to distinguish from the true model, and
adding more samples per species adds a relatively small

H. fasciatus

e H. kyaboboensis

H. coalescens

1 Bioko Island

H. eniangii

FIGURE 4.  Species tree for the Hemidactylus fasciatus complex
estimated with 1087 SNPs and the five-species model that partitions
the Bioko Island samples into a separate species. Posterior probabilities
are shown on branches.

contribution to the BF scores. The 2 xlog, BF scores for
two, five, and 10 species under the split model are +6.8,
+ 8.4, and + 9.8, respectively (Table 1).

Empirical Data

Sequencing on the Illumina HiSeq 2000 platform
provided 124+ million raw sequence reads, and resulted
in an average SNP coverage of 127.6x. The ratio of
read numbers per allele for each biallelic locus for each
individual should be close to 1/1 = 1.0. The mean ratio
over all biallelic loci for all individuals = 1.16:1 (maximum
deviation = 1.21:1; minimum deviation = 1.10:1). We
find the typical trade-off between missing data and
high sample representation as is found in other studies
utilizing RADseq data (Rubin et al. 2012; Cariou et al.
2013; Wagner et al. 2013), namely, the data matrix with
the lowest tolerance for missing data has the fewest
number of SNPs shared across all samples, and the data
matrix with the largest numbers of SNPs has the largest
proportion of missing data. For example, a data matrix
that is 99.2% complete contains only 129 SNPs, whereas
a data matrix allowing 7% missing data (i.e., a SNP can
be missing in < 3 of the 46 samples) contains 1087 SNPs.

Our preferred four-species model is rejected in favor of
a five-species model that splits the Bioko Island samples
of H. eniganii into a separate species, and this result
receives decisive support using a small data matrix
with 129 SNPs and no missing data, as well as a larger
matrix of 1087 SNPs with approximately 7% missing
data (Figure 4). Models that lump species or reassign
samples between species consistently rank low and are



540 SYSTEMATIC BIOLOGY VOL. 63
TABLE2.  Empirical results for BED* species delimitation in the Hemidactylus fasciatus complex
129 SNPs 1087 SNPs

Model Species ML Rank BF ML Rank BF
a. Current taxonomy 4 —1673.4 2 - —12890.3 2 —
b. Lump western forests 3 —1724.2 5 +101.5 —15024.5 6 +4268.3
c. Lump central forests 3 —1788.0 6 +229.2 —14094.0 5 +2407 .4
d. Lump western & central forests 2 —1842.9 7 +339.0 —16190.4 7 +6600.3
e. Split fasciatus 5 -1713.2 4 +79.7 —13088.0 3 +395.5
f. Split eniangii 5 —1625.9 1 -95.1 —12615.3 1 —550.0
g. Reassign Bioko Island 4 —1712.6 3 +78.4 —13434.4 4 +1088.2

Models are presented in Figure 2. ML, Marginal likelihood (log,); BF, Bayes factor (2 xlog,).

rejected decisively using Bayes factors (Table 2). The
specific ranking for these alternative models fluctuates
with the number of SNPs, which indicates that either
the amount of information content and /or missing data
have the potential to impact model ranks. Ultimately,
the specific rankings for these models seem unimportant
given their decisive rejection.

Discussion

Hemidactylus Species Delimitation

Allopatric divergence is the primary mechanism
producing diversity in geckos belonging to the
Hemidactylus fasciatus complex. These geckos are
restricted to rainforest habitats, and their distributions
match those of the major blocks of rainforest. Four
species in the group have become reproductively
isolated from each other as a result of habitat
fragmentation, which has driven allopatric speciation,
and one new species appears to be the result of
island colonization. The Bioko Island in the Gulf of
Guinea harbors a distinct species that is not currently
described. A previous study found significant support
for recognizing the Bioko Island population as a distinct
species using five nuclear genes, although that study
only recognized four species (Leaché and Fujita 2010).
The new SNP data analyzed here provide decisive
Bayes factor support for a five-species model that
allocates the Bioko Island samples into a separate
species (Table 2; Figure 4) . Wagner et al. (2014) provide
formal descriptions of the species within the H. fasciatus
complex.

There is a growing suite of coalescent-based species
delimitation methods that instill greater objectivity into
species delimitation when the appropriate genetic data
are available. Understandably, these methods have set
afire the necessary discussions over the merit and utility
of coalescent-based species delimitation, particularly
with concerns over biases in lumping or splitting species.
One advantage of the statistical framework offered by
coalescent-based species delimitation methods is that
the alternative models that lump or split species can
be quantified and ranked. Common to all methods of
species delimitation is the ultimate goal of accurately
documenting and quantifying biodiversity that can

provide a stable taxonomy. Because of their greater
transparency and objectivity, coalescent-based species
delimitation methods are an important step forward in
attaining this goal.

Genomic Species Delimitation

Combining data from morphology, ecology, behavior,
and genetics is the goal of a pluralistic integrative
taxonomy (Leaché et al. 2009; Padial et al. 2010).
While there is currently no inferential framework
that can analyze these disparate data types jointly, a
component of growing importance is the development
of more objective species delimitation tools that take
advantage of coalescent theory (Fujita et al. 2012).
Indeed, recent progress in statistical species delimitation
has largely focused on genetic data (Fujita et al. 2012;
Carstens et al. 2013), likely due to the ease with which
they can be abundantly collected even for nonmodel
organisms. Species delimitation with genomic data has
desirable properties for systematics, including well-
established methodological and statistical foundations,
more transparent objectivity over other datatypes, such
as morphology (Fujita et al. 2012), and easily-tested
model assumptions pertaining to gene flow, selection,
or population substructure. Currently, RADseq and
sequence capture approaches allow the collection of
thousands of loci for hundreds of individuals, producing
datasets that are too large and complex for traditional
Bayesian and maximum-likelihood analyses; indeed, the
accumulation of data is outpacing the development
of appropriate analytical tools (Sousa and Hey 2013).
Nevertheless, we have developed a phylogenomic
approach that utilizes SNPs—an important source of
genetic variation—to accomplish species delimitation
and the documentation of biodiversity, a central goal of
systematics with large ramifications for all of biology
(Fujita et al. 2012).

Marginal Likelihoods and Bayes Factors

Obtaining accurate estimates for the marginal
likelihood of models forms the foundation for Bayes
factor model comparison. The harmonic mean estimator
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consistently overestimates the marginal likelihood,
and is the least desirable approach (Baele et al
2012). The power posterior approaches including path
sampling and stepping-stone sampling both work
well in the context of species delimitation (Grummer
et al. 2014). Estimating the marginal likelihood using
power posteriors requires a substantial amount of
computational effort. For example, analyses of our 1087
locus empirical dataset using path sampling required
approximately 14.6 days of computation time on an
Intel Xeon E5-2650 2.0 GHz 16 core computer with
32 GB of memory. These computation times are not
insurmountable when investigating a small set of
candidate models, but they could become untenable
if the approach is used to rank a large number of
models. New methods for Bayesian model selection,
including “model-switch stepping-stone sampling,” can
decrease the computation time by directly estimating
the Bayes factor between two competing models instead
of estimating the marginal likelihood for each model
separately (Baele et al. 2013).

Using Bayes factor delimitation of species overcomes
some of the pitfalls of alternative species delimitation
approaches, perhaps the most obvious being
circumventing the need to predefine a fixed species
tree, which can result in biased support for incorrect
models (Leaché and Fujita 2010). This is accomplished
by integrating over species trees and other model
parameters during marginal-likelihood calculations. In
addition, marginal likelihoods provide a convenient way
to rank alternative, even nonnested, models with the
advantage of automatic model complexity penalization
(Baele et al. 2012). Finally, marginal likelihood ranking
and Bayes factor model comparison do not require the
taxonomist to assign prior probabilities to alternative
models, which seem difficult to specify for the case of
species delimitation.

There are several advances that could be made to
BFD* to increase its utility in species delimitation
studies. First, species tree estimation via SNAPP can be
quite slow when analyzing large numbers of species
(>10) or individuals (>100). New algorithms that will
greatly increase the speed of SNAPP are currently under
development. Second, using BFD* to approximate the
joint posterior distribution of species trees and species
assignments would eliminate the need to pick and
choose which models to test. A method that can do
this for three species is already available (Choi and Hey
2011), but scaling this approach to genomic data is too
challenging computationally. Until such an approach
is available, we recommend that empiricists continue
to “front-load” the task of species assignment using
other methods. Different approaches for establishing
species assignments prior to species delimitation include
population assignment programs, mitochondrial DNA
gene trees, taxonomy, geography, or a mix of morphology
and ecology (Edwards and Knowles 2014). Finally,
incorporating migration estimation into the method
would be beneficial, since the ability of populations to
hybridize or exchange migrants has a strong influence

on deciding whether they are on separate evolutionary
trajectories.
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