
UCSF
UC San Francisco Previously Published Works

Title
Co-activator independent differences in how the metaphase and anaphase APC/C recognise 
the same substrate

Permalink
https://escholarship.org/uc/item/4t84529k

Journal
Biology Open, 3(10)

ISSN
2046-6390

Authors
Matsusaka, Takahiro
Enquist-Newman, Maria
Morgan, David O
et al.

Publication Date
2014-10-15

DOI
10.1242/bio.20149415
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4t84529k
https://escholarship.org/uc/item/4t84529k#author
https://escholarship.org
http://www.cdlib.org/


RESEARCH ARTICLE

Co-activator independent differences in how the metaphase and
anaphase APC/C recognise the same substrate

Takahiro Matsusaka1,2, Maria Enquist-Newman3, David O. Morgan3 and Jonathon Pines1,2,*

ABSTRACT

The Anaphase Promoting Complex or Cyclosome (APC/C) is critical

to the control of mitosis. The APC/C is an ubiquitin ligase that

targets specific mitotic regulators for proteolysis at distinct times in

mitosis, but how this is achieved is not well understood. We have

addressed this question by determining whether the same

substrate, cyclin B1, is recognised in the same way by the APC/C

at different times in mitosis. Unexpectedly, we find that distinct but

overlapping motifs in cyclin B1 are recognised by the APC/C in

metaphase compared with anaphase, and this does not depend on

the exchange of Cdc20 for Cdh1. Thus, changes in APC/C

substrate specificity in mitosis can potentially be conferred by

altering interaction sites in addition to exchanging Cdc20 for Cdh1.

KEY WORDS: Mitosis, Anaphase Promoting Complex/Cyclosome,

Cyclin B

INTRODUCTION
The cell cycle is driven by alternating states of high and low
cyclin-dependent kinase activity (Morgan, 2007). Ubiquitin-

mediated proteolysis underpins this by destabilising specific
cyclins at particular times, which is especially important for the
B-type cyclins that drive the cell into mitosis (Murray et al., 1989;

Wolf et al., 2006). B-type cyclins are targeted for destruction only
when the Spindle Assembly Checkpoint (SAC) is inactivated
when all the chromosomes have properly attached to the mitotic

spindle (Clute and Pines, 1999). The B-type cyclins continue to
be degraded through the next G1 phase until cells have re-
licensed chromosomes for the next round of DNA replication

(Amon et al., 1994; Brandeis and Hunt, 1996); hence each cell
division must normally be followed by a round of DNA

replication.

The B-type cyclins are ubiquitylated (Glotzer et al., 1991) by
the Anaphase Promoting Complex (King et al., 1995; Yamashita

et al., 1996; Zachariae et al., 1996) or Cyclosome (Sudakin et al.,
1995) (APC/C), a multi-subunit ubiquitin ligase that recognises a
variety of different proteins in mitosis and in G1 phase (reviewed

by Barford, 2011; Pines, 2011). The APC/C is able to select
different substrates at different times in mitosis (Pines, 2006), but

how it does so is still unresolved. In early mitosis the APC/C is
activated by the Cdc20 protein that itself is regulated by the SAC
(Fang et al., 1998; Hwang et al., 1998; Kim et al., 1998; Sudakin

et al., 2001; Yu, 2007). The SAC detects improperly attached
chromosomes (Hoyt et al., 1991; Li and Murray, 1991; Murray,
2011; Rieder et al., 1995) and inactivates Cdc20 to prevent
the APC/C from recognising securin and cyclin B1, thereby

preventing sister chromatid separation and exit from mitosis,
respectively. While the SAC is active, however, the APC/C can
still recognise some of its other substrates, notably cyclin A (Di

Fiore and Pines, 2010; den Elzen and Pines, 2001; Geley et al.,
2001; Wolthuis et al., 2008) and Nek2A (Hayes et al., 2006).
Only when the SAC is inactivated in metaphase does the APC/C

begin to degrade securin and cyclin B1 (Clute and Pines, 1999;
Hagting et al., 2002). Part of the explanation for why some
substrates, such as cyclin A and Nek2A, are degraded earlier than
others in mitosis is because they bind directly to the APC/C (Di

Fiore and Pines, 2010; Hayes et al., 2006; Wolthuis et al., 2008).
But recruitment alone is not sufficient to confer earlier
degradation because neither Kif18A nor cyclin B1 are degraded

while the SAC is active despite being bound to the APC/C
(Sedgwick et al., 2013; van Zon et al., 2010). Thus, in addition to
binding to the APC/C, cyclin A also recruits Cdc20 (Di Fiore and

Pines, 2010; Wolthuis et al., 2008), and Nek2A can be degraded
in trans when the amino-terminus of Cdc20 or the related protein,
Cdh1 are added to activate the APC/C (Kimata et al., 2008).

Once cells begin anaphase the APC/C recognises a wider
variety of substrates, including Plk1, the Aurora kinases, and

Cdc20 itself (Floyd et al., 2008; Lindon and Pines, 2004;
Littlepage and Ruderman, 2002; Pfleger et al., 2001). The
anaphase and G1 phase APC/C ubiquitylate a broader range of
substrates and a number of APC/C degrons have been identified

in addition to the classical ‘Destruction box’ (consensus:
RxxLxxI/VxN) that mediates Cyclin B1 and securin destruction
(Glotzer et al., 1991; King et al., 1996; Yamano et al., 1998; Zur

and Brandeis, 2001) (note that lysine substitutes for arginine in
Drosophila securin (Leismann et al., 2000)). These degrons
include the KEN box (Pfleger et al., 2001) (consensus:

KENxxxN/D), and other motifs such as the O-box (Araki et al.,
2003) or the GxEN motif (Castro et al., 2003) that often resemble
degenerate D-boxes or KEN-boxes (Barford, 2011). The
molecular mechanism behind this change in substrate

specificity is partially attributable to the replacement of Cdc20
by Cdh1 (Visintin et al., 1997; Zur and Brandeis, 2002). For
example, Aurora A is degraded in anaphase but only in cells with

Cdh1 (Floyd et al., 2008; Garcı́a-Higuera et al., 2008; Sigl et al.,
2009), and the D-box of Hsl1 is recognised by APC/C bound to
Cdc20 whereas its KEN-box is recognised by APC/C bound to

Cdh1 (Burton and Solomon, 2001).

The change in the substrate specificity of the APC/C in

anaphase is not, however, as simple as a switch from D-boxes to
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KEN-boxes when Cdc20 is replaced by Cdh1. For example, both
Plk1 and Aurora A are degraded in anaphase but this requires a

D-box (Lindon and Pines, 2004; Littlepage and Ruderman, 2002)
rather than a KEN box (Littlepage and Ruderman, 2002) (plus an
A-box in the case of Aurora A (Littlepage and Ruderman, 2002)).
It has been suggested that Plk1 is degraded before Aurora A in

anaphase simply because it is a more processive substrate (Rape
et al., 2006), but there appears to be a more qualitative difference
because Aurora A can only be recognised by the APC/C bound to

Cdh1 (Floyd et al., 2008; Garcı́a-Higuera et al., 2008; Sigl et al.,
2009) whereas Plk1 can be degraded in anaphase by the APC/C
whether or not Cdh1 is present (Floyd et al., 2008). The

importance of the change in APC/C specificity in different phases
of the cell cycle is illustrated by the genetic instability of cells
lacking Cdh1 (Garcı́a-Higuera et al., 2008; Sigl et al., 2009), and

the observation that perturbing the destruction of late mitotic
substrates leads to problems in cytokinesis (Floyd et al., 2008;
Lindon and Pines, 2004).

Recent biochemical and structural data indicate that the APC/C

recognises some of its substrates through a bi-partite receptor
composed of co-activator (Cdc20 or Cdh1) and the APC10
subunit (Buschhorn et al., 2011; Chao et al., 2012; da Fonseca et

al., 2011; Izawa and Pines, 2011; Matyskiela and Morgan, 2009;
Passmore and Barford, 2005). Exactly how the substrate binds
into this receptor is not yet clear, but the interactions between

Cdc20 and two checkpoint proteins in the structure of the Mitotic
Checkpoint Complex (Chao et al., 2012) indicate that a KEN-box
can bind to the top surface of Cdc20. By contrast, the D-box

appears to bind to the side of Cdc20, between blades 1 and 7 of
the beta-propeller domain (Chao et al., 2012) and to the Doc
domain of APC10 (Carroll et al., 2005; da Fonseca et al., 2011;
Passmore et al., 2003).

Given the importance of the cell cycle-regulated destruction of
the B-type cyclins, we set out to define better how cyclin B1 is
recognised by the APC/C through the cell cycle. We have found

that the destruction motif that is recognised in metaphase overlaps
with, but is distinct from, that recognised in anaphase and G1
phase, and this change is not dependent on replacing Cdc20 with

Cdh1. Furthermore, several residues important for destruction are
dispensable if Cyclin B1 can be recruited to the APC/C in
anaphase, but not in metaphase. We conclude that multiple motifs
are required to mediate recognition by the APC/C and these

change as cells progress through mitosis. This may contribute to
the ability of the APC/C to recognise different proteins at
different times in mitosis.

RESULTS
Leucine 45 is the most critical residue in the Cyclin B1
Destruction box
Previous analyses of the residues required for a functional D-box
primarily measured protein half-lives and not the point in mitosis

that the protein became unstable (Glotzer et al., 1991; King et al.,
1996; Yamano et al., 1998). To assay the timing of destruction we
set up a live-cell assay in which we linked wild type or mutant
human cyclin B1 to a fluorescent protein (CFP or YFP) to enable

us to compare their destruction in the same cell (in all cases we
checked that the same results were obtained when we swapped
the fluorescent tags). To analyse the destruction of proteins in

metaphase, protein values were normalised to those at NEBD; to
analyse destruction in anaphase data were normalised to the
beginning of anaphase. Note that we obtained similar results in

assays where we depleted endogenous cyclin B1 by siRNA

(directed against the 39 UTR that is not present in the transgene)
to exclude differences in degradation timing caused by

competition with the endogenous protein, and that in agreement
with previous studies (Wolf et al., 2006), non-degradable cyclin
B1 blocked cells in anaphase rather than in metaphase.

We first analysed the effect of mutating those conserved

residues of the cyclin B1 D-box that had previously been shown
to be most critical for destruction: R42, L45, and N50 (King et al.,
1996; Yamano et al., 1998) (Fig. 1A). L45 proved to be essential

for degradation in both metaphase and anaphase (Fig. 1B,C). The
likely explanation for this is that the structure of the putative D-
box binding site on Cdc20 indicated that L45 should be buried in

a deep pocket (Chao et al., 2012). By contrast, we found mutating
R42, which is commonly used to inactivate a D-box, only
partially stabilised Cyclin B1 in anaphase (Fig. 1D,E). Mutating

N50 had a similar effect to mutating R42 (Fig. 1F,G), but
mutating both residues stabilised cyclin B1 in both metaphase and
anaphase, in a similar fashion to mutating L45 (Fig. 1H,I).

Identifying an Anaphase Degron
Since the APC/C recognises a wider range of substrates in
anaphase than in metaphase, we considered the possibility that

different residues in cyclin B1 might be important for recognition
in anaphase. Deleting the first 40 amino acids (i.e. very close to
the start of the original D-box, Fig. 1A) blocked degradation in

mitosis altogether (Fig. 2A,B), as previously observed for sea
urchin cyclin B and for fission yeast securin/cut2 (King et al.,
1996; Yamano et al., 1998). Removing the first 9 amino acids

slightly slowed down metaphase degradation, but not anaphase
degradation (Fig. 2C,D). An internal deletion from amino acids
11 to 41 also perturbed cyclin B1 degradation in metaphase, and
appeared to have an even greater effect in anaphase (Fig. 2E,F).

To narrow down the region responsible for promoting anaphase
recognition by the APC/C we used an in vitro ubiquitylation
system (Enquist-Newman et al., 2008) and found that the D11–41

mutant could hardly be ubiquitylated (Fig. 3A,B). We made a
series of smaller internal deletions and found that deleting
residues 21 to 25 greatly reduced ubiquitylation by APC/C

in vitro (Fig. 3A,B). Moreover, this mutant was also stabilised in
anaphase in vivo (supplementary material Fig. S1A,B). To refine
this analysis we constructed point mutations in each of the
residues from positions 21 to 25 and identified M21 as the critical

residue for anaphase degradation (Fig. 3C,D). (Positions 22, 23,
24 are A–G–A, and mutating K25 to alanine did not affect
degradation, data not shown.) Cells expressing the M21A mutant

arrested in anaphase and it was notable that M21 was not required
for degradation in metaphase (Fig. 3C).

What caused this change in APC/C specificity in anaphase?

The obvious candidate was the exchange of Cdc20 for Cdh1, but
we found there was no difference in the ability of mouse
embryonic fibroblasts (MEFs) lacking Cdh1 (Garcı́a-Higuera et

al., 2008) to degrade cyclin B1 in metaphase or anaphase
(Fig. 3E,F). Moreover, the requirement for M21 for degradation
in anaphase was conserved (supplementary material Fig. S1C,D).
We also excluded the possibility that the M21A mutant inhibited

the anaphase APC/C because HeLa cells could still degrade the
R42A mutant and Plk1 (supplementary material Fig. S1E). By
contrast, Aurora A was stabilised as expected because the

stabilised Cyclin B1-Cdk1 activity in anaphase prevented the
activation of Cdh1 (Floyd et al., 2008). We conclude that
the metaphase and anaphase APC/Cs recognise the same substrate

in different ways: R42, N50 and particularly L45, are important
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Fig. 1. L45 of the Cyclin B1
D-box is most important for
degradation. (A) Schematics of
cyclin B1 constructs used in this
study. The D-box is highlighted in
blue. (B,C) HeLa cells were
injected with cyclin B1-Venus
(grey, n536) or cyclin B1 L45A-
Venus (red, n524) constructs and
followed by time-lapse
fluorescence and DIC microscopy
at 3-min intervals. The total
fluorescence minus background
was quantified for each cell in
successive images of a time series
and plotted over time as mean 6

SD from 3 independent
experiments. Fluorescence of cells
at NEBD (B) or anaphase onset
(C) was set to 1. Time 0 is NEBD in
(B) or anaphase onset in
(C). (D,E) HeLa cells were injected
with cyclin B1-Venus (grey, n536),
L45A-Venus (black, n524) or
cyclin B1 R42A-Venus (red, n555)
constructs and analysed as in
panels B and C. Fluorescence of
cells at NEBD (D) or anaphase
onset (E) was set to 1. Time 0 is
NEBD in (D) or anaphase onset in
(E). Data are from 3 independent
experiments. (F,G) HeLa cells
were injected with cyclin B1-Venus
(grey, n536), L45A-Venus (black,
n524) or cyclin B1 N50A-Venus
(red, n533) constructs and
analysed as in panels B and C.
Fluorescence of cells at NEBD
(F) or anaphase onset (G) was set
to 1. Time 0 is NEBD in (F) or
anaphase onset in (G). Data are
from 3 (wt and L45A) or 2 (N50A)
independent experiments. (H,I)
HeLa cells were injected with
cyclin B1-Venus (grey, n536),
L45A-Venus (black, n524) or
cyclin B1 R42A/N50A-Venus (red,
n538) constructs and analysed as
in panels B and C. Data are from 3
independent experiments.
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for a functional D-box in metaphase, whereas in anaphase there is
an additional requirement for M21.

Multi-valent recruitment of Cyclin B1 to the APC/C is required
for its degradation in metaphase and anaphase
The cyclin B1-Cdk1 complex has previously been shown to bind
to the APC/C through its partner Cks1 protein, and this improves
the efficiency of its destruction (van Zon et al., 2010). To test
whether the difference in D-box residues recognised by

metaphase and anaphase APC/Cs was due to a difference in
their ability to bind cyclin B1, we recruited wild type or a R42A/
L45A double mutant of cyclin B1 directly to the APC/C by fusing

its carboxyl terminus to the Cks1 protein (Di Fiore and Pines,
2010; Wolthuis et al., 2008). This revealed a marked difference
between metaphase and anaphase cells: recruiting the double

mutant to the metaphase APC/C had no effect, but recruiting it to
the anaphase APC/C allowed it to be degraded (Fig. 4A,B). These
experiments further underlined the importance of M21 to
anaphase recognition because mutating M21 partially stabilised

this construct in anaphase (Fig. 4A,B). Note that we could not
substitute Cks1 with a C-terminal IR motif (Fig. 4C,D); therefore
it may be important where and how the C-terminus of cyclin B1

binds to the APC/C.
Our results also indicated that APC/C appeared to have a more

stringent requirement for the canonical D-box to recognise its

substrates in metaphase than in anaphase. Therefore, we asked
whether we could substitute the D-box of cyclin B1 with another

APC/C-binding motif to confer metaphase destruction. We
selected the N-terminus of Cdc20, which directed the

degradation of Mes1 (Kimata et al., 2008). Kimata et al. found
that the N-terminus of Cdc20 could not direct the degradation of
cyclin B (Kimata et al., 2008), and we confirmed this result when

we fused the N-terminus of Cdc20 to the R42A/L45A double
mutant of cyclin B1 (Fig. 4E,F). Kimata et al. also showed that
the N-terminus of Cdc20 could direct the destruction of Nek2A
in trans. Nek2A differs from cyclin B1 in that it can bind directly

to the APC/C through its IR tail; therefore, we tested whether
binding cyclin B1 to the APC/C through Cks1 would now allow
the N-terminus of Cdc20 to substitute for a D-box, and found that

it did (Fig. 4E,F). Furthermore, this degradation did not require
the KEN box (Fig. 4G,H) but did require the C-box and the KILR
motif (Fig. 4G,H), the two known APC/C-binding motifs in the

N-terminus of Cdc20. Similarly, a non-phosphorylatable version
of the N-terminus of Cdh1 was also able to direct degradation of
the R42A/L45A mutant fused to Cks1 (Fig. 4I,J), and was
noticeably more potent in metaphase, but not anaphase, when we

mutated its KILR motif to mimic that in Cdc20 (Fig. 4I–K).

DISCUSSION
In this study we have investigated how the APC/C recognises its
different substrates at different times by asking whether the key
mitotic substrate, cyclin B1, is recognised in the same way in

different mitotic phases. Cyclin B1 is first recognised in
metaphase when the SAC is inactivated (Clute and Pines, 1999)

Fig. 2. The first 40 amino acids of cyclin B1 are
required for its degradation. (A,B) HeLa cells were
injected with cyclin B1-Venus (grey, n536) or cyclin B1
D40-Venus (red, n545) constructs and analysed as in
Fig. 1. Data are from 3 independent experiments.
(C,D) HeLa cells were injected with cyclin B1-Venus
(grey, n536) or cyclin B1 D9-Venus (red, n543)
constructs and analysed as in Fig. 1. Data are from 3
independent experiments. (E,F) HeLa cells were injected
with cyclin B1-Venus (grey, n536) or cyclin B1 D11–41-
Venus (red, n547) constructs and analysed as in Fig. 1.
Data are from 3 independent experiments. Note that the
data for wild type cyclin B1 degradation are the same as
those in Fig. 1.
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but continues to be degraded in anaphase because cells enter
anaphase with substantial amounts of cyclin B1 remaining (Collin
et al., 2013). It is essential to degrade the remaining cyclin B1 for

cells to undergo cytokinesis and exit mitosis (Wolf et al., 2006),
and thus cells expressing the M21A mutant arrest in anaphase.
We were surprised to find that the APC/C recognises overlapping

but distinct motifs on cyclin B1 depending on whether it was in
metaphase or anaphase: in metaphase the canonical D-box is most
important, whereas in anaphase an additional region 20 amino

acids N-terminal to the D-box is also important. In particular we
identified M21 as crucial for anaphase degradation, and this
residue is conserved in mammalian B1 cyclins but not in other
vertebrates. Furthermore, the M21 region is important in

anaphase cells that lack the Cdh1 co-activator protein,
indicating that the change in APC/C substrate recognition must

involve processes other than simply exchanging Cdc20 for Cdh1.
We interpret these results as showing that the substrate interaction
surfaces on the APC/C differ in a cell cycle-dependent manner.

At present we do not have a molecular mechanism for what
causes the change in substrate recognition. Aside from the
exchange of Cdc20 for Cdh1, the most prominent change in an

anaphase cell compared to a metaphase cells is the change in the
balance of protein kinases and phosphatases that is required for
cytokinesis (Cundell et al., 2013); therefore, there may be a

change in the phosphorylation state of substrate interaction motifs
on the APC/C, although we find that any change does not require
the inactivation of cyclin B1-cdk1. Alternatively, the region
around M21 might be important for other aspects of APC/C-

dependent ubiquitylation such as the addition of ubiquitin chains,
or the pattern of the added chains that could alter the affinity for

Fig. 3. Residues N-terminal to the
canonical D-box of cyclin B1 are required
for its ubiquitylation and degradation in
anaphase. (A) In vitro ubiquitylation
reactions using purified budding yeast APC/
C-Cdh1 and the indicated in vitro translated
human cyclin B1 mutants. Data are
representative of results from two
independent experiments. (B) The data from
(A) were quantified and the amount of
ubiquitylated cyclin B1 was plotted as a
function of time. (C,D) HeLa cells were
injected with cyclin B1-Venus (grey, n536) or
cyclin B1 M21A-Venus (red, n520)
constructs and analysed as in Fig. 1. Data
are from 3 independent experiments.
(E,F) Cdh1+/+ (red), or Cdh12/2 (blue) mouse
embryonic fibroblasts were transfected with
cyclin B1-Venus constructs and analysed as
in Fig. 1. Error bars indicate mean 6 SD of
41 and 50, cells, for panels E and
F, respectively.
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Fig. 4. See next page for legend.
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the proteasome. It is also conceivable that the change in substrate

recognition is due to a change in the E2 used in anaphase, and
indeed we previously found that UbcH10 begins to be degraded
in anaphase (Walker et al., 2008).

The difference in the importance of the D-box for recognition
by the APC/C in metaphase and anaphase is also illustrated by
our finding that it can be dispensed with completely in anaphase

if a substrate is recruited directly to the APC/C through the Cks1
protein, which binds to phosphorylated APC/C (Rudner and
Murray, 2000). By comparison, this is not sufficient to degrade a
substrate in metaphase. Both biochemical and structural data

(Carroll et al., 2005; da Fonseca et al., 2011; Kraft et al., 2005;
Passmore and Barford, 2005) indicate that the D-box is
recognised by a bi-partite receptor composed of the co-activator

and the APC10 subunit, but our data indicate that there may be
differences between the metaphase and anaphase APC/Cs in
substrate recognition surfaces outside this receptor.

We are able to destabilise cyclin B1 in metaphase when we recruit
it to the APC/C through Cks1 and replace its D-box with another
APC/C binding motif: the N-terminus of Cdc20. This adds to the
accumulating evidence that substrate binding to the APC/C requires

the cooperation of multiple interaction motifs (Burton and Solomon,
2001; Hames et al., 2001; Sedgwick et al., 2013; Wolthuis et al.,
2008). Binding through multiple cooperating motifs rather than one

high affinity interaction site would offer the opportunity for the APC/

C to evolve interaction surfaces to favour the recognition of multiple
substrates at different times in the cell cycle.

MATERIALS AND METHODS
Cell culture and synchronization
HeLa cells were cultured in Advanced DMEM (Life Technologies Ltd,

Paisley, UK) supplemented with 2% foetal bovine serum, glutamax-I

(200 mM), penicillin (100 U/ml), streptomycin (100 mg/ml) and

fungizone (250 ng/ml) at 37 C̊, 10% CO2. MEFs were cultured in the

medium previously described (Garcı́a-Higuera et al., 2008). HeLa cells

were synchronised at G1/S transition by a thymidine/aphidicolin block:

the day after seeding, cells were blocked with thymidine (2.5 mM,

Sigma–Aldrich, Gillingham, UK) for 24 hours, released for 12 hours and

then blocked again with aphidicolin (2.5 mg/ml, Sigma–Aldrich) for

24 hours. Cells were then released in fresh DMEM.

Microinjection and time-lapse imaging and analysis
For microinjection and microscopy, the cells were grown on a Bioptechs

DT heating stage (Bioptechs, Butler, PA) attached to a Leica DMIRBE

microscope and the culture medium was replaced with Leibovitz’s L-15

medium (Life Technologies Ltd) supplemented with 10% foetal bovine

serum, penicillin (100 U/ml) and streptomycin (100 mg/ml). Cells were

microinjected with cDNA encoding cyclin B1-Venus at a concentration

of 3 ng/ml in G2 cells, using a semiautomatic microinjector (Eppendorf,

Stevenage, UK) on a Leica DMIRBE microscope (Leica Microsystems,

Milton Keynes, UK) and assayed by time-lapse DIC and fluorescence

microscopy as previously described (Karlsson and Pines, 1998).

Parameters used for all images captured were exposure time

200 mseconds, 406 oil objective lens with a numerical aperture of 1.2.

All images were captured at 3 minutes intervals and analyzed by

SlideBook software (Intelligent Imaging Innovations, Denver, CO, USA).

Ubiquitylation assay
E1, E2, Cdh1, and APC/C were expressed and purified as described

previously (Carroll et al., 2005; Enquist-Newman et al., 2008). Substrates

were transcribed and translated in vitro using the TNT system (Promega,

Madison, WI) from plasmids with 35S-methionine and treated with

10 mM NEM (10 minutes) followed by 20 mM DTT (10 minutes) to

inactivate ubiquitin chain-extending activities in the reticulocyte lysate.

E1 (Uba1, 300 nM), E2 (Ubc4, 50 mM), ubiquitin (150 mM), and ATP

(1 mM) were incubated for 15 minutes. APC/C (0.1–1 nM), substrate

(2 ml of TnT mix into 15 ml reaction), and Cdh1 (2 ml of TnT mix into

15 ml reaction) were added. Reaction were incubated for the indicated

times at room temperature, stopped by the addition of SDS sample buffer,

separated by SDS-PAGE, and visualized and quantified with a Molecular

Dynamics Phosphorimager (GE Healthcare, Fairfield, CT).
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