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Dual Perspectives

Dual Perspectives Companion Paper: Gliotransmission: Beyond Black-and-White, by Iaroslav Savtchouk and Andrea
Volterra

Multiple Lines of Evidence Indicate That Gliotransmission
Does Not Occur under Physiological Conditions

X Todd A. Fiacco1 and Ken D. McCarthy2

1Department of Cell Biology and Neuroscience, Center for Glial-Neuronal Interactions, University of California–Riverside, Riverside, California 92521,
and 2Department of Pharmacology, School of Medicine, University of North Carolina–Chapel Hill, Chapel Hill, North Carolina 27599-7365

A major controversy persists within the field of glial biology concerning whether or not, under physiological conditions, neuronal activity
leads to Ca 2�-dependent release of neurotransmitters from astrocytes, a phenomenon known as gliotransmission. Our perspective is
that, while we and others can apply techniques to cause gliotransmission, there is considerable evidence gathered using astrocyte-specific
and more physiological approaches which suggests that gliotransmission is a pharmacological phenomenon rather than a physiological
process. Approaches providing evidence against gliotransmission include stimulation of Gq-GPCRs expressed only in astrocytes, as well
as removal of the primary proposed source of astrocyte Ca 2� responsible for gliotransmission. These approaches contrast with those
supportive of gliotransmission, which include mechanical stimulation, strong astrocytic depolarization using whole-cell patch-clamp or
optogenetics, uncaging Ca 2� or IP3, chelating Ca 2� using BAPTA, and nonspecific bath application of agonists to receptors expressed by
a multitude of cell types. These techniques are not subtle and therefore are not supportive of recent suggestions that gliotransmission
requires very specific and delicate temporal and spatial requirements. Other evidence, including lack of propagating Ca 2� waves between
astrocytes in healthy tissue, lack of expression of vesicular release machinery, and the demise of the D-serine gliotransmission hypothesis,
provides additional evidence against gliotransmission. Overall, the data suggest that Ca 2�-dependent release of neurotransmitters is the
province of neurons, not astrocytes, in the intact brain under physiological conditions.
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Introduction
The goal of this portion of the Dual Perspectives feature is to
share information and evidence that have led us to reject the
hypothesis that astrocytes participate in gliotransmission under
physiological conditions. As such, this evidence has been built on
“negative” data, which by definition is more difficult to defend,
requires a higher level of scrutiny, and more often than not goes
unpublished. However, we would like to emphasize at the outset
the difference between “absence of evidence” versus “evidence of
absence.” “Absence of evidence” suggests that something has not
been observed but has never been objectively and carefully tested.
In the case of gliotransmission, there is strong and ample evi-
dence from carefully designed and controlled studies leading to
the conclusion that gliotransmission does not occur under phys-

iological conditions; that is, there is substantial evidence of ab-
sence. The reader is encouraged to read through both viewpoints
and, with the information provided, form their own perspectives
and conclusions regarding the existence of gliotransmission. We
invite the reader to consider the following questions as they read
through both perspectives: In weighing the evidence for and
against gliotransmission, what methods or conditions were used
in each case? Did one set of methods or conditions approach
astrocyte physiology more closely than another? Are sufficient
controls in place to eliminate potential involvement of astrocytic
pumps, ion channels, and transporters that could also be
modulated by ion fluxes, changes in membrane potential, G
protein-coupled receptors (GPCRs), and/or Ca 2�? Finally, is
gliotransmission necessary or important for brain function and
behavior? Here we concisely highlight findings from a wide spec-
trum of laboratories that argue against gliotransmission being a
physiological process.

Discovery of gliotransmission and methods used to
stimulate astrocytes
Cultured astroglia in vitro directly signal to neurons and other
astroglia through the Ca 2�-dependent exocytosis of neurotrans-
mitters (Parpura et al., 1994, 1995; Araque et al., 1998a, b, 1999a,
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2000, 2001; Parpura and Haydon, 2000); the term “gliotransmis-
sion” was created to describe this phenomenon (Bezzi and Volt-
erra, 2001). The discovery of gliotransmission in vitro was very
exciting as it challenged the classical view of nervous system func-
tion and quickly led to study of this process in acute brain sec-
tions. Pharmacological approaches were the easiest to use and
were therefore the first used to stimulate astroglial Ca 2� eleva-
tions. Many of the early techniques used in vitro, including me-
chanical stimulation of astrocytes with a pipette tip, stimulating
endogenous GPCRs with bath-applied agonists, uncaging Ca 2�

within the cell, and chelating astrocyte Ca 2� by whole-cell dialy-
sis of BAPTA, were carried over to work in intact tissue (for
review, see Araque et al., 1999b; Bezzi and Volterra, 2001). While
these techniques resulted in changes in neuronal synaptic activity
interpreted as gliotransmission, they were limited by a lack of
specificity or physiological relevance. For example, strong evi-
dence from work in vitro indicated that stimulation of astrocytic
Gq-GPCRs was sufficient to drive gliotransmission through re-
lease of Ca 2� from IP3 receptor-dependent internal stores (Par-
pura et al., 1994; Jeftinija et al., 1996; Pasti et al., 2001; Montana et
al., 2006). However, in intact brain tissue, the application of
agonists with the intent to stimulate astrocytic receptors directly
stimulates these same receptors on neurons and other glia. Con-
tinual dialysis of astrocytes with BAPTA dilutes basal Ca 2� levels
as well as other signaling molecules within the cell, making it
nonspecific while also potentially buffering extracellular Ca 2�

required for synaptic transmission. Overall, the methods used to
study gliotransmission have either been nonselective (e.g., activation
of endogenous Gq-GPCRs) or nonphysiological and wrought with
potential artifacts (e.g., uncaging or chelating Ca2�). Development
and use of genetic approaches to study gliotransmission were
transformative by ensuring selectivity of astrocyte stimulation
in intact tissue while more closely replicating astrocyte Ca 2�

release mechanisms.

Transgenic expression of a Gq-GPCR only in astrocytes and
the concept of astrocytic “calcium codes” necessary for
gliotransmission
Out of concern for limitations imposed by the available tech-
niques used to stimulate astrocytes, a transgenic line of mice was
developed to stimulate Ca 2� elevations only in astrocytes (to
provide selectivity) and in a GPCR-dependent manner (to repli-
cate endogenous astrocyte Ca 2� release mechanisms). This was
achieved by driving expression of an endogenous Gq-GPCR to
astrocytes that is not normally expressed in forebrain, and whose
ligand cannot activate other forebrain GPCRs (Fiacco et al., 2007).
The Gq-GPCR, Mas-related gene receptor A1 (MrgA1R), is en-
dogenously expressed by nociceptive sensory terminals in the
spinal cord but is not expressed in brain. Mice expressing the
MrgA1R in astrocytes are phenotypically normal, breed well, and
have normal lifespans, presumably because the receptor is expressed
but never activated by endogenously released neurotransmitters.
Approximately 90% of astrocytes express MrgA1R (Fiacco et al.,
2007). The spatial and temporal pattern of Ca 2� activity evoked
by MrgA1R stimulation was found to closely resemble the pattern
of Ca 2� evoked by mGluR agonists in the same astrocytes (Fiacco
et al., 2007), suggesting that the MrgA1R uses the same intracel-
lular machinery as native astrocytic Gq-GPCRs, and does not
interfere with Ca 2� elevations mediated by native astrocytic Gq-
GPCRs (Fiacco et al., 2007). Importantly, MrgA1R Ca 2� eleva-
tions universally initiated in astrocyte processes (as opposed to
the soma) and propagated into the entire visible extent of the
astrocyte, including the fine processes (Fig. 1; Movie 1) (Fiacco et

al., 2007). Among the hippocampal astrocyte population, MrgA1R
Ca2� elevations were highly synchronous, making it easy to cor-
relate astrocyte Ca 2� to any possible changes in neuronal activity.
In contrast to findings observed in earlier studies of gliotransmis-
sion, which recorded Ca 2� elevations in the astrocyte soma only
(Parri et al., 2001; Bowser and Khakh, 2004; Fellin et al., 2004;
Perea and Araque, 2005; Serrano et al., 2006; D’Ascenzo et al.,
2007), MrgA1R-evoked astrocyte Ca 2� elevations did not alter in
any way neuronal excitatory synaptic activity or short- or long-
term synaptic plasticity (Fiacco et al., 2007; Agulhon et al., 2010).

The MrgA1R agonist concentration used by Fiacco et al.
(2007) (10 �M) produced very strong and sustained astrocytic
Ca 2� elevations. It has since been suggested that these Ca 2� ele-
vations are the wrong “code” for gliotransmission (Araque et al.,
2014). This assertion seems unlikely for a number of reasons.
First, as has already been pointed out, the Ca 2� elevations evoked
by MrgA1R stimulation propagated into all visible astrocytic
compartments where the putative diffuse, more scattered astro-
cytic vesicles have been suggested to reside (Bezzi et al., 2004;
Crippa et al., 2006; Santello et al., 2011). Second, vesicular
exocytosis of neurotransmitter increases as a function of Ca 2�

concentration. In fundamental work, Llinás (1977) demon-
strated that the amplitude of the postsynaptic potential increases
stepwise with the amount of presynaptic Ca 2� influx. The strong
Ca 2� elevations evoked by MrgA1R stimulation seem well suited
to propagate into the small astrocytic compartments to induce
exocytosis. Santello et al. (2011) discussed the importance of
stronger and spatially larger synchronous astrocyte Ca 2� eleva-
tions for exocytosis of astrocytic glutamate in sufficient quantity
to be detected by adjacent neurons. Third, approaches used to
elevate astrocyte Ca 2� in reports of gliotransmission, including
bath application of agonists to native astrocytic GPCRs, uncaging
Ca 2� or IP3, optogenetic stimulation, mechanical stimulation,
and strong astrocytic depolarization via whole-cell voltage-clamp
(Araque et al., 1999b; Bezzi and Volterra, 2001; Fiacco and Mc-
Carthy, 2004; Perea and Araque, 2007; Perea et al., 2014) do not
produce universally local or subtle Ca 2� responses, suggesting
that gliotransmission is not a finicky process dependent on deli-
cate temporal or spatial requirements as is now being suggested
(Araque et al., 2014; Sherwood et al., 2017). Fourth, Araque et al.
(2014) referred to previous work in cultured astroglia where
long-lasting astrocyte Ca 2� increases (similar to those generated
by MrgA1R stimulation) were observed to trigger a solitary epi-
sode of gliotransmitter release at the onset of the Ca 2� increase
(Pasti et al., 2001). However, this finding in itself refutes the idea
that subtle and discrete changes in Ca 2� are required for glio-
transmission: The long-lasting Ca 2� increases evoked by Pasti et
al. (2001) did indeed result in gliotransmission (in vitro). Indeed,
the sustained astroglial Ca 2� elevations evoked in those experi-
ments released enough glutamate from astroglia to produce
massive, 30 s duration Ca 2� elevations in cocultured sniffer cells.
Such responses would not have been missed by Fiacco et al. (2007)
who, in addition to performing continuous recordings of EPSCs
in CA1 pyramidal neurons, also recorded neuronal Ca 2� activity.
At no time during those recordings, including the onset and ris-
ing phase of the fast, widely synchronous astrocyte Ca 2� eleva-
tions, was there any change in neuronal activity or any effect on
neuronal Ca 2� (Fiacco et al., 2007). It is important to note that,
in the same study where MrgA1 stimulation failed to elicit glio-
transmission, the nonphysiological approach of uncaging IP3 in
astrocytes increased EPSC frequency in line with a previous study
(Fiacco and McCarthy, 2004); similar findings have also been
reported by Nedergaard and colleagues (Wang et al., 2013).
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Overall, the findings using the MrgA1 transgenic mice demon-
strate that when astrocytic Gq-GPCR signaling cascades are se-
lectively stimulated, the resultant fast and synchronous astrocytic
Ca 2� elevations that propagate throughout the fine processes of

astrocytes do not produce gliotransmission. Importantly, stimu-
lation of native astrocytic Gq-GPCRs that are enriched in astro-
cytes (the endothelin receptors) also increases astrocyte Ca 2� but
produces no effect on neuronal synaptic transmission or short-
or long-term plasticity (Fiacco et al., 2007; Agulhon et al., 2010).
The data argue against a subtle Ca 2� code required to evoke
gliotransmission, but rather just the opposite: A variety of very
nonphysiological methods that evoke increases in astrocyte Ca 2�

led to gliotransmission.

Significant attenuation of both local and large scale
spontaneous and evoked astrocyte calcium elevations in
IP3R2-deficient mice produces no effect on synaptic
transmission, plasticity, or behavior
Stimulation of astrocytic Gq-GPCRs activates a phospholipase C
signaling pathway leading to cytosolic Ca 2� elevations resulting
from Ca 2� release from IP3 receptor-sensitive intracellular stores
(Falkenburger et al., 2010; Gresset et al., 2012). Pharmacological
inhibition of IP3 receptors or emptying Ca 2� stores was found to
block exocytotic release of glutamate from cultured astroglia and
prevent gliotransmission (Araque et al., 1998a, b; Montana et al.,
2006). Based on strong immunohistochemical evidence suggest-
ing that astrocytes exclusively express the IP3 receptor Type 2
(IP3R2) isoform (Sharp et al., 1999; Holtzclaw et al., 2002; Hertle
and Yeckel, 2007), IP3R2 knock-out (IP3R2�/� KO) mice were
tested to determine whether removal of physiological sources of
astrocyte Ca 2� impaired gliotransmission (Petravicz et al., 2008).

Figure 1. Stimulation of astrocytic MrgA1 receptors produces a widespread Ca 2� elevation that propagates throughout the cell, including the fine processes and with a pattern similar to a native
Gq-GPCR. A, Numbered regions of interest over astrocytic compartments correspond to the fluorescence over time measurements recorded in the same regions (B, C). Increases in fluorescence
indicate astrocyte Ca 2� elevations. B, Application of the MrgA1 receptor agonist FLRFa produced a Ca 2� response very similar to the one produced by application of the endogenous Group I mGluR
agonist DHPG. Hatched boxes represent regions of expanded timescale shown in C. Stimulation of astrocytic MrgA1Rs evoked a Ca 2� elevation that initiated in a process and then propagated
throughout the visible extent of the astrocyte, including the fine processes (see Movie 1 for this cell, where it is clearly evident that the Ca 2� elevation enters the fine astrocyte compartments, even
though fluorescence intensity was recorded only in a small number of regions of interest). C, The Ca 2� elevation evoked by MrgA1R stimulation (top) produced a pattern nearly identical to that
produced by DHPG application (bottom). Scale bars, 10 �M. Reprinted with permission from Elsevier Limited, copyright 2007.

Movie 1. MrgA1-evoked astrocyte Ca 2� elevation propagates
throughout all visible astrocytic compartments, including the fine pro-
cesses with a similar pattern as DHPG. This movie shows the same as-
trocyte as in Figure 1. The first Ca 2� elevation occurs in response to
application of the MrgA1 agonist FLRFa to activate astrocytic MrgA1
receptors, followed by application of 20 �M DHPG to stimulate Group I
mGluRs. The Ca 2� elevation in response to stimulation of MrgA1Rs propagates throughout the
entire visible astrocyte, including the fine processes. The pattern of the response, including
initiation in an astrocyte process and propagation into the small compartments, is very similar
to the pattern evoked by stimulation of Group I mGluRs. The movie shows 30 frames per second,
which is sped up �40�. Actual acquisition speed is one frame per 1.3 s.
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Petravicz et al. (2008) observed the following: (1) removal of
IP3R2 prevented spontaneous and evoked Gq-GPCR-mediated
astrocyte Ca 2� elevations; and (2) there was no effect of abolish-
ing IP3R-sensitive sources of astrocyte Ca 2� on neuronal synap-
tic activity. A caveat of the work is that Ca 2� activity was not
examined in the fine processes of IP3R2�/� astrocytes, leaving
open the possibility that not all Ca 2� activity was completely
abolished.

A comprehensive evaluation of evoked and spontaneous as-
trocyte Ca 2� activity in IP3R2�/� mice has since been provided
by Srinivasan et al. (2015) and Agarwal et al. (2017) using genet-
ically encoded Ca 2� indicators expressed in astrocytes in brain
slices and in vivo. These studies have revealed that, although not
completely abolished, a highly significant amount of spontane-
ous and evoked astrocyte Ca 2� activity is absent in IP3R2�/�

mice, including the fast, local microdomain Ca 2� activity
suggested to be essential for gliotransmission (Araque et al.,
2014). Srinivasan et al. (2015) observed that all spontaneous
Ca 2� activity, and Ca 2� elevations evoked by agonist application
or startle are absent in the astrocyte soma in IP3R2�/� mice,
along with �60% of the local, spontaneous Ca 2� transients oc-
curring in the fine processes. Fast, startle-evoked astrocyte Ca 2�

elevations were also abolished in the fine processes of IP3R2�/�

mice, leaving behind a very slow, nondecaying shift in baseline
Ca 2�. Agarwal et al. (2017) obtained similar results as Srinivasan
et al. (2015) with regard to Ca 2� activity abolished in the
IP3R2�/� mice. The number of spontaneously active microdo-
mains was reduced by 65% (in slices) and 64% (in vivo), and the
number of events remaining in each domain was significantly
attenuated in both preparations. Use of a membrane-tethered
GCaMP3 in astrocytes biased reporting of astrocyte Ca 2� activity
to the finest compartments, indicating that IP3R2 KO signifi-
cantly abolished Ca 2� activity exhibiting the spatiotemporal dy-
namics recently suggested to be important for gliotransmission
(Araque et al., 2014). As to evoked responses, application of
the purinergic receptor agonist ATP, considered a key neu-
rotransmitter/gliotransmitter regulating astrocyte Ca 2� activity
and gliotransmission, did not evoke any astrocyte Ca 2� in-
creases, consistent with loss of IP3 receptor-dependent Ca 2� re-
lease mechanisms. Norepinephrine was still able to elicit a small
increase in astrocyte microdomain activity. Locomotion-
induced norepinephrine release in vivo evoked on average 125
microdomain Ca 2� events from a baseline of 25 events in mice
expressing IP3R2, but only 9 microdomain Ca 2� events from a
baseline of 4 in IP3R2�/� mice (Agarwal et al., 2017). The con-
clusion that can be made from these data is that, although Ca 2�

activity persists in IP3R2�/� mice, it is markedly and significantly
attenuated.

If Ca 2�-dependent gliotransmission was an essential physio-
logical process, the dramatic loss of astrocyte Ca 2� in IP3R2�/�

mice would be expected to produce an equally dramatic impair-
ment of synaptic function and animal behavior compared with
control animals producing �60% more local spontaneous Ca 2�

transients and much faster, more synchronized Ca 2� elevations
in response to locomotor activity, sensory input, or startle. How-
ever, IP3R2�/� mice are healthy, viable, breed well, and live nor-
mal lifespans with no overt behavioral abnormalities (Petravicz et
al., 2008, 2014). The significant loss of IP3R2-dependent Ca 2�

signaling in astrocytes throughout the brain failed to affect tests
of learning and memory, motor or sensory control, or measure-
ments of anxiety and depression (Petravicz et al., 2014). More-
over, no differences were observed in evoked excitatory synaptic
activity, post-tetanic potentiation (PTP)/LTP, or neurovascular

coupling compared with recordings in littermate control animals
(Petravicz et al., 2008; Agulhon et al., 2010; Bonder and McCar-
thy, 2014). The fact that these mice do not exhibit a behavioral or
electrophysiological phenotype is stunning given the large num-
ber of reports on astrocytic GPCR-dependent Ca 2� modulation
of synaptic transmission and plasticity, as well as functional hy-
peremia (discussed further below). Overall, the data show that
removal of IP3R2, the predominant source of physiological Ca 2�

elevations in astrocytes, has no effect on neuronal activity and
animal behavior. These findings provide strong evidence that
astrocytes do not release gliotransmitters in a Ca 2�-dependent
manner to actively control neuronal activity, synaptic transmis-
sion, and animal behavior. The most logical conclusion that can
be made from these data is that gliotransmission does not occur
in intact brain tissue under physiological conditions.

Neuronal receptors or astrocytic receptors?
One advantage provided by the MrgA1 transgenic approach is
that stimulation of the receptors by bath-applied agonists is as-
trocyte selective. Because stimulation of astrocytic MrgA1 Gq-
GPCRs did not result in gliotransmission (Fiacco et al., 2007;
Agulhon et al., 2010), questions were raised as to differences be-
tween this approach versus those in which endogenous astrocytic
receptors are stimulated. There are two competing hypotheses:
The first is that the MrgA1 Ca 2� elevations are incapable of in-
ducing gliotransmission. This is very improbable as discussed in
the previous section: just about every report on gliotransmission
uses approaches that produce universally nonphysiological in-
creases in astrocyte Ca 2�, whereas MrgA1 stimulation induces
physiologically relevant astrocyte Ca 2� increases. The competing
hypothesis is that agonists applied with the intent to stimulate
native astrocytic receptors directly stimulate receptors on ex-
citatory neurons, inhibitory neurons, or other glia. The most
commonly used agonists to stimulate astrocytic Ca 2� eleva-
tions, the mGluR agonists (�)-1-Aminocyclopentane-trans-1,3-
dicarboxylic acid (t-ACPD) and 3,5-dihydroxyphenylglycine
(DHPG), directly depolarize neurons, increase their firing rates,
potentiate NMDA receptor currents, and depotentiate synaptic
responses following LTP (Mannaioni et al., 2001; Heidinger et al.,
2002; Zho et al., 2002; Rae and Irving, 2004). It would be difficult,
if not impossible, to disentangle these direct effects from putative
astrocyte-mediated ones (Fiacco et al., 2007; Agulhon et al.,
2010).

In support of the hypothesis that direct stimulation of neu-
rons has been misinterpreted as gliotransmission has come from
observations made from stimulation of endogenous endothelin
receptors. Evidence to date suggests that endothelin receptors are
enriched in astrocytes and minimally expressed by neurons (An-
dersson et al., 2007; Zhang et al., 2014). Recent work has further
indicated that stimulation of astrocytic endothelin receptors pro-
duces local Ca 2� elevations in the fine astrocyte processes in
IP3R2�/� mice, even in the absence of soma responses (Sriniva-
san et al., 2015), thereby displaying the spatiotemporal dynamics
recently suggested to be important for gliotransmission (Araque
et al., 2014; Sherwood et al., 2017). However, stimulation of en-
dogenous astrocytic endothelin receptors produces no effect on
neuronal excitatory EPSCs, evoked EPSCs, protein tyrosine phos-
phatase, or LTP in the same recordings in which the Group I mGluR
agonist DHPG affects these measurements (Fiacco et al., 2007;
Agulhon et al., 2010). These observations lend further support
to the idea that when GPCRs are selectively stimulated in as-
trocytes, whether the receptors are endogenously or transgeni-
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cally expressed, the resultant Ca 2� elevations do not produce
gliotransmission.

Intercellularly propagating astrocyte Ca 2� waves that would
provide compelling support for Ca 2�-dependent
gliotransmission are absent in healthy forebrain
One of the most convincing demonstrations of Ca 2�-dependent
gliotransmitter release was provided by the Ca 2� waves that
propagate between cultured astroglia (Cornell-Bell et al., 1990;
Cornell-Bell and Finkbeiner, 1991). Poking a single astroglial cell
in culture initiates a Ca 2� wave that propagates among hundreds
of astroglia. The mechanism behind propagating Ca 2� waves is
well defined. It requires IP3 receptors (Boitano et al., 1992;
Charles et al., 1993) and involves Ca 2�-dependent release of ATP
and stimulation of purinergic P2Y receptors on adjacent astroglia
(Hassinger et al., 1996; Guthrie et al., 1999; Fam et al., 2000).
Belonging to the family of Gq-GPCRs, P2YR stimulation results
in activation of the PLC signaling cascade, production of IP3, and
release of Ca 2� from internal stores. The store-liberated Ca 2�

triggers release of the gliotransmitter ATP to stimulate P2YRs on
adjacent astroglia to continue propagating the Ca 2� wave. Wide-
spread astroglial Ca 2� waves were cited as strong evidence for
gliotransmission (Araque et al., 1999b; Bezzi and Volterra, 2001;
Gallagher and Salter, 2003).

While easily observed and well defined in culture, there is very
little evidence for propagating Ca 2� waves between forebrain
astrocytes in intact brain slices or in vivo. In response to afferent
stimulation, sensory stimulation, or startle in vivo, are synchro-
nous Ca 2� elevations involving many astrocytes simultaneously,
not Ca 2� initiated in a single astrocyte that then propagates into
adjacent astrocytes. This is an important distinction not always
made clear in many studies, which often refer to these responses
as “Ca 2� waves” due to their wave-like appearance. When stimuli
are confined to a single hippocampal astrocyte (e.g., as opposed
to puff application of a high concentration of agonist extracellu-
larly), Ca 2� elevations do not propagate into adjacent astrocytes
despite propagating throughout the entire stimulated cell (Fiacco
and McCarthy, 2004). There is one noteworthy exception to lack
of evidence for astrocyte Ca 2� waves, from studies in the hind-
brain. In the intact cerebellum, Nimmerjahn et al. (2009) and
Hoogland et al. (2009) observed radially expanding wave-like
Ca 2� activity that propagated between Bergmann glia, a special-
ized astrocyte subtype. These Ca 2� waves depended on Ca 2�

release from internal stores, and wave propagation was blocked
by P2Y purinergic receptor antagonists (Hoogland et al., 2009).
Similar Ca 2� waves, however, have not been reported in other
brain areas.

Similar to observations made in cultured astroglia, propagat-
ing Ca 2� waves can also occur between reactive astrocytes in
diseased tissue. Kuchibhotla et al. (2009) found Ca 2� waves
propagating between astrocytes in Alzheimer’s disease mice, but
not in the tissue sections from control mice. Reactive astrocytes
in diseased or damaged tissue are very different compared with
healthy astrocytes, altering their expression profile of many genes
(Zamanian et al., 2012). In an environment that includes secretion
of inflammatory mediators, such as TNF� and prostaglandins, reac-
tive astrocytes in many brain areas may become competent for glio-
transmission (Bezzi et al., 1998; Domercq et al., 2006; Santello et
al., 2011; Agulhon et al., 2012; Habbas et al., 2015). This may also
explain why gliotransmission is clearly observed in vitro, as cul-
tured astroglia represent an immature or reactive phenotype (Ca-
hoy et al., 2008; Hamby et al., 2012) that express key vesicular
proteins (Wilhelm et al., 2004). Unlike cultured astroglia, evi-

dence suggests that astrocytes in healthy or intact tissue do not
express Ca 2�-sensitive vesicular release machinery for the com-
monly described gliotransmitters (Li et al., 2013; Zhang et al.,
2014; Chai et al., 2017). This provides an explanation for why, in
cultured astroglia, GPCR-linked Ca 2� elevations consistently re-
sult in gliotransmission, whereas those in astrocytes in intact tis-
sue do not. In summary, the absence of propagating intercellular
Ca 2� waves between forebrain astrocytes in situ and in vivo pro-
vides strong evidence that forebrain astrocytes do not release the
gliotransmitter ATP or participate in gliotransmission.

Recent studies on functional hyperemia challenge the validity
of the tools used to demonstrate gliotransmission
Functional hyperemia refers to the process whereby increases in
neuronal activity lead to regionally restricted increases in blood
flow (Vargová et al., 2001). Although functional hyperemia is not
gliotransmission per se, the proposed involvement of astrocytes,
astrocytic GPCRs, and Ca 2� is similar, and results vary greatly
depending on use of pharmacological versus genetic approaches
to stimulate astrocyte Ca 2� elevations. Investigators in this area
have long thought that astrocytes play a role in functional hyper-
emia given that astrocyte processes cover �99% of brain vascular
elements (Prokopová-Kubinová et al., 2001; Mathiisen et al.,
2010). Findings from a large number of studies using acutely
isolated brain slices demonstrated that manipulating astrocyte
Ca 2� using a variety of pharmacological approaches affects arte-
riole diameter (Woerly et al., 1998; Syková et al., 2000; Zonta et
al., 2003; Mulligan and MacVicar, 2004; Metea and Newman,
2006; Straub et al., 2006; Gordon et al., 2008; He et al., 2012).
These findings led to the generally accepted hypothesis that neu-
rovascular coupling results from neuronal activation of astrocytic
GPCRs, IP3-mediated astrocyte Ca 2� elevations, and release of
vasoactive molecules from the astrocyte to regulate arteriole di-
ameter and blood flow.

While studies using pharmacological approaches in brain
slices generally support this hypothesis, a number of in vivo stud-
ies do not (Prokopová et al., 1997; Nizar et al., 2013; Bonder and
McCarthy, 2014). Bonder and McCarthy (2014) used in vivo im-
aging and selective genetic approaches to determine whether ei-
ther increasing or inhibiting Ca 2� activity in astrocyte endfeet
that wrap arterioles in the visual cortex affected visually stimu-
lated functional hyperemia: the answer was no. In one set of
experiments, IP3R2 KO mice were used to significantly reduce
GPCR-mediated Ca 2� increases selectively in astrocytes; func-
tional hyperemia was unaffected in these mice. In a second set of
experiments, mice that express an engineered Gq-GPCR (Gq-
designer receptor exclusively activated by designer drug [DREADD])
(Nichols and Roth, 2009) selectively in astrocytes were used to
assess the role of GPCR-mediated Ca 2� increases in functional
hyperemia. The activation of Gq-DREADD led to Ca 2� increases
in astrocyte endfeet-wrapping arterioles but failed to affect arte-
riole diameter or blood flow (Bonder and McCarthy, 2014). It
should be noted that increasing astrocyte Ca 2� through Gq-
DREADD is far more physiological than methods typically used
to study functional hyperemia, such as uncaging Ca 2� or IP3. A
recent study out of Eric Newman’s laboratory demonstrated
that astrocytes modulate capillary, but not arteriole diameter,
when using more physiological methods to stimulate astrocyte
Ca 2� (Biesecker et al., 2016). Overall, similar to data on glio-
transmission, studies in this area demonstrate that, although it is
possible to use nonphysiological tools to drive astrocyte modula-
tion of arteriole blood flow, this does not appear to occur when
more physiological approaches are used.
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Gliotransmitter release and use of dn-SNARE transgenic mice
Early work suggested that the Ca 2�-dependent glutamate release
observed in cultured astroglia occurred via SNARE-dependent
vesicular exocytosis (Araque et al., 2000; Montana et al., 2004;
Zhang et al., 2004). These observations provided the rationale for
the generation of a transgenic mouse line expressing a dominant-
negative (dn) mutation of synaptobrevin 2 designed to block
SNARE-dependent vesicular release from astrocytes (Pascual et
al., 2005); these mice are referred to as dn-SNARE mice. In the
making of dn-SNARE mice, the dn-SNARE was not directly
tagged with a reporter construct. Therefore, to determine the
cellular expression of dn-SNARE in vivo, two additional reporter
constructs were coinjected with dn-SNARE into fertilized eggs
before implantation into developing blasts. The advantage of this
approach is that the binding of dn-SNARE to the SNARE com-
plex would not be affected by directly tagging it with a reporter.
The disadvantage is that it is not possible to directly visualize
dn-SNARE. Although this method was not uncommon at the
time, it is rarely used today due to difficulties in directly tracking
the expression of the transgene. dn-SNARE mice have been used
by a large number of investigators to demonstrate that expression
of dn-SNARE in astrocytes interferes with synaptic transmission
and plasticity.

Over the past several years, a number of issues have been
raised that question the validity of using dn-SNARE mice to dem-
onstrate gliotransmission. First, Maiken Nedergaard’s group
reported that the dn-SNARE peptide was widely expressed in
neurons (although at low levels), thereby directly inhibiting neu-
ronal vesicular exocytosis (Fujita et al., 2014). Second, in the case
of dn-SNARE, there is an absence of published evidence (al-
though unpublished data very likely exist) that expression of dn-
SNARE blocks glutamate release from cultured astroglia. This is
surprising because evidence suggests that cultured astroglia ex-
press the necessary SNARE components to perform vesicular-
dependent gliotransmitter exocytosis (Wilhelm et al., 2004). Lack
of evidence that dn-SNARE inhibits glutamate release from pu-
rified astroglia is somewhat alarming and raises the specter that
actions of dn-SNARE in intact tissue are not due to its action in
astrocytes, as recently reported (Fujita et al., 2014). Third, even if
the dn-SNARE peptide were only expressed in astrocytes, it could
be exerting its effects by interfering with trafficking of membrane
proteins (such as glutamate transporters) to influence synaptic
transmission (Ropert et al., 2016). This possibility is supported by
a recent transcriptome analysis indicating that striatal and hip-
pocampal astrocytes express membrane traffic-related genes but
show little evidence for minimal requirements for Ca2�-dependent
glutamate exocytosis (Chai et al., 2017).

Recent data using newer technologies indicate that D-serine is
not a gliotransmitter
The three molecules most widely cited to be gliotransmitters are
glutamate, ATP, and D-serine (Perea et al., 2009; Araque et al.,
2014; Hollborn et al., 2015). It is difficult to selectively manipu-
late cellular levels of glutamate or ATP due to their role in meta-
bolic pathways. However, this is not the case for D-serine, whose
role is largely restricted to that of a required coagonist at NMDA
receptors (Traynelis et al., 2010; Mothet et al., 2000). The synthe-
sis of D-serine requires serine racemase (SR) to convert L-serine
into D-serine. A large number of studies have reported that the
release of D-serine as a gliotransmitter from astrocytes plays a
necessary role in synaptic plasticity (Yang et al., 2003; Oliet and
Mothet, 2006; Panatier et al., 2006; Oliet and Mothet, 2009; Hen-
neberger et al., 2010; Berk et al., 2015; Pankratov and Lalo, 2015;

Sherwood et al., 2017). The rationale for thinking that D-serine
might serve as a gliotransmitter largely stemmed from early re-
ports indicating that D-serine and SR were localized to astrocytes
(Schell et al., 1995; Wolosker et al., 1999; Berk et al., 2015), and
that D-serine was released from cultured astroglia via a Ca 2�-
dependent mechanism (Yang et al., 2003; Mothet et al., 2005;
Zhuang et al., 2010). A series of recent studies using more ad-
vanced technologies clearly demonstrate that neurons, rather
than astrocytes, synthesize and release D-serine and that it is the
release of D-serine from neurons, not astrocytes, that acts as a
coagonist with glutamate to regulate synaptic plasticity (Wolo-
sker et al., 2016). The advance in this area has stemmed largely
from the development of SR KO (Miya et al., 2008) and condi-
tional KO (cKO) (Benneyworth et al., 2012) mice. These mice
enable the development of highly specific immunocytochemical
localization of SR and D-serine as well as electrophysiological and
behavioral experiments where SR has been selectively deleted
from either neurons or astrocytes. The primary findings clearly
demonstrating that D-serine is not a gliotransmitter include the
following: (1) using SR�/� mice as well as improved antibodies
to define cellular specificity, SR protein (Kartvelishvily et al.,
2006; Miya et al., 2008) and mRNA (Yoshikawa et al., 2007) are
localized in vivo to neurons, not astrocytes; similar neuronal lo-
calization of D-serine and SR has been reported in human brain
(Voigt et al., 2015); (2) using the SR transcriptional unit to drive
GFP expression in mice leads to the exclusive expression of GFP
in neurons, not astrocytes (Kartvelishvily et al., 2006); (3) a cKO
of neuronal SR, but not astrocytic SR, significantly reduced LTP
at the Schaffer collateral-CA1 synapse (Benneyworth et al., 2012);
and (4) a cKO of neuronal SR, but not astrocytic SR, decreased
dendritic spine complexity, an indicator of neuronal plasticity
(Flo et al., 2004). These findings clearly demonstrate that neuro-
nal D-serine is the NMDA receptor coagonist that participates in
synaptic plasticity. It is worth noting that all of the experimental
approaches being used to argue that glutamate and/or ATP are
gliotransmitters are used to argue that D-serine is a gliotransmit-
ter, including the following: (1) d/n SNARE mice; (2) toxins
blocking vesicular release; (3) increasing astrocyte Ca2�; (4) buffer-
ing intracellular Ca2�; (5) decreasing extracellular Ca2�; (6) block-
ing release from intracellular stores; (7) blocking vesicular
ATPase; and (8) isolation of synaptic vesicles containing glio-
transmitters. Given the strong evidence that neurons, not astro-
cytes, make and release D-serine, it is again worth questioning the
methods that continue to be used to stimulate Ca 2� and glio-
transmission from astrocytes. The D-serine saga appears to be
another example where glial biologists reported evidence for
gliotransmission that was strongly invalidated with improved
technology.

Gliotransmission, or regulation of astrocyte transporters,
metabolic activity, gap junction proteins, or ion channels?
Astrocytes modulate neuronal function in a number of ways, includ-
ing secretion of factors regulating synaptogenesis and pruning dur-
ing development (Ullian et al., 2004; Chia et al., 2011; Chung et al.,
2015), uptake and buffering of extracellular potassium (Djukic et
al., 2007; Sanz et al., 2009), regulation of gap junctional coupling
or metabolic activity (Hertz et al., 1999; Rouach et al., 2008;
Wagnerova et al., 2009; Brown and Ransom, 2015), and intracel-
lular transport of glutamate during synaptic transmission (Tanaka et
al., 1997; Bergles et al., 1999). It is becoming increasingly evident
that many of these astrocyte functions can be modified directly or
through activation of astrocytic GPCR-signaling pathways in an
activity-dependent manner. For example, astrocytic Gq-GPCRs,
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Ca 2�, and protein kinase C acutely regulate glutamate and po-
tassium uptake (Wang et al., 2012; Devaraju et al., 2013). Altera-
tions in K� uptake can modify neuronal excitability in an
extracellular K � concentration-dependent manner (Wang et
al., 2012) and reduce synaptic responses to repetitive stimulation
and post-tetanic potentiation (Sibille et al., 2014). Armbruster et
al. (2016) found slowing of glutamate uptake following bursts of
neuronal activity �30 Hz and that these changes affected the
neuronal response to released glutamate on an acute timescale.
Murphy-Royal et al. (2015) demonstrated that neuronal activity-
dependent surface diffusion of the astrocyte glutamate transporter
GLT-1 (EAAT2) can shape subsequent synaptic transmission.
Activity-dependent regulation of astrocytic connexin 43 can al-
low intercellular trafficking of glucose and its metabolites
through astroglial networks (Rouach et al., 2008) and modulate
network “up” states and neuronal firing rates (Roux et al., 2015).
Astrocyte Ca 2� microdomains driven by synergistic interaction
between IP3R2 and mitochondria may facilitate ATP production
by enhancing glycogenolysis in an activity-dependent manner
(Agarwal et al., 2017).

Methods used with the intent of stimulating astrocyte Ca 2�

elevations can also affect astrocyte functions. Strong astrocytic
depolarization using a patch pipette or optogenetic stimulation
of astrocytic ion channels can lead to changes in ionic driving
forces with subsequent reduction or even reversal of transporter
activity, producing effects on excitability of adjacent neurons in-
dependent of gliotransmission. Intracellular Na� accumulation
in astrocytes generated by glutamate uptake (or possibly as a
result of stimulation of channelrhodopsins) has been proposed as
an energy currency and mediator of metabolic signals in neuron-
glia interactions (Chatton et al., 2016). In summary, there are
many mechanisms through which astrocytes modulate neurons
in an activity-dependent manner through regulation of astrocyte
transporters, metabolic activity, gap junction proteins, or ion
channels. It will be important in future studies to carefully
consider alternative possibilities, such as these, before settling
on gliotransmission as the mechanism by which astrocytes
modulate neuronal activity. Discovery of valuable new infor-
mation about the role of astrocytes in brain function may
otherwise be overlooked.

A recent study on astrocyte heterogeneity finds no evidence to
support Ca 2�-dependent glutamate exocytosis from
astrocytes
Recently, the Bal Khakh laboratory at the University of Califor-
nia–Los Angeles comprehensively evaluated the transcriptomic,
proteomic, morphological, and functional profiles of striatal and
hippocampal astrocytes (Chai et al., 2017). Neither striatal nor
hippocampal astrocytes expressed significant RNA for vesicular
glutamate transporters or Ca 2�-sensitive synaptotagmins. Fur-
thermore, although vesicles were readily observed in 138 striatal
and 139 hippocampal synapses, no astrocyte processes contained
structures akin to neurotransmitter vesicles at the same synapses.
Stimulation of the Gq-GPCR hM3D DREADD always increased
astrocyte Ca 2� levels but resulted in no change in signal of the
coexpressed glutamate sensor iGluSnFR, whereas the positive
controls of exogenous glutamate, electrical field stimulation, and
inhibition of astrocyte glutamate uptake all resulted in significant
glutamate detection by iGluSnFR. Stimulation of hM3D DREADD
also failed to evoke NMDA receptor-dependent slow inward cur-
rents in striatal medium spiny neurons or hipoocampal pyrami-
dal neurons. In summary, although considerable differences
between the two astrocyte subtypes were found, neither subtype

was capable of GPCR- or Ca2�-dependent release of glutamate
(Chai et al., 2017). This recent study provides further strong evi-
dence that astrocytes do not participate in gliotransmission.

In conclusion, there is little doubt that neuronal activity and
the consequent activation of astrocytic GPCRs affect processes
important for maintaining and modulating normal brain func-
tion. However, evidence that neuronal activity leads to Ca 2�-
dependent gliotransmitter release in intact brain tissue to actively
control neuronal plasticity and synaptic transmission is being
challenged by the findings from many laboratories using ad-
vanced technologies. Absence of propagating Ca 2� waves be-
tween forebrain astrocytes provides evidence against astrocytic
release of the gliotransmitter ATP in sufficient quantity to affect
activity of adjacent neurons or astrocytes. Recent evidence convinc-
ingly demonstrating neuronal synthesis and release of D-serine has
led to the demise of D-serine as a gliotransmitter (Wolosker et al.,
2016). Use of complementary genetic approaches that are specific
to astrocytes and that recapitulate or inhibit endogenous activity-
driven astrocyte Ca2� release mechanisms provide strong evidence
against gliotransmission. Specifically, stimulation of receptors
selectively expressed or enriched in astrocytes results in IP3
receptor-dependent Ca 2� elevations exhibiting the spatiotempo-
ral dynamics suggested to be important for gliotransmission,
while producing no effect on neuronal synaptic transmission or
plasticity. Removal of the predominant source of local microdo-
main and sensory- or startle-evoked astrocyte Ca 2� responses
exhibiting the spatiotemporal dynamics recently suggested to be
important for gliotransmission has no effect on synaptic trans-
mission or plasticity, modulation of arteriole diameter, or behav-
ior. Use of traditional pharmacological approaches to stimulate
astrocyte Ca 2� elevations, most often recorded in the astrocyte
soma even in recent publications supporting gliotransmission
(e.g., Pankratov and Lalo, 2015; Martín et al., 2015), do not uni-
versally evoke astrocyte Ca 2� elevations displaying the delicate
temporal or spatial requirements recently proposed to be essen-
tial for gliotransmission. On the contrary, gliotransmission can
be caused to occur using a variety of very nonspecific, nonphysi-
ological approaches to elicit astrocyte Ca 2� elevations. Together,
the weight of the evidence strongly argues that, under physiolog-
ical conditions, Ca 2�-dependent release of neurotransmitters is
the function of neurons, not astrocytes.

Response from Dual Perspectives Companion
Authors–Iaroslav Savtchouk and Andrea Volterra

We thank Fiacco and McCarthy for presenting their view on
gliotransmission. They conclude that gliotransmission
does not occur under physiological conditions but do not
explain what “physiological conditions” means for them.
For instance, they obtained key “negative” data using brain
slices and whole-cell patched cells (Fiacco et al., 2007; Agul-
hon et al., 2010). Are these fully physiological conditions?
Do their genetic models (MrgA1 and IP3R2ko) fully mimic/
disrupt astrocyte physiology? Do not Fiacco and McCar-
thy overinterpret and generalize their negative data
while, in parallel, omitting positive data by others? Are
their negative IP3R2ko data truly negative? Overall, in
our view, the gliotransmission theory is well alive and
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supported by evidence, but the general picture remains in-
complete, making experimental results prone to discordant
interpretations.

Indisputably, the idea behind the MrgA1 transgenic model
is elegant. However, experimental data do not convincingly
support the view that MrgA1 stimulation mimics astrocyte
physiology. Fiacco and McCarthy claim physiological valid-
ity of the model (and of the resulting negative data), arguing
that MrgA1 stimulation produces the same pattern of Ca 2�

elevations as agonist stimulation of endogenous GPCRs.
However, neither treatment reproduces the native astro-
cytic Ca 2� activity observed in vivo in the awake mouse
(Bindocci et al., 2017). This is mostly fast, asynchronous,
peripheral (in gliapil and fine processes), and local, like the
activity evoked by local axonal stimulation. In contrast,
MrgA1-evoked activity is long-lasting and spatially spread
(Fiacco et al., 2007). Similarly unconvincing are the comple-
mentary negative data with the IP3R2ko model. Here,
knocking down IP3R2 does not abolish all the astrocytic
Ca 2� activity, notably the peripheral activity (Kanemaru et
al., 2014; Srinivasan et al., 2015; Rungta et al., 2016; Agarwal
et al., 2017), possibly reflecting local interactions with syn-
apses (Bindocci et al., 2017). This activity is best revealed by
genetically encoded Ca2� indicators, not used in the key nega-
tive MrgA1 and IP3R2ko studies. Therefore, those studies are
insufficient to exclude a physiological role of gliotransmission
in synaptic plasticity (and vascular control).

Moreover, Fiacco and McCarthy neglect important evidence
not matching their view. To mention only a few examples,
the “positive” blockade of cholinergic LTP in IP3R2ko mice
(Navarrete et al., 2012), apparently at odds with their nega-
tive LTP data (Agulhon et al., 2010), or the “positive” evi-
dence for vesicular glutamate release in astrocytes (Bezzi et
al., 2004) (see our Fig. 1), obtained with more sensitive
methods than those producing the negative data they em-
phasize. By endorsing and strongly highlighting the state-
ment that astrocytes “show little evidence for minimal
requirements for Ca 2�-dependent glutamate exocytosis”
(Chai et al., 2017), Fiacco and McCarthy disregard the many
studies reporting expression by astrocytes in situ of multi-
ple synaptotagmin (Mittelsteadt et al., 2009), SNARE, and
S/M isoforms known to support Ca 2�-dependent exocyto-
sis (for review, see Bohmbach et al., 2017). Furthermore, by
proposing that gliotransmission occurs exclusively under
pathological (inflammatory) conditions just because TNF�
and prostaglandins control the phenomenon, they dismiss
the many physiological functions of these agents (e.g., San-
tello and Volterra, 2012) and specifically the differential ef-
fect exerted by TNF� on gliotransmission at physiological
(Santello et al., 2011) and pathological (Bezzi et al., 2001;
Habbas et al., 2015) concentrations. Finally, the logic behind
their argument implies that “positive” gliotransmission stud-
ies used “pathological slices,” whereas “negative” ones used
“physiological slices.” Can they really suggest this?

In conclusion, the controversy about gliotransmission
is not resolved by the arguments of either party here.

Resolution requires improved models and deeper investi-
gations. Meanwhile, it is best to keep an open mind!
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Syková E, Mazel T, Vargová L, Vorísek I, Prokopová-Kubinová S (2000)
Extracellular space diffusion and pathological states. Prog Brain Res 125:
155–178. CrossRef Medline

Tanaka K, Watase K, Manabe T, Yamada K, Watanabe M, Takahashi K,
Iwama H, Nishikawa T, Ichihara N, Kikuchi T, Okuyama S, Kawashima
N, Hori S, Takimoto M, Wada K (1997) Epilepsy and exacerbation of
brain injury in mice lacking the glutamate transporter GLT-1. Science
276:1699 –1702. CrossRef Medline

Traynelis SF, Wollmuth LP, McBain CJ, Menniti FS, Vance KM, Ogden KK,
Hansen KB, Yuan H, Myers SJ, Dingledine R (2010) Glutamate receptor
ion channels: structure, regulation, and function. Pharmacol Rev 62:405–
496. CrossRef Medline

Ullian EM, Christopherson KS, Barres BA (2004) Role for glia in synapto-
genesis. Glia 47:209 –216. CrossRef Medline
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