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Abstract

Complex surfaces and solids are produced by large-scale
modeling and simulation activities in a variety of disci-
plines. Productive interaction with these simulations re-
quires that these surfaces or solids be viewable at interac-
tive rates – yet many of these surfaces/solids can contain
hundreds of millions of polygons/polyhedra. Interactive
display of these objects requires compression techniques
to minimize storage, and fast view-dependent triangula-
tion techniques to drive the graphics hardware. In this
paper, we review recent advances in subdivision-surface
wavelet compression and optimization that can be used to
provide a framework for both compression and triangula-
tion. These techniques can be used to produce suitable
approximations of complex surfaces of arbitrary topology,
and can be used to determine suitable triangulations for
display. The techniques can be used in a variety of ap-
plications in computer graphics, computer animation and
visualization.

Keywords: subdivision surfaces, wavelets, isosurfaces,
visualization

1 Introduction

The advent of high-performance computing has com-
pletely transformed the nature of most scientific and en-
gineering disciplines, making the study of complex prob-
lems from experimental and theoretical disciplines compu-
tationally feasible. All science and engineering disciplines
are facing the same problem: How to archive, transmit, vi-
sualize, and explore the massive data sets resulting from
modern computing, Today, when only small amounts of
data must be processed, many researchers can accomplish
some of these objectives on a desktop machine. But the
“impact problems” of science and engineering typically
require the analysis of data sets that need massive stor-
age capability and large-scale display hardware for visu-
alization. The exploration of truly massive data sets re-
quires new techniques in compression, storage, transmis-
sion, retrieval, and visualization, as the existing techniques

for small data sets do not scale well, or not at all. A new
approach is needed to address the interrelated problems
of storage, visualization, and exploration of these massive
data sets.

Traditionally, due to smaller and simpler data sets to be
studied, researchers have developed “in-core” visualiza-
tion and data exploration methods that work well on small
or medium-scale data sets. But today’s scientific and en-
gineering problems require a different approach to address
the massive data problems in organization, storage, trans-
mission, visualization, exploration, and analysis.

Terascale physics simulations are now producing tens
of terabytes of output for a several-day run on the largest
computer systems. An example is the Gordon Bell Prize-
winning simulation of a Richtmyer-Meshkov instability in
a shock-tube experiment [46], which produced isosurfaces
of the mixing interface with 460 million unstructured tri-
angles using conventional extraction methods. Similarly,
the Digital Michelangelo Project [38] is generating data
sets with 500 million data points, and in both problem ar-
eas, billion-triangle surfaces are expected shortly.

In the Gordon Bell isosurface case, if we use 32-bit val-
ues for coordinates, normals and indices, then we require
16 gigabytes for the storage of a single isosurface, and sev-
eral terabytes for a single surface tracking through all 274
time steps of the simulation. With the gigabyte-per-second
read rates of current RAID storage, it would take 16 sec-
onds to read a single surface.

Another bottleneck occurs with high-performance
graphics hardware. Today, the fastest commercial systems
can effectively draw around 20 million triangles per sec-
ond, i.e. around 1 million triangles per frame at 20 frames
per second. To achieve interactive rates, a terabyte data set
requires almost a thousand-fold reduction in the triangle
count.

Wavelet compression and view-dependent optimization
are two powerful tools that we use to reduce the size of
these data sets. Conversion is required to turn irregular
extracted surfaces into a form appropriate for these algo-
rithms (see Figure 1).

Section 2 discusses a novel lifting procedure that gener-
ates subdivision-surface wavelets for Catmull-Clark sub-



Figure 1: Shrink wrapping steps (left to right): the full-resolution isosurface, the base mesh constructed from edge
collapses, and the final shrink-wrap with subdivision-surface connectivity.

division surfaces. Section 3 discusses the use of these
wavelets to generate approximations to isosurfaces. We
discuss the fitting methods in Section 4, and the remap-
ping procedure that obtains better parameterizations of the
surfaces in Section 5. The results of our method are shown
in Section 6.

2 Bicubic Subdivision-Surface
Wavelets

Subdivision surfaces are limit surfaces that result from re-
cursive refinement of polygonal base meshes. A subdi-
vision step refines asubmesh to a supermesh by insert-
ing vertices. The positions of all vertices of the super-
mesh are computed from the positions of the vertices in the
submesh, based on certain subdivision rules. Most sub-
division schemes converge rapidly to a continuous limit
surface, and a mesh obtained from just a few subdivi-
sions is often a good approximation for surface rendering.
Subdivision surfaces that reproduce piecewise polynomial
patches can be evaluated in a closed form at arbitrary pa-
rameter values [56].

There exists a variety of different mesh-subdivision
schemes. We utilize Catmull-Clark subdivision [7], which
generalizes bicubic B-spline subdivision to arbitrary topol-
ogy. In this scheme, vertices in the supermesh correspond
to faces, edges, or vertices in the submesh. In the follow-
ing, we denote the corresponding vertex types as� , �, and
�, respectively. All faces produced by Catmull-Clark sub-
division are quadrilaterals.

For our wavelet construction, we use the Catmull-Clark
subdivision structure with slightly different subdivision
rules. To describe subdivision rules that determine new
vertex positions, we use an index-free notation. We use
the averaging operator��, where� and� can represent� ,
�, or �. This operator returns for every vertex of type�
the arithmetic average of all adjacent vertices of type�.
If there are no direct neighbors of type�, then�� returns
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Figure 2: Examples for index-free notation. The point� �

is the centroid of a face;�� is the midpoint of an edge;� �
is the midpoint of the line segment defined by� vertices;
�� is the centroid of all adjacent� vertices; and� � is the
centroid of� vertices.

the average from those vertices of type� that correspond
to adjacent primitives,i.e., adjacent vertices or incident
edges or faces. Examples for the averaging operator are
shown in Figure 2.

To provide an example of the index-free notation, we
formulate the Catmull-Clark subdivision rules in algorith-
mic notation using the�� operator:

�� � � ��

�� � �
�

�

�
�� � ��

�

�� � �
�

��

�
�� � �� � ��� � ���

�
(1)

Here,�� denotes the valence of a vertex. The three rules
are illustrated in Figure 3. The� vertices are initially de-
fined by the coordinates given by a submesh. The first rule
defines each� vertex to be located at the centroid of its cor-
responding face. The second rule defines each� vertex to
be the average of its edge midpoint�� and the midpoint� �
of the two adjacent� vertices. The third rule re-defines the
position for each� vertex as a weighted sum of its neigh-
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Figure 3: Catmull-Clark subdivision rules (apply left to
right)
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Figure 4: Wavelet decomposition coarsens a control poly-
gon and stores difference vectors in place of removed ver-
tices.

boring� vertices, its adjacent submesh vertices��, and its
own location. This vertex-modification step is performed
simultaneously for all vertices.

Subdivision rules like these define vertex modifications
that are necessary to determine all supermesh coordinates
for an individual subdivision step. For the next subdivision
step, all vertices become� vertices again, and the same
subdivision rules are applied recursively.

2.1 Lifted One-Dimensional Wavelets

Decomposition rules for a DWT are defined by two lin-
ear operators, afitting operator� predicting the vertex co-
ordinates for the coarser polygon, and acompaction-of-
difference operator� representing the reduced details:

�
� � ���� �� ���

�
� � ���� ���

(2)

Decomposition is recursively applied to a coarse poly-
gon until a base resolution is reached. A DWT thus pro-
vides a base polygon and all individual levels of detail
that need to be added recursively to reconstruct an orig-
inal polygon. An inverse DWT is defined byreconstruc-
tion or synthesis rules that invert the decomposition rules.
Starting with a base polygon, an inverse DWT applies re-
construction rules recursively in reverse order of decom-
position and thus adds more and more detail to a polygon.
Reconstruction rules are defined by asubdivision operator
� predicting the shape of a next finer control polygon and
anexpansion operator� providing the missing details:

�
�

�

�
� ����� � ������ (3)

Figure 5: Lifted cubic B-spline wavelet.

To obtain a smooth approximating curve, the recon-
struction process can be terminated at any level of reso-
lution providing a control polygon at an intermediate level
of detail. The curve is obtained by applying the subdivi-
sion operator� ad infinitum and assuming zero detail on
all finer levels. In the case of B-spline wavelets, the opera-
tor� reproduces in the limit a B-spline curve with uniform
knot vector. A B-spline curve can be computed directly
from a control polygon [23].

The reconstruction rules for a cubic B-spline wavelet
transform can be defined in index-free notation as follows:

�� � � � �
�

�
��

�� � � � � ��

	� � �
�

�
� � �

�
��

(4)

These three vertex modifications representlifting opera-
tions for the DWT. Lifting is used to define the shape
of wavelets with certain properties, like vanishing mo-
ments. The subdivision operator� is obtained from these
reconstruction rules by assuming zero wavelet coefficients
�

�. Vertices of type�� and�� represent coefficients for
wavelets and B-splinescaling functions, respectively. A
cubic B-spline wavelet obtained from our construction is
depicted in Figure 5.

To construct the corresponding decomposition rules we
invert the three individual lifting operations in reverse or-
der. The decomposition rules are defined as:

�� � � �� � ��

�� � � � � ��

	� � � � � �

�
��

(5)

2.2 Wavelets on Polygon Meshes

In the special case of a rectilinear mesh, a tensor-product
DWT is defined by performing a one-dimensional DWT
for all rows and then for all columns of the mesh. The
corresponding tensor-product approach for the first lifting
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Figure 6: Tensor-product lifting operation on a rectilinear
grid. A one-dimensional lifting operation is applied first
to the rows and then to the columns of a grid.
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Figure 7: Same tensor-product lifting operation as in Fig-
ure 6, applied to arbitrary polygonal meshes.

operation of the reconstruction rules (4),

� � � �
�

�
�� (6)

is illustrated in Figure 6. We note that the tensor-product
lifting scheme also involves� vertices and that� vertices
act like� vertices for exactly one direction.

The fundamental observation that makes our lifting ap-
proach possible is that this tensor-product lifting operation
can be computed by modifying� vertices and� vertices
separately, see Figure 7. This formulation does not re-
quire vertex valences to be four, and it is thus applicable
to arbitrary polygonal base meshes. A generalized tensor-
product lifting operation for equation (6) is defined by the
rules

� � � �
�

�
��

� � � �
�

��
�� �

�

�
��

(7)

Due to the averaging operators, the total weight added to
an individual vertex remains independent of its valence.
This property ensures that the shapes of basis functions
near extraordinary points are close to the shapes of corre-
sponding basis functions on regular domains.

Analogously to the first reconstruction rule in (4) the
two remaining rules can be generalized to arbitrary polyg-
onal meshes. This is the entire set of reconstruction rules
for the lifted generalized bicubic DWT:
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(8)

This reconstruction formula defines linear subdivision and
expansion operators, given by

�
���
�

�
� � ����	 � ����

� �
�	� (9)

On a rectilinear grid, the subdivision operator� repro-
duces bicubic B-splines (scaling functions) as limit sur-
faces when no detail is added,i.e., when all wavelet co-
efficients �� and � � are zero. On arbitrary polygonal
base meshes, the subdivision scheme behaves similar to
Catmull-Clark subdivision.

The corresponding decomposition rules are defined by
inverting the rules (8) in reverse order:

�� � � �� � �� � ���

�� � � �� � ��

�� � � � � �� � ���

�� � � � � ��

�� � � � � �

��
�� � �

�
��

�� � � � � �
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(10)

In analogy to equation (2), these decomposition rules de-
fine linear fitting and compaction-of-difference operators,
given by

�
� � ���� �� �	 
���
�

�

�
�

�
� ���� �� �	�

(11)

Our DWT is now applied as follows: a polygonal base
mesh defining a surface topology is recursively subdi-
vided using Catmull-Clark subdivision structure until a
prescribed resolution is obtained. A mapping between the
fine mesh and the geometry that needs to be represented
is established. Coordinates for each mesh vertex are esti-
mated so that the fine mesh (and the limit surface obtained
by�) approximates the geometry closely. The actual input
for our DWT is a hierarchical mesh structure with associ-
ated vertex coordinates at the finest subdivision level. De-
composition rules (10) are applied recursively from fine to
coarse until the base mesh is obtained. The latter now con-
tains control points for the geometry at coarsest resolution.
The wavelet coefficients corresponding to vertices on any
finer subdivision level contain surface details. A control
mesh represents, at any resolution, a smooth generalized
bicubic B-spline surface.

2.3 Boundary Curves and Feature Lines

Boundary curves andsharp feature lines need to be treated
differently in the wavelet scheme in order to avoid a large
number of non-zero wavelet coefficients and to predict
coarser levels of resolution more precisely. Feature lines
for subdivision surfaces were described for by by DeRose
et al.[14]. Boundaries and features correspond to marked



edges in the base-mesh that are subdivided like B-spline
curves defined by�- and� vertices. It is also possible to
definesharp vertices that cannot be modified by any sub-
division rule. (To improve the surface quality in the neigh-
borhood of sharp vertices, adjacent edges are treated like
sharp edges.)

To handle sharp edges and vertices correctly, our subdi-
vision operator�must apply one-dimensional subdivision
rules for all� and� vertices belonging to sharp edges and
it must not modify sharp vertices. Therefore, our recon-
struction rules (8) need to be modified in the following
way:

� For any� vertex located on a sharp edge or belonging
to an edge with a sharp vertex, the first and fifth rules
are ignored.

� For any sharp� vertex, the second and sixth rules are
ignored.

� For any� vertex that has incident sharp edges and
that is not sharp itself, the second and sixth rules are
replaced by

�� � � � �
�

�
�� ��� �� � �

�

�
� � �

�
���

For both rules, the average�� is computed from only
those� vertices that correspond to sharp edges.

The decomposition rules (8) are modified analogously.
Our subdivision scheme generates polynomial patches

satisfying C�-continuity constraints in all regular mesh re-
gions. Except for extraordinary points, all surface regions
become regular after a sufficient number of subdivisions.
Around every extraordinary point there is an infinite num-
ber of smaller and smaller patches. However, it is possible
to compute the limit-surface efficiently at arbitrary param-
eter values based on eigenanalysis of subdivision matrices
[56].

3 Shrink-Wrapping Large Isosur-
faces

Before subdivision-surface wavelet compression can be
applied to an isosurface, it must be re-mapped to a mesh
with subdivision-surface connectivity. Minimizing the
number of base-mesh elements increases the number of
levels in the wavelet transform, thus increasing the poten-
tial for compression. Because of the extreme size of the
surfaces encountered, and the large number of them, the
re-mapper must be fast, work in parallel, and be entirely
automated. The compression using wavelets is improved
by generating high-quality meshes during the re-map. For
this, highly smooth and non-skewed parameterizations re-
sult in the smallest wavelet coefficient magnitudes.

The algorithm for this shrink-wrapping is an elaboration
of the method described in [2]. That method was used to
demonstrate wavelet transforms of complex isosurfaces in

a non-parallel, topology-preserving setting. The algorithm
takes as input a scalar field on a 3D mesh and an isolevel,
and provides a surface mesh with subdivision-surface con-
nectivity as output, i.e. a collection of logically-square
patches of size��� � �� � ��� � �� connected on mu-
tual edges. The algorithm at the high level is organized in
three steps:

Signed distance transform: for each grid point in the
3D mesh, compute the signed-distance field, i.e. the
distance to the closest surface point, negated if in the
region of scalar field less than the isolevel. Starting
with the vertices of the 3D mesh elements contain-
ing the isosurface, the transform is computed using a
breadth-first propagation.

Determine base mesh: To preserve topology, edge-
collapse simplification is used on the full-resolution
isosurface extracted from the distance field using con-
ventional techniques. This is followed by an edge-
removal phase (edges but not vertices are deleted)
that improves the vertex and face degrees to be as
close to four as possible.

Subdivide and fit: The base mesh is iteratively fit and
optimized by repeating three phases: (1) subdivide
using Catmull-Clark rules, (2) perform edge-length-
weighted Laplacian smoothing, and (3) snap the
mesh vertices onto the original full-resolution surface
with the help of the signed-distance field. Snapping
involves a hunt for the nearest fine-resolution surface
position that lies on a line passing through the mesh
point in an estimated normal direction of the shrink-
wrap mesh. The estimated normal is used, instead of
the distance-field gradient, to help spread the shrink-
wrap vertices evenly over high-curvature regions.
The signed-distance field is used to provide Newton-
Raphson-iteration convergence when the snap hunt is
close to the original surface, and to eliminate nearest-
position candidates whose gradients are not facing in
the directional hemisphere centered on the estimated
normal. Steps 2-3 may be repeated several times after
each subdivision step to improve the quality of the pa-
rameterization and fit. In the case of topology simpli-
fication, portions of surface with no appropriate snap
target are left at their minimal-energy position deter-
mined by the smoothing and the boundary conditions
of those points that do snap. Distributed computation
is straightforward since all operations are local and
independent for a given level of resolution.

The shrink-wrap process is depicted in Figure 1 for ap-
proximately�	��% of the 460 million-triangle Richtmyer-
Meshkov mixing interface in topology-preserving mode.
The original isosurface fragment contains 37,335 vertices,
the base mesh 93 vertices, and the shrink-wrap result
75,777 vertices.



Figure 8: Before (left) and after the remapping for triangle bintree hierarchies. Tangential motion during subdivision is
eliminated.

4 Surface Fitting

Using the wavelet construction described previously, we
can efficiently compute detail coefficients at multiple lev-
els of surface resolution when a base mesh and control
points on the finest subdivision level are given. In order
for the transform to apply to an arbitrary input surface, the
surface must be re-mapped to one with subdivision con-
nectivity. In this section we introduce an efficient algo-
rithm to construct base meshes and to subdivide and fit
them to an isosurface. Our approach begins with the high-
resolution, unstructured triangulation obtained by conven-
tional contour extraction methods. This triangulation is
simplified to form an initial coarse base mesh, which we
subsequently subdivide and shrink-wrap to fit the input tri-
angulation with a smoothly-parameterized mapping that
helps minimize wavelet coefficient magnitudes and thus
improves compression efficiency.

We construct a initial base mesh by performing a vari-
ant on edge-collapse simplification due to Hoppe [30],
followed by an additional pass that removes some edges
while keeping the vertices fixed. This class of simpli-
fication method works on triangulations (manifold with
boundary), and preserves the genus of the surface. We
constrain the simplification to produce polygons with
three-, four- and five-sided faces, and vertices of valences
from 3 to 8. These constraints result in higher quality map-
pings and compression efficiency, since very low or high
degree vertices and faces cause highly skewed or uneven
parameterizations in the subsequent fitting process.

The error function used in our mesh-collapse algorithm
is simpler than previous methods and does not require
evaluating shortest distances of a dense sampling of points
to the finest mesh every time an edge is updated. It was
demonstrated by Lindstrom and Turk [39] that memory-
less simplification can provide results excellent results but
without expensive metrics computed with respect to the
original fine mesh.

The priority for an edge collapse is computed as fol-
lows. Let�� be the vectors obtained by taking cross prod-
ucts of consecutive vectors associated with the ring of
edges adjacent to the new vertex after collapse. Then
�� � �������� are the unit normals to the triangles form-
ing a ring around the new vertex. The unit average normal

is � � ���
����

��� ��. The error introduced by an edge
collapse is estimated by

��� � ���
������� ����

������ � ��

���� (1)

where� � �� � ��. In order to allow priority distinctions
in skewed/tangled planar neighborhoods, we clamp�� �

to a small positive value by��� � �������� ��
���.

Errors in higher-curvature or tangled neighborhoods are
emphasized by a weighting factor, giving the final delta in
error energy as

�� �

�
��

��	 �� � �

��� �����

���

��� (2)

We keep an estimate of accumulated error for each edge
neighborhood,�acc. The original edges are initialized
with zero accumulated error. The total error for an edge
is defined as

� � �acc
�� (3)

When an edge is collapsed, the accumulated error for any
edge adjacent to the new vertex is set to the maximum of
its previous value�acc and the values� for the five old
edges destroyed by the collapse. The priority of a collapse
is given by�������. This value is discretized, for ex-
ample, to about��� buckets within a maximum expected
range of��� ������ �� �����, to give a bucket index.

Upon collapse, a neighborhood of nearby edges must
have their legality markings and priorities updated. These
edges are: (a) those adjacent to the new vertex or to the two
old vertices remaining from the triangles that collapsed to
edges, and (b) the ring of edges formed between consecu-
tive outer endpoints of the edges in (a).

To improve the vertex and face valences of the base
mesh, we delete some edges that satisfy certain con-
straints, in a priority-queue order. An edge is eligible for
deletion if its incident vertices both have valences at least
four, and if the resulting merged face has no more than
five sides. Sharp edges are never eligible for deletion. If
the unit normals of the faces on either side of the edge have
a dot product less that a specified threshold, for example
��, then we also make the edge ineligible for removal. The
priority for removal is formulated to be higher when the



new face has four sides, when the two faces being com-
bined have similar normals, and when high-valence ver-
tices (valence� �) are on the ends. Removal priority is
lower when the new face has more than four sides, when
the two combining faces have disparate normals, and when
the edge’s vertices have valence 4.

4.1 Isosurface Fitting

Given the initial base mesh from the edge collapse and
removal procedures, a refinement fitting procedure is
the final step in converting the contour surface to have
subdivision-surface connectivity, a fair parameterization,
and a close approximation to the original unstructured ge-
ometry. Our method is inspired by theshrink-wrapping
algorithm by Kobbeltet al.[37], which models an equilib-
rium betweenattracting forces pulling control points to-
wards a surface andrelaxing forces minimizing paramet-
ric distortion. We iterate the attraction/relaxation phases a
few times at a given resolution, then refine using Catmull-
Clark subdivision, repeating until a desired accuracy or
resolution is attained. Relaxation is provided by a sim-
ple Laplacian averaging procedure, where each vertex is
replaced by the average of its old position and the centroid
of its neighbor vertices. Relaxation for a vertex adjacent
to two sharp edges only weights the adjacent vertices on
those edges. Sharp vertices are not relaxed. The remain-
der of this section describes the attraction method.

For attraction, vertices are moved to the actual isosur-
face along a line defined by the unit average normal of
the faces adjacent to the vertex in the current shrink-wrap
mesh. The location chosen along this line is determined
by use of a signed-distance field for the original contour
surface. We choose the current-mesh normal direction to
ensure that samples spread evenly over the surface, es-
pecially for high-curvature features. The even spread is
facilitated by the mesh relaxation procedure. The signed-
distance field is used to help locate the best attraction point
because it is a reliable indicator of which way to move and
how far, and can help disambiguate between near isosur-
face locations by selecting the one facing a direction that
most agrees with the mesh normal. The scalar field itself,
while available a no additional space or time cost, is gen-
erally not reliable for these things. We move to the nearest
isosurface along the mesh-normal line that has a contour
normal facing in the same direction (the dot product of the
two normals is positive). If the distance to this location
is greater that a specified threshold, then the point is left
where it was until further iterations/refinements provide a
sensible target location.

If the scalar field is defined on a regular hexahedral grid,
we use the same grid for the signed-distance function. The
sign for our distance function can be obtained from the un-
derlying scalar field while estimating the distance to the
isosurface involves more work. Our algorithm creates a
breadth-first queue of “updated” nodes in the grid, initial-
ized to include the grid nodes for cells containing isosur-

face, using the the isolevel, scalar value and scalar-field
gradient to estimate these initial distances. Each queue
entry contains the node index and coordinates of the clos-
est surface point found so far for that node. The first entry
on the queue is removed, and all its neighbors are checked
to see if they need to be updated. A neighbor is updated
if the removed nodes closest point is closer that its clos-
est point. Updating involves replacing the coordinates of
the closest point, placing the neighbor at the end of the
queue, and storing the new distance in the distance field
for the neighbor’s node. The queue processing continues
until the queue is empty. Typically each node gets updated
only a few times, resulting in very fast computation of the
signed-distance field.

We note that an isosurface of a signed-distance function
will have slight differences from the original extracted iso-
surface, hence the fitting process will converge to a slightly
different surface than may be desired. This can be op-
tionally corrected after fitting, by moving the vertices in
the scalar-gradient direction to the exact isosurface. This
is possible after the fitting process because the points are
within a fraction of a cell width from the exact surface and
the scalar field is reliable when in that proximity.

5 Re-Mapping

The Realtime Optimally Adapting Meshes (ROAM) al-
gorithm typically exploits a piecewise block-structured
surface grid to provide efficient selective refinement for
view-dependent optimization. A triangle bintree structure
is used. This consists of a hierarchy of logically right-
iscoceles triangles, paired across common base edges at
a uniform level of subdivision. A simple split operation
bisects the common base edge of such a pair, turning the
two right-isosceles triangles into four. Merging reverses
this operation. This is depicted in Figure 9.

split

merge

�

��

�� ��

�� ��

������

Figure 9: Split and merge operations on a bintree triangu-
lation. A typical neighborhood is shown for triangle� on
the left.

The shrink-wrapping process that we have described
produces meshes that are technically in this form, but
cause large tangential motions of the mapping during re-
finement even in regions of flat geometry. To correct for
this, we have devised a new remapping algorithm that



eliminates tangential motion altogether whenever possible
during ROAM refinement, but never causes the mapping to
become degenerate or ill-defined. In effect, the surface is
defined by a series of neighborhood height (normal) maps,
allowing details to be stored with a single scalar rather than
a 3-component displacement vector. Our method is simi-
lar to the independent work of Guskovet al. [28], differ-
ing primarily in the driving goal (efficient view-dependent
optimization with crude wavelet compression in our case)
and the details of mesh structure, subdivision scheme sup-
ported, intersection acceleration an so on.

The normal-remapping works from coarse to fine res-
olutions, remapping a complete uniform level of the hi-
erarchy at once. The vertices of the base mesh are left
fixed at their original positions. For every edge-bisection
vertex formed in one subdivision step, estimated normals
are computed by averaging the normals to the two trian-
gles whose common edge is being bisected. For every
vertex that has been remapped, its patch and parameter
coordinates in the original map are kept. During edge bi-
section, theparametric midpoint is computed by topologi-
cally gluing at most two patches together from the original
mesh, computing the mid-parameter values in this glued
space, then converting those parameters back to unglued
parameters. Given the constraints on our procedure, it is
not possible for bisecting-edge endpoints to cross more
than one patch boundary. A ray-trace intersection is per-
formed from the midpoint of the line segment being bi-
sected, in the estimated normal direction. Since we ex-
pect the intersection to be near the parametric midpoint in
most cases, it is efficient to begin the ray intersection tests
there for early candidates. Since the surface being ray-
traced stays fixed throughout the remapping, the construc-
tion of typical ray-surface intersection-acceleration struc-
tures can be amortized and overall offer time savings (re-
ducing the time from��� ������� to ���� for � mesh
vertices). Interval-Newton and finally Newton-Raphson it-
erations can be performed for the final precise intersection
evaluation. Intersections are rejected if they are not within
a parametric window defined by the four remapped ver-
tices of the two triangles being split, shrunk by some fac-
tor (e.g.��) around the parametric midpoint. The closest
acceptable intersection is chosen. If none exist or are ac-
ceptable, the parametric midpoint is chosen.

The result of remapping is shown in Figure 8 for a
test object produced by Catmull-Clark subdivision with
semi-sharp features. The original parameterization on the
left is optimal for compression by bicubic subdivision-
surface wavelets, but produces extreme and unnecessary
tangential motions during triangle-bintree refinement. The
remapped surface, shown on the right, has bisection-
midpoint displacements (“poor man’s wavelets”) of length
zero in the flat regions of the disk, and displacements of
minimized length elsewhere. We note that while the main
motivation for this procedure is increasing accuracy and
reducing the “pops” during realtime display-mesh opti-
mization, the typical reduction to a single scalar value of

the displacement vectors (wavelet coefficients) gives a fair
amount of compression. This is desirable when the re-map
from high-quality wavelet parameterization and compres-
sion is too time-consuming such as on the client end of the
server-client asynchronous dataflow described earlier.

We note that the ROAM algorithm naturally requires
only a tiny fraction of the current optimal display mesh
to be updated each frame. Combined with caching and the
compression potential of the remapping, this promises to
provide an effective mechanism for out-of-core and remote
access to the surfaces on demand during interaction.

6 Results

To demonstrate the performance of our algorithm, we have
extracted an isosurface from a block of a high-resolution
turbulent-mixing hydrodynamics simulation [46], con-
verted it into our surface representation and displayed dif-
ferent levels of resolution. Starting with a block of����
��� � 	
� samples, we have constructed an isosurface
mesh composed of 976,321 vertices. This mesh has been
simplified to a base mesh with only 19,527 vertices. We
have used three subdivision steps for the shrink-wrapping
process and obtained a fine-resolution mesh composed of
1,187,277 vertices, which corresponds to the total number
of control points and wavelet coefficients. We obtained
computation times of 12 minutes for base mesh genera-
tion, about one minute for the shrink-wrapping step, and
30 seconds for computing the wavelet transform on a 250
MHz MIPS R10000 processor.

Number of Percent of RMSE [%]
coefficients full resolution
237,490 20.0 7.6
118,728 10.0 20.5
59,364 5.0 41.7
19.527 1.6 71.3

Table 1: Root mean square errors in percent of edge length
of volume cell for reconstructions from subsets of coeffi-
cients.

Assuming that the control points of the shrink-wrapped
mesh interpolate the isosurface, we can estimate the root
mean square error (RMSE) for a mesh reconstructed from
only a subset of coefficients by using differences between
control points at finest resolution. Error estimates are
shown in Table 1. The errors are computed in percent of
the edge length of one volume cell. The main diagonal
of the entire block is about 528 edge lengths. The coars-
est resolution possible can be obtained by reconstruction
from the base mesh, which corresponds to 1.6 percent of
the full resolution. We note that every wavelet coefficient
is a vector-valued quantity with three components.

Figure 10 shows the base mesh with interpolating con-
trol points and different levels of resolution from two dif-



ferent points of view. All figures are rendered at a mesh
resolution corresponding to three subdivision levels (same
resolution as obtained from shrink-wrapping) using flat
shading.

7 Conclusions

Several pieces of the this strategy have been realized to
date, but many challenges remain to create a full capabil-
ity:

1. For topology-preserving simplification, the inher-
ently serial nature of the queue-based schemes must
be overcome to harness parallelism.

2. Transparent textures or other means must be devised
to handle the un-mapped surface regions resulting
from topology-simplifying shrink wrapping.

3. The shrink-wrapping procedure can fail to produce
one-to-one, onto mappings in some cases even when
such mappings exist. Perhaps it is possible to revert
to expensive simplification schemes that carry one-
to-one, onto mappings only in problematic neighbor-
hoods.

4. Shrink-wrapping needs to be extended to produce
time-coherent mappings for time-dependent surfaces.
This is a great challenge because of the complex evo-
lution that surfaces go through during physics simu-
lations.
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(a) Base mesh (side view) (b) Full resolution (bottom view)

(c) Full resolution (d) 5% of coefficients used

(e) 5% of coefficients used (f) 1.6% of coefficients used

Figure 10: The base mesh with interpolating control points and various levels of resolution




