
UC Irvine
UC Irvine Electronic Theses and Dissertations

Title
ADMIT: An Adversarial Defense Methodology for Neural Networks based on Randomization
and Reconstruction

Permalink
https://escholarship.org/uc/item/4t91j0v4

Author
AshrafiAmiri, Marzieh

Publication Date
2021

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License,
availalbe at https://creativecommons.org/licenses/by/4.0/

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4t91j0v4
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA,
IRVINE

ADMIT: An Adversarial Defense Methodology for Neural Networks based on
Randomization and Reconstruction

DISSERTATION

submitted in partial satisfaction of the requirements
for the degree of

MASTER OF SCIENCE

in Computer Engineering

by

Marzieh Ashrafiamiri

Dissertation Committee:
Professor Fadi Kurdahi, Chair
Professor Nader Bagherzadeh

Professor Nikil Dutt

2021

© 2021 Marzieh Ashrafiamiri

DEDICATION

I am dedicating this thesis to four beloved people who have meant and continue to mean so
much to me. A special feeling of gratitude to my loving mom, Vajiheh, whose words of

encouragement and push for tenacity ring in my ears. Also, my loving dad,
Mohammadreza, though his life was short, I will make sure his memory lives on as long as I

shall live.

I also dedicate this dissertation to my brother, Mohsen who has always loved me
unconditionally and is very special to me.

This thesis is specially dedicated to my husband, Amir Hosein, who has never left my side
and has been a constant source of support and encouragement during the challenges of

graduate school and life.

I am genuinely thankful for having you all in my life.

ii

TABLE OF CONTENTS

Page

LIST OF FIGURES v

LIST OF TABLES vi

ACKNOWLEDGMENTS vii

VITA viii

ABSTRACT OF THE DISSERTATION x

1 Introduction 1

2 Background and Related Work 5
2.1 Existing Adversarial Attacks . 6

2.1.1 Fast Gradient Sign Method (FGSM) 6
2.1.2 Basic Iterative Method (BIM) . 7
2.1.3 Jacobian-based Saliency Map Attack (JSMA) 8
2.1.4 Carlini and Wagner Attack (CW) . 9
2.1.5 DeepFool . 11

2.2 Existing Adversarial Defense . 12
2.2.1 Adversarial Training . 12
2.2.2 Defensive Distillation . 12
2.2.3 MagNet . 13
2.2.4 Randomization . 13
2.2.5 Classifier Robustifying . 13
2.2.6 Network verification . 14
2.2.7 Detecting Adversaries . 14

3 Design ADMIT 16
3.1 Random Nullification Layer (RNF) . 18
3.2 Reconstructor . 21

4 Simulation Analysis 24
4.1 Experimental Setup . 24
4.2 Performance Against Different Attacks . 25

4.2.1 Evaluation with MNIST Digits Dataset 27

iii

4.2.2 Evaluation with Fashion-MNIST Dataset 29

5 Conclusion 32

Bibliography 33

iv

LIST OF FIGURES

Page

3.1 Proposed Defense Network . 17
3.2 Process of nullification i.e., impact of three different RNF masks. 19
3.3 Design of reconstructor . 22

4.1 The comparison between original MNIST image and generated adversarial data 26

v

LIST OF TABLES

Page

1.1 Comparison of neural network performance with and without randomization 2

3.1 Results for different locations of RNF . 20

4.1 Architecture of network and reconstructor for MNIST digits dataset 25
4.2 Performance (accuracy (%)) against blackbox attack on MNIST digits dataset 28
4.3 Performance (accuracy (%)) against whitebox attacks on MNIST digits dataset 28
4.4 Architecture of classifier and reconstructor for Fashion-MNIST dataset . . . 30
4.5 Performance (accuracy (%)) against blackbox attack on Fashion-MNIST dataset 31

vi

ACKNOWLEDGMENTS

I would like to express my sincere gratitude to my supervisor, Professor Fadi Kurdahi,
whose expertise was invaluable in formulating the research questions and methodology. Your
insightful feedback pushed me to sharpen my thinking and brought my work to a higher level.

I would also like to thank my committee members, Professor Nader Bagherzadeh and Pro-
fessor Nikil Dutt, for assigning their valuable time to review my work.

I would like to offer my special thanks to my tutors, Dr. Sai Manoj Pudukotai Dinakarrao,
Minjun Seo, and Mohammed Fouda, for their valuable guidance throughout my studies.
You provided me with the tools that I needed to choose the right direction and successfully
complete my dissertation.

I thank ACM/IEEE for allowing me to use the content of our original paper [1] published in
Proceedings of the 2020 ACM/IEEE Workshop on Machine Learning for CAD (MLCAD).
Some text of this thesis is a reprint of the material as it appears on MLCAD’20.

Additionally, I want to thank UCI’s Department of Electrical Engineering and Computer
Science for giving me the initial fellowship funding, which enabled me to prosper on this
glorious path.

Finally, I would like to thank the National Science Foundation (NSF) for partially funding
my work under award number CCF-1704859. Any opinions, findings, conclusions, or recom-
mendations expressed in this thesis are those of the author and do not necessarily reflect the
views of the funding agency.

vii

VITA

Marzieh Ashrafiamiri

EDUCATION

Master of Science in Computer Engineering 2018-2021
University of California, Irvine Irvine

Bachelor of Science in Computer Engineering 2013-2018
Sharif University of Technology Tehran

RESEARCH EXPERIENCE

Graduate Research Assistant 2018–2021
University of California, Irvine Irvine

Research Assistant and Data Analyst 2017–2018
Sharif University of Technology Tehran

TEACHING EXPERIENCE

Teaching Assistant 2018–2021
University of California, Irvine Irvine

Teaching Assistant 2015–2018
Sharif University of Technology Tehran

viii

REFEREED JOURNAL PUBLICATIONS

NEWERTRACK: ML-Based Accurate Tracking of In-
Mouth Nutrient Sensors Position Using Spectrum-Wide
Information

2020

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems

REFEREED CONFERENCE PUBLICATIONS

R2AD: Randomization and Reconstructor-based Adver-
sarial Defense for Deep Neural Networks

2020

ACM/IEEE Workshop on Machine Learning for CAD (MLCAD)

ix

ABSTRACT OF THE DISSERTATION

ADMIT: An Adversarial Defense Methodology for Neural Networks based on
Randomization and Reconstruction

By

Marzieh Ashrafiamiri

Master of Science in Computer Engineering

University of California, Irvine, 2021

Professor Fadi Kurdahi, Chair

From simple time series forecasting to computer security and autonomous systems, ma-

chine learning (ML) is employed in a wide range of applications. Despite the fact that

machine learning algorithms are resistant to random noise, it has been shown that inten-

tionally targeted perturbations to the input data, known as adversarial samples, can lead to

a significant degradation in the ML performance. Existing countermeasures to mitigate or

minimize the impact of adversarial samples, including adversarial training or randomization,

are limited to specific categories of adversaries, are computationally costly, and/or result in

lower performance even when no adversaries are present. To address the inadequacies of the

existing works on adversarial defense, we propose a two-stage adversarial defense technique

(ADMIT). To thwart the exploitation of the deep neural network by the attacker, we first

include a random nullification (RNF) layer. The RNF nullifies/removes some of the features

from the input randomly to lessen the influence of adversarial noise and minimize the at-

tacker’s capability of extracting the model parameters. The elimination of input features

using RNF, on the other hand, reduces the performance of the ML. We outfit the network

with a Reconstructor as an antidote. The Reconstructor primarily contributes to recon-

structing the input data by utilizing an autoencoder network, but based on the distribution

of the normal samples, thereby improving the performance, and also being robust to the

x

adversarial noise. We evaluated the performance of proposed multi-stage ADMIT on the

MNIST digits and Fashion-MNIST datasets against variety of adversarial techniques includ-

ing FGSM, JSMA, BIM, Deepfool, and CW attacks. Our findings report improvements as

high as 80% in the performance when compared to the existing defenses such as adversarial

training and randomization-based defense.

xi

Chapter 1

Introduction

Application of machine learning (ML), especially deep learning, has been widely adopted in

a plethora of applications such as image processing [2], hardware security [3, 4, 5, 6], health

monitoring [7, 8, 9, 10], natural language processing [11] and autonomous systems [12]. Deep

learning has showcased an appreciable performance in these applications and has also shown

resilience against random noise in the input. Despite robustness against random noise, the

recent works have shown that the machine learning techniques are vulnerable to specially

crafted perturbations, adversarial samples [13, 14, 15, 16, 17]. The perturbed samples include

a minimal amount of noise that can not even be seen by human’s naked eyes nor affect the

recognition capability by naked human eyes, but can be misclassified by the ML classifiers.

Multiple countermeasures have been proposed in the literature to alleviate the misclassifi-

cation induced by adversarial perturbations. The following are some of the most common

defenses (the more detailed explanation of these techniques can be found in Section 2.2):

• adversarial training [18] - train the classifier with adversarial examples

• adversarial sample detection [19, 20] - detect the normal and adversarial samples

1

• defensive distillation [21] - blocks the attacker from obtaining the loss gradient, thus,

decreasing the feasibility to attack

• random nullification features [22] - utilize random nullification layer as a defense against

adversaries

• digitization [23] - techniques such as thermometer encoding to minimize the sensitivity

exploitation.

Despite the elevated robustness against the adversarial samples, these techniques suffer from

setbacks. Adversarial training, for example, is limited to a single attack; techniques like

random nullification features and digitisation, while successful against adversaries, perform

poorly on normal (benign) samples. We perform a case study to explain how random nul-

lification affects various adversarial attacks. Section 4.1 discusses the experimental details

and network parameters. However, in this experiment, we use randomized inputs for both

the training and testing phases (for further information, see Section 3.1).

Table 1.1: Comparison of neural network performance with and without randomization

MNIST digits dataset
clean dataset FGSM (ε=0.3)

Accuracy of Network 99.21% 27.77%
Accuracy of network with

98.87% 66.36%
traditional random nullification

As a case study, we have implemented the random nullification layer as the pre-processing

of the input to alleviate the impact of adversaries. We have implemented fast sign gradient

method (FGSM) attack to craft the adversaries. The hyper-parameter required for FGSM is

set to 0.3 for this case study. Despite the fact that the randomization strategy helps in elud-

ing the adversarial attacks, performance degradation is found in the case of normal samples,

as shown in Table 1.1. As a result, it is of a dire need to devise a technique that is effec-

tive against adversarial attacks while also maintaining performance when standard samples

2

are used. To address the inadequacies of existing works and address the challenges as out-

lined above, this work introduces ADMIT - randomization+reconstructor-based adversarial

defense.

The proposed ADMIT is a multi-stage approach, where the random nullification layer (RNF)

is initially designed to randomly remove the pixels from the input samples (normal or adver-

sarial), hence reducing the impact of adversarial noise. However, such a random removal of

pixels (input features) might damage normal/benign pixels, resulting in performance degra-

dation. To mitigate such degradation, we introduce an autoencoder-based reconstructor

network, which aids in reconstructing the input (in this case, an image) with the same

distribution as normal samples. Using autoencoders to reconstruct samples and/or feature

selection has been a commonly popular technique in various applications of machine learning

such as motion tracking [24], hardware security [25], and health monitoring [26, 27, 28]. It’s

worth mentioning that the reconstructor network is trained with benign data, thus recon-

structs the input whose data distribution is close to the original/benign samples.

We evaluated the proposed ADMIT on MNIST digits [29] and Fashion-MNIST [30] datasets

with various attacks ranging from FGSM [14] to recently proposed Carlini & Wagner (C&W)

[31] attacks. The rationale to showcase for this dataset is that this is one of the simplest

datasets that can be adversarially perturbed even with minimal noise when compared to

other data.

The contributions of this work can be outlined in a three-fold manner as follows:

• We introduce a random nullification layer as a part of data pre-processing to decrease

the impact of adversarial perturbations and reduce the likelihood of attackers obtaining

the classifier model.

• An autoencoder-based reconstructor is introduced during inference for reconstructing

input and eventually resulting in an improved performance against both normal and

3

adversarial samples.

• Accuracy improvement for both adversarial and normal samples along with minimized

adversarial impact through the proposed ADMIT.

The rest of this work is organized as follows: Section 2 introduces the relevant background

regarding the existing adversarial attacks and defenses against these attacks. Section 3

describes the proposed ADMIT with more information on the design of the RNF layer and

the reconstructor network. The evaluation of proposed ADMIT is presented in Section 4

with conclusions drawn in Section 5.

It is important to note that this thesis is based on our original paper [1] published in Pro-

ceedings of the 2020 ACM/IEEE Workshop on Machine Learning for CAD (MLCAD). Thus,

it contains information of the our original paper.

4

Chapter 2

Background and Related Work

Machine learning and Deep learning algorithms have revolutionized the Artificial Intelligence

domain having demonstrated impressive performance on applications ranging from computer

vision and hardware security to health monitoring. However, these state of the art, pattern

recognition classifiers are easily fooled by adversarial samples.

Adversarial samples are often generated by adding carefully crafted noise perturbations to

the normal input samples. This introduced noise leads to misclassification by the underlying

ML classifier or predictor. It needs to be noted that care is often taken to optimize the

difference between normal and adversarial samples.

In this section, we present different techniques widely used for generating the adversarial

samples, and review some of the popular defense techniques deployed.

5

2.1 Existing Adversarial Attacks

Adversarial samples are the samples that are generated by introducing crafted perturbations

into the normal input data generated by introducing optimum yet worst-case perturbations

in order to make the adversarial data look similar to the normal input data, but still the

ML model mispredicts the class with a high probability. These adversarial samples can be

considered as an optical illusion for the ML classifiers.

Here, we present fast gradient sign method (FGSM) technique. Other techniques such as

Basic Iterative Method (BIM), Jacobian Saliency Map Attack (JSMA) and Carlini & Wagner

(C&W) can be seen as advanced and sophisticated versions of FGSM. Moreover, information

regarding the Deepfool attack is also presented.

2.1.1 Fast Gradient Sign Method (FGSM)

Fast Gradient Sign Method (FGSM) is one of the first and most basic approaches for gen-

erating the adversary [14]. The main idea of FGSM is to perturb the input (image) with

the gradient of the loss w.r.t. the input (image) data. Further, increasing the magnitude of

the added noise or perturbation until the input (image) is misclassified by the underlying

ML model. The complexity of generating FGSM attack is lower compared to other adver-

sarial attacks. Some of the advantages of this technique are its low complexity and fast

implementation.

Consider an ML classifier model with θ as the hyper-parameter with x and y being the input

and corresponding output, respectively. The cost function is represented by L(θ, x, y). Then

the perturbation with FGSM is computed as the sign of the model’s cost function gradient.

6

The adversarial perturbation generated with FGSM [14] is mathematically given as

xadv = x+ εsign(∇xL(θ, x, y)) (2.1)

where ε is a scaling constant between 0.0 to 1.0 is set to be very small such that the variation

in x (δx) is undetectable. One can observe that in FGSM the input x is perturbed along each

dimension in the direction of the gradient by a perturbation magnitude of ε. Considering a

small ε leads to well-disguised adversarial samples. The difference between the original input

and the adversarial sample is generally undetectable to the human eye. Also, a large ε, is

likely to introduce large perturbations.

2.1.2 Basic Iterative Method (BIM)

As one can observe from (2.1) that the noise is added to every feature of the input in

the case of FGSM and no optimization is performed. To address this, Kurakin proposed

an iterative version of FGSM, termed as Basic iterative method (BIM) in [32]. In BIM,

instead of applying the adversarial perturbation once with ε, the perturbation is iteratively

applied by incrementing the perturbation i.e., ε. This leads to gradual increment in the added

perturbation (noise) to the input and terminates as soon as the misclassification requirements

are met.

The adversarial perturbation generated with BIM can be mathematically defined as:

xadv0 = x

xadvN+1 = Clipx,ε(x
adv
N + εsign(∇xL(θ, xadvN , y))

(2.2)

7

Here, Clipx,ε represents the clipping of the adversarial input magnitudes such that the ader-

sarial samples are close (similar) to the original samples x. Thus, BIM allows higher flexibility

to input the optimal perturbations compared to the FSGM, as the perturbations that are

added can be controlled and the distance of the adversarial sample from the classification

boundary (manifold) can be carefully fine-tuned.

The work in [32] shows that the BIM can lead to cause higher misclassifications compared

to the FGSM on the Imagenet samples.

2.1.3 Jacobian-based Saliency Map Attack (JSMA)

In contrast to applying noise to every single feature of the input data, [21] proposes an

iterative technique to add the perturbation, where the forward derivative of DNN is exploited

for adding the perturbations.

Consider a neural network F with input x. If the corresponding output is class j, we represent

the model as Fj(x). The main principle of this work is: to provide target t as the output,

the probability for Ft(X) must be increased, and simultaneously, the probabilities of Fj(X)

for all the other classes i.e., j 6= t have to be decreased, until t = arg maxjFj(X) is achieved.

This is accomplished by exploiting the saliency map, as defined below

S(X, t)[i] =


0, if∂Ft(X)

∂Xi
< 0 or

∑
j 6=t

∂Fj(X)

∂Xi
> 0

(∂Ft(X)
∂Xi

)|
∑

j 6=t
∂Fj(X)

∂Xi
|, otherwise

(2.3)

For an input feature i starting with the normal input x, we determine the pair of features

{i, j} that maximizes S(X, t)[i] + S(X, t)[j] and perturb each of the features by a constant

offset ε. This process is repeated iteratively until the target misclassification is achieved. It

8

is worth-mentioning that JSMA is a targeted attack, however it can be used as an untargeted

attack as well.

2.1.4 Carlini and Wagner Attack (CW)

One of the most recent adversarial attacks is introduced by Carlini and Wagner in [31],

popularly called as Carlini and Wagner (CW) attack. The CW attack is shown to outperform

adversarial defense techniques such as defensive distillation. It is an iterative attack that

finds adversarial samples against multiple defenses as compared to other attacks. At a high

level, this attack is iterative using Adam optimizer and a specially chosen loss function to

find adversarial examples with lower distortions than the other attack, which imposes the

cost of complexity and causes the attack to be much slower than the other attacks.

It encompasses a range of attacks based on the norms, all cast through the same optimization

framework, thus resulting in 3 powerful attacks, that are designed employing L0, L2, and

L∞ norms.

For the L2 attack, which is considered in this work, the perturbation in the input i.e., δ is

defined in terms of an auxiliary variable ω. The objective of the CW attack with L2 norm

can be mathematically defined as

δ∗i =
1

2
(tanh(ωi + 1))− xi (2.4)

9

Then, the δ∗i which is an unrestricted perturbation is optimized over ω as follows:

min
ω
||1

2
(tanh(ω) + 1)− x||22 + cf(

1

2
tanh(ω) + 1) (2.5)

Similarly, if the L2 is considered, the optimization becomes

min
δ
||δ||2 + c · f(x+ δ) (2.6)

S.T.x+ δ ∈ [0, 1]n (2.7)

where f (objective function) is defined as

f(x′) = max(max{Z(x′) : i 6= t} − Z(x′)− k) (2.8)

Here, Z(x′) is the pre-softmax output for class i, t is the target class, and k is the param-

eter that controls the confidence with which the misclassification occurs. The parameter k

encourages the solver to find an adversarial instance x′ that will be classified as class t with

high confidence.

The three variants of this attack were shown to be quite effective in generating adversaries

compared to other attacks discussed previously.

10

2.1.5 DeepFool

DeepFool (DF) is an untargeted adversarial attack optimized for L2 norm, introduced in [33].

DF is an efficient adversarial attack that is capable of producing adversarial samples that

highly resemble the original inputs as compared to the aforementioned adversarial samples,

especially FGSM and BIM attacks discussed earlier. The principle of the Deepfool attack

is to assume neural networks as completely linear with a hyperplane separating each class

from another.

Based on this assumption, if you consider a linear binary classifier, that the robustness of the

model (f) for an input x0 is equal to the distance of x0 to the hyperparameter plane (which

seperates the 2 classes). Minimal perturbation to change the classifier’s decision corresponds

to the orthogonal projection of x0 onto the hyperparameter plane. The perturbed sample is

given by:

xi+1 = xi + (− f(xi)

||∇f(xi)||22
∗ ∇f(xi)) (2.9)

This process is repeated multiple times for creating the adversaries. This process is termi-

nated when an adversarial sample is found, i.e., misclassification happens.

With multiclass classifiers, let’s say the input is x and for each class there is a hyperplane

(straight plane that divides one class from the others) and based on the place in the space

where x lies it is classified into a class. All this algorithm does is first, it finds the closest

hyperplane, and then projects x onto that hyperplane and pushes it a bit beyond with adding

the minimal perturbation possible. The loop will continue until minimal perturbation is

found to cause misclassification.

11

2.2 Existing Adversarial Defense

Till now, different adversarial attack techniques are discussed. Here, we discuss some of the

prominent existing defenses against different adversarial attacks.

2.2.1 Adversarial Training

Adversarial training is one of the preliminary solutions for making the ML classifiers robust

against the adversarial examples, proposed in [18]. The preliminary idea is to train the

ML classifier with the adversarial examples so that the ML classifier can have adversarial

information [13, 14, 33] and adapt its model based on the learned adversarial data. One

of the major drawbacks of this technique is to determine what kind of attack is going to

happen and train the classifier based on those attacks and determining the criticality of the

adversarial component.

2.2.2 Defensive Distillation

Defensive distillation is another defense technique proposed in [21], that trains the classifier

using the distillation training techniques and hides the gradient between the softmax layer

and the pre-softmax layer. This makes it complex to generate adversarial examples directly

on the network [34], as the knowledge is imparted from a bigger network during the training

process. However, [31] shows that such a defense can be bypassed with one of the following

three strategies: (1) choosing a more proper loss function; (2) calculation of gradients from

pre-softmax layer rather than softmax layer; or (3) attack an easy-to-attack dummy network

first and then transfer to the distilled network, similar to the distillation defense. The

generation of adversaries can be more straightforward if the attacker knows the defense

network’s parameters and architecture, i.e., white-box attack.

12

2.2.3 MagNet

MagNet is proposed in [35], where a two-level strategy with detector and reformer is pro-

posed. In the detector phase(s), the system learns to differentiate between normal and

adversarial examples by approximating the manifold of the normal examples. This is per-

formed with the aid of autoencoders. Further, in the reformer, the adversarial samples are

moved close to the manifold of normal samples with small perturbations. Further, using the

diversity metric, the MagNet can differentiate the normal and adversarial samples. The Mag-

Net is evaluated against different adversarial attacks presented previously and have shown

to be robust in [35].

2.2.4 Randomization

Randomization based defenses can be seen effective against the evasive adversarial attacks,

as they try to hide the model or lead to minimal data retrieval for crafting an adversary. For

instance, the work in [22] introduces a randomization feature nullification at both training

and testing phases to make the DNN models robust against the adversarial samples. This

randomization can be seen as a special case of drop-out techniques. Even if the adversarial

attackers manage to obtain the model, the use of randomly nullifying the features try to

reduce the adversarial impact on the network by removing the features. Despite, random-

ization aids in combating adversaries, a performance loss is seen for normal samples, i.e.,

samples without adversaries, as shown in Table 1.1.

2.2.5 Classifier Robustifying

In [36] using Bayesian classifiers as a way of designing a robust architecture of DNNs is

explained. Gaussian precessors are used to reveal the secret variables as parameters of the

13

gaussian distribution. These are then encoded with the help of RBF Kernels. They proposed

the GPs combined with RBF kernels called GP hybrid deep neural networks (GPDNNs).

They have mentioned that GPDNNs are more robust against adversarial examples.

2.2.6 Network verification

Understanding whether an input satisfies or violates properties of a neural network is one

way of defending against adversarial attacks. Network verification checks the properties to

detect the new attacks. One way of neural network verification is Reluplex, which uses Relu

function [37]. There was shown in the paper that adversarial data with a little percentage of

perturbation would not cause any misclassification for the network. There exists a problem

with Reluplex method. Due to its massive computation, it is very slow and just works fine

for simple networks with just a few hundred nodes.

2.2.7 Detecting Adversaries

Another idea of defense proposed in the existing works is to detect adversarial examples

with the aid of statistical features [20] or separate classification networks [19]. In [19],

for each adversarial technique, a DNN classifier is built to classify whether the input is

a normal sample or an adversary. The detector was directly trained on both normal and

adversarial examples. The detector showed good performance when the training and testing

attack examples were generated from the same process, and the perturbation is large enough.

However, it does not generalize well across different attack parameters and attack generation

processes.

In contrast to the existing works, the proposed ADMIT utilizes the concepts of randomiza-

tion to prevent the attacker from obtaining the model and reducing the impact of adversaries

14

through random nullification features. To address the prevailing challenge of performance

degradation for normal samples after random nullification, the ADMIT utilizes a reconstruc-

tor network, i.e., autoencoder that reconstructs the input after randomization, thereby re-

taining the performance. It needs to be noted that the reconstructor rebuilds the input

after randomization. However, special care is taken to ensure that adversaries are not recon-

structed by training the reconstructor with the data distribution of original (not adversarial)

data. Thus, the proposed ADMIT is capable of minimizing the impact of adversaries through

random nullification technique and can retain the performance through autoencoder-based

input reconstruction.

15

Chapter 3

Design ADMIT

In this study, we propose a network that consists of two types of layers: a random nullification

layer termed as RNF and an autoencoder-based reconstructor, as shown in Figure 3.1. RNF

is a layer that simply omits some features of our input data. The reconstructor layer assists

the network in classifying images. In the following sections, we will describe these two layers.

It needs to be noted that the reconstructor layer has the duty of denoising and rebuilding

images; it just helps us to show the strength of our proposed network.

Based on the Figure 3.1, the defense proposed as ADMIT includes two phases, training phase

and testing phase. During the training phase, we utilize the Random Nullification layer to

train a neural network. Moreover, an auto-encoder based reconstructor is being trained

using clean and manually-added-noise data. In the testing phase, first, the reconstructor

network is used to create reconstructed samples of test data. For the next step, by using

the calculated reconstruction error, ADMIT will decide if the data point is unreconstructable

or not. Finally, each data point that is considered reconstructable will be classified by the

RNF-trained network.

16

Training Phase

Neural NetworkRNF Layer

Trained
Autoencoder

RNF-trained
network Discard

Reconstruction
 Error < Threshold

Testing Phase

Training
Yes

Reconstructed Unreconstructable
Samples

Denoised
Samples

Classification

Testing
Samples

AutoencoderAdd Noise

RNF-trained Network

Trained Autoencoder

No

Samples

Samples

Figure 3.1: Proposed Defense Network

17

3.1 Random Nullification Layer (RNF)

One of the efficient ways to defend against adversarial attacks is having random nullification

layer, as described in [22]. In simple terms, this defensive strategy involves adding an extra

layer, called RNF, to the neural network. The RNF layer, with the responsibility of nullifying

some features of input data, is located between the inputs and the first hidden layer in the

training phase (this location is selected among all possibilities). Suppose we have some

images as training inputs for our method. The RNF layer will randomly omit some of the

pixels of the data points, meaning that it will set them to zero and lead them to the trained

network. The number of features that are nullified in each input data is specific and follows

a Gaussian distribution.

Hence, the first step is to choose the parameters of Gaussian distribution and calculate the

number of features in each input which are going to be nullified. Based on the number

calculated beforehand, some features are selected from a uniform distribution and are being

nullified. The worth mentioning aspect of this method is that the probability of each feature

chosen to be nullified is the same. So, for each input sample x, the Ix should be made which

is the same size of input and have random zeros and ones in it. Then, the x∗ is product of

these arrays, as shown below.

x∗ = x
⊙

Ix (3.1)

Randomly removing pixels helps to reduce the impact of adversaries, thus added noise’s

impact is reduced in the existing attacks as shown in Figure 3.2. However, a challenge with

having RNF is performance degradation, even on normal samples, due to the randomness of

nullifying features which may delete some required features. We will practically demonstrate

that gaining accuracy in deleting noise of adversarial example is much notable than losing

18

Output SamplesInput Samples

1

0
1

1

1

1
1
1
1

1
1

0
0

0
0
0

0
00

0
0
0

00

1

1

1
1

0

0

0
1
1
1

0
1

1
0

1
1
0

0
11

1
0
1

01

1

1

1
1

1

1

1
0
1
0

1
0

1
1

1
0
1

1
01

0
1
0

11

1

Masking function in RNF layer

Mask 3

Mask 2

Mask 1

Figure 3.2: Process of nullification i.e., impact of three different RNF masks.

19

it on normal samples.

There exist different feasible choices regarding when the RNF layer can be deployed: (1)

only in training phase, (2) only in testing phase, and (3) in both phases. We analyze the

impact of utilizing the RNF on these different choices. Table 3.1 demonstrates the results

based on the location when the FGSM attack is implemented on MNIST digits data. As

seen, using the RNF layer in both training and testing phases leads to the best performance

compared to other scenarios. In this scenario, the model is adapted to feature nullification

and when deploying the removing pixels to the testing phase, the model will easily obtain

better performance.

Table 3.1: Results for different locations of RNF

Utilization of RNF Accuracy for FGSM ε=0.3
Only training 10.02%
Only testing 29.69%

Training and Testing 66.36%

From all the possible choices to utilize the RNF layer, we propose the one that is used for

training the network. However, it has lower performance than other scenarios. The power

of RNF just in training will be flourished by using the reconstructor.

In the chosen scenario, first we will use RNF layer on our training set, means clean MNIST

(both MNIST digits and Fashion-MNIST in different experiments). Then, we will train

the network. Due to the training phase, our model is now adapted to considering some

noise/nullification. Since dealing with adversarial data is the purpose of the network in the

testing phase, the model trained with RNF shows better performance when reconstructor is

added. In the Section 4, the Table 4.2 witness the statement. As aforementioned, while pass-

ing through the RNF layer, the pixels of the input data will be randomly nullified/omitted.

These pixels chosen to be omitted are specific to one input data, and their coordinations are

different among different data points. When all the data points pass through the RNF layer,

20

the nullified data points are being used for the training phase. Hence, in all of the epochs,

the nullified pixel indices are similar.

3.2 Reconstructor

One way of defending against attacks is determining the adversarial input and trying to

denoise it. The noticeable advantage of the proposed function is attack-independent, unlike

the previous methods like adversarial training. In other words, having just normal data is

sufficient for making a reconstructor.

The reconstructor first calculates the distance between the input sample (adversarial or

normal) and the denoised sample, as presented in Equation (3.2). Further, depending on the

specified threshold, it determines whether the given sample is normal or adversarial. The

threshold should neither be very large to misunderstand adversarial input to normal data

nor be very small to increase the probability of deciding the normal sample as untrusted

data.

For the implementation of the reconstructor layer, autoencoders are used, which consists

of an encoder and a decoder as shown in Figure 3.3. For training the autoencoder, some

random noise should be added to a clean dataset (these are not adversarial data). The noise

factor we choose is equal to 0.1.

An ideal autoencoder should not change the classification result of normal data. Encoders

are used in learning a latent representation of data, and decoders use these features for the

reconstruction of data. Although in the case of normal inputs, the reconstruction error will

be low, for adversarial inputs it leads to a high amount of error. There exist many ways to

measure the reconstruction error between data and normal samples which L1 and L2 norms

are chosen practically. For these p-norms errors, increasing p will increase the importance

21

codex x'

Encoder

Decoder

Input Output

Calculate
Reconstruction

Error and
determine the
adversaries

Discard

Output

Figure 3.3: Design of reconstructor

of maximum distance between all pixels, but decreasing p will lead to more attention on

each pixel itself. If we consider ae(x) be the output of autoencoder for the input x, the

reconstruction error is then calculated by (3.2).

E(x) = ||x− ae(x)||p (3.2)

Based on the threshold obtained from the clear and normal input sample data, the recon-

structor will decide if a sample is labeled as reconstructable or unreconstructable data. The

unreconstructable sample shows so much noise that the actual data is unrecognizable. It is

one of our goals to intercept such samples and prevent them from moving forward, due to

the potential of downgrading the performance. All less noisy data (normal or adversarial)

will then go through the trained network to be classified.

Among the low noisy forwarded inputs, some are normal, and some are adversarial. Normal

data as inputs should remain unmodified after going through the autoencoder. On the

other hand, the autoencoder will attempt to denoise the adversarial inputs so that they

22

resemble normal data, and the adversarial noise is filtered out. Using this technique have

two important advantages. First, because the normal data remains the same, the method

will not change the classification accuracy. Also, the classification accuracy of adversarial

samples will increase because of denoising.

23

Chapter 4

Simulation Analysis

4.1 Experimental Setup

The performance of the proposed ADMIT is evaluated against multiple adversarial attacks

(FGSM [14], BIM [32], JSMA [21], DeepFool [33] and Carlini and Wagner (CW) [31]). The

experiments are executed on the Intel Xeon E3-1225 V5 processor with 16 GB RAM and

also NVIDIA GeForce GTX 1660. We evaluated the MNIST digits dataset with 50000 im-

ages utilized for training the neural network architecture and 10000 utilized for testing, i.e.

80-20% data split for training and testing. We utilized Tensorflow library [38] to implement

and evaluate our proposed ADMIT. Also, we have employed Cleverhans library [39] to craft

the adversaries and evaluate them. For evaluation, we considered whitebox and blackbox

scenarios, i.e. attack generation and testing on the same network termed as whitebox at-

tack scenario and different networks for generation and testing for blackbox scenario. The

architectural details of the neural network used for ADMIT evaluation of MNIST digits

are presented in Table 4.1. The accuracy of classifying the MNIST digits dataset using the

network presented in Table 4.1 is 99.21%.

24

Table 4.1: Architecture of network and reconstructor for MNIST digits dataset

classifier reconstructor

Conv+Relu 32×3×3
encoder

Conv+Sigmoid 1×3×3
Conv+Relu 64×3×3 Average Pooling 2×2
Max Pooling 2×2 Conv+Sigmoid 3×3×3
Dense+Relu 128

decoder

Conv+Sigmoid 3×3×3
Dense+softmax 10 Up Sampling 2×2

Conv+Sigmoid 3×3×3
Conv+Sigmoid 1×3×3

As explained in Section 3, the reconstructor is made of an autoencoder. The details of

autoencoder’s architecture, which is used in the experiment of the MNIST digits dataset,

can be found in Table 4.1. After denoising each sample, the reconstructor will calculate the

reconstruction error. Samples with a lower error than the threshold will then go through

the RNF trained network. The RNF layer, which inherits features of a normal distribution,

needs some parameters to be determined before. The two most important parameters are

Mean and standard deviation, which are 3 and 4 for the experiments.

4.2 Performance Against Different Attacks

As mentioned earlier, we evaluate the impact of adversarial attacks against the proposed

ADMIT. First, let us consider the case of the blackbox scenario, where the attacker has no

information regarding the network for which attack is crafted, i.e. the attacker relies on the

transferable properties of the attack. Similarly, we have considered the case of the whitebox

scenario, i.e. the attacker has the information regarding the classification network and can

generate the attack based on that information.

25

0 5 10 15 20 25

0

5

10

15

20

25

(a) Original data
0 5 10 15 20 25

0

5

10

15

20

25

(b) Impact of FGSM attack

0 5 10 15 20 25

0

5

10

15

20

25

(c) Impact of BIM attack
0 5 10 15 20 25

0

5

10

15

20

25

(d) Impact of JSMA attack

0 5 10 15 20 25

0

5

10

15

20

25

(e) Impact of C&w attack
0 5 10 15 20 25

0

5

10

15

20

25

(f) Impact of Deepfool attack

Figure 4.1: The comparison between original MNIST image and generated adversarial data

26

As the first step towards experiments, by using Cleverhans library, we generated required

adversarial data of different attack. Table 4.1 shows impact of different adversarial attacks

on MNIST image. The parameters for generating each of the illustrated images are equal to

the parameters in Table 4.2.

4.2.1 Evaluation with MNIST Digits Dataset

Table 4.2 presents the performance of the different attacks of MNIST digits data on the

network defined in Table 4.1. The attack parameter like ε ∈ [0, 1] for FGSM indicates the

amount of perturbation added to the input. For the scenario of blackbox attack: as one can

observe that without any defense, the performance of classification reduces to 27.7%. Simi-

larly, when only utilizing Random Nullification Layer (RNF) as defense [22], the performance

reduces to 10.02%, where the loss is due to the loss of information. Similarly, we replicated

the work presented in 3 where the reconstructor is used. As seen, the utilizing of the RNF

also improved the performance against all attacks, when using with the reconstructor. The

rationale for this is that the FGSM is similar to a brute force kind of approach in terms

of adding the noise and can be easily circumvented compared to the rest of the adversarial

attacks.

In the case of BIM attack, as it can be seen clearly from Table 4.2, the attack samples are

transferable - as the accuracy drops to 23.13% on an average when no defense is deployed.

Similar behavior is observed in this case, which is an iterative version of FGSM. Compared to

the simple usage of the RNF layer [22] or utilizing reconstructor [35], the proposed ADMIT

yields better performance.

JSMA [21] is an advanced attack compared to the FGSM and BIM, and is a more sophisti-

cated attack. For JSMA, the perturbation is determined by the parameter η. We evaluate

27

Table 4.2: Performance (accuracy (%)) against blackbox attack on MNIST digits dataset

Variety of MNIST digits dataset Blackbox attack
Attack Attack Parameter No Defense Random Nullification Reconstructor ADMIT

FGSM 0.3 27.77 10.02 90.74 91.90
BIM 0.3 23.13 9.87 91.53 92.87

JSMA 0.1 61.93 28.72 92.45 93.04
Carlini 5 22.01 19.71 68.95 73.68

DeepFool 0.1 41.95 23.05 96.39 96.95

Table 4.3: Performance (accuracy (%)) against whitebox attacks on MNIST digits dataset

RNF Parameters whitebox attack
Attack Mean Standard Deviation No Defense Random Nullification Reconstructor ADMIT

FGSM 7 5 27.77 19.7 90.74 92.28
FGSM 7 10 27.77 23.98 90.74 92.59
FGSM 5 10 27.77 40.66 90.74 93.05

Carlini 7 5 22.01 23.03 68.95 76.15
Carlini 7 10 22.01 41.28 68.95 77.85
Carlini 5 10 22.01 38.55 68.95 76.01

the performance of the proposed ADMIT, reconstructor only and [22] (RNF only) techniques,

whose performances are listed in Table 4.2. As seen that without defense, the adversaries

lead to a performance of 61.93%. When employing defense like [22], the performance de-

creases to 28.72% in the case of blackbox attack. In such scenarios, as the adversaries are

transferable, if the attack is generated on a different network, the performance of the re-

constructor is lower compared to the proposed R2AD. Similar behavior is observed with the

DeepFool attack, as showcased in Table 4.2.

Lastly, we evaluate the performance against the CW attack, which is the advanced adversarial

attack so far. The parameters utilized for providing perturbations(confidence) is set to 5.

Table 4.2 shows the performance with CW attack utilizing L2 norm. As one can observe

that without deploying any defense, the performance is 22.01%. However, using the RNF

layer can lower the performance. Similarly, the reconstructor shows a good performance;

however, it is lower than the proposed ADMIT. Also, it needs to be noted that Table 4.2

28

shows the performance for the blackbox attack when using MNIST digits dataset.

As mentioned in the previous part, the experiments divide into two major parts. First of

all, we evaluated the robustness of the proposed defense network against blackbox attacks.

For assessing the effectiveness of this method, we craft MNIST digits data with five different

attacks. Additionally, for FGSM and CW attacks, we try to measure the accuracy of the

suggested method for whitebox attacks as well. In this scenario, the amount of perturbation is

related to the mean and standard deviation of the RNF layer. In other words, the parameters

of the RNF layer are known for the attacker. The parameters used for FGSM and CW in

Table 4.3 are 0.3 and 5, respectively.

4.2.2 Evaluation with Fashion-MNIST Dataset

The noticeable efficiency of the proposed network on the MNIST digits dataset persuades

us to investigate more on the correctness of ADMIT. To prove the effectiveness of ADMIT,

we repeat the same experiment on the more sophisticated dataset named Fashion-MNIST.

Fashion-MNIST consists of 10 labels like MNIST digits; but instead of hand-written digits,

the labels are regarded to fashion like shoes and shirts. By comparing the accuracies for

the network without defense and our proposed defense method (ADMIT) based on the

information given in Table 4.2, FGSM and BIM are considered as the two top attacks with

the most increase in their accuracies. Hence, we decided to use these two attacks with the

Fashion-MNIST dataset. Table 4.4 contains the architectural details of the neural network

used for the evaluation of ADMIT. Using the network presented in Table 4.4 will result

in accuracy equal to 77.91% when evaluating Fashion-MNIST dataset. As mentioned in

the previous sections, an autoencoder is the skeleton of the reconstructor, which is used

in our proposed defense technique. The architectural details of the autoencoder used for

29

Table 4.4: Architecture of classifier and reconstructor for Fashion-MNIST dataset

classifier reconstructor

Conv+Relu 32×3×3

encoder

Conv+Relu 64×3×3
Max Pooling 2×2 Max Pooling 2×2

Dropout 0.25 Conv+Relu 32×3×3
Conv+Relu 64×3×3 Max Pooling 2×2
Max Pooling 2×2 Conv+Relu 16×3×3

Dropout 0.25 Max Pooling 2×2
Conv+Relu 128×3×3

decoder

Conv+Relu 16×3×3
Dropout 0.4 Up Sampling 2×2

Dense+Relu 128 Conv+Relu 32×3×3
Dropout 0.3 Up Sampling 2×2

Dense+softmax 10 Conv+Relu 64×3×3
Up Sampling 2×2
Conv+Relu 1×3×3

Fashion-MNIST dataset are also in Table 4.4.

The accuracy of our proposed network and other methods for the Fashion-MNIST dataset are

presented in Table 9. The amount of perturbation added to the Fashion-MNIST dataset in

both attacks is equal in comparison to these numbers for the MNIST digits dataset. In other

words, the attack parameter for FGSM and BIM are considered as 0.3 and 0.3, respectively.

For the FGSM attack, the accuracy of classification without any performance is 22.60%. In

comparison to the MNIST digits, each image in the Fashion-MNIST dataset includes more

pixels with valuable information. Therefore, nullifying some attacked pixels will decrease the

amount of loss which is caused by the attack. Hence, using the random nullification layer

will raise the accuracy around 6%. Similarly, we replicated the work presented in 3 where

the reconstructor is used. Utilizing the reconstructor itself helps the network against the

FGSM attack, and the performance reaches 54.42%. Lastly, the accuracy with applying the

proposed ADMIT, will increase the accuracy to 59.12%.

Using the BIM attack on the Fashion-MNIST dataset will result in a similar pattern when

compared to the FGSM attack. The accuracy of bare-network will grow when deploying the

30

Table 4.5: Performance (accuracy (%)) against blackbox attack on Fashion-MNIST dataset

Variety of Fashion-MNIST dataset Blackbox attack
Attack Attack Parameter No Defense Random Nullification Reconstructor ADMIT

FGSM 0.3 22.60 28.20 54.42 59.12
BIM 0.3 15.91 24.63 55.62 60.48

random nullification layer. Among the four existing techniques, our results prove that the

performance of our proposed ADMIT will defeat others in the Fashion-MNIST dataset as

well.

The worth-mentioning point in all the experiments about the proposed reconstructor is

that it has a very low rate of false negatives, which means that among discarded images

(detected as adversarial data) only a few of them will be classified correctly by the network.

Experiments show that in the lower amount of perturbation, this number is equal to zero.

The more amount of perturbation leads to more number of false negatives, which will be as

low as 15%.

31

Chapter 5

Conclusion

In this thesis, we proposed a method to defend against adversarial attacks that are intel-

ligently crafted. To address this, we propose a 2 layer defense. Random Nullification will

first try to minimize the effect of adversaries for the trained network. To address the impact

of removed features by the random nullification layer, an autoencoder based reconstructor

is introduced to rebuild the input features and ensure the rebuilt features follow the data

distribution of normal samples. This reconstruction minimizes the impact of randomly nul-

lified features. We advocate that the impressive defense against adversaries should not rely

on any data from the process of generating adversarial data. In other words, it should be

attack-independent. ADMIT is evaluated under whitebox and blackbox scenarios and have

shown high robustness against adversaries and higher performance on normal samples. Ex-

perimental evaluation with different levels of noise is performed and compared with some of

the recent defenses. It is seen that with the proposed ADMIT up to 80% higher performance

is achieved compared to some of the recently proposed defenses.

32

Bibliography

[1] Marzieh Ashrafiamiri, Sai Manoj Pudukotai Dinakarrao, Amir Hosein Afandizadeh
Zargari, Minjun Seo, Fadi Kurdahi, and Houman Homayoun. R2ad: Randomization and
reconstructor-based adversarial defense for deep neural networks. In 2020 ACM/IEEE
2nd Workshop on Machine Learning for CAD (MLCAD), pages 21–26. IEEE, 2020.

[2] M. Wess, S. M. P. Dinakarrao, and A. Jantsch. Weighted quantization-regularization
in DNNs for weight memory minimization toward HW implementation. IEEE Trans.
on Computer-Aided Design of Integrated Circuits and Systems, 37(11):2929–2939, Nov
2018.

[3] H. Sayadi, N. Patel, P. D. Sai Manoj, A. Sasan, S. Rafatirad, and H. Homayoun.
Ensemble learning for hardware-based malware detection: A comprehensive analysis
and classification. In ACM/EDAA/IEEE Design Automation Conference, 2018.

[4] S. M. P. Dinakarrao and et al. Adversarial attack on microarchitectural events based
malware detectors. In Design Automation Conf., 2019.

[5] Rozhin Yasaei, Shih-Yuan Yu, Emad Kasaeyan Naeini, and Mohammad Abdullah Al
Faruque. Gnn4ip: Graph neural network for hardware intellectual property piracy
detection. arXiv preprint arXiv:2107.09130, 2021.

[6] Rozhin Yasaei, Shih-Yuan Yu, and Mohammad Abdullah Al Faruque. Gnn4tj: Graph
neural networks for hardware trojan detection at register transfer level. In 2021 De-
sign, Automation & Test in Europe Conference & Exhibition (DATE), pages 1504–1509.
IEEE, 2021.

[7] Ali Tazarv and Marco Levorato. A deep learning approach to predict blood pressure
from ppg signals. arXiv preprint arXiv:2108.00099, 2021.

[8] Seyed Amir Hossein Aqajari, Rui Cao, Amir Hosein Afandizadeh Zargari, and Amir M
Rahmani. An end-to-end and accurate ppg-based respiratory rate estimation approach
using cycle generative adversarial networks. arXiv preprint arXiv:2105.00594, 2021.

[9] Milad Asgari Mehrabadi, Seyed Amir Hossein Aqajari, Iman Azimi, Charles A Downs,
Nikil Dutt, and Amir M Rahmani. Detection of covid-19 using heart rate and blood
pressure: Lessons learned from patients with ards. arXiv preprint arXiv:2011.10470,
2020.

33

[10] Ali Tazarv, Sina Labbaf, Stephanie M Reich, Nikil Dutt, Amir M Rahmani, and Marco
Levorato. Personalized stress monitoring using wearable sensors in everyday settings.
arXiv preprint arXiv:2108.00144, 2021.

[11] T. Young, D. Hazarika, S. Poria, and E. Cambria. Recent trends in deep learning based
natural language processing. IEEE Computational Intelligence Magazine, 13(3):55–75,
Aug 2018.

[12] R. S. Gutzwiller and J. Reeder. Human interactive machine learning for trust in teams
of autonomous robots. In IEEE Conf. on Cognitive and Computational Aspects of
Situation Management, 2017.

[13] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan,
Ian J. Goodfellow, and Rob Fergus. Intriguing properties of neural networks. In Inter-
national Conference on Learning Representations (ICLR), 2014.

[14] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing
adversarial examples. In International Conference on Learning Representations (ICLR),
2015.

[15] N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, and A. Swami. The
limitations of deep learning in adversarial settings. In IEEE European Symposium on
Security and Privacy (Euro S&P), 2016.

[16] Yanpei Liu, Xinyun Chen, Chang Liu, and Dawn Song. Delving into transferable ad-
versarial examples and black-box attacks. In International Conference on Learning
Representations (ICLR), 2017.

[17] S. M. P. Dinakarrao and et al. Enhancing adversarial training towards robust machine
learners and its analysis. In Int. Conf. on Computer-Aided Design, 2018.

[18] Uri Shaham, Yutaro Yamada, and Sahand Negahban. Understanding adversarial train-
ing: increasing local stability of neural nets through robust optimization. ArXiv e-prints,
2015.

[19] Jan Hendrik Metzen, Tim Genewein, Volker Fischer, and Bastian Bischoff. On detecting
adversarial perturbations. In Int. Conf. on Learning Representations, 2017.

[20] Kathrin Grosse, Praveen Manoharan, Nicolas Papernot, Michael Backes, and
Patrick D. McDaniel. On the (statistical) detection of adversarial examples. CoRR,
abs/1702.06280, 2017.

[21] N. Papernot, P. McDaniel, X. Wu, S. Jha, and A. Swami. Distillation as a defense
to adversarial perturbations against deep neural networks. In IEEE Symposium on
Security and Privacy (S&P), 2016.

[22] Qinglong Wang, Wenbo Guo, Kaixuan Zhang, Alexander G. Ororbia, II, Xinyu Xing,
Xue Liu, and C. Lee Giles. Adversary resistant deep neural networks with an applica-
tion to malware detection. In ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, 2017.

34

[23] J. Buckman, A. Roy, and I. Goodfellow. Thermometer encoding: One hot way to resist
adversarial examples. In Int. Conf. on Learning Representations, 2018.

[24] Amir Hosein Afandizadeh Zargari, Manik Dautta, Marzieh Ashrafiamiri, Minjun Seo,
Peter Tseng, and Fadi Kurdahi. Newertrack: Ml-based accurate tracking of in-mouth
nutrient sensors position using spectrum-wide information. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 39(11):3833–3841, 2020.

[25] Rozhin Yasaei, Felix Hernandez, and Mohammad Abdullah Al Faruque. Iot-cad:
context-aware adaptive anomaly detection in iot systems through sensor association.
In 2020 IEEE/ACM International Conference On Computer Aided Design (ICCAD),
pages 1–9. IEEE, 2020.

[26] Amir Hosein Afandizadeh Zargari, Seyed Amir Hossein Aqajari, Hadi Khodabandeh,
Amir M Rahmani, and Fadi Kurdahi. An accurate non-accelerometer-based ppg motion
artifact removal technique using cyclegan. arXiv preprint arXiv:2106.11512, 2021.

[27] Seyed Amir Hossein Aqajari, Rui Cao, Emad Kasaeyan Naeini, Michael-David Calderon,
Kai Zheng, Nikil Dutt, Pasi Liljeberg, Sanna Salanterä, Ariana M Nelson, and Amir M
Rahmani. Pain assessment tool with electrodermal activity for postoperative patients:
Method validation study. JMIR mHealth and uHealth, 9(5):e25258, 2021.

[28] Seyed Amir Hossein Aqajari, Emad Kasaeyan Naeini, Milad Asgari Mehrabadi, Sina
Labbaf, Nikil Dutt, and Amir M Rahmani. pyeda: An open-source python toolkit
for pre-processing and feature extraction of electrodermal activity. Procedia Computer
Science, 184:99–106, 2021.

[29] Yann LeCun and et al. Gradient-based learning applied to document recognition. Pro-
ceedings of the IEEE, 86(11):2278–2324, 1998.

[30] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for
benchmarking machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

[31] N. Carlini and D. Wagner. Towards evaluating the robustness of neural networks. In
IEEE Symposium on Security and Privacy (SP), 2017.

[32] A. Kurakin, I.J. Goodfellow, and S. Bengio. Adversarial examples in the physical world.
In International Conference on Learning Representations, 2017.

[33] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard. Deepfool: a
simple and accurate method to fool deep neural networks. CoRR, abs/1511.04599,
2015.

[34] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural
network. ArXiv e-prints, 2015.

[35] Dongyu Meng and Hao Chen. Magnet: a two-pronged defense against adversarial ex-
amples. In ACM Conf. on Computer and Communications Security, 2017.

35

[36] John Bradshaw, Alexander G de G Matthews, and Zoubin Ghahramani. Adversarial
examples, uncertainty, and transfer testing robustness in gaussian process hybrid deep
networks. arXiv preprint arXiv:1707.02476, 2017.

[37] Guy Katz, Clark Barrett, David L Dill, Kyle Julian, and Mykel J Kochenderfer. Re-
luplex: An efficient smt solver for verifying deep neural networks. In International
Conference on Computer Aided Verification, pages 97–117. Springer, 2017.

[38] Mart́ın Abadi and et al. Tensorflow: A system for large-scale machine learning. In
USENIX Symposium on Operating Systems Design and Implementation, 2016.

[39] Nicolas Papernot and et al. Technical report on the cleverhans v2.1.0 adversarial ex-
amples library. arXiv preprint arXiv:1610.00768, 2018.

36

	LIST OF FIGURES
	LIST OF TABLES
	ACKNOWLEDGMENTS
	VITA
	ABSTRACT OF THE Dissertation
	Introduction
	Background and Related Work
	Existing Adversarial Attacks
	Fast Gradient Sign Method (FGSM)
	Basic Iterative Method (BIM)
	Jacobian-based Saliency Map Attack (JSMA)
	Carlini and Wagner Attack (CW)
	DeepFool

	Existing Adversarial Defense
	Adversarial Training
	Defensive Distillation
	MagNet
	Randomization
	Classifier Robustifying
	Network verification
	Detecting Adversaries

	Design ADMIT
	Random Nullification Layer (RNF)
	Reconstructor

	Simulation Analysis
	Experimental Setup
	Performance Against Different Attacks
	Evaluation with MNIST Digits Dataset
	Evaluation with Fashion-MNIST Dataset

	Conclusion
	Bibliography

