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NORMAL DISTRIBUTIONS OF FINITE MARKOV CHAINS

JOHN RHODES AND ANNE SCHILLING

Abstract. We show that the stationary distribution of a finite Markov chain can be expressed
as the sum of certain normal distributions. These normal distributions are associated to planar
graphs consisting of a straight line with attached loops. The loops touch only at one vertex either

of the straight line or of another attached loop. Our analysis is based on our previous work,
which derives the stationary distribution of a finite Markov chain using semaphore codes on the
Karnofsky–Rhodes and McCammond expansion of the right Cayley graph of the finite semigroup
underlying the Markov chain.

1. Introduction

In our previous paper [RS17], we developed a general theory to compute the stationary distribution
of a finite Markov chain. Every finite state Markov chain M has a random letter representation, that
is, a representation of a semigroup S acting on the left on the state space Ω [LPW09]. Combining
the Karnofsky–Rhodes and the McCammond expansion of the right Cayley graph of S, we were
able to provide a construction of the stationary distribution using finite semigroup theory without
the use of linear algebra. The construction relies on the concept of lumping; the distributions for
the expanded graphs can be computed thanks to normal forms of the elements. The stationary
distribution of the original Markov chain M is then obtained by lumping.

In this paper, we show that the stationary distribution of any finite Markov chain can be obtained
from certain normal (or Gaußian) distributions . The normal distributions are derived from planar
graphs by adding directed loops (or circles) to the straight line, which only touch the graph at one
point. Let us outline the construction of these normal forms in the remainder of the introduction.

1.1. Straight line. We start with a straight line starting at 1 with n further vertices:

1 1 2 · · · n− 1 n

1.2. Adding loops. A loop is a sequence of vertices connected by edges v0 −→ v1 −→ · · · −→ vk
such that v0 = vk, but all other vertices vi with 0 6 i < k are distinct.

Add a loop ℓ to any vertex of the straight line constructed in Section 1.1 (except 1) with k > 0
new vertices, which only touches one existing vertex v.

1 1 2 v · · · n− 1 n

v1

v2

· · ·

vk

vk−1

The cut of ℓ is
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2 J. RHODES AND A. SCHILLING

v v1 v2 · · · vk−1 vk

Continue to add loops at any vertex (except 1), including the new vertices. Multiple loops at a
given vertex are allowed.

1 1 2 v · · · n− 1 n

v1

v2

...

q

· · ·

vk

vk−1

q1 q2

...

qh

Let G be the directed graph obtained by this procedure. Notice that each such G can be drawn in
the plane.

1.3. Kleene expressions. Given a finite alphabet A, assign a letter a ∈ A to each arrow in the
graph G. The result is called a loop graph, denoted G.

Example 1.1. For the alphabet A = {a, b, c, d, x}, we might obtain

G =

1 1 2 3 4

1′2′

a b c x
ba

d

ca

In general, this procedure gives a non-deterministic automata since different edges emitting from
a vertex can be labeled by the same letter. In the above example, vertex 1 has two arrows labeled
b coming out of it.

Denote the set of all paths in a loop graph G starting at 1 and ending at n (the last vertex on
the initial straight line underlying G) by PG. Here a path is given by

1

a1−→ v1
a2−→ · · ·

ak−→ vk = n,

where vi are vertices in G and ai ∈ A are the labels on the edges.
There is a simple inductive way to describe PG using Kleene expressions . Given a set L, define

L0 = {ε} given by the empty string, L1 = L, and recursively Li+1 = {wa | w ∈ Li, a ∈ L} for each
integer i > 0. Then the Kleene star is

L⋆ =
⋃

i>0

Li.

A Kleene expression only involves letters in A, unions, and ⋆. To obtain a Kleene expression for PG,
perform the following doubly recursive procedure:

Algorithm 1.

Induction basis: Start at vertex 1 and with the empty expression L.

Induction step: Suppose one is at vertex i 6= n (or 1) on the straight line path underlying G.

(1) Continue to the next vertex i+ 1 (or 1) on the straight line path underlying G and append

the label a on the edge from i
a

−→ i+ 1 (or 1
a

−→ 1) to L.
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(2) If there are loops ℓ1, ℓ2, . . . , ℓk at vertex i+ 1 (or 1), append the formal expression

{ℓ1, ℓ2, . . . , ℓk}
⋆

to L. The loops ℓ1, ℓ2, . . . , ℓk are in one-to-one correspondence with the edges coming into
vertex i+ 1.

(3) If i+ 1 6= n, continue with the next induction step. Else stop and output L.

Algorithm 2. For each symbol ℓi in the expression for L, do the following:

(1) Consider the loop ℓi =
(

v0
a1−→ v1

a2−→ · · ·
ak−→ vk = v0

)

from vertex v0 to v0 in G. Consider

the subgraph of G with straight line v1
a2−→ · · ·

ak−→ vk and all further loops that are attached
to any of the vertices vi in G. Attach 1 to v1. The resulting graph G(i) is a new loop graph.
Perform Algorithm 1 on G(i) to obtain a Kleene expression L(i). Replace the symbol ℓi in
L by L(i).

(2) Continue this process until L does not contain any further expressions ℓi for some loop
ℓi, that is, L only contains unions, ⋆ and elements in the alphabet A. Then the Kleene
expression for PG is L.

The resulting expressions can be made into unionless expressions by using Zimin words

(1.1) {a}⋆ = a⋆ and {a, b}⋆ = (a⋆b)⋆a⋆ for a, b ∈ A.

Expressions for larger unions can be obtained by induction using (1.1).

Example 1.2. Let G be as in Example 1.1. Then

L = aℓ⋆1bcx,

where ℓ1 is the loop attached to vertex 1. Cut this loop and continue the process to obtain

ℓ1 = b{ℓ′1, ℓ
′
2}

⋆da,

where ℓ′1 is the loop at vertex 1′ labelled a and ℓ′2 is the loop at vertex 1′ labelled c. We have ℓ′1 = a

and ℓ′2 = c, so that altogether we find

L = a(b{a, c}⋆da)⋆bcx = a(b(a⋆c)⋆a⋆da)⋆bcx,

where in the last step we used the Zimin words to get rid of the unions. This is a Kleene expression
for PG.

See Example 3.8 for another example and also compare this construction to the definition of Pict
in Definition 3.5.

Main results. We are now going to define normal distributions.

Definition 1.3 (Normal distribution). Let G be a loop graph with edges labeled by letters in the
alphabet A. Associate the indeterminate xa to a ∈ A. Then the normal distribution of G is defined
as

ΨG =
∑

p∈PG

∏

a∈p

xa.

We may use the Kleene expressions of the previous section for PG. The advantage in doing so is
that one can immediately obtain rational expressions. Namely, using the geometric series, we find
that

∑

s∈a⋆

∏

i∈s

xi =

∞
∑

ℓ=0

xℓ
a =

1

1− xa

.

Similarly
∑

s∈{a,b}⋆

∏

i∈s

xi =
∑

s∈a⋆(ba⋆)⋆

∏

i∈s

xi =
1

1− xa

·
1

1− xb

1−xa

=
1

1− xa − xb

.
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In general, using the recursion (1.1) we derive by induction

(1.2)
∑

s∈{a1,a2,...,an}⋆

∏

i∈s

xi =
1

1− xa1 − xa2 − · · · − xan

.

Our main theorem is the following.

Theorem 1.4. The stationary distribution ΨM of a finite Markov chain M is the sum of normal

distributions ΨG or certain limits of ΨG, where G is a loop graph.

The proof of Theorem 1.4 is given in Section 3.3. A more precise version of Theorem 1.4 is stated
in Theorem 3.9.

The paper is outlined as follows. In Section 2, we review the main results from [RS17], in particular
the expressions for the stationary distribution of a finite Markov chain in terms of semaphore codes
of the Karnofsky–Rhodes expansion of the right Cayley graph of the underlying semigroup. In
Section 3, we review the McCammond expansion and its relation to semaphore codes and provide
the definition of Pict. The map Pict is used to give a proof of Theorem 1.4. The original definition
of Pict is due to McCammond, but the applications to random walks are due to the authors.

Acknowledgments. We are grateful to Jon McCammond and Ben Steinberg for discussions. The
map Pict of Definition 3.5 is due to McCammond, told to the first author in 1994, written by the
first author in 2008, and simplified here.

The first author thanks the Simons Foundation Collaboration Grants for Mathematicians for
travel grant #313548. The second author was partially supported by NSF grants DMS–1760329
and DMS–1764153.

2. Stationary distributions of Markov chains

In this section, we provide definitions and review the necessary results we need from [RS17].

2.1. Markov chains. A Markov chain M consists of a finite or countable state space Ω to-
gether with transition probabilities Ts′,s for the transition s −→ s′ for s, s′ ∈ Ω. The matrix
T = (Ts′,s)s,s′∈Ω is called the transition matrix , which is a column-stochastic matrix, meaning that
the column sums of T are equal to one.

A Markov chain is irreducible if for any s, s′ ∈ Ω there exists an integer m (possibly depending
on s, s′) such that T m

s′,s > 0. In other words, one can get from any state s to any other state s′ using
only steps with positive probability. A state s ∈ Ω is called recurrent if the system returns to s in
finitely many steps with probability one.

The stationary distribution of M is a vector Ψ = (Ψs)s∈Ω such that T Ψ = Ψ and
∑

s∈ΩΨs = 1.
In other words, Ψ is a right-eigenvector of T with eigenvalue one. If the Markov chain is irreducible,
the stationary distribution is unique [LPW09].

Next we define lumping of Markov chains. Partition the state space Ω into (Ω1, . . . ,Ωℓ) such that

Ωi ∩ Ωj = ∅ for i 6= j and Ω =

ℓ
⋃

i=1

Ωi.

One may view such a partition as an equivalence relation s ∼ s′ if s, s′ ∈ Ωi for some 1 6 i 6 ℓ.
We say that M can be lumped with respect to the partition (Ω1, . . . ,Ωℓ) if the transition matrix T
satisfies [LPW09, Lemma 2.5] [KS76] for all 1 6 i, j 6 ℓ

(2.1)
∑

t∈Ωj

Tt,s =
∑

t∈Ωj

Tt,s′ for all s, s′ ∈ Ωi.

The lumped Markov chain is a random walk on the equivalence classes, whose stationary distribution
labeled by w is

∑

s∼w Ψs.
Every finite state Markov chain M has a random letter representation, that is, a representation

of a semigroup S acting on the left on the state space Ω (see [LPW09, Proposition 1.5] and [ASST15,
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Theorem 2.3]). In this setting, we transition s
a

−→ s′ with probability 0 6 xa 6 1, where s, s′ ∈ Ω,
a ∈ S and s′ = a.s is the action of a on the state s. Let A = {a ∈ S | xa > 0}. We assume that A
generates S; if not, it suffices to consider the subsemigroup generated by A. Note that

∑

a∈A xa = 1.
The transition matrix T of M is the |Ω| × |Ω|-matrix

(2.2) Ts′,s =
∑

a∈A

s
a

−→s′

xa for s, s′ ∈ Ω.

Note that we may assume that the action of S on Ω is faithful as this does not affect the random
walk.

If S is a semigroup, then S1 denotes S with an adjoint identity 1 even if S already has an identity.

Definition 2.1 (Ideal). Let S be a semigroup. A two-sided ideal I (or ideal for short) is a subset
I ⊆ S such that uIv ⊆ I for all u, v ∈ S1. Similarly, a left ideal I is a subset I ⊆ S1 such that
uI ⊆ I for all u ∈ S1.

If I, J are ideals of S, then IJ ⊆ I ∩ J , so that I ∩ J 6= ∅. Hence every finite semigroup has
a unique minimal ideal denoted K(S). As shown in [CP61, KRT68], the minimal ideal K(S) of a
finite semigroup S is the disjoint union of all the minimal left ideals of S and the Rees Theorem
applies. By [ASST15, Remark 2.8] the faithful left action of S on Ω is isomorphic to the left action
of S on K(S).

Let (S,A) be a semigroup S together with a choice of generators A for S. Define M(S,A) to

be the Markov chain, where the transition s
a

−→ s′ for s, s′ ∈ S and a ∈ A is given by s′ = as in
the left Cayley graph with probability 0 < xa 6 1. Note that we are assuming that all probabilities
xa for a ∈ A are nonzero. Then it was shown in [HM11] (see also [ASST15, Proposition 3.2]) that
the recurrent states of M(S,A) are the elements in K(S). Furthermore, the connected components
of the recurrent states in the random walk are the minimal left ideals of S. The restriction of the
random walk to any minimal left ideal is irreducible. Moreover, the chain so obtained is independent
of the chosen minimal left ideal. This random walk and the random walk with states a left ideal L
of K(S) and S acting on the left made faithful, that is x

a
−→ y for x ∈ L and y = ax, are essentially

the same. So we may not distinguish the two cases.

2.2. Karnofsky–Rhodes expansion. In this section, we define the right Cayley graph of a finite
semigroup and its Karnofsky–Rhodes expansions.

Definition 2.2 (Right Cayley graph). Let (S,A) be a finite semigroup S together with a set of
generators A. The right Cayley graph RCay(S,A) of S with respect to A is the rooted graph with

vertex set S1, root r = 1 ∈ S1, and edges s
a

−→ s′ for all (s, a, s′) ∈ S1 × A× S1, where s′ = sa in
S1.

A path p in RCay(S,A) is a sequence

p =
(

v1
a1−→ · · ·

aℓ−→ vℓ+1

)

,

where vi ∈ S1 are vertices in RCay(S,A) and vi
ai−→ vi+1 are edges in RCay(S,A). The endpoint of

p is τ(p) := vℓ+1. The length of the path p is ℓ(p) := ℓ, which equals the number of edges. A simple

path is a path that does not visit any vertex twice. Empty paths are considered simple. A path
which starts and ends at the same vertex is called a circuit . A circuit that is simple, when the last
vertex is removed, is called a loop.

Definition 2.3 (Transition edges). An edge s
a

−→ s′ in the right Cayley graph RCay(S,A) is a
transition edge if there is no directed path from s′ to s in RCay(S,A). In other words, there does
not exist any sequence a1, . . . , ak ∈ A with k > 1 such that s′(a1 · · · ak) = s.
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Let us now define the Karnofsky–Rhodes expansion of the right Cayley graph (see also [MRS11,
Definition 4.15] and [MSS15, Section 3.4]). Let (A+, A) be the free semigroup with generators A,
where A+ is the set of all words a1 . . . aℓ of length ℓ > 1 over A with multiplication given by
concatenation. When we write [a1 · · ·aℓ]S , we mean the element in S when taking the product in
the semigroup of the generators ai ∈ A.

Definition 2.4 (Karnofksy–Rhodes expansion). The Karnofsky–Rhodes expansion KR(S,A) is ob-
tained as follows. Start with the right Cayley graph RCay(A+, A). Identify two paths in RCay(A+, A)

p :=
(

1

a1−→ v1
a2−→ · · ·

aℓ−→ vℓ

)

and p′ :=

(

1

a′

1−→ v′1
a′

2−→ · · ·
a′

ℓ′−→ v′ℓ′

)

in KR(S,A) if and only if the corresponding paths in RCay(S,A)

[p]S :=
(

1

a1−→ [v1]S
a2−→ · · ·

aℓ−→ [vℓ]S

)

and [p′]S :=

(

1

a′

1−→ [v′1]S
a′

2−→ · · ·
a′

ℓ′−→ [v′ℓ′ ]S

)

,

where vi = a1a2 . . . ai and v′i = a′1a
′
2 . . . a

′
i, end at the same vertex [vℓ]S = [v′ℓ′ ]S and in addition the

set of transition edges of [p]S and [p′]S in RCay(S,A) is equal.

Example 2.5. Consider the right Cayley graph of the Klein 4-group Z2 × Z2 with zero with
generators {a, b,�}, where a = (1,−1), b = (−1, 1), and � is the zero. The right Cayley graph
RCay(Z2 × Z2 ∪ {�}, {a, b,�}) is

1

(1,−1) (−1, 1)

(−1,−1)

(1, 1)

�

a b

b a

a b
�

��
�

�

where all three arrows a, b,� fix the vertex � at the bottom. Transition edges are indicated in blue.
Double edges mean that right multiplication by the label for either vertex yields the other vertex.
The Karnofsky–Rhodes expansion of this right Cayley graph is given by

1

a b

ab ba

a2 b2

a2b = aba bab = b2a

�a�ab�a2b�a2� b� ba� b2a� b2�

a b

a

bb a a b

b

a�

�

��

�� �

� �

�

where arrows a, b,� fix all the vertices at the bottom.

Proposition 2.6. [RS17, Proposition 2.15] KR(S,A) is the right Cayley graph of a semigroup, also

denoted by KR(S,A).

2.3. Stationary distribution. We now review the main results of [RS17], which give the stationary
distribution for any Markov chain M(S,A) for a finite semigroup with chosen generators (S,A).
Recall that M(S,A) is the random walk on the unique minimal ideal K(S) of S. More precisely,
the random walk is given by the left action of S on K(S).
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To state our results for the stationary distribution, we first need to review the semaphore codes

associated to (S,A) [BPR10]. The semaphore code S(S,A) is the set of all words a1a2 . . . aℓ ∈ A+

such that [a1a2 · · · aℓ]S ∈ K(S), but [a1a2 · · · aℓ−1]S 6∈ K(S).
The main results are the following.

Theorem 2.7. [RS17, Corollary 2.28] The Markov chain M(S,A) is the lumping of M(KR(S,A))
with stationary distribution

ΨM(S,A)
w =

∑

v∈KR(S,A)
[v]S=w

ΨM(KR(S,A))
v for all w ∈ (S,A).

The next result is non-trivial. It requires the assumption that the minimal ideal K(S) is left zero,
that is, xy = x for all x, y ∈ K(S).

Theorem 2.8. [RS17, Theorem 2.12] If K(S) is left zero, the stationary distribution of the Markov

chain M(KR(S,A)) is given by

ΨM(KR(S,A))
w =

∑

s∈S(S,A)
[s]KR(S,A)=w

∏

a∈s

xa for all w ∈ K(KR(S,A)).

As outlined in [RS17, Section 2.9], the case when K(S) is not left zero can be constructed from
the case when K(S) is left zero using the flat operation. That is, one adds an additional generator
� to the alphabet A, which acts as zero. The associated probability is x�. The elements in the
minimal ideal K(KR(S ∪{�}, A∪{�})) are of the form w�, where w ∈ KR(S,A). Since �v = � for
all v ∈ KR(S,A), we indeed have that K(KR(S ∪ {�}, A∪ {�})) is left zero and hence Theorem 2.8
applies. Then [RS17, Corollary 2.33]

(2.3) ΨM(KR(S,A))
w = lim

x�→0
ΨM(KR(S∪{�},A∪{�}))

w .

3. Normal distributions for random walks

In this section, we prove Theorem 1.4. By Theorems 2.7 and 2.8 and Equation (2.3), the stationary

distribution Ψ
M(S,A)
w is the sum of terms of the form

∏

a∈s xa, where s ∈ S(S,A) (or limits of
such expressions). In Section 3.1, we will explain how the semaphore code S(S,A) is related to
the McCammond expansion Mc ◦ KR(S,A). In Section 3.2, we will then define the map Pict on

Mc ◦ KR(S,A) to deduce that Ψ
M(S,A)
w is a sum of normal forms. A proof of Theorem 1.4 is given

in Section 3.3. Theorem 3.9 is a more precise version of Theorem 1.4.

3.1. The McCammond expansion and semaphore codes. Let us now turn to the McCammond
expansion [McC01, MRS11] of the Karnofsky–Rhodes expansion of the right Cayley graph of (S,A).
Recall that a simple path in KR(S,A) is a path that does not visit any vertex twice. Empty paths
are considered simple.

Definition 3.1 (McCammond expansion). The McCammond expansion Mc◦KR(S,A) of KR(S,A)
is the graph with vertex set V , which is the set of simple paths in KR(S,A). The edges are given by

E := {(p, a, q) ∈ V ×A× V | τ(q) = τ(p)a, ℓ(q) 6 ℓ(p) + 1,

q is an initial segment of p if ℓ(q) 6 ℓ(p)}.

In other words, if the path pa in KR(S,A) is simple, then q = pa. Otherwise τ(pa) = v is a vertex
of p and then q is the initial segment of p up to and including v.

Remark 3.2. Note that Mc ◦ KR(S,A) has a spanning tree T with the same vertex set as Mc ◦
KR(S,A), but only those edges (p, a, q) ∈ E such that ℓ(q) = ℓ(p) + 1.

Example 3.3. The McCammond expansion of KR(S,A) of Example 2.5 is given in Figure 1.
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1

a b

ab baa2

a2b

a2ba

b2

aba

abab

bab

baba

b2a

b2ab

�a2ba� a2b� a2� a� ab� aba� abab� baba� bab� ba� b� b2� b2a� b2ab�

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

a b

a
a

b
b

a
a

b b
b

a
a

b b

a a
a

b
b

aa

b
b

a
a

b
b

b a

Figure 1. The McCammond expansion of KR(S,A) of Example 2.5. Transition
edges are blue. The edges (p, a, q) ∈ E with ℓ(q) = ℓ(p) + 1 are solid, whereas the
edges with ℓ(q) 6 ℓ(p) are dashed and red. The spanning tree T is obtained by
removing all the dashed red arrows.

By Remark 3.2, the McCammond expansion Mc ◦ KR(S,A) has a spanning tree T. In this tree,
the vertices are naturally labeled by the sequence of edge labels in the path from 1 to the vertex.
More concretely, if

p =
(

1

a1−→ v1
a2−→ · · ·

aℓ−→ vℓ

)

is a path in T, then the vertex vℓ is naturally labeled by a1 . . . aℓ. Hence the corresponding vertex
vℓ in Mc ◦ KR(S,A) has a normal form given by a1 . . . aℓ.

Remark 3.2 also ensures that Mc ◦ KR(S,A) has the unique simple path property, defined as
follows.

Definition 3.4 (Unique simple path property). A rooted graph (Γ,1) with root 1 has the unique

simple path property if for each vertex v in Γ there is a unique simple path from the root 1 to v.

Elements in the semaphore code S(S,A) are paths in Mc ◦ KR(S,A) (rather than in T) starting
at 1 and ending in K(S). They are also in natural correspondence with words a1 . . . aℓ ∈ A+ such
that [a1 · · ·aℓ]S ∈ K(S) and [a1 · · · aℓ−1]S 6∈ K(S). From the semaphore code, one can obtain the
normal form by stripping away all loops in the path.

3.2. Definition of Pict. We are now going to define the map Pict from the set of tuples (Γ, p),
where Γ is a graph with the unique simple path property and p is a simple path in Γ starting at 1,
to the set of loop graphs. The straight line, that the loop graph is based on, will correspond to p.
The map Pict was first defined by McCammond (we give a simplified definition here).

Definition 3.5 (McCammond). Let Γ be a graph with the unique simple path property and p a
simple path in Γ starting at 1. Then Pict(Γ, p) is defined by the principle of induction.
Induction basis: Set P = p and start at vertex v0 = 1.
Induction step: Suppose one is at vertex v0 6= τ(p) on path p. Take the edge e from v0 to v1 in p.

(1) If there is no edge in Γ coming into v1 besides e, continue with the unique next vertex in
p, now denoted v1 (with the current vertex v1 relabeled v0), unless v1 = τ(p). If v1 = τ(p),
then output Pict(Γ, p) = P .

(2) Otherwise there is at least one edge e′ 6= e in Γ going into v1, given by e′ =
(

v′
a

−→ v1

)

for some a ∈ A. Since Γ has the unique simple path property by assumption, there must
be a unique simple path starting at 1 going to v0 along the path p followed by the path p′

starting at v0, going along e to v1, and ending at v′.
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(a) Run the induction on p′ in a subgraph Γ′ of Γ, consisting of all edges and vertices
on circuits containing a vertex of p′. Note that p′ is simple in Γ′. The output is
P ′ = Pict(Γ′, p′).

(b) Modify P by attaching P ′ disjointly except at v1 and adding edge e′ from v′ in P ′ back
to v1.

(3) Repeat step (2) for each edge e′ 6= e at vertex v1.
(4) Continue with the induction step unless v1 = τ(p). If v1 = τ(p), then output Pict(Γ, p) = P .

Remark 3.6. If Γ is a rooted graph with the unique simple path property, then Γ with some edges
removed (and any vertices that are no longer connected to the root 1) still has the unique simple
path property. This is the case since either the unique simple path from 1 to v is still there or the
vertex v is now disconnected from 1 and has hence been removed.

The graph Γ′ in the Induction step (2)(a) in the definition of Pict can be obtained in two steps.
First remove all incoming and outgoing edges on the vertices along the path p from 1 to v1, except
the edges on the path p itself. Remove all vertices that have become disconnected in this process.
By the remark above, the resulting graph still has the unique simple path property. In this graph,
all simple paths go through the vertex v1. Hence we may make v0 the root (removing all vertices 1
up to v0 along p). The result is Γ′, which still has the unique simple path property.

Example 3.7. Let p =
(

1

a
−→ 1

b
−→ 2

c
−→ 3

)

in

Γ =

1

1

2

3

4a

b

c

a

d

a

To compute Pict(Γ, p), we start with P = p, v0 = 1 and v1 = 1. We are in step (2) of the Induction

step with e =
(

1

a
−→ 1

)

and e′ =
(

4
a

−→ 1
)

. Then p′ =
(

1

a
−→ 1

b
−→ 2

d
−→ 4

)

and Γ′ is Γ with the

arrow labelled a from v′ = 4 to v1 = 1 removed. Also P ′ = Pict(Γ′, p′) is p′ with a loop labelled a at
vertex 2. Attaching P ′ at v1 = 1 (with its vertex 2 relabelled to 2′ to avoid repetition) and adding
edge e′ we obtain
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P =

1

1

2

3

4

2′

a

b

c

a

b

d

a

Since there are no further edges going into vertex v1 = 1, we continue with the induction along p.

This means that we set v0 = 1, v1 = 2, and e =
(

1
b

−→ 2
)

. Besides e, there is only one other arrow

going into v1 = 2 in Γ, namely e′ =
(

2
a

−→ 2
)

. In this case p′ = 1
b

−→ 2 and Γ′ is Γ with 1 and the

arrows 1
a

−→ 1, 4
a

−→ 1, and 2
a

−→ 2 removed. Hence the new P with P ′ = Pict(Γ′, p′) added is

Pict(Γ, p) = P =

1

1

2

3

4

2′

a

b

c

a

b

d

a
a

The remaining induction steps do not change this P , which is hence also Pict(Γ, p).

Example 3.8. Consider the McCammond expansion Γ = Mc ◦ KR(S,A) of Example 3.3 (see also
Figure 1) and the path in the McCammond tree T given by ab�. Then Pict(Γ, ab�) is given by
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1

a

ab

ab�

a

b

�

• •

a

a

b

b

•••

a

a

b

b

a

a

• • •

b

b

a

a

b

b

•

•

•

a
b

a
b

•

•

•

b a

b
a

•

a

a

•

b

b

•

b b

•

a a

•

a a

•

b b

Following the algorithm explained in Section 1.3, a Kleene expression for PPict(Γ,ab�) is given by

L = a{ℓ1, ℓ2, ℓ3, ℓ4}
⋆bℓ⋆5�,

where

ℓ1 = a(b(aa)⋆b)⋆b(aa)⋆ab,

ℓ2 = a(b(aa)⋆b)⋆a,

ℓ3 = b(a(bb)⋆a)⋆a(bb)⋆ba,

ℓ4 = b(a(bb)⋆a)⋆b,

ℓ5 = a(bb)⋆a.

Hence

ΨPict(Γ,ab�) =
xaxbx�



1−
x2
ax

2
b

(

1−
x2
b

1−x2
a

)

(1−x2
a)

− x2
a

1−
x2
b

1−x2
a

−
x2
ax

2
b

(

1−
x2
a

1−x2
b

)

(1−x2
b
)
−

x2
b

1−
x2
a

1−x2
b





(

1− x2
a

1−x2
b

)

=
xaxbx�(1− x2

b)
(

1−
2x2

ax
2
b

1−x2
a−x2

b

− x2
a(1−x2

a)

1−x2
a−x2

b

−
x2
b
(1−x2

b
)

1−x2
a−x2

b

)

(1− x2
a − x2

b)

=
xaxbx�(1− x2

b)

1− 2x2
a − 2x2

b + (x2
a − x2

b)
2
.

Using that xa + xb + x� = 1, we find that in the limit x� → 0

lim
x�→0

ΨPict(Γ,ab�) =
1

8
(1− x2

b).
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In a similar fashion, we find

Ψ� = x�

x�→0
−→ 0

Ψa� =
xa(1 − x2

a − x2
b)x�

1− 2x2
a − 2x2

b + (x2
a − x2

b)
2

x�→0
−→

xa

4

Ψaba� =
x2
axbx�

1− 2x2
a − 2x2

b + (x2
a − x2

b)
2

x�→0
−→

xa

8

Ψabab� =
x2
ax

2
bx�

1− 2x2
a − 2x2

b + (x2
a − x2

b)
2

x�→0
−→

xaxb

8

Ψa2� =
x2
a(1 − x2

a)x�

1− 2x2
a − 2x2

b + (x2
a − x2

b)
2

x�→0
−→

xa(1 + xa)

8

Ψa2b� =
x2
axbx�

1− 2x2
a − 2x2

b + (x2
a − x2

b)
2

x�→0
−→

xa

8

Ψa2ba� =
x3
axbx�

1− 2x2
a − 2x2

b + (x2
a − x2

b)
2

x�→0
−→

x2
a

8
.

The stationary probabilities for the elements with a and b interchanged are obtained by symmetry.
It is not hard to check that these probabilities sum to one as desired.

As noted in the introduction, Pict(Γ, p) is not necessarily deterministic. There can be several
arrows leaving a vertex labeled by the same element a ∈ A. For example, vertex 1 in Example 3.7
has two arrows labeled b coming out.

One can make a non-deterministic automata A deterministic as follows. If A has states Q with
start state 1 and final states F not containing 1, we make a deterministic automata det(A) accepting
the same strings going from 1 to a member of F as follows. The states Q′ of det(A) are the collection
of subsets of Q determined a follows:

• {1} is in Q′;

• if Z ∈ Q′, then Z.a ∈ Q′ for a ∈ A, where Z.a = {q | z
a

−→ q ∈ A where z ∈ Z}.

One continues by induction until the process adds no new subsets. For det(A), start in state {1}.
The final states are all the states of det(A) such that the intersection with F is non-empty.

With this definition, making Pict(Γ, p) deterministic gives the automata for (Γ, p) back.

3.3. Proof of Theorem 1.4. As explained in Section 2.1, any finite Markov chain M can be
described as a Markov chain M(S,A) in terms of a finite semigroup S with generators A. Since by

Theorem 2.7, Ψ
M(S,A)
w is the sum over Ψ

M(KR(S,A))
v , it suffices to prove the statement of Theorem 1.4

for Ψ
M(KR(S,A))
v . When K(S) is not left zero, we may use the limiting construction of (2.3) to obtain

Ψ
M(KR(S,A))
v from the case in which the minimal ideal is left zero. Assuming that K(S) is left zero,

we have by Theorem 2.8

(3.1) ΨM(KR(S,A))
w =

∑

s∈S(S,A)
[s]KR(S,A)=w

∏

a∈s

xa for all w ∈ K(KR(S,A)).

As explained in Section 3.1, there is a normal form associated to each semaphore code element
s ∈ S(S,A). Namely, s is a path in Mc ◦ KR(S,A) starting at 1 and the normal form is the simple
path with all loops stripped away from s; equivalently the normal form is the path in T starting at
1 and ending at τ(s), where T is the tree associated to the McCammond expansion Mc ◦ KR(S,A).
In the tree T, a path p starting at 1 is also naturally in bijection with its endpoint τ(p). Hence we
may identify vertex t ∈ T with the path from 1 to t in T or equivalently with the simple path from
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1 to t in Mc ◦ KR(S,A). Therefore, we may rewrite the sum in (3.1) as

(3.2) ΨM(KR(S,A))
w =

∑

t∈T

[t]KR(S,A)=w









∑

s∈S(S,A)
τ(s)=t

∏

a∈s

xa









for all w ∈ K(KR(S,A)).

We claim that for a given t ∈ T with [t]KR(S,A) ∈ K(KR(S,A))

(3.3) ΨPict(Mc◦KR(S,A),t) =
∑

s∈S(S,A)
τ(s)=t

∏

a∈s

xa.

Recall that by Definition 1.3

ΨPict(Mc◦KR(S,A),t) =
∑

p∈PPict(Mc◦KR(S,A),t)

∏

a∈p

xa.

Hence (3.3) can be proved by establishing a bijection

(3.4) ϕ : {s ∈ S(S,A) | τ(s) = t} −→ PPict(Mc◦KR(S,A),t).

In fact, we are going to prove a slight generalization of (3.4). Namely, for any t ∈ T we will show
that there is a bijection

(3.5) ϕ : {s ∈ PMc◦KR(S,A) | τ(s) = t} −→ PPict(Mc◦KR(S,A),t),

where PMc◦KR(S,A) is the set of paths in Mc ◦ KR(S,A) starting at 1. Then (3.4) is the special case
when [t]KR(S,A) ∈ K(KR(S,A)).

To define ϕ in (3.5), fix t = a1 · · · ak, where ai ∈ A are the labels in the path in T. A path

s ∈ PMc◦KR(S,A) with τ(s) = t, can be viewed as t with circuits ℓ
(j)
j interspersed. More precisely,

s = a1





∏

j∈J1

ℓ
(j)
1



 a2





∏

j∈J2

ℓ
(j)
2



 · · · ak





∏

j∈Jk

ℓ
(j)
k



 ,

where τ(a1 · · · ai) = τ(a1 · · · aiℓ
(j)
i ) for all 1 6 i 6 k and j ∈ Ji and any initial subsequence of ℓ

(j)
i

does not reach the vertex a1 · · · ai. Here the sets Ji index the set of circuits {ℓ
(j)
i | j ∈ Ji} at vertex

a1 · · · ai and either Ji = {1, 2, . . . , ni} is a finite set or Ji = {1, 2, 3, . . .} is the set of positive integers.

In other words, each ℓ
(j)
i is a circuit from vertex a1 · · ·ai to itself, which does not pass through

a1 · · · ai otherwise. The last step of ℓ
(j)
i is an edge in Mc ◦ KR(S,A) that is not in T. Suppose by

induction that

s′ = a1





∏

j∈J1

ℓ
(j)
1



 · · ·ai





∏

j∈J′

i

ℓ
(j)
i



 ,

where 1 6 i 6 k and J ′
i = {1, 2, . . . , n′

i} ⊆ Ji or J
′
i = Ji, is mapped to π in Pict(Mc◦KR(S,A), a1 · · ·ai)

under ϕ. We need to distinguish two cases.

Case J ′
i ( Ji. Let j be the smallest element in Ji \ J ′

i . Recall that Mc ◦ KR(S,A) has the unique
simple path property. Hence the path p′ in Mc◦KR(S,A) from v0 = a1 · · · ai−1 through v1 = a1 · · ·ai
to v′, which is a1 · · · aiℓ

(j)
i with the last edge e′ removed is a path in Γ′ in the notation of Section 3.2.

By induction this path is mapped to π′ in PPict(Γ′,p′). Hence

ϕ(s′ℓ
(j)
i ) = ππ′ ∈ PPict(Mc◦KR(S,A),a1···ai)

This corresponds to the induction step (2) in Definition 3.5.

Case J ′
i = Ji. If i = k, we are done. If i < k, we define

ϕ(s′ai+1) = πai+1 ∈ PPict(Mc◦KR(S,A),a1···ai+1),
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which is a well-defined path since the last step is along the straight line path and hence unique. This
corresponds to the induction step (1) (if Ji = ∅) or step (4) (if Ji 6= ∅) in Definition 3.5.

This shows that ϕ is a well-defined map. It has an inverse ϕ−1 by mapping a path π ∈
PPict(Mc◦KR(S,A),t) to a path in Mc ◦ KR(S,A) by just reading the labels of the edges. This indeed
gives a path in Mc ◦ KR(S,A) by the construction of Pict.

Combining (3.2) and (3.3), we obtain

ΨM(KR(S,A))
w =

∑

t∈T

[t]KR(S,A)=w

ΨPict(Mc◦KR(S,A),t),

which proves Theorem 1.4 since Pict(Mc ◦ KR(S,A), t) is a loop graph.
In summary, we proved the following theorem, which is a more detailed version of Theorem 1.4.

Theorem 3.9. Let M(S,A) be a Markov chain associated to the finite semigroup with generators

(S,A). If K(S) is left zero, the stationary distribution is given by

ΨM(S,A)
w =

∑

t∈T

[t]S=w

ΨPict(Mc◦KR(S,A),t) for w ∈ K(S),

where T is the spanning tree of Mc ◦ KR(S,A). Otherwise

ΨM(S,A)
w =

∑

t∈T

[t]S=w�

lim
x�→0

ΨPict(Mc◦KR(S∪{�},A∪{�}),t) for w ∈ K(S),

where T is the spanning tree of Mc ◦ KR(S ∪ {�}, A ∪ {�}) and � acts as zero.
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