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Catalytic enantioselective conjugate addition en route to 
paxilline indoloterpenoids.

Devon J. Schatz, Wenqin Li, Sergey V. Pronin
Department of Chemistry, University of California, Irvine, California 92697-2025, United States

Abstract

Development of enantioselective synthesis of precursor en route to paxilline indoloterpenoids is 

described. Evaluation of 25 diphosphine-based ligands has led to identification of JosiPhos 

derivative that allows for asymmetric conjugate addition of homoprenyl Grignard reagent to 2-

methylcyclopent-2-en-1-one in excellent yield and with appreciable levels of enantioinduction. 

Application to the conjugate addition of other Grignard reagents is demonstrated.

Graphical abstract

Indoloterpenoids of the paxilline type (e.g., 1–4, Figure 1) belong to a large family of 

secondary metabolites that exhibit unique molecular architectures and a diverse set of 

biological activities1. More than one hundred congeners identified to date share a common 

structural motif that contains an indole moiety fused to a rearranged diterpenoid fragment, 

which results from an unusual polycyclization of a prenylated indole2. The representative 

physiological and cellular effects attributed to this family of natural products include 

neurological3 and insecticidal4 activities, modulation of lipid balance5, and inhibition of 

mitosis6. The uniting polycyclic motif combined with the diversity of individual structural 

features of paxilline indoloterpenoids and the broad scope of their biological activities have 

fascinated organic chemists for the past four decades, leading to the development of 

numerous syntheses1,7. Of particular note are the remarkable efforts by the Smith laboratory 

that have yielded several strategies for the assembly of the indoloterpenoid motif and have 

culminated in the syntheses of penitrem D8 and nodulisporic acids B, C and D9. In their 

contributions, the Johnson group has employed clever desymmetrization tactics to install the 

vicinal quaternary centers and the tetrahydropyran fragment of paspaline10. The recent 

synthesis of paspaline by the Newhouse group that takes advantage of a biomimetic 
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intramolecular alkylation of an indole with a pendant tertiary alcohol stands out due to 

notable brevity of the route11. The success of these and other studies notwithstanding, 

further advances in this area of synthesis are expected to improve access to the members of 

the paxilline family. We recently demonstrated an entry to these natural products that relies 

on a new polycyclization to access the common terpenoid core (represented by 5)12,13. 

Polycyclization-based strategies can dramatically simplify the assembly of structures 

containing multiple ring systems14, but find little precedent in studies toward paxilline 

indoloterpenoids due to the unique and synthetically challenging connectivity pattern found 

in the shared polycyclic motif15,16. The success of our approach was dependent in part on 

the ability to access scalemic cyclopentanone derivative 6, which served as a precursor en 

route to the tricyclic ketone 5. Here we describe our studies that secured scalable access to 6 
with synthetically useful levels of enantioenrichment and enabled a short, enantioselective 

synthesis of (–)-nodulisporic acid C13.

Our evaluation of existing methods that achieve highly enantioselective synthesis of 2-

methylcyclopentanone derivatives carrying a primary alkyl substituent at the C3 position of 

the five-membered ring quickly revealed that indirect installation of a homoprenyl 

substituent imposed by these strategies would result in a significant increase in the number 

of steps required for the assembly of tricyclic ketone 5, defeating the advantage of brevity 

associated with our approach to paxilline indoloterpenoids. We therefore turned our attention 

to catalytic conjugate additions of organometallic reagents, which promised direct 

installation of the desired substituents as well as the silyl enol ether functionality necessary 

for the subsequent alkenylation event. Among the plethora of relevant asymmetric 

transformations, only a few allow for conjugate addition of alkyl nucleophiles to 

cyclopentenones with high degree of enantioenrichment17. Thus, the pioneering efforts by 

the Pfaltz18, Hoveyda19 and Leighton20 groups identified three classes of ligands (8–10, 

Scheme 1) that enabled highly enantioselective copper-catalyzed conjugate addition of 

dialkylzinc nucleophiles to cyclopent-2-en-1-one. However, examples of application to 

relevant α-substituted enones were not reported. The Alexakis group demonstrated that 

application of bifunctional N-heterocyclic carbene-based ligands, such as 12, allowed for 

highly enantioselective copper-catalyzed conjugate addition of Grignard reagents to α-

substituted cycloalkenones, a first of its kind21. At the same time, only moderate levels of 

enantioenrichment were observed in the case of primary alkyl Grignard nucleophiles. The 

Minnard group recently discovered that ligands from the JosiPhos family, such as 13, 

originally introduced by the Feringa group in relevant enantioselective conjugate additions 

of Grignard reagents22, could be applied to 2-methylcyclopent-2-en-1-one23. Included in this 

report was the successful addition of the desired homoprenyl substituent in useful levels of 

enantioenrichment. Inspired by this report, we sought to examine the potential for improving 

upon the latter result.

Conjugate addition of homoprenylmagnesium bromide (14) to 2-methylcyclopent-2-en-1-

one in the presence of JosiPhos SL-J004–1 (13) produced desired cyclopentanone 15 in 65% 

ee (entry 1, Table 1), which was comparable with the result reported by the Minnaard 

group23 and provided a reference point for subsequent investigations. We also noticed 

formation of significant amounts (≥15 mol%) of the 1,2-addition product. Evaluation of a 
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series of JosiPhos ligands revealed a dramatic dependence of the reactivity and 

stereochemical outcome of the conjugate addition on the change in the phosphine 

substituents (entries 2–15). Thus, replacement of the diphenylphosphino group in 13 with 

dialkylphosphine-derived substituents in 16 and 17 resulted in complete loss of 

enantioinduction (entries 2 and 3). Switching the cyclohexyl substituents for the tert-butyl 

groups of ligand 18 afforded none of the desired 1,4-addition product (entry 4), as did the 

alternative arrangement of the phosphine moieties in ligand 19 (entry 5) and the 

corresponding bis(trifluoromethyl) derivative 20 (entry 6). The reactivity could be rescued 

with o-tolyl derivative 21, but formation of the racemic product was observed (entry 7). 

Application of diphosphine 22 produced low but measurable levels of enantioenrichment 

(entry 8) and similar outcome was observed with bis(diarylphosphino) derivative 23 (entry 

9). Gratifyingly, switching phenyl substituents of 23 to 2-furyl substituents in ligand 24 
secured access to ketone 15 with appreciable levels of enantioenrichment (entry 10). While 

the improvement on the stereochemical outcome was only marginal when compared with the 

Minnaard’s conditions, application of ligand 24 did result in the improved efficiency of the 

conjugate additions and none of the 1,2-addition product was observed. Further changes in 

the aryl substituents of bis(diarylphosphino) JosiPhos derivatives resulted in complete loss 

of enantioinduction (entries 11–14) or desired reactivity (entry 15). Changes in other 

reaction parameters, including concentration (entry 16) and solvents (entries 17–20), proved 

detrimental to the desired outcome and application of ligands from other families of 

diphosphine derivatives, including JosPoPhos (30, entry 21), WalPhos (31–33, entries 22–

24), BINAP (34, entry 25), BIPHEP (35, entry 26), PhanePhos (36, entry 27), DuPhos (37, 

entry 28), Chiraphos (38, entry 29), and DIOP (39, entry 30) led to formation of the racemic 

product.

Application of JosiPhos derivative 24 allowed for efficient production of silyl enol ether 6 
from 2-methylcyclopent-2-en-1-one with synthetically useful levels of enantioselectivity 

(Scheme 2)16. The reaction was routinely performed on a multigram scale and over 50 g of 

enantioenriched product 6 has been procured to date. During our studies en route to (–)-

nodulisporic acid C, we discovered that the level of enantioenrichment achieved via the 

catalytic conjugate addition could be significantly improved at the stage of pivalate 40, 

which was prepared in six steps from silyl enol ether 6. Thus, careful single crystallization 

from hexanes delivered 40 in 97% ee and excellent recovery of 76%, leaving essentially 

racemic material in the supernatant. Pivalate 40 could be converted in one step to dienoate 

41, which secured access to (–)-nodulisporic acid C in twelve steps from 2-

methylcyclopent-2-en-1-one (longest linear sequence).

Considering the limited precedent associated with the catalytic asymmetric conjugate 

addition of Grignard reagents to 2-methylcyclopent-2-en-1-one, we sought to evaluate the 

performance of JosiPhos derivative 24 in the relevant reactions. We discovered that 

corresponding 2-phenethyl-, but-1-en-4-yl-, and 1-pentyl-substituted silyl enol ethers could 

be efficiently prepared from 2-methylcyclopent-2-en-1-one with moderate levels of 

enantioenrichment (entries 1–3 in Table 2). Addition of isobutyl and isopropyl Grignard 

reagents delivered racemic products (entries 4 and 5) and attempted application of allyl and 

phenyl Grignard reagents resulted in preferential 1,2-addition (entries 6 and 7). Thus, 
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application of ligand 24 offered no apparent advantage in the cases of but-1-en-4-yl and 1-

pentyl Grignard reagents over the previously report by the Minnaard group23.

In summary, we disclose our investigations into catalytic asymmetric conjugate additions of 

Grignard reagents to 2-methylcyclopent-2-en-1-one that have secured convenient and 

scalable access to the cyclopentanone-derived precursor en route to the shared polycyclic 

motif of the paxilline indoloterpenoids and has allowed for short enantioselective synthesis 

of (–)-nodulisporic acid C. Our studies further highlight the challenges associated with the 

catalytic asymmetric conjugate addition of organometallic reagents to α-substituted cyclic 

alkenones and the need for new and improved solutions to these challenges in the context of 

synthesis of natural products24.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Representative members of the paxilline family and our approach to the common terpenoid 

core.
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Scheme 1. 
Examples of enantioselective conjugate addition of alkyl organometallic reagents to 

cyclopentenones.
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Scheme 2. 
Application of enantioselective conjugate addition to the synthesis of the dienoate fragment 

of nodulisporic acids.
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Table 1.

Optimization of the catalytic system en route to 15.
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Table 2.

Evaluation of Grignard reagents with JosiPhos Ligand 24 and 2-methylcyclopent-2-en-1-one.

entry Grignard reagent yield % ee
a

1 80 59

2 80 52

3 84 64

4 75 0

5 80 0

6 1,2 addition -

7 1,2 addition -

a
Determined for the major diastereomer of the corresponding ketones resulting from acid hydrolysis of the isolated silyl enol ethers.
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