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Abstract

In this paper we present a generative, high resolution face representation which extends the well-

known active appearance model (AAM)[5], [6], [7] with two additional layers. (i) One layer refines

the global AAM (PCA) model with a dictionary of learned face components to account for the shape

and intensity variabilities of eyes, eyebrows, nose and mouth. (ii) The other layer divides the face skin

into 9 zones with a learned dictionary of sketch primitives to represent skin marks and wrinkles. This

model is no longer of fixed dimensions and is flexible for it can select the diverse representations in

the dictionaries of face components and skin features depending on the complexity of the face. The

selection is modulated by the grammatical rules through hidden ”switch” variables. Our comparison

experiments demonstrate that this model can achieve nearly lossless coding of face at high resolution

(256× 256 pixels) with low bits. We also show that the generative model can easily generate cartoon

sketches by changing the rendering dictionary. Our face model is aimed at a number of applications

including cartoon sketch in non-photorealistic rendering, super-resolution in image processing, and low

bit face communication in wireless platforms.
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I.. INTRODUCTION

Human faces have been extensively studied in vision and graphics for a wide range of tasks

from detection[18], [16], classification[19], [10], tracking[6], expression[13], animation[11],

[15], to non-photorealistic rendering (portrait and sketch)[3], [4], with both discriminative[17],

[10], [3] and generative models[9], [6], [11] developed in the literature. The selection of a

representation and model depends on two factors: (i) the objectives of the task and its precision

request, and (ii) the resolution of the observable face images.

In this paper we present agenerative, grammatical, high resolutionface representation which

extends the well-known active appearance model (AAM)[5], [6], [7] with two additional layers

(see Fig.1 and Fig.8).

(i) A face component layer, which refines the global AAM (PCA) model with more detailed

representations in 6-zones for the six facial components: two eyebrows, two eyes, nose and

mouth. Each component has a set of diverse representations for the various types of eyes, mouths,

noses and their topological configurations, such as open and close states. The representation for

each component within its zone is a local AAM model with a various number of landmarks.

The selection of the representation is modulated by the grammatical rules[1] through hidden

”switch” variables.

(ii) A face skin layer, which further refines the 6 component zones with sketch curves for the

subtle differences in eye-lid, eye-shade, nostril, lips etc. In this layer, it divides the face skin

into 9 zones (See Fig.6) with a learned dictionary of sketch primitives to represent possible

skin marks and wrinkles. We adopt various prior models for sketches in these 15 zones and the

number of sketch curves changes depending on the complexity of the faces.

As Fig.1 illustrates, our model achieves nearly lossless representation of high resolution

images (256 × 256 pixels), at the same time it generates a face sketch useful for cartoon

rendering. The computation is performed coarse-to-fine: we first infer the global AAM model
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Fig. 1. Face high resolution imageIobs of 256 × 256 pixels is reconstructed by the model in coarse-to-fine. The first row

shows three reconstructed imagesIrec
L , Irec

M , Irec
H in low, medium and high resolution respectively.Irec

L is reconstructed by the

AAM model, and the eyes, nose and mouth are refined inIM after adding the component AAM layer. The skins marks and

wrinkles appear inIrec
H after adding the sketch layer. The residue images are shown in the second row. The third row shows

the sketch representation of the face with increasing complexity.

and register the whole face. Then we refine the face components whose landmarks define the

9 skin zones. Thus we extract the skin sketches under such context with prior models.

Our model is aimed at a number of applications, such as low bit face communication in

wireless platforms, cartoon sketch in non-photorealistic rendering, face editing and make-up in

an interactive system, and super-resolution in image processing.

It is worth mentioning that one may not achieve such high resolution reconstruction by merely

increasing the number of landmarks in the original AAM model, since the gloabl AAM model
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represents all human faces with the same number of landmarks and PCs, and is not sufficient

for the vast variabilities exhibited in different ages, races, and expressions. Our comparison

experiments (see Fig.9) confirms that our three layered representation is more effective (i.e. less

reconstruction error) than the AAM model over a test set of 150 face images (256× 256 pixels

in size), provided that both models use the same size of codebooks.

In comparison to the literature, our face component layer representation is different from

the component-based[10] or fragment-based face recognition [17], the latter use local face

features for face recognition in a discriminative manner in contrast to our goal of generative

reconstruction of the face. Our face skin layer representation is different from the recent

face sketching work [3], [4] which are example-based and construct the sketches through a

discriminative mapping function using the image analogy technique in graphics. Our sketch

rendering is different from graphics interactive system[2].

In the rest of the paper, we present the three-layer representation of the model and coarse-

to-fine computation in Section II, and then we report the experiments in Section III. Section IV

concludes the paper with some further work.

II.. REPRESENTATION ANDCOMPUTATION

The representation and algorithm is illustrated in Fig. 1 and Fig.8. We represent an observed

image in low, medium and high three resolutions:Iobs
L (64× 64 pixels),Iobs

M (128× 128 pixels),

andIobs
H (256×256 pixels), and we compute the three hidden layer representationWL,WM,WH

sequentially through Bayesian inference. The dictionaries of PCs and the sketch primitives are

treated as parameters of the generative model and learned through fitting the model to a set of

200 training images.
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Fig. 2. The first 8 PCs (plus mean) for intensity and geometric variations in the learned dictionary∆aam
I with 17 landmarks.

A. Layer 1: the low resolution AAM model

In the first AAM layer, all faces share the same number of landmarks. The AAM represen-

tation includes a set of principle components (denoted byPCAaam
geo ) for the geometric deforma-

tions, and a set of principle components (denoted byPCAaam
pht for the intensity (photometric)

variabilities after aligning the landmarks. Therefore we have a dictionary of PCs[14] learned

for the first layer,

∆aam
I = {PCAaam

geo , PCAaam
pht }

Fig.2 shows the first 8 components inPCAaam
geo andPCAaam

pht learned from 200 training images.

We choose 17 landmarks forIobs
L as the structures will be represented in other layers. Con-

necting the 17 landmarks properly, we obtain the low-resolution sketch representation. We will

discuss and compare the number of landmarks and principal component in section of the model

complexity experiment.

The hidden variableWL includes variables for the global similarity transformT aam and the

coefficientsαaam
geo andβaam

pht for geometric and photometric PCs respectively.

WL = (T aam, αaam
geo , βaam

pht ).
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Fig. 3. Grammars used to generate local facial components with different templates.

Therefore,WL can reconstruct an imageJrec
L = Jrec

L (WL; ∆aam
I ) with the geometric and

photometric PCs through the AAM model[6], [5]. The residue image is denoted byIres
L . Thus

we have the first layer generative model,

Iobs
L = Jrec

L (WL; ∆aam
I ) + Ires

L .

WL = arg max p(Iobs
L |WL; ∆aam

I )p(WL).

The likelihood is a Gaussian probability following a noise assumption for the residue. The

prior model is also Gaussian following the PCA assumptions[5]. The dictionary∆aam
I is treated

as parameters of the generative model and learned through fitting (i.e. PCA) to the data.

B. Layer 2: the medium resolution model

In the second layer, we work on a medium size latticeΛM (128×128 pixels) and focus on six

zones for the face components: two eyebrows, two eyes, one nose, and one mouth respectively,

Λcp
1 , Λcp

2 , ..., Λcp
6 ⊂ ΛM.
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The solid curves show the six zones in Fig.6.(a). Within each zone, we adopt local AAM

models for each face component. To count for different types of components and their status

(see examples in Fig.4), we adopt 3 sets of AAMs for the eyebrows, and 5 sets for the eyes, 2

sets for the nose, and 2 sets for the mouth. The way to define the types is limited by the training

data obtained. More detailed definition and therefore more types may be introduced while more

complete dataset is available. The grammars to apply 12 different sets of local models are

shown in Fig.3. For example, the different AAM models for eyes may have different number

of landmarks and use different PCs for its geometric and photometric variations. Therefore we

have a total of 12 pairs of PCs in the dictionary of the second layer representation,

∆cp
I = {PCAcp,j

geo , PCAcp,j
pht , j = 1, 2, ..., 12}.

The 12 component models are learned in a supervised manner from 200 training face images.

The selection of the model for each component is controlled by six switch variables`i, i =

1, 2, ..., 6 in a stochastic grammar representation[1]. In fact our grammar is not context free,

because the symmetry for the two eyes and eyebrows has to be taken into account. The

hidden variableWM in the medium layer includes the switches and the coefficients for the

six components,

WM = (`i, αi
geo, β

i
pht)

6
i=1.

The positions, orientations, and sizes of the components are inherited from the landmarks in

layer 1WL. We denote the six zones by a sub-lattice

Λcp = ∪6
i=1Λ

cp
i .

The second layer model generates the ”refined” image

Jrec
cp = Jrec

cp (WM; ∆cp
I ).
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The reconstruction of the medium resolution image on latticeΛM is the following,

Jrec
M (x, y) =





Jrec
cp (x, y) if (x, y) ∈ Λcp

Jrec
L (x/2, y/2) if (x, y) ∈ ΛM\Λcp

That is, pixels in the six component zones are generated by the refined models, while other

pixels are generated by the low resolution global AAM model upsampled.

In summary, we have the second layer generative model,

Iobs
M = Jrec

M (WL,WM; ∆aam
I , ∆cp

I ) + Ires
M .

WM = arg max p(Iobs
M |WL,WM; ∆aam

I , ∆cp
I )p(WM).

Fig. 1 (3rd column) shows that the reconstructed face has much more sharpened eyes, nose,

and mouth, and the residue image is less structured.

The likelihood is a Gaussian probability following a noise assumption for the residue. The

prior model for each component is also Gaussian following the PCA assumptions for the

components[5]. The dictionary∆cp
I is treated as parameters of the generative model and learned

in a supervise way through fitting (i.e. PCA) to the data.

The inference of the ”switch” variables̀i, i = 1, 2, ..., 6 is done through model comparison

within each zones. For example, we select the best fitted eye representation among the 5 eye

models, with a prior which is favor of the same model for the two eyes or the two eyebrows.

C. Layer 3: the high resolution sketch model

In the third layer, we further refine the 6 component with sketch curves for the subtle

differences in eye balls, eye twinkles, eye-lid, eye-shade, nostril, wings of nose, lips etc. We

also divide the face skin into 9 zones shown in Fig.6. The boundaries of these zones are decided

by the landmark points computed inWL andWH.
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Fig. 4. Different types and status of the local facial components, each is modeled by one of the 12 local models defined.

Our sketch representation has much more details than previous example-based face sketch

method[4] or the face features used for expression classification[13]. In fact, these details are

sometimes so subtle that one may not see them (even with human vision) unless they are viewed

in the global context of the face. Fig.7 shows such example of the skin wrinkles which are nearly

imperceptible but become quite prominent when they are put in the face image. This argues for

the coarse-to-fine computation and model – a method that this paper is taking.

Following the same notation in the medium resolution layer, we divide the high resolution

lattice ΛH (e.g.256 × 256 pixels) into two parts: the sketch partΛsk where the image will be

refined by a number of small image primitives, and the rest of the imageΛnsk where there is

no sketch is represented by the medium resolution through up-sampling.

The sketch part consists of many image primitives

Λk
sk, k = 1, 2, ..., K. They are small rectangular windows (e.g.7× 7 pixels), and the number

of primitives K is a variable depending on the medium resolution representationWM and the

imageIobs
H .

Each primitive is an image patch with a small number (2 ∼ 3) of control points, and thus

with both geometric deformation and photometric variations. We collect a large set of image

primitives by manually drawing the sketches on the 200 training images, and some examples

are shown in Fig. 5. Then a data clustering was done to yield a dictionary of primitives in layer
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Fig. 5. (a) Refinement on the nose by sketch primitive. (b). the sketch curve for a ”smiling fold”. Each rectangle in (a-b)

represents a sketch primitive. (c) Examples in the dictionary of sketch primitives∆sk
I (above) and their corresponding strokes

(below) in a cartoon sketch dictionary∆sk
S .

3. In order to capture more details on skin, especially for detecting and reconstructing the skin

marks (dark) or small secularity spots (highlight), we also labelled and trained a set of blob

type of bases for the dictionary.

∆sk
I = {Bi : i = 1, 2, ...., N}.

EachBi is an image patch. Then the hidden variables in the 3rd layerWH include the index

`k for the primitive type, an affine transformtk for positions, orientations and scales of these

patches, and the photometric contrastαk,

WH = (K, {(`k, tk, αk) : k = 1, 2, ..., K}).
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Fig. 6. (a). 15 zones for detailed skin features. The 6 zone for the eyebrows, eyes, nose and mouth, and 9-zones for shaded

skins areas where the wrinkles occur. The boundaries of these zones are decided by the landmarks computed in the low and

medium resolution, and thus are inherited fromWL andWH. (b-c-d) typical wrinkles (curves) at the 9 skin zones. Strong prior

models and global context are needed in order to detect the wrinkles.

�

���� ���

Fig. 7. (a). A15× 15 (before zoom in) patch sampled from256× 256 face image; (b). The same local patch viewed in its

global context — on a wrinkle.

Thus we generate the high resolution image in the sketchable partΛsk,

Jrec
sk = Jrec

sk (WH; ∆sk
I ).

The final generative model at high resolution is,

Jrec
H (x, y) =





Jrec
sk (x, y) if (x, y) ∈ Λsk

Jrec
M (x/2, y/2) if (x, y) ∈ ΛH\Λsk

That is, pixels in the sketch part are generated by the refined models, while other pixels are

generated by the medium resolution model upsampled. Therefore,
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Fig. 8. The diagram of our model and algorithm. The arrows represent the order of inference. Left panel is the three layers.

Right panel is the synthesis steps for both high-resolution image reconstruction and face cartoon sketch using the generative

model.

Iobs
H = Jrec

H (WM,WH; ∆cp
I , ∆sk

I ) + Ires
H .

WH = arg max p(Iobs
H |WM,WH; ∆cp

I , ∆sk
I )p(WH).

Fig. 1 (4th column) shows that the reconstructed face has much more skin details and the

residue is greatly reduced, such that the reconstructionJrec
H is almost lossless.

The likelihood is a Gaussian probability following a noise assumption for the residue. The

prior model for each component is also Gaussian following the clustering assumptions.

An ASM model [5] is trained for each of the ”structual” sketches like eye-lid, eye-shape or

nostril, etc., which is initialized and constrained byWM from previous layer in the inference

process. Experiments shows fast convergence and accurate searching result.

To infer the sketches in the 9 zones, which have much more flexibility and sometimes locally

almost imperceptible, we need to define the prior more carefully. As shown in Fig.6, a group
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of typical sketches are formed in each of the zone by learning of the labelled sketches, and

p(WH) is accordingly defined, which favors the following properties.

• LengthL of the sketch is approximated by a poisson distributionp(L = l) = (λl/l!)e−λ,

whereλ is specified by the typical sketches in the zone.

• Smoothness in scale, orientation and intensity pattern of two consecutive primitives{Bi, Bj}.

• Orientation and chance to appear for primitiveBi are biased by the neighboring typical

sketches. That is, the orientation ofBi shall be more consistent with the closer typical

sketch, and the closerBi is to the typical sketches, the bigger chance is for it to appear.

• Spatial relationship between two sketches, e.g. two parallel sketches which are too close

will be merged, or two consecutive short sketches which are too close will be connected.

In each step of the sketch pursuit, a group of primitive candidates are proposed by the

bottom-up methods, such as edge detection, and the existing sketches in the same zone. We

decide whether to grow new primitive, make change to existing sketches or stop the process

according to the posterior defined.

D. Generating the cartoon sketchS

Fig. 8 summarizes the generating process for the nearly lossless coding of the image with

the code being

W = (WL,WM, WH)

through three layers of occluding representations. The model uses three dictionaries of in-

creasing details

∆I = (∆aam
I , ∆cp

I , ∆sk
I )
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For each elements in these dictionaries, we always have a corresponding graph representation,

shown in Fig.2, Fig.4 and Fig. 5. We call them the sketch dictionaries

∆S = (∆aam
S , ∆cp

S , ∆sk
S )

Thus by replacing the ”photo-realistic” intensity dictionaries∆I with the sketch dictionaries

∆S, we can generate a sketch over scales using the same generating steps. Some examples of

the sketches are shown in Fig.1 and Fig.10.

Our sketch has more details than the state-of-the-art face sketch work[4], though there is still

more work to do before rendering stylistic cartoons. We argue that it is much more convenient

to define and change the style in this generative representation.

III.. EXPERIMENTS

To verify the framework we proposed, experiments were conducted based on 350 frontal face

images chosen from different genders, ages and races — 200 for training and 150 for testing.

All the images are resized to four different resolutions:32×32, 64×64, 128×128 and256×256

pixels respectively. The landmarks and sketches on the training are manually labelled.

In the first experiment, we report on the face reconstruction, learning of dictionaries, and

sketching. Results are shown in Fig.1 and Fig.10.

In the second experiment, we compare the efficiency of the three models: (i) the 1-layer

global AAM model with more landmarks and PCA components, (ii) the 2-layer component

models, and (iii) the 3-layer model. To be fair, we measure the total description length (coding

length) of the 200 images plus the size of the codebook.

DL = L(ΩI ; ∆) + L(∆)

,whereΩI = {I1, ..., IM} is the sample set. The first term is the expected coding length of

ΩI given dictionary∆ and the second term is the coding length of∆.
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Fig. 9. Plot of coding lengthD̂L for the ensemble of testing images v.s. dictionary size|∆| at four scales. (a)32× 32; (b)

64× 64; (c) 128× 128; (d) 256× 256

Empirically, we can estimateDL by:

D̂L=
∑

Ii∈ΩI

∑

w∼p(w|Ii;∆)

(− log p(Ii|w; ∆)− log p(w)) +
|∆|
2

log M

,whereM denotes the number of data and|∆| the dictionary size. For example, in the 1-

layer global AAM model, it is the pixel number of mean-texture and eigen-texture used plus

twice the point number of mean-shape and eigen-shape used. In Fig. 9, we plot how the coding

length of the models changes with different dictionary sizes. At low resolution like32×32 and

64 × 64, the DL of 1-layer global AAM model is shorter than 2-layer component model or

3-layer sketch model. At high resolution like128× 128 and256× 256, the component model
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and sketch model outperform respectively in the sense of coding efficiency. By applying the

criterion of MDL(minimum description length), we are able to select the most ”sufficient and

compact” generative model for coding a given set of face data at certain resolution. It’s worth

mentioning that there may be more appropriate criterion than MDL for certain objects like

human faces. Other than minimizing the overall residue of the reconstructed face image, people

may be more interested in keeping certain features on the face. For example, the wrinkles, see

Fig.7 is very important for human to tell the age, gender or expression of a certain individual,

while modeling them increases the coding length as much as the other strong facial features

but reduce less residue. We may think these kind of features are of high ”sensitivity”. In the

future, psychological experiments can be conducted to systemically study this phenomenon.

IV.. SUMMARY AND FUTURE WORK

In this paper we present a three layer generative model for high resolution face representation.

The model incorporates diverse representations and allows varying dimensions for details and

variabilities. In ongoing research, we are adding richer features including mustache, lighting

variabilities. We’d also like to extend the model for stylish cartoon sketch in non-photorealistic

rendering[4], super-resolution in image processing, and low bit face communication in wireless

platforms through tracking the sketches over time. We argue that this high resolution represen-

tation should also improve other applications, such as to acquire precision 3D face model by

stereo, expression analysis[13].
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Fig. 10. More results of reconstructed image, generated sketch and residue image of our model.




