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Brain-inspired neuromorphic systems have witnessed rapid development over the last

decade from both algorithmic and hardware perspectives. Neuromorphic hardware promises

to be more energy- and speed- efficient as compared to traditional Von-Neumann architec-

tures. Thanks to the recent progress in solid-state devices, different nanoscale-nonvolatile

memory devices, such as RRAMs (memristors), STT-RAM and PCM, support computations

based on mimicking biological synaptic response. The most important advantage of these

devices is their ability to be sandwiched between interconnect wires creating crossbar array

structures that are inherently able to perform matrix-vector multiplication (MVM) in one

step. Despite the great potential of RRAMs, they suffer from numerous nonidealities lim-

iting the performance, including, high variability, asymmetric and nonlinear weight update,

endurance, retention and stuck at fault (SAF) defects in addition to the interconnect wire

resistance that creates sneak paths. This thesis will focus on the application of RRAMs

for neuromorphic computation while accounting for the impact of device nonidealities on

neuromorphic hardware.

In this thesis, we first develop a compact SPICE-like framework for the resistive crossbar

array that incorporates the RRAM device model and interconnect parasitics such as wire

resistance, inductance, capacitance, and conductance. This framework is the corner-stone of

xviii



the simulation infrastructure developed in this work, allowing for ≥ 1000× faster simulation

results as compared to SPICE. Second, we propose novel reading and writing techniques to

read and write the entire word in one clock cycle with an optimized bias scheme to minimize

the write errors. To complete the memory design, the required reading and writing CMOS

peripheral circuits are designed as well. Due to the inevitable existence of the sneak path

problem in crossbar arrays, nonstationary polar codes are designed to mitigate the effect of

this problem for crossbar-based memory applications showing a significant improvement in

bit-error-rate performance.

In the third part, we propose software-level solutions to mitigate the impact of nonideali-

ties, that highly affect the offline (ex-situ) training, without incorporating expensive SPICE

or numerical simulations. We propose two techniques to incorporate the effect of sneak path

problem during training, in addition to the device’s variability, with negligible overhead. The

first technique is inspired by the impact of the sneak path problem on the stored weights (de-

vices’ conductances) which we referred to as the mask technique. This mask is element-wise

multiplied by the weights during the training. This mask can be obtained from measured

weights of fabricated hardware. The other solution is a neural network estimator which is

trained by our SPICE-like simulator. The test validation results, done through our SPICE-

like framework, show significant improvement in performance, close to the baseline BNNs

and QNNs, which demonstrates the efficiency of the proposed methods. Both techniques

show the high ability to capture the problem for multilayer perceptron networks for MNIST

dataset with negligible runtime overhead. In addition, the proposed neural estimator out-

performs the mask technique for challenging datasets such as CIFAR10. Furthermore, other

nonidealities such as SAF defects and retention are evaluated.

Fourth, we develop a model to incorporate the stochastic asymmetric nonlinear weight

update in online (in-situ) training. We propose two solutions for this problem; 1) a compen-

sation technique which is tested on a small scale problem to separate two Laplacian mixed

xix



sources using online independent component analysis. 2) stochastic rounding and is tested

on a spiking neural network with deep local learning dynamics showing only a 1 ∼ 2% drop

in the baseline accuracy for three different RRAM devices. We also propose Error-triggered

learning to overcome the limited endurance problem with only 0.3% and 3% drop in the

accuracy for N-MNIST and DVSGesture datasets with around 33× and 100× reduction in

the number of writes, respectively.

Finally, the prospects of this neuromorphic hardware are discussed to develop new algo-

rithms with the existing resistive crossbar hardware including its nonidealities.
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Chapter 1

Introduction

The Internet of Things (IoT) market is growing exponentially and will reach 1.7 trillion

dollars in 2020 according to IDC Insights Research [14]. It is expected that IOT will contain

over 26 billion devices excluding PCs, tablets, and smartphones. These devices include

sensor-based medical devices, automobiles, manufacturing plants, power systems, and smart

homes. IOT enable the data exchange between all these devices where it is expected that

IOT will generate 500 zettabytes of data per year by 2019, coming from 50 billion connected

devices, according to a report from Cisco. As a result, almost all IOT applications need a

system to analyze patterns in this data, detect certain types of events and take decisions. It

is thus imperative to build systems that are able to deal with massive data sets efficiently.

Machine learning systems are the best candidate to perform these tasks and satisfy the

requirements.

Machine Learning and particularly deep learning have become the de facto choice in solving

a wide range of problems when adequate data is available. So far, machine learning has

been mainly concerned more by the “learning” rather than the “machine”. This focus is

natural given that von Neumann computers and GPUs capable of general-purpose processing

offer excellent performance per unit of monetary cost. As the scalability of such processors

hit difficult scalability and energy efficiency challenges, interest in dedicated, multicore and

multiprocessor systems is increasing. This calls for increased efforts on improving the physical
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instantiations of “machines” for machine learning. Physical instantiation of computations

are challenging because the structure and nature of the physical substrate severely restrict

the basic computational operations it can carry out. However, if the computations can be

formulated in a way that they exploit the physics of the devices, then the efficiency and

scalability can be drastically improved. In this line of thought, the field of neuromorphic

engineering is arguably the one that has attracted the most attention and effort. The field’s

core ideas, communicated by R. Feynmann, C. Mead and other researchers in a series of

lectures called physics of computation, elaborate on the analogies between the physics of ionic

channels in the brain and those of CMOS transistors [15]. By building synapses, neurons, and

circuits modeled after the brain and driven by similar physical laws, neuromorphic engineers

would “understand by building” and help engineering novel computing technologies equipped

with the robustness and efficiency of the brain.

1.1 Existing Digital Neuromorphic Hardware

In the last decade, there have been enormous advances in building and scaling neuromorphic

hardware using mixed-signal [16, 17, 18, 19] and digital [20, 21, 22] technologies, including

embedded learning capabilities and scales achieving 1M neurons per chip. A number of novel

hardware based architectures for large scale neuromorphic systems have been demonstrated

with many millions of neurons [1]. There are large scale systems with complementary ap-

proaches and divergent goals such as IBM TrueNorth chip which is built based on distributed

digital neural models to enable real-time cognitive applications, Stanford Neurogrid which

uses real-time sub-threshold analog neural circuits to be used in robotic control, Heidel-

berg BrainScaleS system that uses analog neural circuits running 10000 times faster than

biological real time to be used in simulating very long biological models, and Manchester

SpiNNaker machine which consists of a real-time digital many core system that implements

neural and synapse models in software running on small embedded processors. The recent
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fabricated neuromphic hardware with learning capabilities is Intel’s Loihi chip in 2018 which

is developped using by Intel’s 14-nm FinFET technology [21]. This chip contains 128 neu-

ral cores with 1024 neuron per core and supports around 130,000 neurons and 130 million

synapses. The chip supports different learning rules that are based on spiketiming and

reward modulation.

A major limitation in these technologies is the memory required to store the state and

the parameters of the system. For example, in both mixed-signal and digital technologies,

synaptic weights are typically stored in SRAM, the densest, fastest and most energy-efficient

memory we can currently locate next to the computing substrate [23, 20, 21]. Unfortunately,

SRAMs are expensive in terms of area and energy, making on-chip memory small given the

computational requirements. In fact, learning often requires higher precision parameters to

average out noise and ambiguities in real-world data, especially in the case of gradient-based

learning in neural networks [24].

1.2 Emerging Neuromophic Hardware

Many emerging switching devices can be used to build crossbars, such as memristors, phase

change memory (PCM), and spin transfer torque (STT). Each one of these devices has its own

characteristics and properties that make one device more suitable for certain applications as

compared to other devices. Memristors have shown great promise in crossbar applications

due to their nanometer level dimensions, high switching speed, long retention time, low

programming power and non-volatile characteristics [25, 26]. A Memristor switches between

two resistance states, low resistance state (LRS) which is called Ron, and high resistance

state (HRS) which is called Roff . The switching ratio for typical memristosr is around

103 ∼ 106 [27, 28, 29]. Memristors have been proposed theoretically for the first time by

Chua in 1971[30, 31]. In 2008, HP team announced the realization of a memristor based
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Table 1.1: Device charactersitics of mainstream and emerging memory technologies [10].

Mainstream Memories Emerging Memories

Flash

SRAM DRAM NOR NAND STT-MRAM PCRAM RRAM

Cell area > 100F 2 6F 2 10F 2 < 4F 2 6 50F 2 4 30F 2 4 12F 2

Multibit 1 1 2 3 1 2 4

Voltage < 1V < 1V > 10V > 10V < 1.5V < 3V < 3V

Read time ∼ 1ns ∼ 10ns ∼ 50ns ∼ 10µs < 10ns < 10ns < 10ns

Write time ∼ 1ns ∼ 10ns 10µs− 1ms 100µs− 1ms < 10ns ∼ 50ns < 10ns

Retention N/A ∼ 64ms > 10y > 10y > 10y > 10y > 10y

Endurance > 1016 > 1016 > 105 > 104 > 1015 > 109 > 106 ∼ 1012

Write Energy (J/bit) ∼ 1f ∼ 10f ∼ 100p ∼ 10f ∼ 100f ∼ 10p ∼ 100f

on TiO2 [32]. Since that date, many studies have been introduced to realize memristors

based on different materials. For instance, TaOx memristors have demonstrated improved

write/erase endurance by orders of magnitude while having nanosecond switching speeds,

however the linear current-voltage (I-V) characteristic in the low resistance state limits their

applications in large passive crossbar arrays[33, 34]. In this paper, without loss of generality,

we will focus on memristors, as the switching devices. However. the analyses derived can be

generalized to other switching devices.

Spin Transfer torque devices (STT) are a magnetic device and are built based on magnetic

tunnel junctions (MTJ), where switching occurs due to tunnel magneto resistance effect

[35] since MTJs are composed from three thin films: two ferromagnetic layers and an oxide

layer. STT devices offer stable non-volatility, fast write/read access speed and excellent

endurance [36]. MTJ switches between parallel resistance, RP, and antiparallel resistance,

RAP, depends on the relative orientation. STT device can be used for storage memory and

for computing[37, 38]. The switching ratio of STT is around 108 ∼ 1010 due to its magnetic

characteristics. Table 1.1 summerizes a typical comparsion between the mainstream and

emerging memory technologies.

Recently, programmable crossbar architectures have been considered as a key enabler for

integrated nanoscale electronics using emerging memory technologies [25]. Crossbar arrays
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Figure 1.1: Crossbar containing switching devices (Blue).

have a small area footprint which enables high density structures. Moreover, crossbars can

be stacked, creating 3D crossbars [39, 40], or used in FPGA structures such as in [41, 42].

Crossbar arrays that utilize resistive switching devices are considered the best candidate

to replace traditional memories. These architectures are typically referred to as Resistive-

switching random access memory (RRAM). An ideal RRAM has low programming voltage,

high speed, and high density [43, 44]. However, passive RRAM arrays suffer from drawbacks,

such as sneak path current [45], and interconnect parasitic resistance which limit the practical

size of the RRAM array, and its access speed. Some techniques have been introduced to

manage or reduce these effects. [46, 47, 48]. For instance, [46, 47] introduced different

techniques to create sneak path free crossbar arrays using techniques such as multistage

reading, multiport reading or transistor gating. In addition to RRAMs, crossbars have been

used to perform computing operations [49, 50, 51]. A memory structure with computing

capabilities using crossbars is referred to as in-memory computing or crossbar nanocomputer

[52, 49, 53].

Crossbars can be treated as multi input multi output programmable neural networks. Thus,

crossbars can be used in neural network applications such as pattern classification and recog-

nition where the switching devices in the crossbar are trained and configured to enable clas-

sification of unknown patterns [54, 55, 56], as well as, bio-inspired/neuromorphic computing

[57, 58]. Furthermore, crossbars are used in the field of physical cryptography to build phys-

ical unclonable functions (PUFs) using the randomness and disorder in the switching devices

of the array [59, 60] .
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1.3 Contributions

The contributions can be summarized as follows:

• A compact RC framework to include the effects of parasitics is proposed where Mem-

ristors are used as an exemplar device. Interconnect parasitics (resistance, inductance,

capacitance and conductance) are extracted using ANSYS Q3D extractor for 5nm and

50nm feature sizes. A model for the crossbar is presented taking into consideration the

stray and coupling capacitive parasitics of the crossbar. The derived model is based

on state-space representation and provides more insight into the behavior of crossbar

arrays containing either linear or nonlinear switching devices. The framework provides

a closed form solution to evaluate Elmore delay, as well as the steady state response

of the system. Signal delay is evaluated and compared for both grounded and floating

interconnect inputs and verified against HSPICE, showing a perfect match.

• A row readout and writing techniques with circuitry is proposed that can be used to

read/ write selector-less resistive crossbar based memories. High throughput reading

and writing techniques are needed to overcome the memory-wall bottleneck problem

and to enable near memory computing paradigm. The proposed technique can read

the entire row of dense crossbar arrays in one cycle, unlike previously published tech-

niques. The requirements for the readout circuitry are discussed and satisfied in the

proposed circuit. Additionally, an approximated expression for the power consumed

while reading the array is derived. A figure of merit is defined and used to compare the

proposed approach with existing reading techniques. Finally, a quantitative analysis

of the effect of biasing mismatch on the array size is discussed.

• The write disturb problem is mathematically formulated in terms of the bias parameters

and optimized analytically. A closed form solution for the optimal bias parameters

6



is calculated. Results are compared with the 1/2 and 1/3 bias schemes showing a

significant improvement.

• Polar coding technqiue is proposed to improve the bit error rate (BER) performance

over channels with different reliability levels caused by sneakpath problem. We then

apply the framework of non-stationary polar codes to the crossbar array and evaluate its

BER performance under two modeling approaches, namely binary symmetric channels

(BSCs) and binary asymmetric channels (BSCs). Finally, we propose a technique for

biasing the proportion of high-resistance states in the crossbar array and show its

advantage in reducing further the BER. Several simulations are carried out using a

SPICE-like simulator, exhibiting significant reduction in BER.

• Some software techniques to capture the sneak path problem are proposed to enable off-

chip binarized neural networks learning and weight transfer. The proposed technique

can be easily integrated into any neural network training framework. Performance

results show a significant improvement after retraining the network with the proposed

mask technique. Two mask solutions have been proposed and studied to capture the

sneak path problem in resistive crossbar arrays. Both mask solutions were successfully

able to achieve classification accuracy close to the baseline accuracy. The trade-offs

between the two solutions are discussed and compared in terms of accuracy, power and

area.

• In addition, a fast and efficient training and validation framework is proposed to

incorporate the wire resistance in Quantized DNNs without the need for compu-

tationally extensive SPICE simulations during the training. A fabricated four-bit

Au/Al2O3/HfO2/TiN device is extensively modeled and integrated in the framework

with two-mapping methods to realize the quantized weights. Simple and efficient

system-level IR-drop estimation methods are integrated to the framework to acceler-

ate the training. The SPICE validation results show the effectiveness of the proposed
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method to capture the sneak path problem and can achieve the baseline accuracies

with 2% and 4% drop in the worst-case scenario for MNIST and CIFAR 10 datasets,

respectively. Finally, other nonidealities effects, such as stuck-at fault defects, variabil-

ity and aging, are studied. Furthermore, the design considerations of the neuronal and

the driver circuits are discussed.

• TiO2 RRAMs are used to solve blind source separation problem through Independent

Component Analysis (ICA). A local, unsupervised learning algorithm (error-gated Heb-

bian rule) to extract the independent components is deployed. The online evaluation

of the weights during the training is studied taking into consideration the asymmetric

nonlinear weight update behavior. The effects of the device variability are considered

in the results. Finally, an example of de-mixing two Laplacian signals is given to

demonstrate the efficacy of the approach.

• A memristive Spiking Neural Network (SNN) with local learning is introduced. Then,

we study the effect of this asymmetric and nonlinear behavior on the spiking neural

network performance and propose a method to overcome the performance degradation

without extra nonlinearity cancellation hardware and read cycles. The performance

of the proposed method approaches the baseline performance with 1 ∼ 2% drop in

recognition accuracy.

• Finally, local error-triggered learning dynamics compatible with crossbar arrays and

the temporal dynamics of spiking neural networks is proposed .

1.4 Dissertation Organization

This dissertation is organized as follows:

Chapter II discusses the challenges facing the memristive neuromorphic deployment such
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interconnect parasitics, endurance, retention, asymmetric nonlinearity conductance update,

and stuck-at fault.

Chapter III proposes a mathematical framework for simulating crossbar array structure with

RC parasitics. The framework provides a closed form solution to evaluate Elmore delay, as

well as the steady state response of the system.

Chapter IV proposes one step reading and writing techniques of memristive crossbar arrays

for memory applications. In addition, we adapt error-correcting technique using polar codes

for varying channels to treat the sneak path problem existing due to wire parasitics.

Chapter V proposes a different techniques to capture the sneak path problem to enable

off-chip quanitized neural networks learning and weight transfer. The proposed techniques

are validated on binarized and quantized neural networks on MNIST, CIFAR10 and SVHN

datasets. The proposed mask solution was successfully able to achieve classification accuracy

close to the baseline accuracy. Other nonidealities effects, such as stuck-at fault defects,

variability and aging, are studied.

Chapter VI discusses the effect of asymmetric nonlinearity conductance update on the per-

formance of simple and deep neural networks to solve source separation problem and MNIST

recognition. In addition, the error-triggered learning is proposed to efficient online learning

with RRAMs.

Chapter VII discusses the prospects of the memristive neuromorphic hardware.
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Chapter 2

Memristive Neuromorphic Hardware

Challenges

The basic building block in both spiking and artificial (non-spiking) neural network is the

matrix-vector multiplication (MVM) which can be performed in a single step using crossbar

structure unlike the conventional computing methods that required N ×M steps or clock

cycles. Figure 2.1 shows a single-layer crossbar based resistive neural network with M inputs

and N outputs representing N perceptrons with M inputs each and the weights are stored in

the memristors. The inputs to the perceptrons (presynaptic signals) are encoded in the input

voltages, and the output of each perceptron is the sum of the currents passing through each

memristor. This way, all currents within the same column can be linearly summed to obtain

the postsynaptic currents. The total postsynaptic currents need sensing and shaping circuits

to convert them into voltages and passed to subsequent neurons. In an artificial neural

network, the postsynaptic current is summed up through the sensing circuit and passed

through another shaping circuit to create the required neural activity such as sigmoid, tanh

or rectified linear. With spiking neurons, the output of current sensing circuit is instead

passed through a LIF circuit.

In neural networks, both positive (excitatory) and negative (inhibitory) connections are

required. However, the RRAM conductance is positive by definition which only supports
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Figure 2.1: Crossbar array realization of one layer neural network.

excitatory or inhibitory connections. Two weight realization techniques are possible to create

both excitatory and the inhibitory connections;

1) using two RRAMs per weight [61, 62] or

2) using one RRAM as weight in addition to one reference RRAM having a conductance set

to Gr = (Gmax +Gmin)/2 [63, 64].

The first realization has double the dynamic range w ∈ [−∆G,∆G], where ∆G = Gmax −

Gmin, making it more immune to variability at a cost of double area, double power consump-

tion during reading and additional programming operations. The second technique has one

RRAM device, meaning that w ∈ [−∆G/2,∆G/2] making it more prone to variability but

the overall area is smaller, requires less power, and i

s easier to program (programming only one RRAM per weight). Due to the high variations

in the existing devices, the first approach is commonly used with either one big crossbar or

two crossbars (one for positive weights and the other one for negative weights as shown in

2.1). The output of the memristive neural network can be written as

Sj =
m∑
i=1

GijVi (2.1)
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where Sj is the output of the jth neuron and Gij = G+
ij − G−ij, is the synaptic weight, and

Vi is the ith input. The crossbar array forms the majority of the research in using RRAMs

for neuromorphic computation [65]. In practice, RRAMs and crossbar structures suffer from

many problems and do not behave ideally for computational purposes. These non-idealities

can severely undermine the overall performance of applications unless they are taken into

consideration while the training operation. After defining the mapping of synaptic weights

to RRAM conductances, the following sections will overview these non-idealities in the light

of neuromorphic computation and learning.

2.1 Weight Mapping

𝑊 ∝ 𝐺+ − 𝐺−

𝐺𝑚𝑎𝑥

𝐺𝑚𝑖𝑛

−𝑊𝑚𝑎𝑥

𝑊𝑚𝑎𝑥

Figure 2.2: Mapping synaptic weight into conductances.

As discussed above, each weight is translated into two conductances which is one-to-two

mapping which can be mathematically formulated as

G = G+ −G− =
W

Wmax

∆G, (2.2)

where Wmax is the maximum value of the weight. If it is required to realize Wmax, G
+ and

G− are set to Gmax and Gmin, respectively. The difference between the two conductances is
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constant and proportional to the required weight value and each conductance is constrained

to be betweenGmin andGmax as shown in Fig. 2.2. Thus, there are many possible realizations

for each weight; for example the zero weight can be realized with any equal values of G+

and G−. Therefore, a criterion on selecting the weight mapping should be defined. This can

be formulated as an optimization problem as follows:

minimize L(G+,G−)

subject to

Gmin ≤ G+, G− ≤ Gmax, and

G+ −G− =
W

Wmax

∆G.

(2.3)

where L is the objective function (objective function are discussed in further detail later in

this chapter). G+ and G− are the positive and negative conductance matrices.

Since many conductance configurations are possible to obtain the same effective weight,

additional criteria such as power consumption while reading (important for inference) or the

write energy (important in online training) can be introduced. These constraints can be taken

in consideration while training the network with a regularization term in the loss function.

We note that the mapping is more important for offline training where the optimization is

completed on software and the final weight values are transferred to the hardware.

One of the important metrics is the power consumption due to the high power consumption

of RRAMs which is directly proportional to the device conductance (P = GV 2). Thus, in

order to minimize the power, high resistances(low conductances) should be used. So, it is

required to minimize both conductances. Thus, the objective function can be defined as

f =
∑

i

∑
j(G

+
ij − G−ij). Figure 2.3 shows a simple example of realizing one weight using

two coductances where the objective function is defined to minimize the power consumption

example as F = G+ +G−. By applying the difference constraint, the objective function can
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be written as F = 2G− +Wij∆G/Wmax. Clearly, with the minimum value is achieved when

one of the conducances is set to Gmin and the other one is calculated based on that which

will guarantee using the lowest possible conductances. Therefore, generalizing the case to

realize NM weights, the optimal value of the objective function can be intuitively solved

and equal MNGmin +Gmax

∑
i

∑
j |Wij/Wmax|.

Figure 2.3: Mapping one synaptic weight into two conductances.

2.2 Endurance and Retention

An attractive purpose of RRAMs is to accelerate the training operation, especially the in-

ference (feedforward) part of the training. However, one of the main issues facing RRAM

deployment in neuromorphic hardware with online learning is endurance. In online learning,

the devices are frequently updated, and especially so during gradient-based learning such

as in artificial neural networks. However, each device has a limited number of potentiation

and depression cycles [66, 67]. The endurance depends on the device’s switching and elec-

trode materials. For example HfOx devices can achieve endurance up to 1010 cycles, but

Al2O3 devices achieve endurance up to 104 [68]. With limited endurance, it is necessary to
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complete the training before the devices degrade. The endurance requirement for learning

is application-dependent. In standard deep learning, weight updates are usually performed

every batch. Classification benchmarks such as MNIST handwritten digit recognition re-

quire writing around 104 cycles. However, real-world applications that involve reinforcement

learning can easily scale to 108 cycles [69].

Furthermore, because neuromorphic hardware can be multi-purpose (i.e. the same device

and be used to perform many different tasks), where a complete training of the network is

performed every task. Consequently, the device endurance should be high enough to cover

its lifetime use. There are some solutions to mitigate the endurance problem in machine

learning scenarios:

• Full offline training: training is completed off the device and the final weights are

transferred to the RRAM-based hardware. This requires an accurate modeling of the

used devices, crossbar array and the sensing circuitry to be included into the training.

This would require to verify the response of each part of the network to make sure that

the response matches the simulated one [70].

• Semi-online training: A complete training cycle is performed offline, then the new

weights are transferred to the devices. Then, an online retraining cycle is performed to

improve the performance due to the existing impairments. Due to the smaller number

of writing cycle, this solution would relax the endurance requirements. In [64], it was

noticed that the network was able to recover after 10 ∼ 20% of the training epochs.

Once the online or the offline training is performed, the network can operate in the inference

mode where only reading cycles are performed. In this case, the retention of the stored

values becomes an important issue. As with endurance, RRAM retention is also dependent

on the device materials and temperature. For example the HfOx devices have around 104

seconds (2.78 hours) retention [71]. Although this might be sufficient for certain single-use
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scenarios, such as biomedical applications, it is inadequate for IoT and autonomous control

applications. There, retention values need to be more than 106 seconds across different

temperature values (since retention degrades with increasing the temperature).

While both endurance and retention are important for machine inference and learning tasks,

the learning approach may require one more over the other. I.e. full online learning requires

high endurance and moderate retention, but, semi-online requires moderate endurance and

retention.

2.3 Sneak Path Effect

The sneak path problem arises from the existence of the wire resistance which is inevitable

in nanostructure crossbar arrays. The wire resistance creates many paths to the signal from

each the input port to the output port. These multiple paths create undesired currents

which perturb the reading of the weight. It is expected that the wire residence would reach

around 92Ω for 5nm feature size [5], which is the expected feature size for crossbar technology

according to International Technology Roadmap of Semiconductors (ITRS) [25]. Fig. 2.4a

and Fig. 2.4b show an example of the sneak path problem in 512×512 with random weights.

A linear switching device having a 106Ω high resistance state and 103Ω low resistance state

is used while the wire resistance is 0.1Ω. Ideally, the measured weights should be similar to

the measured weights, as shown in Fig. 2.4c. Despite the small value of the wire resistance,

it has a very high effect on the weights stored in the crossbar arrays (Fig. 2.4a). The weights

are exponentially decaying across the diagonal of the array where the cell (1,1) has the least

sneak path effect and the cell (N,M) has the worst sneak path effect.

Some devices have a voltage-dependent conductance where the conductance is exponentially

or quadratically function of the applied voltage [72]. This conductance non-linearity can

help reduce the sneak path problem in resistive memories on crossbar or Xpoint structures
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(a) (b)

(c) (d)

Figure 2.4: Effect of the wire resistance on the measured weights for 512 × 512 crossbar
array at with 0.1Ω wire resistance. 3D plots of random weights distributed across the array,
(a) without partitioning and (c) with partitioning into 64 × 64 crossbar arrays; and the
measured weights with the sneak path problem versus the desired values for (b) the entire
array without partitioning and (d) with partitioning.

[73] due to single cell reading. But, in neuromorphic applications, this adds an exponential

behavior to MVM which becomes

Sj =
m∑
i=1

Gij sinh(aVi). (2.4)

This exponential non-linearity makes the MVM operation inaccurate which deteriorates the
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training performance [74]. Some algorithms were developed to take the affect of the device’s

voltage-dependency into consideration while training non-spiking neural networks such as

[74]. The same algorithm idea can be extended to the spiking neural networks.

Partitioning of Large Layer Matrices

The sneak path problem prohibits the implementation of large matrices using a single large

crossbar array. One possible solution is to partition the large layer matrices into small

matrices that can be implemented using realizable crossbar arrays. Figure 2.5 shows the

partitioned crossbar arrays and the interconnect fabric between them to realize the complete

MVMs where the large crossbar array, having N ×M RRAMs, is partitioned into n × m

crossbar arrays. In order to have the same structure of a large crossbar array, vertical and

horizontal interconnects are placed under the crossbar arrays. This horizontal interconnect

is used to connect the inputs between the crossbar arrays within the same array rows. The

vertical interconnect is used to connect the outputs of the vertical crossbar arrays. The

vertical interconnects are grounded through the sensing circuit to absorb the currents within

the same vertical wire. The sensed currents are connected then to the neuronal activity. It is

worth highlighting that each crossbar array may require input drivers (buffers) to reduce the

loading effect of the vertical interconnect and crossbar arrays. These buffers are not shown

in Fig. 2.5 for clarity. Moreover, they can be placed under the crossbar arrays to save the

wafer area where the crossbar arrays are usually fabricated between higher metal layers. Fig.

2.4c shows the measured random synaptic weights with the same aforementioned parameters

after partitioning the 512×512 crossbar arrays into 64 of 64×64 crossbar arrays. The weight

variations due to their locations in the crossbar array became much smaller as shown in Fig.

2.4d and can be considered be modelled with the device variation.

Although, partitioning the array mitigates the sneak path problem, it might cause routing

problems where the non-idealities (e.g parasitics) of the routing fabric will affect the perfor-
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Figure 2.5: Realization of the partitioned matrices.

mance. Thus, routing’s non-idealities must be simulated in the case of full-offline learning.

Also, additional algorithmic work is needed to overcome the residual sneak path problem

after partitioning (especially with the aforementioned high wire resistance expected to be

10Ω per cell), such as the mask technique proposed in binary neural networks [64]. In the

mask technique, the exponentially decaying profile is used to capture the effect of the sneak

path problem during learning by multiplying element-wise the trained weights.

2.4 Delay

Signal delay determines the speed at which computations can be run on hardware. While

delays are not an issue for neuromorphic hardware designed to run with real-work time

constants [16, 23], other models are accelerated [75]. Due to the parallel MVM operation, the

memristive hardware would be dedicated for an accelerated regime. For this, it is necessary

to reduce delay is caused by the device and structure parasitics and circuits.

In [72], a complete mathematical model for the crossbar delay is discussed. The model showed

that the delay is a function of the weights stored in the crossbar arrays. The higher the device
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resistance, the more delay to the signal. For 1MΩ switching resistance, the maximum delay

of the crossbar arrays is expected to be in range of nanoseconds. In addition, there is another

delay resulting from the sensing circuit which is expected to be around 10ns.

The partitioning and the drivers add extra delay factors can be caused by the wire resistance

of the interconnect fabric and the input capacitance of the drivers. The delay can be simply

calculated using the Elmore delay model [72]. The wire resistance of the interconnect per

array is nRw where n is the number of columns per array and Rw is the wire resistance

per cell. The Elmore delay of such an interconnect wire is 0.67nRwCd, where Cd is the

input capacitance of the buffer. Thus the total input delay is 0.67(N − n)RwCd + (N/n)τd,

where N/n is the number of horizontal crossbar arrays and τd is the driver delay. The

delay resulting from the partitioning and drivers is expected to be in range of nanoseconds.

Thus, the total delay of the entire layer would be in range of 20n ∼ 100n seconds. It is

worth mentioning that the effect of the capacitive parasitics of the crossbar array is often

ignored because the feature size of the fabricated devices is in the range of sub micrometers,

i.e. F = 200nm, [76]. However, for nano-scale structures, i.e. F = 10nm, the capacitive

parasitics may cause leakage paths at high frequency, where the impedance between the

interconnects would be comparable to or less than the switching device’s impedance, which

would affect the performance. Thus, a more detailed analysis of the capacitive parasitics of

the crossbar array must be considered on a case-to-case basis.

2.5 Asymmetric Non-linearity Conductance Update Model

Several RRAM devices demonstrating promising synaptic behaviors are characterized by

nonlinear and asymmetric update dynamics, which is a major obstacle for large-scale de-

ployment in neural networks [65], especially for learning tasks. Applying the vanilla back-

propagation algorithms without taking into the consideration the device non-idealities does
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not guarantee the convergence of the network. Thus, a closed form model for the device non-

linearity must to be derived based on the device dynamics and added to the neural network

training algorithm to guarantee the convergence to the optimal point (minimal error).

Most of the potentiation and depression behaviors have exponential dynamics versus the

programming time or number of pulses. In practice, the depression curve has higher slope

compared to the potentiation curve, which causes the asymmetric programming. The asym-

metric non-linearity of the RRAM’s conductance update can be fitted to the following model

G(t) =

Gmax − βP e−α1φ(t) v(t) > 0

Gmin + βDe
−α1φ(t) v(t) < 0

(2.5)

where Gmax and Gmin are the maximum and minimum conductances respectively, α1, α2, βP

and βD are fitting coefficients. βP and βD are related to the difference between Gmax and

Gmin and φ(t) is the time integral of the applied voltage.

Updating the RRAM conductance is commonly performed through positive/negative pro-

gramming pulses for potentiation/depression with pulse width T and constant programming

voltage Vp. As a result, the discrete values of the flux are φ(t = nT ) = VpnT where n is the

number of applied pulses. This technique provides precise and accurate weight updates. For

t = n∆T , and substituting back into (2.5), the potentiation and depression conductances

become:

GLTP = Gmax − βP e−αPn, and (2.6)

GLTD = Gmin + βDe
−αDn, (2.7)

respectively, where n is the pulse number, αP = |Vp|α1T and αD = |Vp|α2T . The rate of
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change in conductance with respect to n becomes

dG

dn
=

 βPαP e
αPn, for LTP

−βDαDeαDn, for LTD
. (2.8)

One way to quantify the device potentiation and depression asymmetry and linearity is

the asymmetric non-linearity factors [77]. The effect of these factors are reflected in the

coefficients αP , αD, βP and βD which are used for the training. The potentiation asymmetric

non-linearity (PANL) factor and depression asymmetric non-linearity (DANL) are defined as

PANL = GLTP (N/2)/∆G−0.5 and DANL = 0.5−GLTD (N/2)/∆G, respectively, where N

is the total number of pulses to fully potentiate the device. PANL and DANL are between

[0, 0.5]. The sum of both potentiation and depression asymmetric non-linearities represents

the total asymmetric non-linearity (ANL) which can be written as follows for the proposed

RRAM model:

ANL = 1− βP e
−0.5αPN + βDe

−0.5αDN

∆G
. (2.9)

Asymmetric Non-linearity Behavior Example

An example of a synaptic device is a non-filamentary (oxide switching) TiOx based RRAM

with a precision measured to 6 bits [11]. The Mo/TiOx/T iN device was fabricated based

on a redox reaction at Mo/Tiox interface which forms conducting MoOx. This type of

interface based switching devices exhibits good switching variability across the entire wafer

and guarantees reproducibility [11]. The asymmetric nonlinear behavior of this device is

shown in Fig. 2.7a.

The proposed model was fitted and parameters were extracted for the three programming

cases {±2V, ±2.5V, and ±3V }. Tables 2.1 and 2.2 show the extracted model identification
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parameters of the device for the three reported voltages with negligible root mean square

errors (RMSE). According to the results, the higher the applied voltage, the higher switch-

ing range. Clearly, the model parameters are function of the applied voltage. Thus, each

parameter can be modeled as function of the applied voltage which would help to interpolate

potentiation and depression curves if non-reported responses are required to be tested. The

interpolated models are reported in the tables as function of the applied voltage.

Practically, Vp = ±3V cases would be considered since it has the widest switching range.

Figure 2.6 shows the curve fitted model on the top of the reported conductance for both

potentiation and depression scenarios. This device has PANL = 0.32 and DANL = 0.45

with ANL = 0.77.

Vp(V ) Gmax (nS) αP × 10−3 βP × 10−9 RMSE
3 674 30.58 626.8 9.07

2.5 252.7 18.23 220.22 0.6416
2 83.38 19.19 71.7 0.2276
Vp 2.968e1.823Vp − 30.4 2.019× 10−9e7.51Vp + 18.28 1.522e2.014Vp − 13.78 −

Table 2.1: Extracted Potentiation parameters of the Mo/TiOx/T iN device reported in[11].

Vp(V ) Gmax (nS) αD × 10−3 βD × 10−9 RMSE
-3 32.95 353.4 921.9 23.696

-2.5 186.3 35.29 410.9 10.3215
-2 340.5 20.55 330.8 6.12
Vp 307.6Vp + 955.5 8.14× 10−6e−5.48Vp + 20.5 0.009e−3.706Vp + 315.9 −

Table 2.2: Extracted depression parameters of the Mo/TiOx/T iN device reported in[11].

Device variations are an important issue to be taken into consideration during training. In

RRAMs where there are two type of variations: (1) The variation during the write operation

where a slightly different value is written in the device because of the randomness in the

voltage variation and switching materials. This randomness can be mitigated with write-

verify techniques where the written value is read to verify the value and corrected until the

desired value is obtained [78]. (2) Independent device-to-device due to fabrication mismatch

and material inhomogeneity. These variations can be included in the model by treating
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Figure 2.6: RRAM’s conductance update (a) long term potentiation (b) long term depres-
sion.

each parameter in the model as a independent random variable. Figure 2.7b shows the

conductance variations of multiple devices during the potentiation and depression cycles

with ±3V programming pulses. The model parameters are sampled from Gaussian sources

with 25% tolerance (Variance/mean) for α, and 1% and 5% tolerances for the maximum and

minimum conductances, respectively.

The effect of the variation in the parameter β is considered inside the variations of α. β is

modeled as a lognormal variable to have a monotonic increasing or decreasing conductance

update. Thus, the second term of the conductance update has log Gaussian variable, which

is ez, multiplied by eαn where z and α are Gaussian variables. Since the sum of two Gaussian

random variables is a Gaussian random variable, the variation of β and α can be included

in either one of them.

2.6 Stuck-At Fault Effect

Stuck-At Fault (SAF) defects cause another inevitable problem that affects the accuracy

results of the MVM which is the main operation in DNNs. SAF defects vary based on the
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Figure 2.7: Non-idealities of the RRAM:(a) asymmetric nonlinear weight update (b) device
Variations

fabrication technology and RRAM switching materials. In some recent works, the percentage

of SAF fabricated crossbar arrays is about 10% for 1024 × 1024 for an in-house test array

[79, 80] and is about 0.2% for 128× 64 array (with only 15 devices stuck off) [81]. With the

knowledge of the exact locations of the SAF devices, the network can be trained to isolate

the SAF devices or at least mitigate their effect, however, this is not practical for DNNs

where the trained weights are not designed for specific hardware. It should run without any

knowledge of the location of SAF defects. Thus, in this work, we explore the effect of different

SAF percentages on the recognition accuracy without retraining the network assuming that

the SAF devices are randomly distributed in each crossbar array.
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Chapter 3

Crossbar Array Modeling and Analysis

The chapter discusses the parasitics modeling of the crossbar structure to be included in the

numerical simulators to have efficient and accurate calculations.

With the nanometer scale of memristors, interconnect modeling becomes very important

due to the dominant effect that parasitics have in determining the overall performance of

the system. Numerous research efforts have focused on means to analyze and model the

effects of interconnect including voltage degradation, time delay, overshoot, crosstalk and

coupling [82, 83, 84]. Prior work included only the effect of line resistance when analyzing

crossbars [85, 86]. In this work, a closed form solution is proposed to provide designers

with insights in the dynamic behavior of the system. The chapter focuses on creating a

general framework that is simulator agnostic, while yielding closed form solutions for delay,

as well as steady state solutions of the array. Thus, the main contribution of this work

versus SPICE can be summarized in two points: a) the solution is closed form and not

time stepped as in SPICE, yielding delay and steady state solution and b) the proposed

framework provides a simulator agnostic approach to solving crossbars using any scripting

language. While describing complex crossbars and their associated parasitics is possible in

SPICE, it is highly time-consuming both in formulation and simulation time. Thus, the

proposed model is very beneficial for many applications such as neural networks and pattern

recognition, to get fast, accurate, and practical results. In addition, the derived Elmore delay
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expression can be used to estimate delay of digital applications such as RRAMs.

3.1 Nano-scale Interconnect Parasitics Extraction

According to the ITRS, switching devices are expected to be in range of a few nanometers

[25]. A crossbar is considered a nanostructure since the dimension of the wires and devices

is less than 100nm. As a result, nano-scale effects, such as grain boundaries, are inevitable

and should be taken into consideration as they highly degrade system performance. In

this section, we calculate wire parameters using the ANSYS Q3D extractor design tool to

extract Resistance, Inductance, Capacitance and Conductance, (RLCG) circuit model. The

extracted parameters discussed in this section will be used in our simulation to generate

practical results based on realistic values. Two different feature sizes are considered; F =

50nm cell which is a recently published switching device and F = 5nm cell which is the

projection of ITRS for resistive crossbar arrays [25]. Thus, the cell size is 4F 2. In parasitics

simulations, wire RLCG values are extracted for each feature size. Simulating a network

of three parallel interconnect wires is enough to extract all parasitics including mutual and

coupling parameters. In reality, an interconnect network will have more than three wires with

mutual parasitics between all the wires, however, the mutual parasitics decreases significantly

with increasing the distance between them. In our simulations, the three parallel wires

are assumed to be constructed above a ground substrate and separated by silicon dioxide

(εr = 3.9 and electrical resistivity is 1016Ω.m [87] as shown in Fig. 4.1. Wire length is

selected to be ten times greater than the cell length, L = 20F to get practical results for a

10×10 interconnect array. Finally, we consider an operational frequency of 1 GHz, at which

parameters are extracted. This frequency should be sufficient to cover most applications.
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3.1.1 Interconnect Wire Resistance

Wire resistivity increases exponentially with technology scaling not only because of the

reduction in minimum wire dimensions but also due to the increase in electron scattering at

grain boundaries, surfaces, and interfaces as well. Conductivity is size dependent, especially

with line width less than 100nm [88]. In our simulation, we used practical values for all

parameters based on current literature [25, 89]. For F = 50nm, the wire resistivity is taken

as 4.77µΩ.cm which was used in fabrication. For the F = 5nm cell, 45µΩ.cm is used, which

is calculated for copper nanocrystalline structure with the corresponding cross-sectional area

(50(nm)2) [89]. It is worth noting that this value is much larger than the ITRS projection,

which is expecting resistivity to be 11.41µΩ.cm [25]. The wire resistance is given by

R =
ρl

wh
(3.1)

where ρ, l, w and h are the resistivity, wire length, wire width and wire height respectively.

The width and the height of the wire are usually comparable and has aspect ratio, AR, which

is 1− 2.

By performing 3D simulations for a unit cell, the wire resistance per cell was found to be

Figure 3.1: ANSYS Q3D simulation of three parallel interconnect wires.
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1.908Ω for F = 50nm case, where w = h = 50nm and l = 100nm. On the other hand,

the wire resistance per cell is 91.2Ω for F = 5nm where h = 2w = l = 10nm . The cell

resistance increased more than 47X despite of using double wire aspect ratio in the second

case to decrease resistivity.

Skin effect causes an increase in the wire resistance with increasing the operating frequency

which appears when the skin depth δ is smaller than the wire dimensions. The skin depth

δ =
√

2ρ
ωµ

, where ω and µ are the operating frequency (rad/s) and the magnetic permeability

of the wire, respectively. The skin effect appears after certain frequency. Estimating this

cut off frequency can be done based on the fact that skin effect happens at the skin depth

is less than the wire dimension. Thus, the skin effect cut off frequency is fsk ≈ ρ
πµh2

. The

skin effect cut off frequencies are 1140THz and 4.833THz for F = 5nm and F = 50nm,

respectively. These values are very high and out of our range of interest. Thus, the skin

effect can be ignored.

3.1.2 Interconnect Wire Inductance

Generally, any wire has self-inductance and mutual inductance with the surrounding wires.

The self and mutual inductances of of a wire can be calculated using the following equation

for l ≥ 10(h+ w).

Ls=
µol

2π

[
ln

(
2l

h+ w

)
+ 0.5 + 0.2235

(
h+ w

l

)]
, and (3.2a)

Lm =
µol

2π

[
ln

(
2l

d

)
− 1 +

(
d

l

)]
, (3.2b)
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Table 3.1: Extracted parasitic inductance of three parallel interconnect wires at 1GHz

Inductance/cell (fF )

F = 50nm F = 5nm

L11 70.3087 6.246

L12 = L21 = L23 = L32 41.79 4.08

L13 = L31 29.8 2.956

respectively, where l, h and w are the wire length, height and width, respectively. And,

d is the distance between two wires. The parasitic extraction results of the inductance for

three lines are summarized in table I for both structures. It worth noting that inductance

decreased with decreasing the cell size.

3.1.3 Interconnect Capacitance

Within an interconnect network, there are two types of capacitances; stray capacitance and

coupling capacitance as shown in Fig.3.2. The stray capacitance represents the capacitance

between the interconnect wire and the reference plane. The position of the wire in the

interconnect affects the value of the stray capacitance. For instance, for the wire in the

middle of other two wires, it has two mutual coupling capacitances, one with each neighbor

wire, Cc, and stray capacitance, Cs . The interconnect wires are so close to each other which

in turn increases the coupling capacitance significantly. There are many coupling capacitance

Figure 3.2: Capacitive model of interconnect.
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Table 3.2: Extracted parasitic capacitance of three parallel interconnect wires at 1GHz

Capacitance/cell (aF )

F = 50nm F = 5nm

Cs 1.34 0.0624

Csb 2.012 0.118

Cc 1.6 0.276

Cna 0.157 0.0376

sources such as parallel plate capacitance, fringing capacitance, and face-face capacitance. It

is worth noting that there is also a coupling capacitance between non-adjacent wire as well

and can be referred as Ccna . These capacitance sources are analytically derived in details in

[90]. All these factor, increases the coupling capacitance exponentially. On the other hand,

if the wire is located at the boundary, it has one coupling capacitance and stray capacitance,

Csb. The boundary stray capacitance is greater than the stray capacitance of the wires

located in the middle. This difference is referred as Cwb . In our simulation, silicon dioxide is

used as an isolation between interconnect wires with 3.9 relative permittivity. The parasitic

simulation results of the capacitance for three lines are summarized in table II for both

structures. Practically, there are more than three wires in the interconnect. But as shown in

the table, non-adjacent coupling capacitance is 7.2X less than the adjacent coupling between

first and second wires. Thus, the coupling capacitance between first and fourth or higher

positioned wires is much less than adjacent coupling capacitance.

3.1.4 Interconnect Conductance

For the sake of completeness, the conductance between two interconnect wires is calculated

using parasitics extraction simulator. The conductance between the wire is a result of the

conductivity of the isolation material between wires. High-k materials are widely used in

MOS fabrication to reduce leakage. In our simulation, we used 1016Ω.m as the resistivity of
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the isolation material. The conductance per unit cell is 1.77×10−23Ω−1 and 3.03×10−24Ω−1

for F = 50, and 5 feature size, respectively. In case of using a more conductive isolator, the

conductance will increase.

3.1.5 Comparison and Discussion

Figure 3.3 shows the wire resistance and the reactance. For a large-size interconnect network,

reactance cannot be ignored where the reactance becomes comparable to wire resistance. So,

both wire resistance and inductance should be taken into consideration as shown in case of

F=50nm. However, in nanostructure case, the wire resistance dominates the wire inductance

and becomes the most important parasitic parameter to be taken into consideration. Gener-

ally, with decreasing wire dimensions, resistance increases and inductance increases. Thus,

there is a need to define a cutoff frequency, below which, wire resistance dominates and

above which, the wire inductance is comparable to wire resistance and should be considered

in the analysis. For the purposes of this chapter, the cutoff frequency, fcrl, is defined as the

frequency where the wire resistance is 100 times more the wire inductive reactance. Then,

fcrl = R/20πL. The cutoff frequency was found to be 43.2GHz and 229THz for F = 50nm

and 5nm, respectively. The cutoff frequency increased 5300X. An analytic expression can

be obtained by substituting by wire and inductance equations, the cutoff frequency can be

given by (3.3) for l = 10(h+ w).

fcrl =
279.96

σwh
(THz) (3.3)

where σ(S/nm), w(nm) and h(nm). The cutoff frequency decreases quadratically with in-

creasing wire width. Also, as previously discussed, the line conductivity is function of the

wire width as well. The cutoff frequency should be calculated for each wire width. On the

other hand, as shown in Fig. 3.3, the skin effect appears at Tera Hertz frequency range

which is as previously expected.
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Figure 3.3: Resistance and inductance reactance per unit cell of interconnect wire.
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Figure 3.4: Conductance and capacitive susceptance per unit cell of interconnect wire.

Figure 3.5: Summarized transmission line model.

Figure 3.4 shows the conductance and susceptance between two interconnect wires with

changing frequency. As shown, the susceptance is much greater the conductance. Conse-

quently, the conductance is neglected compared to susceptance.
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Most modern memory and signal processing applications operate at a few GHz range for

clock speed. At this frequency range, and as shown in Figs. 3.3 and 3.4, inductance can be

neglected compared to resistance and conductance can be neglected compared to susceptance

as well. In our analysis and simulations, wire resistance and capacitance are included. Also,

the stray and coupling capacitance of adjacent lines are greater than coupling capacitance of

nonadjacent wires. Thus, stray and adjacent coupling capacitance are included. In order to

simply the model , the T model shown in Fig.3.5 is used so that the basic cell is symmetric

and reciprocal. This model is used for both wire lines and bit lines of the crossbar arrays,

in addition to the resistive switching device model.

3.2 Crossbar Array Architecture

A crossbar consists of perpendicularly intersected lines where the switching device is sand-

wiched at every intersection, as shown in Fig.1.1.

The crossbar array can be divided into cells where each cell contains a switching device. In

order to get a full model for the crossbar, each individual switching cell should be modeled

and then integrated into the architecture to get the full model. In the next section, the

model of the switching cell is developed.

3.2.1 Switching Cell Structure and Circuit Model

At each intersection in the array, a switching device cell exists. This switching device has a

certain impedance which is usually resistive which will be referred to as Rm. This resistance

switches between two values: low-resistance state, LRS, and high-resistance state, HRS,

typically referred to as Ron and Roff for some devices, such as memristors. Additionally,

as shown in fig. 4.20, due to the electrodes of the device, the parasitic capacitance has
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Figure 3.6: Basic cell model.

two components Cm1 andCm2. Cm1 is adequately modeled as Cm1 = εoεrW
2/d where εo is

permittivity of the free space, εr is the relative permittivity, W is the device cross section

area, and d is the device width. In [91], a prototype memristor is presented where the

parasitic capacitance of the memristor is approximately 100fF for TaO2 memristor with

w = 10µm and d = 7nm. However, the recent fabricated memristors have nano dimensions

so the switching device capacitance should scale accordingly. Thus, in our simulations, we

will use 1fF and 0.1fF for 50nm and 5nm feature sizes as typical values. Furthermore, this

device is sandwiched between two lines. The width of these lines is larger than the device

width, and consequently, another capacitance across the device, Cm2, should be included

into calculations. Then, the total impedance, which models the switching device, is Rm//Cm

where Cm = Cm1 + Cm2.

In order to get full circuit model of a cell inside the crossbar, the wire model of word line and

bit line are combined with the switching device model. Figure 4.20 shows the proposed cell

model for the crossbar array where RWL, and RBL are the word and bit lines resistance, CWs

and CBs are the stray capacitance of the word and bit lines, CWc and CBc are the coupling

capacitance of the word and bit lines, and CWsb and CBsb are the boundary stray capacitance

of the word and bit lines respectively. It is clear that the model is symmetric and reciprocal.

In the next section, the mathematical model for the crossbar array is introduced.
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3.3 Compact Mathematical Model for the crossbar

array

In the previous section, the model of each node was discussed. By connecting all the nodes

together, we form the full crossbar. This crossbar array has m rows (word lines (WLs)) and

n columns (bit lines (BLs)) representing a 4 port network, as shown in Fig.4.21 where a port

is composed of n or m lines which can be inputs or outputs. Consequently, we indicate the

port voltages as Vapp WL1and Vapp WL2 for word lines and Vapp BL1 and Vapp BL2 for the bit

lines, as shown in Fig.3. The general case is considered in this model where the external

voltages can be applied from one side or both sides of word lines and/or bit lines. the input

nodes have an access resistance Rs WL and Rs BL for a word line and bit line, respectively.

Figure 3.7: Circuit model of the crossbar array.
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The access resistors are connected to the ports of the crossbar. In order to disconnect certain

applied voltages, the corresponding access resistors can be set to ∞.

The electric model of the crossbar array should be described by the current flowing through

the nodes or by the nodal voltages or both. The crossbar array has mn nodes so there

are 2mn nodal voltages because each node has two voltages; one on the word line plane,

VWL (i, j), and the other one is on the bit line plane, VBL (i, j), where 1 ≤ i ≤ m, and

1 ≤ j ≤ n. Thus, this model has 2mn unknown variables. In order to get a unique solution

for this model, it is required to derive a system of 2mn independent equations.

Initially, in order to develop a complete model for the crossbar array, it is required to obtain

the electrical model of the basic cell. Then, by repeating this model for the entire array and

adding the model of the boundaries (ports), a complete and compact model for the crossbar

array can be generated.

Figure 3.8: Kirchhoff’s law of every cell in crossbar array.
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3.3.1 Mathematical Model of Basic Switching Cell

By using Kirchhoff’s Current Law at every node, two current equations exist for word line

and bit line planes, as shown in Fig. 4.6. At node (i, j), the word line current flows from

node (i, j−1) then is divided to three paths; switching device (Rm// Cm), stray capacitance

(CWL) and next cell path. KCL of the WL is given as follows:

IWL (i, j) + IWC (i, j) = I (i, j) +

IWL (i, j + 1) + CWs
dVWL(i, j)

dt
+ IWC (i+ 1, j) ,

(3.4)

where IWL(i, j), I(i, j), IWC(i, j) and VWL (i, j) are the word line current entering the node

(i, j), the current passing through the switching device at node (i, j), the coupling word line

current entering the node (i, j), and word line voltage of the node (i, j) , respectively. A

similar equation can be derived for the bit line current by applying KCL for the bit line

node. This equation is

I(i, j) + IBC(i, j) + IBL(i− 1, j) = CBs
dVBL(i, j)

dt
+ IBC(i, j + 1) + IBL(i, j) (3.5)

For simplicity, we refer to I(i, j) and V (i, j) as Ii,j and Vi,j, respectively. These KCL

equations are describing the current passing through each branch. In this crossbar array,

there are 2mn nodes where m and n are the crossbar dimensions. The nodal voltage analysis

is shown in the supplementary materials.

3.3.2 Assembled Crossbar Array Model

The derived 2mn equations can be written in matrix form where there are parts in the

equations; the nodal voltages, the derivative of the nodal voltages and the applied voltages.
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The nodal voltages of the word lines and bit lines can be written as 2mn×1 vector as follows:

V= [VWL,1,1, . . . , VWL,1,n, . . . , VWL,m,1, . . . , VWL,m,n,

VBL,1,1, . . . , VBL,1,n, . . . , VBL,m,1, . . . , VBL,m,n]T (3.6)

Also, the applied signals can be written as 2(m+ n)× 1 vector u as follows:

u=
[
Vapp WL1

(1), . . . , Vapp WL1
(m) , Vapp WL2

(1) , . . . ,

Vapp WL2
(m) , Vapp BL1

(1) , . . . , Vapp BL1
(n) ,

Vapp BL2(1) , . . . , Vapp BL2(n)]T (3.7)

The derived equations are 1st order differential equations which can be organized in a matrix

form as follows:

MV +N V̇ = Gu (3.8)

whereM and N are 2mn×2mn matrices, V̇ is 2mn×1 vector, G is 2mn×2(m+n) matrix.

V and u are the nodal voltage and excitation input vectors. V̇ is the time derivative of V.

Equation (5.10) can be further described by introducing a number of intermediate coeffi-

cients. M, N and G represent the coefficients of the nodal voltages and are segmented as

given in (3.9) as each segment is subjected to different nodal voltages. For instance M is

segmented where A and C are the coefficients of the WLs nodal voltages, however, B and D

are the coefficients of the BLs nodal voltages. The elements of each matrix is derived and is
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shown in the supplementary materials.

M=

 A B

C D

 , N=

 P Q

R S

 , andG=

 GWL1GWL2 0

0 GBL1 GBL2

 (3.9)

In the case of applying low frequency inputs, the capacitive effect can be ignored in this

model. Thus, the derivative term can be ignored by putting N=0, where only the resistive

model for the crossbar can be obtained as previously derived in [85].

3.3.3 Crossbar Modeling Equations

By rearranging (5.10), the equation can be written as follows:

V̇ = N−1 (−MV+Gu) (3.10)

This equation represents the state equation of state-space representation for the crossbar

array where V and u are state vector and input vector, respectively. −N−1M and N−1G

are state and input matrices, respectively. The output equation can be defined as

Vo = ΨV + Wu (3.11)

where Vo is the output vector and is defined according to desired outputs. Ψ and W are

output matrix and feedthrough matrix. In our case, it is required to calculate the nodal

voltages then the output equation is Vo=V where Ψ=I2mn×2mn and W = 02mn×2mn (no

feedthrough path from inputs to outputs). Consequently, (5.11) and (5.12) represent the full

state-space representation of the crossbar array.
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Equations 5.11 and 5.12 model the crossbar array regardless of the nonlinearity of the switch-

ing devices. In a linear switching devices, the low resistance state and high resistance states

are constant (or have minor non-linearity) with respect to the applied voltage [34, 92]. In this

case, M is a constant matrix. Thus, it is possible to get a closed form solution as discussed

in the next subsection. On the other hand, nonlinear devices, such as [93], have nonlinear

low and high resistance states that are a function of the voltage. Within the crossbar, the

resistance of the device is a function of the nodal voltages which vary depending on the po-

sition of the device in the crossbar. The proposed model can accommodate the nonlinearity

as well, as will be discussed later in the chapter.

Linear Switching Devices based Crossbar Model

In this case, the proposed model of the crossbar array is mathematically well defined since it

represents linear time invariant (LTI) control equations [94]. There are two methods to get

the solution of the state-space representation: The first method is s-domain solution using

Laplace transform where the state vector, V, and the output vector, Vo, can be written as

follows:

V (s) =
(
sI+N−1M

)−1N−1Gu and (3.12a)

Vo (t) =L −1
{

Ψ
(
sI+N−1M

)−1N−1Gu
}
, (3.12b)

respectively. The other method is the time domain method where the state vector can be

written as:

V (t,V(0)) =e−N
−1N tV (0) +

∫ t

0

e−N
−1M(t−t)N−1Gu (t) dt (3.13)

41



Rs_BL1

C
L

R
L

V (j)o
VBL

(1,j)

I
o

Load

Rs_BL1

C
L

R
L

V (j)o
VBL

(1,j)

I
o

Load

VBL
(1,j)

I
o

Figure 3.9: Interconnect array with loading

where V (0) represents the initial voltage vector. Consequently, the output vector is given

by

Vo=Ψe−N
−1MtV(0)+Ψ

∫ t

0

e−N
−1M(t−t)N−1Gu (t) dt (3.14)

Alternatively, it can be written as in (3.15), with zero initial conditions,

Vo (t) =Ψe−N
−1M(t)

⊕
N−1Gu (t) (3.15)

where
⊕

is the convolution operator.

In reality, the most common example for the crossbar array is the interconnect where one

of the WLs is the input and one of BLs is the output. In the next section, we discuss this

scenario as a special case of the crossbar array.

Nonlinear switching based Crossbar model

The resistance of the nonlinear switching device is a function of the voltage across it.

Parabolic and exponential shapes I-V behavior are typical in space-charge-limited-conduction

and tunneling-based transport mechanisms, respectively [85]. Since there are many nonlinear
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devices, each device has its own characteristics and behavior. A general model for nonlin-

earity of I-V characteristics can be defined as I(V ) = Gm(V )× V where Gm is a nonlinear

function of the voltage across the switching device and can be generally written as

Gm(V ) = Gmo +
∞∑
i=1

GmiV
i (3.16)

Substituting using the previous equation in the derived model, a system of of nonlinear

equations is obtained and can be written as follows (see the supplementary materials for

derivation details):

N V̇ = −MaV +Gu−
∞∑
i=1

Mbi(V − TV)i+1 (3.17)

Ma is linear coefficient matrix containing the transconductance of devices at V = 0 which

is the same as the linear case. Mbi is a nonlinear coefficient matrix containing coefficients of

nonlinear terms of the switching devices. And, T is transformation rotational matrix of V .

In [85], the switching device nonlinearity is defined by η = R(0)/R(Vdd) where η is the non-

linearity ratio, R(0) and R(V dd) are the resistances corresponding to zero and Vdd voltages

across device. Substituting by (3.16), thus

η =
Gm(Vdd)

Gm(0)
= 1 +

∞∑
i=1

Gmi

Gmo

V i
dd (3.18)

As an example, consider that the transconductance of switching devices has a parabolic

nonlinearity where Gm = a+ b× V 2 for both LRS and HRS. consequently, the matrix form

of the system can be written as follows:

N V̇ = −MaV −Mb(V − TV)3 +Gu (3.19)
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Then, the nonlinearity ratio is η = 1 + bV 2
dd/a. By specifying the nonlinearity ratio and

resistance at Vdd, the transconductance can be obtained where a = 1/(ηR(Vdd)) and b =

(η − 1)/(aV 2
dd).

Alternatively, consider that the switching devices has exponential I-V behavior where I =

Io×sinh(V/Vt) [95, 93], then the transconductance of the device is Gm = dI/dV = (Io/Vt)×

cosh(V/Vt) which can be expanded to

Gm = (Io/Vt)
∑∞

i=0(V//Vt)
2i/(2n)! = (Io/Vt)× (1 + (V//Vt)

2/2! + (V//Vt)
4/4! + ...).

The transconductance can be approximated to Gm ≈ (Io/Vt)(1 + (V//Vt)
2/2) where higher

order terms are negligible for V ≤ Vt. Thus, it is a special case of parabolic nonlinearity

where Gmo = (Io/Vt), Gm2 = 0.5Io/V
3
t ) and the nonlinearity ratio is η = 1 + 0.5(Vdd/Vt)

2

which is 1.5 for Vdd = Vt.

3.4 Practical Interconnect

An interconnect network usually has one port input in the WL plane and one port output

in the BL plane. Thus, we consider Vapp WL1 as the input port and Vapp BL1 as the output

port. Moreover, Vapp WL2 and Vapp BL2 are disconnected so Rs WL2 and Rs BL2 should be

open circuit i.e∞ . Generally, the output port is connected to loading capacitor CL and RL

and in this case, the access resistance Rs BL1 represents the wire resistance from the outputs

of the interconnect to the load. The access resistor Rs WL1 represents the source resistance

and the wire resistance from the source to the interconnect, as shown in Fig. 4.8.

The interconnect is a special case of the crossbar array so it has the same model but with

taking into consideration disconnected ports and loading effects. Consequently, by substi-

tuting by Rs WL2=Rs BL2 = ∞, the model of the interconnect is obtained. However, the

loading effect is not included which will be discussed in the next subsection. Moreover, the
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Figure 3.10: Kirchhoff’s law at the load.

output voltage nodes, Vo which were Vapp BL1, should be added to the system. thus, the

nodal voltage vector can be written as

V = [VWL (1, 1) , . . . , VWL (1, n) , . . . , VWL (m, 1) ,

. . . , VWL (m,n) , VBL (1, 1) , . . . , VBL (1, n) , . . . ,

VBL (m, 1) , . . . , VBL (m,n) , Vo (1) , . . . , Vo(n)]T (3.20)

where V is the nodal voltage vector with size (2m + 1)n × 1. It is worth to note that, the

output vector is included in (3.20) where the solution of the nodal voltages gives the output

vector solution. Also, there is only one input port thus the input vector u is reduced to m×1

vector.

u =
[
Vapp WL1

(1) , . . . , Vapp WL1
(m)

]T
(3.21)

According to these changes, the size of matrices in the state-space representation is changed,

for instance the system matrix size will be (2m + 1)n × (2m + 1)n, and the size of input

matrix will be (2m+ 1)n×m. These changes are due to the loading effect.
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3.4.1 Loading Effect On Crossbar Model

Practically the interconnect is connected to some load in order to read the data stored in the

interconnect when used as memory [43, 44]. However, in some applications, such as neural

networks [54, 55, 56], the outputs of the interconnect, where the input signals are scaled

and mixed together with a certain pattern, are connected to the load to obtain the result of

this mixing. This load may be resistive or capacitive depending on the application. In our

analysis, we consider a general load which is a parallel RC circuit (RL // CL).

As previously mentioned, the load will affect the model so it should be included to get an

accurate solution for the output signals of the interconnect. It is worth noting that the

loading effect is added to the crossbar model regardless of the linearity of the devices and

without affecting the nonlinear coefficients matrix, Mb. Thus, we consider only the linear

switching devices case. Figure 3.10 shows the load model at an arbitrary output node i.e.

node j. Consequently, the KCL at the output node is Io = IRL + ICL . Hence, the voltage

form of the load can be written as follows:

Vo (j)

(
1

Rs BL1

+
1

RL

)
+ CL

dVo(j)

dt
− VBL,1,j

RsBL1

= 0 (3.22)

where Vo(j) is the output voltage at node j where 1 ≤ j ≤ n.

The matrix form for the system is even by (5.10) where now M and N are square matrix

of size (2m+ 1)n× (2m+ 1)n where n equations have been added to model the load. The

modified M and N are given as follows:

M=


A B 0

C D H

0 a 0 b

, N=


P Q

R S
0

0 CLIn×n

 (3.23)
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where A, B, C, D, P, Q, R and S have the same values mentioned in the previous section.

The added terms a and b are n× n matrices which are given by (3.24a)), but H is mn× n

matrix and is given by (3.24c). Besides, the input matrix, G, is simplified to (2m+ 1)n×m

matrix which is G=[GWL1 0]T where GWL1 is nm×m matrix and is given by (3.24c).

a = − 1

RsBL1

Inxn, b =

(
1

RsBL1

+
1

RL

)
Inxn (3.24a)

H(j, j) = − 1

RsBL1

1 ≤ j ≤ n (3.24b)

GWL1((i− 1)n+ 1, i) =
1

RsWL1 (i)
1 ≤ i ≤ m (3.24c)

3.4.2 Solution of Interconnect Model

The interconnect is a special case of the crossbar array so it is governed by the same modeling

equations. However, in the case of the interconnect, the output matrix can be defined

since the solution of the output voltages is included in the state vector, V, and also there

is no direct connection to the output. As a result, the feedthrough matrix Wn×m = 0.

Consequently, the output voltage is Vo=ΨV where Ψ is n× (2m+ 1)n matrix to select the

output voltage from the state vector where Ψ= [0n×2mn In×n ]. Thus, the output voltage is

given by (3.14).

In case of nonlinear switching devices, the obtained system is first order nonlinear differen-

tial equations and can be solved using numerical techniques such Euler and Runge Kutta

methods. In this work, we used ordinary differential equations toolbox in MATLAB to solve

the system.
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Figure 3.11: Transient verification between circuit simulation (dotted line) and analytical
solution (solid lines) for 4×4 interconnect with (a) linear switching devices, and (b) parabolic
switching devices.

3.4.3 Simulation Results and Validation

Simulations were performed using the parasitic values which are extracted for 5nm feature

sizes. We chose this feature size case, which has very small values, to prove that the model

perfectly matches the HSPICE simulations. In our simulation, the switching device has

resistance, Rm, which switches between 1KΩ and 1MΩ at 1V reading voltage as mentioned

in [27, 91]. Practically, the reading crossbar sensing circuits have capacitive input impedance,

such as sensing circuit of the interconnect [96]. Thus, capacitive loading is considered as

CL = 10fF and RL = 1018Ω.

In order to confirm the validity of the model solution, we simulated 4×4 crossbar array using

HSPICE and compared the results with MATLAB numerical simulation results based on the

proposed model for both linear switching devices case (Fig. 3.11a) and nonlinear switching

devices case (Fig. 3.11b). In the nonlinear case, we simulated two scenarios for nonlinearity of

LRS and HRS (ηLRS, ηHRS), which are case I (2, 10) and case II (10, 100). Figure 3.11 shows

the transient verification between circuit simulation and the proposed analytical solution

showing perfect matching where 1V pulse signal is applied to each input while the other

48



inputs are grounded. Figure 3.11b shows the output response for two nonlinearity cases,

where the curves with stars/bullets have higher/lower nonlinearity (case II/case I). It is

clear that the delay increases with increasing nonlinearity.

3.5 Elmore’s Delay Extension for Crossbar Arrays

In this section, we are introducing a novel closed form expression for the delay in the crossbar

arrays for the first time. Obtaining closed from expression is beneficial in modeling the

transient behavior of the crossbar. The delay from the input to the output determines the

maximum frequency of operation which is important to determine assuming the crossbar

used either as a memory block or for connecting processing blocks as a crossbar switch.

Thus, it is essential to find closed form expressions for delay. In order to do that we consider

the linear switching devices case in the analysis.

3.5.1 Novel Mathematical Modeling of The Delay

One of the most efficient techniques to calculate delay in RC networks is Elmore’s delay

[97, 98]. The importance of Elmore’s delay comes from its mathematical robust definition

which ca n be easily transformed to s-domain. The delay time, TD, is defined as follows:

TD =

∫ ∞
0

ty′ (t) dt (3.25)

where y′(t) is the derivative of the transient response due to the step input signal. Elmore

delay is defined based on the observation of the monotonic increase of the response of the

signal, y(t). The delay time, TD, is the time of maximum point of y′(t) representing the first-

order moment. It is worth to note that Elmore delay is defined for zero initial conditions

which is suitable to our case. In [98], expressions for signal delay in general RC networks
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are developed but these expressions are not valid in our case because they are derived based

on the assumption that output responses reach unity as time tends to infinity which does

not happen in our case. In order to get the final value for the output signals, the final value

theorem is applied to the output voltage in s-domain, given by (3.12), such that

Vo (∞)=lim
s→0

sVo=lim
s→0

sΨ
(
sI+N−1M

)−1N−1Gu(s) (3.26)

By using power series expansion, the inverse bracket can be given by

(
sI+N−1M

)−1
=
[
I−sM−1N+s2M−2N 2− . . .

]
M−1N (3.27)

It is worth noting that this series is expanded by this way in order to guarantee convergence

where the eigenvalues of N−1M are greater than unity. By substituting into (3.26), and

taking the limit s→ 0, the final output voltages are

Vo (∞) = ΨM−1Gδ (3.28)

where δ is m× 1 coefficients vector of input vector, u. Thus, the final value of each output

voltage is a function of the crossbar parameters.

By applying Laplace transform to (3.25), the s-domain version of Elmore’s delay is given by

TD = lim
s→0
− d

ds
sY (s) (3.29)

where Y (s) is the Laplace transform of y(t) which represents Vo in our case. Consequently,
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the delay time for the output vector can be obtained by

TD=lim
s→0
− d

ds
sVo=lim

s→0
− d

ds

[
sΨ
(
sI+N−1M

)−1N−1Gu
]

(3.30)

Substituting by (3.27) and taking the limit, the delay can be reduced to be given by

TD = ΨM−1NM−1Gδ (3.31)

3.5.2 Delay Verification and Results

In order to verify the derived expression for the Elmore delay in the crossbar arrays, the

maximum delay obtained from Elmore expression is compared with numerical values (using

the previous derived model in section IV) and HSPICE simulations. Fig. 3.12 shows this

comparison where two extreme cases were selected to get the maximum possible delay. These

cases are when all the array has low resistance state (LRS) as shown in Fig. 3.12a. The

second case is when all the array has high resistance state as shown in Fig. 3.12b. Two cases

were chosen to compare with Elmore expression; the first one when the signal reaches 63%

from its final value which corresponds to one time constant (τ) for the basic series RC circuit

which shows perfect matching with the derived Elmore expression. On the other hand, we

also compared with the case when the signal reaches 90% of its final value representing the

rising time.

This comparison, shown in Fig. 3.12, is performed for 5nm feature size architecture with

HRS = 1MΩ, LRS= 1KΩ and Cm = 0.1fF . A 10fF loading capacitor was assumed to

model the input capacitance of the sensing circuit [96]. It is clear from this comparison that

HSPICE simulation and the MATLAB simulation based on the derived model are matching,

thus validating the model.
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Figure 3.12: Comparison with the calculated Elmore delay expression and the transient
simulation results for a) all HRS, and b) all LRS.

3.6 Discussion and Comparison

In some applications especially RRAMs, the inputs of the crossbar arrays may be discon-

nected which means that the inputs terminals are floating. As a result, the structure of the

crossbar is changed and the delay can be calculated using the same derived expression by

putting the access resistors to ∞ (effectively disconnecting some inputs). As shown in Fig.

3.13, the delay of the grounded inputs decreases with increasing the size of the crossbar,

due to the increase in the number of parallel branches, to a point where the line resistance

dominates and starts to increase. However, in the floating case, the delay monotonically

increases with increasing the crossbar size.

In case of grounded input configuration, shown in Fig.3.13, the delay curve exhibits a valley

curve since for the low size crossbar, the switching device resistance is the dominant resis-

tance, thus the delay decreases with increasing the crossbar size. However, with increasing

the crossbar size, the line resistance increases and dominates the total resistance of switch-

ing devices (For instance, at 128, the total switching device resistance is LRS/128=7.8Ω but

total line resistance is around 128RWL = 244.4Ω and 11.67kΩ for 50nm and 5nm feature
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Figure 3.13: Comparison between the calculated delay of floating and grounded inputs for
a) all HRS, and b) all LRS.

size). And as a result, the delay increases.

The minimal delay point of a square crossbar array can be approximated as NminD ≈
√

Rm
rl

,

where NminD, Rm and rl are the length of the crossbar corresponding to minimum delay,

switching device resistance, and line resistance, respectively. For example, in case of Rm =

1kΩ and rl = 1.92Ω (50nm case), NminD ≈ 22.8 but at rl = 91.2 (5nm case), then NminD ≈

3.3 which matches the obtained results from the simulations (Fig.3.12b). On other hand,

at Rm = 1MΩ, and rl = 1.92Ω (50nm case), NminD ≈ 722 but at rl = 91.2 (5nm case),

then NminD ≈ 105. This is clear from Fig. 3.12a where the delay curve started to increase

for 5nm case and still decreasing for 50nm case. It is worth noting that the switching

device capacitance does not affect the delay since the delay is dominated by the grounded

capacitances which is dominated by the loading capacitance.

In all applications, the crossbar array contains randomly distributed LRS and HRS. Thus,

delay is a function of the stored data. Figure 3.14 shows the effect of randomly distributed

data in the crossbar with 50%, 75% and 90% HRS for the grounded inputs case. Three cases

lie between the maximum and minimum delay representing all HRS and LRS, respectively.

By increasing the size of the crossbar, the delay tends to the minimum delay curve. But, for
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Figure 3.14: Effect of seeding the crossbar array with random data for different cases of
(a)F = 5nm structure and (b) F = 50nm structure.

the case of the floating input, there is no path to ground so the delay depends on the data

stored in the crossbar array which is random.

Figures 3.15 and 3.16 show the effect of loading capacitance for floating and grounded input

crossbars for 5nm and 50nm, respectively. Clearly, the delay increases linearly with increas-

ing the loading capacitance. In case of no loading, the crossbar array is self loaded by the

parasitics which is the limit for the minimum delay. This limit increases with increasing

the size of the crossbar array. In case the loading capacitance is much larger than parasitic

capacitances, the delay is dominated by this load as clear from Figs. 3.15 and 3.16.

Moreover, the position of the applied signal has a minor effect on delay for the floating case.

The first and last inputs have the same delay approximately, since there is no path to the

ground except through the output ports, thus the whole crossbar is loaded to the output.

But, in the grounded case, each output has its own delay because each output has different

attached resistance and capacitance.

Lastly, we consider the effect of the switching resistances as there are many types of switching

devices. Each device has its own LRS and HRS. As noticed earlier, the delay increases
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Figure 3.15: Effect of changing loading capacitance for grounded inputs of F = 5nm for
(a) all HRS and (b) all LRS, and floating inputs for (c)all HRS, and (d) all LRS

with increasing the line resistance after NminD for the grounded input crossbar. Thus,

selecting a device with a different LRS, gives another NDmin. Figure 3.17 shows the effect

of changing LRS representing different devices. By increasing LRS, NminD increases but the

delay increases as well.

As previously shown in the transient simulation, the nonlinearity of the switching devices

affects the delay. Figure. 3.18 shows the effect of the nonlinearity of the switching devices

on the delay for different crossbar arrays compared to the linear case (Elmore delay). The
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Figure 3.16: Effect of changing loading capacitance for grounded inputs of F = 50nm for
(a) all HRS and (b) all LRS, and floating inputs for (c)all HRS, and (d) all LRS

dashed lines are HSPICE simulations, and diamonds and stars represent the results of the

proposed model (3.17) which match HSPICE simulations. For all HRS case (Fig.3.18b),

the more nonlinearity, the higher the delay, as well as a reduction in the minimum point

NminD. However, in all LRS case (Fig.3.18b), the delay curves are around Elmore delay

since LRS nonlinearity is not high, unlike the HRS nonlinearity. It worth noting that due

to the nonlinear behavior of the devices, the delay will be totally random and may be more

than the high resistance state case.

As an exmple for a comparsion with SPICE, if it is required to train a single layer neural
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Figure 3.17: Effect of using different devices for (a) F = 5nm and (b)F = 50nm.
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Figure 3.18: Comparison between the calculated delay of crossbar array containing linear
and nonlinear switching devices for a) all LRS, and b) all HRS.

network with N samples and input sample size is 64 and output size is 64. In order to

train this network, N ∗ ts is needed to train the network where ts is the SPICE simulation

time. On the other hand, using the proposed model, the designer needs to simulate one time

to get the maximum delay to determine the maximum speed of the network which takes

td seconds. And run N simulations to get the final value for each sample which takes tf

for each sample. Then the total simulation time is td + N ∗ ts . Then, the performance

improvement between SPICE and our model is η = N ∗ ts/(td+N ∗ ts) representing the time
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Figure 3.19: Simulation time comparison between SPICE and the proposed framework.

saving. Figure 3.19a shows a comparison for the simulation time between proposed model

and HSPICE and for 64x64 array, Elmore delay calculation takes td = 11.09 s and SPICE

simulation takes ts = 5160s. Figure 3.19b shows a comparison for obtaining final outputs

values using proposed model and HSPICE and the proposed model takes tf = 0.89 s. Then,

the performance improvement is 5798x which is very big improvement for one layer.

3.7 Conclusion

This chapter introduced a closed RC model for crossbar arrays taking into consideration the

effect of parasitics and nonlinearity of the switching device in addition to its analytical solu-

tion. This solution has been verified against HSPICE simulation showing perfect matching.

This model is used to determine the behavior of the crossbar due to the parasitics. Thus,

this model is essential for the applications that need extensive simulations such as neural

networks and pattern recognition. Also, a novel analysis for the delay of the crossbar has

been derived for the first time. In general, the bigger the crossbar array, the more signal

delay for the floating case in contrast with the grounded case. Moreover, the delay has a

minimum limit which comes from the self loading of the crossbar. The more the line resis-
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tance, the more delay is experienced for the floating case. For the grounded input crossbar,

delay is dominated by the LRS so it should be low to get low delay, However, if it very low,

the line resistance of the crossbar dominates. Thus, one can select the device depending on

the required size of the crossbar by LRS = N2
minD ∗ rl. such that delay is minimized. On

the other hand, the delay in the floating case increase with increasing the crossbar size. As

a result, the device, having minimum LRS, should be used. Finally, delay is dominated by

the loading capacitance, where by choosing small loading capacitor, the capacitive parasitics

in the crossbar affect the delay. As a result, suitable biasing for the crossbar is chosen based

on the application.
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Chapter 4

Reading and Writing Techniques for Crossbar

Resistive Memories

4.1 Introduction

Over the last decade, emerging nonvolatile memories (NVMs), such as phase change memory

(PCRAM), ferroelectric memory (FeRAM), spin transfer torque magnetic memory (STT-

MRAM), and resistive memory (RRAM), have shown high potential as alternatives for

floating-gate-based nonvolatile memories [3]. Figure 4.1 shows the emerging NVMs’ capaci-

ties in the recent years. RRAMs are considered the best candidate for the next generation

nonvolatile memory due to their high reliability, fast access speed, multilevel capabilities and

stack-ability creating 3D memory architectures [99, 100].To achieve higher density memo-

ries, switching devices alone are sandwiched between the crossbar metal layers without using

access devices such as transistors, diodes and selectors[100]. In some cases, the switching de-

vices might have exponential behavior (the selector is embedded inside the switching device)

such as FAST selector [39]. The main drawback of selector-less (gate-less) crossbar-based

memories is the sneak path effects which limit the readability of the array. Conventional

reading approaches for selector-less crossbars suffer from the sneak path loading which makes

reading the data very difficult, and even impossible at times.
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Figure 4.1: Trends in memory capacity for emerging NVMs adopted from [3].

The sneak paths problem arises because there are many paths from the inputs to the outputs.

Figure 6.3b shows the sneak path in 2× 2 crossbar array. The sneak path current is added

to the main path current which disturb the cell reading. Figure 6.3a shows the cumulative

probability of the readout current for 512× 512 crossbar array with LRS = 1MΩ, HRS =

1GΩ and 10Ω line resistance. The readout currents corresponding to LRS and HRS are

totally overlapped. As a result, it is impossible to find a threshold to differentiate between

the two states even with very large switching resistance values.

Recently, different readout techniques were proposed to address this problem in high-density

arrays using two main procedures. (a) Reading and writing the stored data multiple times

such as [28, 46] which require an Analog to Digital Converter (ADC), as well as registers and

comparators. (b) Dispersing predefined dummy cells in the array to assist in reading the data

such as [12, 101]. These dummy cells should be initialized first, which requires more than

one cycle to read a certain cell and requires locality property, ADC and comparators, all of

which limit the applicability of the technique. Other techniques have been proposed to read

the data in parallel by adding sensing resistors to the bitlines and sense the voltage across

the resistors [102] which loads the crossbar and does not mitigate the sneak path effects. Yet
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Figure 4.2: (a) Crossbar array with the sneak path problem, and (b) cumulative probability
of reading 512× 512 array.
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Figure 4.3: (a) Biasing scheme and (b) row reading scheme.

another approach is to keep the bitlines floating and sense the bitlines voltages as discussed

in [103]. The floating bitlines schemes can read array sizes up 128 × 128 without errors.

Both resistive load and floating reading schemes are suitable only for small size arrays. In

this brief, a sneak path mitigation readout technique for high density 3D resistive memories

is proposed in addition to the required peripheral readout circuitry.
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Figure 4.4: Basic bias schemes for writing crossbar based resistive memories: (a) 1/2 bias
scheme, and (b)1/3 bias scheme.

4.1.1 Crossbar Writing Schemes

In literature, there are two basic writing schemes; 1/2 bias and 1/3 bias schemes. In the

1/2 bias scheme, the unselected columns and rows are biased to half of the write voltage

Vwr/2, while the selected row and column are biased to Vwr and 0V , respectively as shown

in Fig. 4.4a. As a result, the voltage drops over the unselected devices is 0, and Vwr/2 for

half-unselected devices and Vwr for selected devices, ignoring wire resistance. On the other

hand, in the 1/3 bias scheme, the selected rows and columns are biased to Vwr/3 and 2Vwr/3,

respectively while the selected row and column are biased to Vwr and 0V , respectively as

shown in Fig. 4.4b. As a result, the voltage drop over the unselected and half-selected

devices are Vwr/3, and Vwr for selected devices.

Figure 4.5 shows the switching behavior and the histogram of the set and reset switching

behavior of the switching devices [104]. Practically, a significant voltage margin, ∆V , should

be added to the average of set and reset voltages to reduce the probability of error while

writing the selected cell.

The 1/3 bias scheme was introduced to reduce the write disturb problem where the voltage

drop over the unselected and half-selected cells is ±Vwr/3 compared to Vwr/2 for the half-
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selected cells in 1/2 bias scheme. However, this results in switching errors in the unselected

cells, as well as a significant amount of power consumption.

4.2 Proposed One Step Row Readout Technique

Our target is to design circuitry that can be used for reading stacked resistive crossbar arrays.

As is clear from previously published techniques, the sneak path problem appears due to

the existence of many paths between the input and the outputs. To avoid this problem, we

present a simple solution which mitigates the sneak path problem and maximizes throughput.

Consider the case, where all the crossbar array input and output ports are biased to a certain

bias voltage, VB, as shown in Fig. 4.21a. For simplicity, assume that the input and output

ports are grounded. Consequently, no current flows across the crossbar array. However,

when a VDD signal is applied to one of the input rows, current flows from this input to all

the outputs and no current flows across the other rows where the voltage drop across the

other rows is zero as shown in Fig. 4.21b. The current is absorbed by the sensing circuit.

This current is proportional to the resistance of the switching device. In this way, the sneak

current paths are eliminated. By reading this current, it is easy to distinguish between the

low resistance and high resistance states. The architecture is inherently parallel, where all

the row data can be accessed in parallel, enabling high throughput applications.
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Memory Architecture: To read the (i, j) cell, a VDD signal is applied to the ith row and

the current of output port number j is sensed where 1 ≤ i ≤ M and 1 ≤ j ≤ N . This

path can be modeled as resistor, Rm, between input and output ports which is either LRS

or HRS. The maximum and minimum resistance can be used to determine the sensitivity

of sensing circuit as will be discussed later. It is worth noting that this technique can be

generalized to any crossbar size since the sneak current that is resultant from multi-paths is

mitigated by this reading technique. Figure 4.6 shows the full schematic of the single layered

crossbar array. The crossbar inputs are connected to the read decoder which selects only

one input according to the input address. The selected line is biased by VDD and unselected

lines are biased to VB. Grounding the lines is a special case of the general bias voltage VB.

Furthermore, if smaller word-lengths are needed, banking can be applied as shown in the

figure, where each bank has size of M × n and the total number of banks is R = N/n.

Consequently, one row per bank is read each clock cycle which means n readout circuits

are needed. In order to choose between the banks, an analog mux is necessary which can

easily be constructed using switches. Note that the bitlines of all unselected banks should

be biased to VB to guarantee the aforementioned scenario. The outputs of the analog mux

are connected directly to the reading circuits which bias the selected bank to VB and sense

the current.

Effect of Wire Resistance: Wire resistance is inevitable in such crossbar arrays which effects

the reading technique making the voltage across the selected devices less than VDD−VB by a

factor which is a function of the stored data and cell location. Due to the random nature of

the data, it is hard to estimate this factor analytically. Figure 4.7 shows the sensed current

density of each cell in 512× 512 array, in addition to the histogram of the sensed current for

both linear and nonlinear devices with 10Ω wire resistance and 10% resistance variations in

both states. Generally, the wire resistance creates leakage paths from the selected wordline

to the unselected wordlines. However, with these input to input leakage paths, the technique

is still able to distinguish between LRS and HRS with wide current range for linear devices.
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On the other hand, the nonlinear devices have exponential voltage-dependency modeled as

I = k × sinh(aV ) where V is the voltage across the resistive device, k and α are the fitting

parameters[12, 5]. Using such devices improves the sensing current range due to the high

resistance facing the leakage currents in the input ports.
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Figure 4.7: Combined plot for the 512× 512 array sensed current density with histogram
for (a)linear and (b) nonlinear devices.

Practically, the wordline is about 64-128 bits at most. Thus, there is no need to read the

entire row for high dense wordlines more than 128 bits. The memory array can be divided

into banks, as shown in Fig. 4.6,
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4.2.1 Proposed current sensing circuitry

The readout circuit to sense the output current of the crossbar should satisfy the following

specifications:

1) the sensing terminal has a fixed bias voltage, VB, and

2) the range of sensed current needs to be identified.

One way to satisfy these requirements is to use the current conveyor concept where the

applied voltage of port 1 is mirrored to port 2, while the input current to port 2 is mirrored

to port 3 as shown in Fig. 4.8a[105]. The characteristics equations of the second generation

current conveyor (CCII) can be summarized as follows:


i1

V2

i3

 =


0 0 0

1 0 0

0 1 0



v1

i2

v3

 (4.1)

where i1, i2 and i3 are the current at ports 1, 2 and 3, respectively. From the previous

equation, it is clear that the ideal CCII has zero current at port 1 and the current at port 2

is mirrored to port 3. In addition, the voltage at port 1 is mirrored to port 2. In our design,

the complete CCII is not need for the sensing circuitry because the requirements can be

satisfied with a simpler version of CCII. Port 1 can be biased to VB which is mirrored to

port 2 and the input current to port 2 is around (VDD − VB)/Rm,i,j where Rm,i,j is the (i, j)

cell resistance which is either LRS or HRS. At this point, it is easy to distinguish between

the LRS and HRS by designing suitable readout circuit.

The continuous behavior of RRAMs enables the ability of storing multi-level data. The pro-

posed reading technique can be used to read multi-level resistive memories as well since it

reads the selected cell resistance only. Thus, a suitable readout circuitry that differentiates
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between the states is needed. In this work, we focus only on reading binary resistive memo-

ries. The proposed circuit is divided into two parts; 1) current sensing circuit which should

have the aforementioned specifications which works as a transimpedance amplifier and 2) a

latched comparator to distinguish between the two states and also to latch the data.

The Proposed Current Sensing Circuit

The proposed circuit is based on the current conveyor concept [105, 106] shown in Fig.

4.8b. The voltage VB is the biasing voltage and can take any value as long as M1 and M2

are kept in the saturation region. M2 and M4 are designed so that the current passing

through M2 is mirrored to M4. Consequently, the current passing through M1 is equal to

the current passing through M3. Assuming that all transistors are in the saturation region,

then VGS1 − Vthp1 = VGS3 − Vthp3 . Hence,

Vin = VB −∆Vthp (4.2)

where ∆Vthp = Vthp3 − Vthp1 = γ(
√
VSB3 + 2φF -

√
VSB1 + 2φF ). By connecting these tran-

sistors’ bodies to their sources, ∆Vthp = 0, and Vin = VB. Now, the first condition in the

reading circuit is satisfied.

The current passing through M3, I3, is constant and its value equals to I1 because of the

current mirror between M2 and M4. The value of the current ,I1, can be obtained as follows:

M1 and M2 are diode connected transistors and the current passing through them is the

same, thus

kp1(VB − VG1 − |Vthp1|)2 = kn2(VG2 − Vss − Vthn2)2 (4.3)
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The gates of M1 and M2 are connected (VG1 = VG2 = VG), thus,

VG =

√
θ(Vss + Vthn2) + VB − |Vthp1|√

θ + 1
(4.4)

where θ = kn2/kp1. By substituting into the current equation of M2, the current passing

though the two transistors is given by

I1 =
kn
2

(
VB − Vss − Vthno − |Vthpo|√

θ + 1

)2

(4.5)

From this equation, the bias voltage VB should be greater than Vss +Vthno + |Vthp0|. Thus, I1

is a constant current that depends on the biasing voltage and aspect ratios of the transistors.

By applying KCL at the input node, the current passing through M5 is I5 = I11 + Iin − I3.

This current is mirrored through M6 to the output node and imposed into the load resistance

creating the output voltage, Vo = VDD − (I11 + Iin − I3)RL where I11 is mirrored from I10

and its value is αIref where α is the ratio between the aspect ratios. I3 is a constant current

and equals I1 due to the current mirror effect.

Consequently, the output voltage is Vo = Vref − IinRL, where Vref = VDD − (αIref − I1)RL.

The input current Iin is either (VDD − VB)/LRS or (VDD − VB)/HRS. Thus, we have two

outputs, Voh and Vol corresponding to HRS and LRS, respectively. It is necessary to widen

the difference between Vol and Voh to easily distinguish between the states, which is possible

by controlling the values of RL, α and I1. This circuit can be followed by either a buffer or a

latch circuit so that the output swings between VDD and Vss. To avoid having a large loading

resistor occupying a large area, with limited output voltage range, a latched comparator is

necessary.
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Figure 4.8: (a) Current conveyor principle and (b) schematic of proposed current sensing
circuit.
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Table 4.1: The proposed readout circuit parameters.

Transistors Aspect ratio Transistors Aspect ratio

M1,3 360nm/250nm M2,4 250nm/0.6µm

M5 120nm/300nm M6,7 360nm/300nm

M8 240nm/60nm M9 120nm/60nm

M10 250nm/250nm M11 500nm/250nm

M12,13 480nm/120nm Mk 120nm/120nm

VDD 1.2V Iref 0.5µA

Latched Readout Circuit

Instead of reading the output current from the loading resistor, this current can be connected

directly to a latched comparator as shown in Fig. 4.9. The gate voltage of M5 changes

depending on the current passing though it which is mirrored in M6. The mirrored current

is compared with the constant current generated by M7 due to constant voltage Vc. The Mk

transistors are used to reduce kick back noise where the latch signal voltage goes back to the

input signal which may alter the data. This latched comparator is introduced and analyzed

in [107]. In the reset case, both outputs are equal to VDD where the output of the XOR gate

is zero. On the other hand, in the set case, VLatch = VDD. Fig. 6.4d illustrates an example

of transient simulation of reading random data from a certain column using the proposed

circuit. The readout circuit is designed using TSMC65nm to satisfy the aforementioned

conditions with the parameters tabulated in Table I.

The area of the entire readout circuitry is about 55µm2 with 1.92µW total power consump-

tion, at 1.2V supply.
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Figure 4.10: Simulation results of the proposed circuit.

4.2.2 Discussion and Comparison

4.2.3 Power Consumption Estimation

Power consumption is very critical in resistive memories since they consume a lot of power

during the reading and the writing operations due to their inherent resistive nature. Thus, it

is essential to estimate the power consumption inside the crossbar array as well as the power

density. The device nonlinearity highly affects the power consumption where the higher the

nonlinearity, the higher the resistance which implies less power.

In case of linear devices, where the resistive device states are constant and not a function

of the applied voltage, the power consumption for reading one wordline (for both with

and without banking) can be approximated by multiplying the voltage drop times the input

current, ignoring wire resistance, Pwli =
∑N

j=1
(VDD−VB)2

Rm,i,j
. Thus, the maximum and minimum

power consumption are around M N R (VDD − VB)2/LRS and M N R (VDD − VB)2/HRS,

respectively. on the other hand, in case of the nonlinear devices, the voltage across the

switching device is still around VDD − VB. Thus, the power consumption per wordline

73



1 4 16 64 256

10
-4

10
-3

10
-2

10
-1

0.7
0.8

0.4
0.6

(a)

0.7
0.8

0.4
0.6

1 4 16 64 256

10
-4

10
-3

10
-2

10
-1

10
-5

(b)

Figure 4.11: Reading power versus the array size at VDD = 1.2V with and without wire
resistance (dashed lines and solid lines) for (a) linear switching and (b) nonlinear switching
devices

is Pwli =
∑N

j=1 ki,j(VDD − VB) sinh(ai,j(VDD − VB)) by ignoring wire resistance. Figure

4.11 shows the reading power consumption with and without including the line resistance

for different biasing voltages and different array sizes. The figure is plotted for nonlinear

switching devices, with kon, koff and a are 1e − 8, 1e − 11 and 3, respectively[46]. Clearly,

by increasing the biasing voltage, VB, a lower power consumption is obtained. However, this

reduces the sensing current margin which highly affects the sensing circuit. Therefore, it is

important to study the effect of changing VB.

Figure 4.12a shows the effect VB over the voltage swing and the delay. As previously dis-

cussed, the bias voltage should be greater than twice the transistor threshold voltage which

is around 0.63V . The output voltage swing exhibits critical curve with maximum point at

around VB = 0.75V . Also, the delay for both reading scenarios (reading LRS then HRS and

vice versa) is also shown. In our design, we set a practical target of 1ns for the delay. The

best bias voltage is 0.7V to maximize the voltage swing. Another aspect that should be

studied is the value of the input voltage. Figure 4.12b shows the effect of changing Vin with

fixed VB = 0.7. The higher the input voltage, the more the voltage swing, the less delay and

74



VB (V )
0.6 0.8 1 1.2

D
el

ay
 (

ns
)

0.5

1

1.5

2

2.5

0

50

100

150LRS to HRS
HRS to LRS
Voltage Swing

(a)

Vin (V )
0.8 0.9 1 1.1 1.2

D
el

ay
 (

ns
)

0

0.5

1

1.5

2

V
ol

ta
ge

 S
w

in
g 

(m
V

)

0

20

40

60

80
LRS to HRS
HRS to LRS
Voltage Swing

(b)

Figure 4.12: Input comparator swing and delay versus (a) bias voltage with Vin = 1.2V ,
(b) applied voltage with VB = 0.7V.

more power consumption as shown in Fig.4.11.

M1 −M4 transistors work as as a gain boosting circuit. Hence, the input impedance of the

sensing circuit is high (≈ 1MΩ). Due to the abrupt current changes while reading, Vin is

disturbed (+20mv and −35mV around VB). The negative feedback of the gain boosting

circuit works to recover Vin to VB. In our design, the loop recovers in 1ns. Thus, the delay of

the designed circuit is 1ns. Practically, two phases are needed due to the latched comparator;

(a) a reset phase where the output is set to VDD and the data is setup and (b) a latch phase

where the data is latched and stored. Thus, another 1ns is needed to latch data for 50%

duty cycle clock. Per these parameters, the energy consumption of the readout circuit per

bit is 7.6fJ for 500MHz clock frequency.

Figure of Merit

In [103], a figure of merit (FOM) is defined for comparing different reading techniques taking

into account important metrics such as throughput, and array usage. This FOM is defined
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Table 4.2: Performance metric of reading a complete N × N array. These results are
adopted from [12, 13].

Technique Readout Throughput Locality Array Power2,* FOM2

Circuit Needed Usage1 (mW ) (Tbits/Wµm2)

Multistage ADC + Comp 1
6 No 1 7 0.04

Multiport ADC + Comp 1
3 No N−2

N 2.1 0.265

Grounded Rows & Cols VG + Comp 1 No 1 4 0.4194

Predefined Dummy Bits VG + Comp 1 Yes N−1
N 0.291 5.754

This work VG + Comp N/R No 1 1.358 R 633/R2

1Array Usage = number of data bits/total number of bits.
2Power and FOM results are reported for 256Kb array.

* Without bias mismatch
R total number of banks

as:

FOM =
Throughput× Array Usage

Reading Power/cell ×pitch size
(bit/Wm2) (4.6)

where the numerator reflects the array metrics; Throughput, which is the number of read bits

per cycle ( bank size), and Array Usage which is the number of usable data bits divided by

the total number of bits. The denumerator, reflects per bit the physical parameters, power

per bit and cell area. It is reported that the array density of memristor based selector-less

crossbar arrays is approximately 640Gbit/cm2 where the feature size is 6.25nm[12]. Table I

shows a quantitative analysis for different reading techniques for a complete N×N array. We

chose to compare with these four techniques which can accommodate high density crossbar

arrays. This comparison illustrates the differences between prior work and the proposed

approach in terms of power, throughput, array usage, and FOM.

The estimated area of the 512× 512 crossbar is around 40.96µm2 and the estimated area of

the read decoder is 4.26µm2 based on the technique published in [108, 109] with two pre-

decoding stages. To estimate the sensing circuitry area, a 128 bit word is considered where

the array is divided into 4 banks. The estimated area of 128 sensing circuit including the

MUX is around 41.65µm2. The area of CMOS circuitry is estimated with respect to 5nm
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technology which is expected to be used with crossbar arrays. According to these estimated

numbers, the entire CMOS circuitry can be placed under the crossbar array. And, the static

power dissipation is dominated by the sensing circuits which is around 285.7µW based on

1.92µW per bit.

In this comparison, the exponential RRAM model is used with the aforementioned parame-

ters values and feature size. The main advantage of the proposed technique is the ability to

read the entire row bits in one clock cycle which is vital in memories on the contrary with

the other techniques which requires at least N clock cycles to read the entire row. However,

the proposed technique consumes more power due to the nature of the reading technique. It

is worth noting that other published works do not account for the readout circuitry, which

should be accounted for in addition to any building blocks such as ADCs and comparators

[46, 28]. The circuits proposed in this work can be used in other approaches as well such

as with predefined dummy bits and grounded rows and columns [101, 12], which requires

virtual ground and comparator.

4.2.4 Bias Mismatch Effect

In resistive memories, it is required to bias wordlines and bitlines to specific voltages based on

the technique used. For example, in the proposed reading scheme, the unselected wordlines

are connected to VB, and all the bitlines are connected to VB through the sensing circuit.

Thus, there would be a mismatch among the wordlines bias voltages themselves and with

the bitlines bias voltages creating undesirable current due to PVT variation, wire parasitics

and switch’s resistance. This undesirable current is unavoidable and needs to be taken into

consideration since it would limit the array size.

The voltage mismatch is column independent and is not correlated to other columns. Hence,

the number of resistive devices that are affected by the mismatch is N−1 devices. This mis-
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match is referred to as ∆V . In case of linear switching devices, the current passing through

each unwanted device is either ILRS = ∆V/LRS or IHRS = ∆V/HRS. For equal probable

states, the total unwanted current is IunW = ∆V (0.5N/LRS + (0.5N − 1)/HRS). Usually

the ratio between HRS and LRS is 103 or more, then the total unwanted current is ap-

proximated to IunW ≈ 0.5N∆V/LRS. However, the desired current for high/low resistance

state is IW = (VDD − VB)/HRS or IW = (VDD − VB)/LRS, respectively. Consequently, the

extreme input current to the sensing circuit is It = IW ± IunW for high resistance and low

resistance states, respectively. This sensed current affects the input voltage of the compara-

tor Vx directly, which should not exceed the noise margin of the comparator. For 10mV

noise margin for the comparator, the maximum/minimum input sensed current, which are

corresponding to LRS and HRS, are Imax = 0.22µA and Imin = 0.195µA, respectively. The

maximum column width, N , is the minimum of 2 ∗ Imax ∗ LRS/∆V or 2 ∗ Imin ∗ LRS/∆V

which is 195 for 2mV bias mismatch.

On the other hand, in the case of nonlinear switching devices, the current passing through

each unwanted device is ILRS/HRS = kon/off sinh(a∆V ) for low/high resistance state. Since

∆V is very small in range of millivolts, the current can be approximated to ILRS ≈ kona∆V

or IHRS ≈ koffa∆V . The total unwanted current is IunW = a∆V (0.5Nkon+(0.5N−1)koff ).

Usually the ratio between koff and kon is 103 or more, then the total unwanted current is

approximated to IunW ≈ 0.5Na∆V kon. However, the wanted current for high/low resistance

states is IW = koff/on sinh(a(VDD − VB)). Consequently, the extreme input current to the

sensing circuit is It = IW ± IunW for high resistance and low resistance states, respectively.

The maximum column width,N , is the minimum of 2∗ Imax/(∆V ∗a∗kon) or 2∗ Imin/(∆V ∗

a ∗ kon) which is around 6500 for 2mV bias mismatch. With nonlinear devices, the column

width of the crossbar is highly increased due to the high resistance facing the mismatch

voltage.
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4.3 Modeling the write disturb problem

The switching voltage of the switching devices (RRAMs) is a random variable and has a

Gaussian distribution with mean Vwr and variance σ. Figure 4.13 shows the general bias

scheme which is a function of all the bias parameters (α, β,∆V ) where α and β are the bias

voltages for the wordlines and bitlines, respectively. The 1/2 and 1/3 bias schemes are special

cases where α = β = Vwr/2 and ∆V = 0 for 1/2 bias scheme and α = Vwr/2, β = (2Vwr)/3

and ∆V = 0 for 1/3 bias scheme. This architecture can be divided into three partitions; a)

unselected partition having (M − 1)× (N − 1) unselected devices, b) half selected partition

having (M + N − 2) half selected devices and c) the selected partition having one selected

device. Each partition has probability of error based on the applied voltage across each

device. The switching probability of a certain device having a voltage drop, Vd is

Psw(v < Vd) =
1√
2πσ

∫ Vd

−∞
e
−
(
v−Vwr√

2σ

)2

dv =
1

2
+

1

2
erf

(
v − Vwr√

2σ

)
(4.7)

where erf() is the error function. It is desired that the unselected and half-selected partitions

do not switch, thus the probability of error in these partitions is the same as the switching

probability (Pe = Psw). For the selected device, the probability of error is the inverse of the

switching probability which is Pe = 1− Psw. In this problem, it is required to minimize the

overall error of writing crossbar memories. The bit error in each partition is the number of

devices per partition times the probability of error in this partition. Thus, the total bit error
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Figure 4.13: General Bias scheme of writing crossbar based resistive memories

BE is the sum of the bit errors of all the partitions and can be written as

BE(α, β,∆V ) = (M − 1)(N − 1)Pe(v < β − α) + (M − 1)Pe(v < α)

+ (N − 1)Pe(v < Vwr + ∆V − β) + (1− Pe(v < Vwr + ∆V ))

(4.8)

where the first term represents the unselected partition, the second and the third terms

represent the half-selected partition and the fourth term represents the selected partition.

4.3.1 Optimality problem formulation and solution

The goal of the optimization formulation is to minimize the number of disturbed bits. This

problem can be formulated as follows:

minimize
α,β,∆V

BE(α, β,∆V ) (4.9)
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subject to 0 ≤ α, β,∆V ≤ Vwr. This problem can be solved analytical by finding the gradient

of BE and equating it to zero. The gradient of BE can be written as:

∇BE(α, β,∆V ) =

[
∂BE

∂α

∂BE

∂β

∂BE

∂∆V

]T
= 0 (4.10)

To find these derivatives, the differentiation under integral sign (Leibniz rule) is used where

d

dx

∫ b(x)

a

f(x, t)dt = f(x, b(t)) · db(x)

dt
(4.11)

After applying the Leibniz rule and simplification, a system of three nonlinear equations is

obtained and can be written as follows:

α =
β

2
+
σ2ln(N − 1)

2Vwr − β

β =
α + Vwr + ∆V

2
− σ2ln(M − 1)

α + Vwr −∆V

∆V =
β

2
− σ2ln(N − 1)

β

(4.12)

By solving the three equations simultaneously, the optimal values can be obtained. Figure

4.14 shows the normalized optimal bias parameters with respect to Vwr for different square

crossbar arrays at σ = 0.1Vwr.

4.3.2 Results and Discussion

Figure 4.15 shows the bit error rate (BER=BE/crossbar size) for different crossbar arrays

and different variance. The figure also shows BER for the 1/2 and 1/3 bias schemes with

∆V = 0.1Vwr. Clearly, the optimal bias scheme has a significant improvement compared to

the other techniques. Also, both 1/2 and 1/3 bias schemes have a comparable bit error rate

(BER).
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Figure 4.14: Normalized optimal bias parameters versus the array size with 10% tolerance.

Figure 4.15: Bit Error rate for the optimal Bias scheme versus the known bias schemes.

Figure 4.16 shows the estimated power consumption for the three bias schemes. The 1/2

bias scheme has the lowest power consumption since almost all the power is consumed in the

unselected cells. The optimal bias scheme consumes slightly more power than the 1/3 bias

scheme. Thus, the 1/2 bias scheme is the best for low power operation and the optimal bias

scheme is preferred for high performance operation.

4.4 One Step Row Write Technique

Our target is writing the entire data word in the resistive memories in the same clock cycle.

Thus, the one step writing by performing the following three steps shown in Fig. 4.17: a) all
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Figure 4.16: Estimated power consumption of the optimal Bias scheme versus the known
bias schemes for (a) linear I−V switching devices, and (b) nonlinear I−V switching devices.

D3   D2  D1  D0  

{Vwr
2

Figure 4.17: Bias scheme for one step writing technique.

unselected worldines are biased to Vwr/2 . b) the data word is applied to the bitlines. and

c) a clock signal is applied to the selected wordline.

The following is an example of writing a 2 × 2 array, shown in Fig. 4.18, with [10; 01]

data array. In order to write these data, the voltage across each device should be [Vwr −

Vwr;−VwrVwr]. In order to write [1 0] in the first row (wordline) during the first clock cycle,

Vw2 is biased to Vwr/2 and data is applied to the bitlines where (VB1, VB2) = (−Vwr, Vwr).

While a bipolar clock signal is applied to Vw1 with amplitude ±Vwr . During the first

(positive) half cycle of the clock signal, the voltage drop across device R11 is Vwr which

means the device is set (switch to low resistance state). And, the voltage across device
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Figure 4.18: An illustrative example of writing a) 2 × 2 crossbar array; b) The wordline
and bitline voltages, and c) the voltage drop across each device.

R12 is zero which means no change (non-destructive writing). On the other hand, during

the second (negative) half cycle, the voltage drop across device R11 is zero which means no

change in the written data (no overwrite problem). However, the voltage drop across device

R12 is −Vwr which reset the device (switches to high resistance state). The voltages across

the 2nd wordline devices during the entire clock cycle are either −0.5Vwr or 0.5Vwr which

means no switching occurred. Similary, the same behavior is obtained for 2nd wordline where

Vwr is biased to 0.5Vwr , and a clock signal is applied to 2nd word line while the data are

applied to bitlines as shown in Fig. 4.18.

84



4.5 Combined Reading and Writing Circuitry

Figure 4.19 shows the complete architecture of the memory with one step reading and writ-

ing techniques. The crossbar is connected as shown where the vertical lines (bitlines) are

connected to the sensing circuits at the bottom with switches for reading mode and are

connected word data during write operation through switches. While the horizontal lines

are connected to an address decoder with some switches to enable both write and read op-

erations. While, the reading operation is performed when (), which means one wordline is

activated (biased to ) which is selected by the address decoder and the rest are grounded. At

the same time, the sensing circuitry is connected to the bitlines to read the data as shown in

the Fig.5. On the other hand, when (), the write operation can be performed where a clock

signal is connected to desired address and the other rows are connected to . Meanwhile, the

input data are biased to bitlines of the crossbar array and the writing operation is performed

as explained previously.

4.6 Non-Stationary Polar Codes for Resistive Memo-

ries

In this section, the afromentioned parallel reading of an entire crossbar row is adopted (see

Fig. 4.20). It eliminates the multi-path problem in single-cell reading [12], one of the causes

of sneak path. But, the inevitable wire resistances lead to undesirable voltage drops, another

type of sneak path problem. These voltage drops are functions of the stored data and the

wire resistance. At the expected feature size of F = 5nm of RRAMs, the wire resistance per

cell reaches as high as 90Ωas discussed in the previous chapters.

Fig. 4.21a shows the measured current of each cell in a (32 × 32) array with 25Ω wire

resistance, storing random data, which is generated by the SPICE-like simulator of [5].
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Figure 4.20: Parallel reading of the entire row in the crossbar. The columns and rows
are grounded, except the row being read. The red arrow shows the sensed current flowing
through wire resistances and RRAMs.
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Figure 4.21: (a) Measured current per cell, and its histogram for bitline number (b) 1, (c)
16, and (d) 32.

Due to sneak path, the sensed current of low resistance state decreases in both vertical and

horizontal directions in the array. The top left cells have distinguishable distributions for the

stored ones and zeros. On the other hand, bits in the right-bottom cells are indistinguishable

due to the read margin overlap. Fig. 4.21b, Fig. 4.21c and Fig. 4.21d show the histogram of

the measured currents of the 1st, 16th and the 32nd bitline (column), respectively. Clearly,

the larger the bitline index is, the more errors occur. We can see that the channels of the

cells have varying reliability.

Addressing the sneak path problem has attracted a lot of interest from both research and

industry communities. Proposed solutions include hardware-based approaches, e.g., transis-

tor gating [47], and/or techniques based on communication and coding theory [110, 111].
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The focus of this chapter is on the latter approach and our scheme is based on polar codes.

Polar codes [112] are the first family of explicit error-correcting codes to provably achieve

the capacity of binary symmetric channels, with a low-complexity encoding and successive

cancellation decoding (SCD). For a code of length N , encoding/decoding has a complexity

of O(N logN). For the above reasons, polar codes constitute an attractive error correction

scheme.

Notation: Vectors are denoted with lower-case bold letters. A permutation π over the

integers {0, . . . , N − 1} is denoted as π = [π(0), . . . , π(N − 1)], where π(j) is the image of j

under π. For a vector x = [x0, . . . , xN−1], xπ denotes the vector xπ = [xπ(0), . . . , xπ(N−1)].

4.6.1 Non-stationary polar code construction

For a binary-input discrete memoryless channel (B-DMC), W , with output alphabet Y , we

denote its transition probabilities by W (y|x), x ∈ {0, 1}, y ∈ Y , and define the symmetric

channel output probability as W (y) = 1
2
W (y|0) + 1

2
W (y|1). Define the symmetric capacity

I(W ) as

I(W ) ,
∑
y∈Y

∑
x∈{0,1}

1

2
W (y|x) log

W (y|x)

W (y)
. (4.13)

Polar codes [112] manufacture out of N independent copies of a given B-DMC channel, a

second set of N synthesized binary-input channels. The channels show a polarization effect,

namely, as N becomes large, the symmetric capacities of the synthesized channels tend

towards 0 or 1 for all but a vanishing fraction.

In our framework, in contrast to the original polar codes, we consider the extension of

polar codes to the setting where the underlying channels are of varying reliability levels (see

Fig. 4.22).
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Using the terminology in [113], we refer to such polar codes as non-stationary polar codes.

The basic polarization transformation is applied to two independent channels W0 : {0, 1} →

Y0 and W1 : {0, 1} → Y1, resulting in two channels, W ′ : {0, 1} → Y0×Y1 and W ′′ : {0, 1} →

Y0 × Y1 × {0, 1}, given by

W ′(y0, y1|u0) =
1

2

∑
u1∈{0,1}

W0(y0|u0 ⊕ u1)W1(y1|u1),

W ′′(y0, y1, u0|u1) =
1

2
W0(y0|u0 ⊕ u1)W1(y1|u1),

(4.14)

where y0 ∈ Y0, y1 ∈ Y1, and u0, u1 ∈ {0, 1}. We denote this single-step transformation by

(W0,W1) 7→ (W ′,W ′′).

The transformation preserves the average symmetric capacity, while exhibiting a polarization

effect. Suppose (W0,W1) 7→ (W ′,W ′′). Then,

I(W ′) + I(W ′′) = I(W0) + I(W1),

I(W ′) ≤ I(Wi) ≤ I(W ′′), i = 0, 1.

(4.15)

The Bhattacharya parameter of a binary discrete memory-less channel W : {0, 1} → Y ,

denoted by Z(W ), is a measure of the reliability of W , and has been used to bound the error

probability of polar codes in [112]. The parameter Z(W ) is defined as

Z(W ) ,
∑
y∈Y

√
W (y|0)W (y|1).

4.6.2 Polar Code Encoding and Decoding

Let u = [u0, u1, . . . , uN−1] and x = [x0, x1, . . . , xN−1] be the input and the output of a length-

N polar code, respectively, with N = 2n for some integer n. The encoding of polar codes is
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given by

x = uG, G =

1 0

1 1


⊗n

,

where the symbol ⊗n denotes the n-th Kronecker power operator.

After polar encoding, one obtains N synthesized channels {W (i) , Wn,i, 0 ≤ i ≤ N − 1}. A

polar code of dimension k transmits k information bits in the k synthesized channels with

the highest I(W (i)) (we denote the corresponding information set by I), and N−k arbitrary

but fixed bits in the remaining N − k synthesized channels (denoted by F). Decoding of

polar codes is carried out using successive cancellation decoding (SCD) as in [112], taking

into account the appropriate likelihood ratios of the original channels.

Role of the Channel Ordering

The performance of polar codes depends on the synthesized channels of the information set∑
i∈I I(W (i)) [112]. As illustrated in Fig. 4.22, to construct a non-stationary polar code, we

propose to apply a permutation π to the vector x in order to enhance the overall performance.

Ideally, we want to find a permutation π∗ such that for all permutation π,

∑
i∈Iπ∗

I(W
(i)
π∗ ) ≥

∑
i∈Iπ

I(W (i)
π ), (4.16)

where I(W
(i)
π ) is the symmetric capacity of the i-th synthesized channel under permutation

π and Iπ is its information set.

The permutation π is defined such that zπ = x, or equivalently z = xπ−1 . Then, zπ(i) = xi,

implying that symbol xi goes through channel Wπ(i), for 0 ≤ i < N . Correspondingly, a

reverse permutation is required for the output of the channels. The polar decoder receives
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Figure 4.22: Polar encoding with N = 8 channels, with permutation π =
[0, 4, 2, 6, 1, 5, 3, 7].

as input the vector y′ = [yπ(0), . . . , yπ(N−1)] = yπ. See Fig. 4.23 for a schematic picture of

the full encoder and decoder.

We define ψ to be the bit-reversal permutation. For each integer i ∈ {0, . . . , 2n − 1}, ψ(i) is

the integer obtained by reversing the binary representation of i. That is, let i =
∑n

j=1 bj2
j−1,

then ψ(i) =
∑n

j=1 bj2
n−j. As an example, when N = 8, ψ = [0, 4, 2, 6, 1, 5, 3, 7], as illustrated

in Fig. 4.22.

𝐱 = 𝐮 F⊗n𝐮 𝐱
𝐳 = 𝐱π−1

𝐳

𝐲
𝐲′ = 𝐲π

𝐲′
Polar Decoder

ෝ𝐮

Decoder

Encoder Channel

Figure 4.23: Full system model.
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Figure 4.24: Performance evaluation for BSCs with linearly spaced cross-over probabilities.
N = 1024, k = 512.

We evaluate the performance with the default ordering (no permutation) and the perfor-

mance with the bit-reversal permutation. We also evaluate the performance obtained by

averaging 200 random permutations. For each scenario, we evaluate the frame error rate

(FER) and the bit error rate (BER) with non-systematic encoding and systematic encod-

ing [114], for 104 runs. Fig. 4.24 illustrates the results. Similar to [114], we observe that

systematic encoding of non-stationary polar codes enhances the BER performance compared

to non-systematic encoding, while keeping the FER unchanged. The regular polar code ex-

hibits the worst BER, while the non-stationary polar code under systematic encoding with

π = ψ performs the best. In particular, the latter scenario outperforms all 200 random

permutations for all values of p.

Based on the observation that bit-reversal permutation achieves competitive BER numeri-

cally, we choose to apply π = ψ for our non-stationary polar codes, so as to mitigate the

sneak path problem in crossbar arrays.
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4.6.3 Application to Resistive Crossbar arrays

General Framework

As outlined in the introduction, the crossbar array cells exhibit different reliability levels.

For this reason, we propose the application of non-stationary polar codes to address the

problem. We apply a two-step approach:

1. We first estimate a single detection threshold for each wordline (row) to minimize the

overall uncoded BER per word. This transforms the read channels into BSCs. The

threshold for each wordline is estimated by generating large training data and then

applying a good binary clssifier. For instance, we observe that a logistic regression-

based classifier gives superior performance in terms of accuracy and speed.

2. Based on the estimated thresholds in step 1), we estimate the cross-over probabilities

of each cell in the array. We can then apply non-stationary polar codes using the cell

characterizations.

Assuming the crossbar array size is (N1 × N2), then, the blocklength is N = N1N2. The

encoded output symbol zin+j, 0 ≤ i < m, 0 ≤ j < n, is stored at the (i, j)-th entry in the

crossbar array (i.e., we vectorize the array row by row).

Instead of using high-level models for the sneak path problem, such as in [110, 111], we use a

SPICE-like simulator that is built based on accurate modeling of the resistive crossbar array

[5]. This numerical simulator offers a fast alternative to SPICE simulators while maintaining

the same simulation accuracy. In our simulations, the high resistance state, representing 1,

and the low resistance state, representing 0, are set to 1MΩ and 1kΩ, respectively.

In Fig. 4.25, we simulate the BER performance of systematic polar codes for four cases: (i)

equivalent regular polar codes correspond to BSCs with parameter pavg, (ii) permutation
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Figure 4.25: Performance evaluation for a (32× 32) crossbar array, code rate k/n = 0.8.

π = [0, . . . , N − 1], (iii) permutation πord, and (iv) permutation π = πord ◦ ψ. Clearly, the

BER permutation under π = πord ◦ ψ outperforms the other permutations.

4.6.4 Binary Asymmetric Channel Modeling

In subsection 4.6.3, the array cells are modeled as BSCs. Analyzing further the uncoded

error distribution, as one may infer from Figures 4.21b, 4.21c, and 4.21d, we find that the

conditional error distributions under 0’s and 1’s are different, i.e., P (error|0) 6= P (error|1).

Taking this observation into consideration, we model the crossbar array cells as binary asym-

metric channels (BACs) and apply the non-stationary polar codes developed in Section 4.6.1.

In Fig. 4.26, we compare the systematic BER performance under both BSC and BAC mod-

eling. As expected, the BER performance under the more accurate BAC model is higher,

and the gain increases as the wire resistance decreases.
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Figure 4.26: BER performance under BSC and BAC modeling for a (32 × 32) crossbar,
code rate k/n = 0.8.

4.6.5 Punctured Polar Codes

In this subsection, we propose a technique that can enhance the BER performance in some

scenarios by biasing the fraction of high resistance cells. The sneak paths exist through the

cells having low resistances, causing inter-cell interference [110]. Intuitively, having more high

resistances in the array helps mitigate the sneak path problem. To leverage this intuition,

we investigate the use of a (punctured) polar code of a shorter length, say N − Np, while

storing high resistances in the corresponding punctured Np cells in the array. Clearly, there

is a trade-off between two opposite factors: puncturing reduces the number of redundant

codeword symbols, hence degrading the performance of polar codes, while high resistances

decrease the sneak path effect resulting in fewer read errors. In the following, we investigate

the application of the above approach to the crossbar array.

A punctured polar code is obtained from the N -length parent polar code using a puncturing

vector w = [w1, . . . , wN ], with wi ∈ {0, 1}, i = 1, . . . , N , where the 0s imply the punctured

positions. We note that the information set I should be recomputed, when we consider

puncturing. Punctured polar codes have been investigated by many works, and several
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Figure 4.27: Punctured polar encoding over the (32 × 32) crossbar array for code rate
k/n = 0.8.

efficient puncturing patterns have been proposed in the literature [115].

In [115], the authors proposed an empirically good puncturing algorithm, termed quasi-

uniform puncturing (QUP). QUP-polar codes were shown through simulations to outperform

the performance of turbo codes in WCDMA (Wideband Code Division Multiple Access) or

LTE (Long Term Evolution) wireless communication systems in the large range of code

lengths. We adopt QUP as our puncturing pattern and we highlight its advantages below.

Fig. 4.27 illustrates the systematic BER performance of QUP for a (32 × 32) array with

Rw = 35Ω, π = πord◦ψ. We observe that the BER decreases as more bits (Np) are punctured

and as the frequency of 1’s increases. This gain is reversed for Np > 40 and the BER increases

as Np and the codeword redundancy decrease. The BER is improved by a factor of 5.7 for

a symmetric channel model and by a factor of 38.5 for an asymmetric channel model.

4.7 Conclusion and Future Perspective

The proposed reading technique with the readout circuitry can read the entire row without

using reference bits giving the maximum utilization of RRAM and the highest throughput
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for high speed applications. These advantages come with more power consumption (4.7X

more than [12]). According to the defined FOM taking into consideration, power consump-

tion, array usage, effective array size, and throughput, the proposed technique is more than

100X better than [12] without banking. Moreover, according to the discussed studies for

the sneak path immunity, power consumption and bias mismatch, the nonlinear devices are

most recommended for high dense resistive memories. In addition, the proposed technique

is compatible with the published writing techniques [116] where switches are placed around

the array to enable reading or writing since reading and witing can not be performed simul-

taneously in the same array.

One of the features of the resistive memories is its ability to store multi-levels/multi-states

such as ternary and quaternary data enabling higher higher radix processing units. The

proposed technique can be applied for multilevel memories as well due to its ability to

read the device resistance especially with nonlinear switching devices. However, the readout

circuitry needs to modified to accommodate the multi-states and be able differentiate between

them. This topic will be investigated in future research.

Stack-ability of resistive memories is another feature enabling ultra dense memory arrays

[117]. The discussed readout technique alongside the circuitry can be used to read each

crossbar layer by connecting the corresponding crossbar outputs together then to readout

circuits as shown in fig. 4.28. A level decoder is needed to select the readout level. Using this

configuration, only one row in a certain level is selected at a time where the other outputs

result in zero output current. The stacked layers share the same reading circuitry which

decreases the overhead of readout circuits. For instance, Xpoint memory is 2 layers resistive

memories sharing the same bitlines and having two different wordlines [118]. The proposed

readout circuitry can be connected to the bitlines and the wordlines are used to access the

memory cells. The power density is one of the important aspects of any electronic circuit.

By using the aforementioned technique, the power density is approximately constant due to
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Figure 4.28: Stacked crossbar arrays sharing the readout circuitry.

reading only one row per level at time. However, stack-ability might cause other reliability

issues which limits the number of stacked layers, and is currently a subject of intensive

research by the community.

In future work, the BER and power results will be extended to take into account the effect of

wire resistance which highly affect the performance of the crossbar array [5]. Furthermore,

power will be included in the objective function to be optimized as well to find the optimal

bias scheme in terms of both power and BER jointly.

Motivated by the sneak path problem in resistive memories, we studied polar coding over

channels with different reliability levels. In particular, we argued that the channels’ order-

ing is important and proposed a channel ordering whose attractive performance was shown

numerically. We then applied our framework to the sneak path problem in resistive mem-

ories. Simulation results on SPICE-like resistive crossbar showed significant bit-error rate

performance improvement, especially for low uncoded BER. Additionally, we proposed two
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approaches to further lower the BER. The first approach relies on a more accurate channel

modeling. The second approach consists in biasing the frequency of high-resistance values

in the array so as to mitigate the sneak path occurrences. We note that while in this work,

we modeled each cell individually as a BSC (or a BAC), the cost of such modeling is amor-

tized by using the same characterization over several crossbar arrays, which makes the model

parameter costs justifiable from a practical perspective. Moreover, it is possible to cluster

multiple cells together in a way to reduce the number of overall crossbar model parameters.

The present work represents another step toward coding for the resistive crossbar arrays. The

performance of polar codes can be improved by using more enhanced decoding algorithms

(e.g. list-decoding [119]), at the expense of higher complexity. Moreover, by the sneak path

nature, errors in neighboring cells are not independent. A future direction for research is to

investigate enhanced polar decoding algorithms, taking into consideration such correlations.

Another avenue for research is to investigate other techniques for biasing the distribution of

high-resistance values, along with techniques for coding for asymmetric channels as in [120].
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Chapter 5

Wire Resistance-aware Training for efficient

Offline Learning

Memristive crossbar arrays, also known as RRAM (resistive random access memory) crossbar

arrays, have been suggested as a way to achieve high cost and energy-efficient implemen-

tations of matrix multiplication, a crucial operation used in many applications including

deep learning [65]. While the previous work in this area typically uses a simplified model of

crossbar arrays, in order to tackle large applications such as deep neural networks (DNNs),

it is important to consider physical realities or RRAM’s non-idealities such as nonlinear and

asymmetric potentiation and depression, device variability, and device-to-device mismatch

[65, 121].

In particular, a recent analysis using a detailed model [5] reveals that in the nanoscale

era wire resistance in a crossbar array results in non-negligible sneak path issues (see Sec-

tion 5.3). In addition, the previous works, such as [122, 70], showed the high degradation

in the performance due to the existence of the wire resistance. Over the past few years, a

number of techniques have been proposed to mitigate the effects of sneak path for memory

applications, where most solution assume that only one wordline is accessed at any given

moment (as is expected in typical memory operations). However, these solutions are not

applicable to crossbar-based computing applications such as DNNs, where typically all cells

100



of the entire array are accessed simultaneously. Furthermore, accurate modeling using circuit

simulation tools that includes wire resistance becomes computationally challenging due to

the scale associated with DNNs.

5.1 Background and Related Work

Crossbar arrays offer a fast vector matrix multiplication (VMM) platform which reduces

VMM’s complexity to O(1) instead of O(N2) using conventional approaches. While contin-

uous memristors (RRAMs) show good potential for full precision neural networks, current

device fabrication methodologies are not mature enough to support fine tuning of the de-

vice’s resistance, endurance and variability. Under these conditions, a direct weight transfer

of a trained neural network would fail unless sophisticated simulators with accurate device

and interconnect models are used to model these non-idealities. Alternatively, training could

be performed via in-situ learning (online learning), where the training is done directly on

the devices, however this is only possible for small neural networks [123, 62].

The high compute-intensity of DNNs has motivated hardware DNN processors using digital

and mixed-signal CMOS as well as emerging technologies [124, 125, 126]. Recently, several

works show through simulation and hardware implementation that RRAM crossbar-based

hardware neural networks can be trained with very high accuracy – typically with less than

1% drop in accuracy for networks designed for MNIST and CIFAR-10. In [127, 128, 129], the

authors use 1T1R crossbar structure and proposed two approaches; 1) sequential BNNs where

the current sensing circuit (neuron) is shared between all the neurons so only one column

is activated at a time and 2) parallel BNNs where a current sensing circuit is assigned for

each neuron. In [130], binary RRAM-accelerated CNN is designed and optimized to feature

massive parallelism with high energy efficiency. In [131], an implementation of a multi-bit

binary conventional neural network was introduced using selector-less crossbar arrays with
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pipelined implementation included the device variations. Moreover, [132] presents a full

hardware implementation for robust RRAM-based convolutional block using single-ended

XNOR sensing capable of performing dot product operations in a single cycle. This block can

be used for computer vision and image processing applications. Although these works provide

good implementation techniques of BNNs using RRAMs, the effect of the wire resistance has

not been considered which is inevitable in the crossbar arrays and would highly degrade the

performance especially for both 0T1R arrays and 1T1R with parallel computations.

On the other hand, circuit level mitigation techniques of the sneak path problem, such as

[133], are useful only for memory applications where one cell is read at a time where the

sneak path problem arises from the multi-path effect occurred reading technique. But in case

of the vector matrix multiplication in neural networks, the sneak path happens because of

the wire resistance which creates residual voltages across the array. These residual voltages

create leakage currents which disturb VMM operation.

5.2 Multi-bit RRAM Device Under Study

The authors in [4] demonstrated the fabrication of Au/Al2O3/HfO2/TiN RRAM device with

a junction area of 10× 10µm2 patterned via photolithography and followed by a wetetching

process. The thicknesses of the top electrode (Au) and the bottom electrode (TiN) were 150

and 100 nm, respectively, and the switching material thicknesses are 2 and 6 nm for Al2O3

and HfO2, respectively. This device was optimized to have self-compliance and gradual

set-switching behavior and is capable of generating up to 16 states with good reliability.

To precisely program the device, an incremental step pulse programming technique with error

correction is used. Starting from a low conductance state, incremental step pulses are applied

to the device using a pulse generator until the device reaches the required state. Figures 5.1a

and 5.1b show the gradual incremental-step programming and the current-voltage hysteresis
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Figure 5.1: Au/Al2O2/HfO2/TiN-based RRAM device adopted from [4] (a) device behavior
under incremental step pulse programming and (b) current-voltage characteristics.

(a) (b)
Figure 5.2: Histogram and cumulative distribution function (CDF) of 100 measured sam-
ples per state.
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of the programmed device under different programming conditions. Figures 6.3b and 6.3a

show the histogram and cumulative distribution function of the measured conductances,

respectively. The measured samples are curve-modeled into a Gaussian distribution and we

have found that the mean value of the device’s conductance can be modeled as

Gi = 14 + 6× i (µS) (5.1)

where Gi is the ith highest conductance state for i ∈ [1, 15] while the low conductance state

is 46.7nS.

There are two ways to integrate the device model in hardware simulation: (i) random sam-

pling of the Gaussian model of each state, and (ii) random sampling from the measured

data. In this work, we choose the latter, random sampling from the measured data, since

the Gaussian distribution may not accurately describe the randomness of the device’s states

and device to device variations.

5.2.1 MVM using RCAs

RRAM crossbar arrays can perform the MVM operation, which is equivalent to n2 multiply

and accumulate (MAC) operations, with O(1) time complexity compared to O(n2). The

matrix is programmed/stored in the RRAM array cells as conductance values, and the input

is applied as a voltage at the rows of the array. By grounding the columns of the array, the

output current per column is proportional to the inner product between the input voltage

vector and the conductance vector of the column, which can be written as

Ij =
m∑
i=1

GijVi (5.2)
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Figure 5.3: Matrix Vector Multiplication using separate RCAs.

where Ij is the current of the jth column (i.e. post-synaptic current), Gij the synaptic weight

in conductance, Vi the ith input voltage (i.e. pre-synaptic voltage).

The conductance of RRAM can only realize a positive value; however, both negative and

positive weight realizations are needed in any neural network. In order to create negative

weights, two weight realization techniques have been introduced: (i) using two RRAM cells

per weight [61] as shown in Fig. 5.9, which is referred to as balanced realization, and (ii)

using one RRAM as weight in addition to one shared reference RRAM with the conductance

of Gr = (Gmax +Gmin)/2 ≈ Gmax/2, which is referred to as unbalanced realization [134, 135]

where Gmax and Gmin are the minimum and maximum achievable conductances, respectively.

In this work, we consider the first realization method, which has double the dynamic range

(conductance range ≈ (−Gmax, Gmax)), making it less susceptible to noise and variability at

the expense of doubling the area and power. The differential output current can be written

as

Ij =
m∑
i=1

(G+
ij −G−ij)Vi =

m∑
i=1

GijVi (5.3)

105



where Gij is the differential conductance and can be written as matrix-vector multiplication

as follows

I = (G+ −G−)V = GV (5.4)

where V is the input voltage vector (e.g. input image) and bias value. The current vector,

I, is sensed, and shaped by the activation function, which is mathematically described as

O = f(GV) (5.5)

where f(·) is the activation function.

In practice, a DNN layer can be too large to be realized in hardware using a single crossbar

array. Thus, these large layers are partitioned into smaller crossbar arrays which are con-

nected to perform MVM as a single layer [134, 136]. In this work, we partition each layer

into differential 128× 128 arrays, which is the same size as recently fabricated arrays [137].

In addition, bigger array sizes lead to worse sneak paths causing higher degradation in terms

of performance as discussed in [134].

5.2.2 Quantized Weight Mapping

Each weight is translated into a pair of conductance values, which can be mathematically

formulated as

G = G+ −G− =
W

Wmax

∆G, (5.6)

where Wmax is the maximum value of the weight. If it is required to realize Wmax, G+ and G−

are set to Gmax and Gmin, respectively, and ∆G = Gmax −Gmin. The difference between the

two conductance values is constant and proportional to the required weight value, and each
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#bits weight (W ) Mapping-I Mapping-II Range
1 bit 0 & ±1 0 & ±G15 0 & ±G1 -
2 bit 0 & ± i

2
0 & ±G8i−1 0 & ±G2i−1 1 ≤ i ≤ 2

3 bit 0 & ± i
4

0 & ±G4i−1 0 & ±G4i−1 1 ≤ i ≤ 4
4 bit 0 & ± i

8
0 & ±G2i−1 0 & ±G2i−1 1 ≤ i ≤ 8

5 bit 0 & ± i
16

0 & ±Gi−1 0 & ±Gi−1 1 ≤ i ≤ 16

Table 5.1: Weight-conductance mapping for quantized states.

conductance is constrained to be between Gmin and Gmax. Thus, there are many possible

realizations for each weight; for example, the zero weight can be realized with any equal

values of G+ and G−. In our realization, we set G− and G+ to Gmin for positive and negative

weights, respectively. By this setting, it can be shown that the power consumption during

the inference is minimized, since the power consumption of RRAMs is directly proportional

to the device conductance (P = GV 2).

Using the aforementioned 4-bit device, it is possible to realize up to 5-bit weight when

two devices per weight are used. Table 5.1 and Figure 5.4 show the weight mapping from

quantized weight to device’s conductance. Clearly, there is a linear relation between the

device conductance and the weight if chosen properly except for the 5-bit case because of

the high gap between low conductance state and first high conductance state. Thus, in this

work, we consider up to 4-bit quantized neural network.

5.2.3 Sensing Circuit Realization

Unlike sequential processors that require extremely high operational frequency, neural net-

work processors exploit their inherent massive parallelism to enable high throughput com-

putations. Thus, a current sensing circuit integrated with the activation function is vital,

This circuit is replicated hundreds of times per layer. Thus, it should be low power and

ultra-compact circuit. In this work, we use binarized activation function {−1, 1} during

the inference for simple and fast communication between the crossbar layers and eliminate
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(a) 1-bit Mapping (b) 2-bit Mapping

(c) 3-bit Mapping (d) 4-bit Mapping

(e) 5-bit Mapping

Figure 5.4: Possible weight mappings for the used RRAM device.
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Figure 5.5: Schematic of proposed latched current sensing.

area- and power-expensive blocks such as ADCs and DACs in addition to simple buffer (i.e.

driver) circuits can be used to support resistive loading.

In order to have accurate MVM operation, three conditions should be satisfied: 1) the output

ports of the crossbar array should be biased to constant voltage (i.e. virtual ground), 2) the

current sensing circuit should not load the crossbar array, and 3) the sensing circuit should

be a transimpedance amplifier and nonlinearly shape the output voltage by the required

activation function. In order to satisfy the aforementioned conditions, current conveyor

principle is used. In [138], we proposed a single input circuit with sigmoidal activation

function. By utilizing the same sensing concept, a differential circuit is designed with latched

compactor shown in Fig. 5.5. The bias voltage Vb is mirrored to the other inputs creating

constant bias voltage without loading the crossbar array. The detailed analysis and Monte

Carlo simulations are discussed in details in [138]. The positive input is connected to the

positive column (i.e. positive crossbar array) and the negative input is connected to the

negative column (i.e. positive crossbar array). The input currents are absorbed and mirrored

to the inputs of a simple latched circuit, which gives either VDD or VSS if the current absorbed

from the positive crossbar array is greater or less than the current absorbed from negative

crossbar array, respectively.

By latching the outputs of each layer, the overall operation of the neural network can be
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(a) (b)

(c)

Figure 5.6: (a)Transient simulations for different Input currents, (b) output voltage versus
differential input current characteristics, and (c) AC response of the transresistance gain.

pipelined which results in higher throughput. The circuit has been designed using TSMC

65nm technology. Figure 5.6b shows the response of the circuit with changing the positive

input current for different negative input currents. The output-input curve exhibits hard

switching relation which is needed for sign activation function. In addition, Figure 5.6c

shows the AC response of the transresistance gain of the circuit. The 3db cut off frequency

is found to be 747MHz, which is the maximum operating frequency. The total area of the

sensing circuit is 15µm× 6µm.
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5.3 Effect of Wire Resistance on Sneak Path Problem

5.3.1 Nano-scale Crossbar Parasitics

The dimensions of switching devices such as RRAMs or memristors are expected to be in

range of a few nanometers [25], thus suffering from nano-scale effects caused by interconnect

parasitics, namely, wire resistance, inductance, capacitance and conductance [5]. However,

for most practical frequencies wire inductance and conductance can be neglected compared

to the wire resistance and capacitance, respectively as discussed in detail in [5].

Interconnect Wire Resistance

Interconnect wire resistance is calculated as Rw = ρl/wh where ρ, l, w and h are the resis-

tivity, wire length, wire width and wire height, respectively. The width and height of the

wire are usually comparable and have a 1 − 2 aspect ratio. The wire resistivity increases

exponentially with technology scaling, not only because of the reduction in minimum wire

dimensions, but also due to the increase in electron scattering at grain boundaries, surfaces,

and interfaces as well. Thus, the resistivity is wire size dependent especially with wire width

less than 100nm [88]. Another phenomenon that affects the wire resistance is the skin ef-

fect, but it was shown that it becomes non-negligible at THz range frequencies, thus not a

concern at the MHz/GHz expected range of operation, [5]. In [5], two interconnects are

considered and simulated; the first one for devices with feature size 50nm representing a

recently published switching device and the other one with feature size 5nm which is the

projection of ITRS for resistive crossbar arrays [25]. The wire resistance per cell was found

to be 1.908Ω and 91.2Ω for F = 50nm and F = 5nm, respectively, showing a 47× increase.
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Interconnect Wire Capacitance

The crossbar structure contains different types of parasitic capacitances; stray capacitance

between the interconnect and the substrate, coupling capacitance between the interconnect

wires, in addition to the device capacitance. The stray and coupling capacitances are in the

range of few attoFarad and sub attoFarad for 50nm and 5nm, respectively [5]. However,

the main capacitance source is the device capacitance due to the high dielectric switching

material. The device capacitance would be around 10− 100aF [5]. The capacitance affects

only the transient behavior of the crossbar array causing a delay for the signals. In this work,

we focus on the steady-state behavior which is only affected by the parasitic resistances.

5.3.2 Source and Neuronal Resistance

The source resistance, Rsrc, represents the resistance from the input driver to the crossbar.

On the other hand, the neuronal resistance, Rnrn, represents the resistance from the crossbar

to the sensing circuit which working as a neuron that sums all the currents. The source and

neuronal resistances depend only on the wire length connecting the crossbar array. The

effect of the source and neuronal resistances with and without the wire resistance can be

easily calculated by applying KCL rules where there is a negligible leakage from one neuron

to the other for equally probable LRS and HRS. The sensed current at cell ij, with zero

wire resistance, can be calculated by

Ii,j ≈
2ViRon

(Rsrc +Rij)(nRnrn + 2Ron) + 2RnrnRon

(5.7)

where Vi is the ith input voltage, Rij is the target cell resistance and n is the number of

synapses per neuron. The ideal case current is Vi/Rij. Thus, the sensed current with the

existence of the source and neuronal resistance is a scaled version of the ideal case.
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Figure 5.7: Effect of parasitic resistances on the normalized synaptic current
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Figure 5.8: Normalized root mean square deviation of the sensed current compared to the
ideal case versus changing (a) the wire resistance and fixing the neuron resistance for different
crossbar arrays and (b) the neuron resistance for different wire resistances for 128×128 array.

5.3.3 Crossbar Simulation and Sneak Path Problem

To see the effect of wire, source, and neuronal resistances on the sneak path problem for

passive RRAM arrays, we use a generic resistive network model that is as accurate as

SPICE simulation [5]. The steady-state behavior of a crossbar array can be modeled as

a resistive network, which can be parameterized using two main factors, r = LRS/Rw and

switching ratio, K = HRS/LRS, where LRS and HRS are the low and high resistance

states, respectively, and Rw is the wire resistance per cell in addition to the source and

neuronal resistances. LRS of a switching device varies depending on the switching and

electrodes materials as widely as 100Ω ∼ 1MΩ [139]. K is 100 or higher in good switch-

ing devices [27]. In this chapter, we vary the parameter r to study the effect of different

wire resistance values, thus providing insight on the effect of wire resistance induced sneak

path. But, in some cases that require a comparison, we use the following device parameters:

LRS = 1KΩ, HRS = 1MΩ, Vset = 1.1V and Vreset = −1.3V for Ta/HfO2/Pd device which

has linear switching behavior (i.e device’s resistance is voltage independent)[137].

Figure 5.7a shows the effect of changing the source and neuronal resistances with zero wire
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resistance. Clearly, these resistances attenuate the sensed current where it works as a current

divider and is not a function of the neuron location. The more source and neuronal resistances

are, the more attenuation appears in the sensed current. On the other hand, Figure 5.7b

shows the effect of wire resistance only (with zero source and neuronal resistances) with

Rw = 1Ω. The positive and negative weights have a wide margin of variation within the

same column, and attenuate within the rows due to the sneak path problem. As a result, the

wire resistance is much more critical than the source and neuronal resistances. Figure 5.7c

shows the combined behavior of the three resistances.

Figure 5.8 shows the normalized root mean square deviation (NRMSD) which measure the

deviation of the sensed current from the ideal case. Figure 5.8a shows the strong dependence

of NRMSD on wire resistance, irrespective of the array size. This graph partly explains why

the previous work [140] concluded that the sneak path effect is insignificant — it is true only

if wire resistance is very small. On the other hand, Figure 5.8b shows the effect of changing

the neuronal resistance while fixing the wire resistance for 128× 128 array. With increasing

the wire resistance, the deviation becomes constant which means that the deviation is mostly

caused by the wire resistance.

Sneak Path Problem

The measured current of a RRAM cell is ideally constant regardless the RRAM’s position

inside the array. Nevertheless, due to the existence of wire resistance, IR voltage drops

are created in the array. These voltage drops accumulate throughout the array due to

the grounded bitlines (columns). The accumulated voltages create leakage currents (sneak

currents) through the LRS devices. Thus, the measured current can vary depending on the

RRAM cell position. The magnitude of the problem can be significantly reduced by using

selector material or access transistors among RRAM cells, or if the wire resistance is nearly

zero. In this section, we address the question of whether wire resistance of typical values
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will create a sneak path problem that is significant enough to disturb the functionality of

RRAM-based computing applications. As shown in Section 5.5, the smaller the r is, the

more severe the sneak path problem becomes.

5.4 BNNs Realization on Binary Crossbar Arrays

5.4.1 BNNs on RRAM crossbars

Binary neural networks, where only two states are needed, have emerged as a means to

avoid the aforementioned issues plaguing continuous-value neural networks. BNNs have

binary neuron activations, either {0, 1} or {−1,+1}, which is very beneficial in terms of

hardware (area and power saving) by eliminating the need for analog to digital and digital

to analog converters or sophisticated analog circuits [136], in addition to allowing bitwise

communication between the layers. Furthermore, in terms of devices, bipolar RRAMs have

shown promising performance in terms of endurance, variability and energy [141].

BNNs [142] use only two values {−1,+1} to represent synaptic weights and activations (i.e.,

neuron outputs). A typical memristive BNN stores weights in the RRAM crossbar array

(RCA). In order to create negative weights, two weight realization techniques have been

proposed: (i) using two RRAM cells per weight [61] as shown in Figure 5.9a, and (ii) using

one RRAM as weight in addition to one shared reference RRAM with the conductance of

Gr = (Gmax +Gmin)/2 ≈ Gmax/2 for high K as shown in Figure 5.9a [135].

The first technique has double the dynamic range (conductance range ≈ (−Gmax, Gmax)),

making it less susceptible to noise and variability, at the cost of doubling the area and

power dissipation. It also exacerbates the sneak path problem due to having approximately

double the wire segments. The second technique, despite having a smaller dynamic range

(conductance range ≈ (−0.5Gmax, 0.5Gmax)), requires less area and power dissipation, and
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Figure 5.9: Synaptic weight realizations using RRAMS; (a) balanced and (b) unbalanced
realizations.

has a less severe sneak path problem.

In this work, we consider the second weight realization technique with reference columns

having double the low resistance state, due to its superior area and power dissipation.

5.4.2 Necessity of Large Weight Array Partitioning

Partitioning each layer into the small arrays is necessary for three main reasons;

• Sneak Path problem: partitioning helps to reduce the effect of the problem compro-

mising the main benefit of RRAMs which is the density.

• Driver nonideality: each crossbar is driven by a driver circuit or buffer. The loading of

the driver circuit is equivalent to parallel resistors of the driven row creating a voltage

divider with the output resistance of the driver circuit. For example, the worst case is

when all the devices within the same row have a low resistance state (LRS) and the
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output resistance of the driver is Ro. Thus, the voltage delivered to the crossbar input

is Vd = Vin
LRS

LRS+NRo
. So, it is necessary to reduce the number of devices per row, N , to

mitigate the effect of the driver. Otherwise, it has to be taken into consideration during

the training. We do not consider it in this work for two reasons 1) with well designed

peripheral circuit, its effect can be eliminated or at least mitigated. and 2) the sneak

path problem is the main cause of the performance degradation [134]. However, we

study its effect on the performance to find the required output resistance value of the

driver circuit for the designers in section V.

• Fabrication problem: It is less complex to fabricate small crossbar arrays with high

reliability.

In addition, it is recommended to use two separate crossbar arrays for positive and negative

conductances to have symmetric sneak path behavior. The corresponding conductances are

scaled by the same value unlike using a single crossbar array for both positive and negative

conductances where each conductance will be scaled with different values.

To have accurate inference results, it is needed to run the inference with SPICE simulation

where all circuits included. A SPICE simulator is adopted where the weight matrices are

partitioned into small crossbar arrays as discussed in [134] and simulated using a transient

simulation for different input samples. Figure 5.10 shows the simulation time of matrix-

vector multiplication using SPICE for a 256× 256 array partitioned into smaller arrays and

for different input samples. The SPICE simulation time, without the peripheral circuits such

as neuronal sensing circuit and drivers, increases exponentially with increasing the crossbar

array size and linearly with increasing the input samples. On the other hand, the same figure

shows the numerical SPICE-equivalent simulator adopted from [5]. The numeric simulator

runs 140× faster than SPICE for one input sample and 1000× faster than SPICE for 10

successive input samples. It is worth highlighting that the numerical results of the MVM

are the same as the SPICE results.
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Figure 5.10: Simulation time comparison between SPICE and numerical simulator, adopted
from [5], for performing MVM of 256×256 array partitioned into 32×32, 64×64 and 128×128
and for different number of input samples.

Although the numerical model runs orders of magnitude faster than SPICE simulations,

it is better not to be included in the DNN framework. it would take reasonable training

time for small networks such as MNIST data-set. However, it would take much time to

simulate for deeper and larger networks with many convolutional layers. Also, it is better

to have solutions that can be used to describe fabricated hardware. In this work, we use the

numerical or SPICE simulator without loss of generality as a reference due to the lack of the

hardware.

The large layer matrices should be partitioned into small matrices that can be implemented

using realizable crossbar arrays. Figure 5.11 shows the partitioned crossbar arrays and the

interconnect fabric between them to realize the complete VMMs. In order to have the same

structure of a large crossbar array, vertical and horizontal interconnects are placed under

the crossbar arrays. This horizontal interconnect is used to connect the inputs between the

crossbar arrays within the same array rows. The vertical interconnect is used to connect the

outputs of the vertical crossbar arrays. The vertical interconnects are grounded through the
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sensing circuit to absorb the currents within the same vertical wire. The sensed currents are

compared with the reference current to generate the outputs.

In this work, we ignore the effect of the interconnect fabric parasitics, since we assume that

drivers are added to the inputs of each crossbar array to avoid loading effect. These drivers

are not shown in Figure 5.11 for clarity. In the case of BNNs, CMOS inverters can be used as

drivers since the input signals are binary (i.e., {0, 1} or {−1, 1}). The drivers of each crossbar

can be placed under the interconnect fabric. The wire resistance of the interconnect fabric

and the input capacitance of the drivers would cause some delay, which can be calculated

using the Elmore delay model. The wire resistance of the interconnect per array is mRw

where m the number of columns and Rw is the wire resistance per cell. The Elmore delay

of such an interconnect wire is 0.67mRwCd, where Cd is the input capacitance of the driver.

Thus the total input delay is 0.67(M −m)RwCd + (M/m)τd, where M/m is the number of

horizontal crossbar arrays and τd is the driver delay. On the other hand, due to the current

sensing of the outputs of the crossbar, the crossbar delay can be neglected compared to the

neuronal circuit. A more detailed analysis of this and the routing issue will be pursued in

future work.

5.4.3 Evaluation Results

Figure 5.12 shows two cases of SPICE simulation for the normalized, sensed current of each

weight in a 128 × 128 passive crossbar array. The sensed current of each cell is adjusted

by subtracting it from that of the corresponding reference cell located at the center of the

row. Clearly, the wire resistance highly affects the sensed current where the sensed current

decays exponentially in both directions of the crossbar array (from G00 cell toward GNN cell

in Figure 5.9).

These results suggest that simple models that ignore the wire resistance of crossbar arrays
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Figure 5.11: Realization of the partitioned matrices.
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Figure 5.12: Normalized sensed current of two crossbar arrays with a) r = 500 and b)
r = 104.

121



would give a false prediction on the accuracy of the applications. It also means that BNN

weights optimized without the knowledge of wire resistance could be far inferior than what

may be achievable by incorporating wire resistance knowledge, as shown in the next section.

5.4.4 DNN Framework

To evaluate the accuracy of our RRAM crossbar-based DNN hardware, we use the BinaryNet

framework [142] extended with our RRAM crossbar array simulation module. Our RRAM

crossbar array simulation module supports both SPICE simulation and an equivalent nu-

merical method, which is an implementation of a generic resistive network model discussed

in chapter III. For steady-state behavior both simulation methods yield the same result, but

the latter can be faster for typical size arrays (e.g., 128 × 128). This combination of the

BinaryNet framework and the RRAM crossbar simulation allows for accurate examination of

the effect of non-ideal behavior of RRAM crossbars on the accuracy of DNN inference. While

the BinaryNet framework supports both training and inference, we use RRAM crossbar sim-

ulation for inference only due to its high runtime overhead. It is worth mentioning that

BinaryNet retains real-valued weights for training, and binarizes them only for inference,

which is the common practice in BNN training; otherwise, training in the binary domain

would not converge.

Algorithm 5.2 is the basic BinaryNet algorithm [142] with modification to include the mask

technique in the forward and backward propagations. In the feedforward propagation section,

the modifications are as follows: (1) partitioning the binarized weights of each layer, W b
k , into

small weight matrices P b
k , (2) application of the mask to each partitioned array to create

Wsp to be used in (3) the forward propagation and (4) backward propagation instead of

the binarized weights W b. Similar modifications can be added to any other Binary DNN

framework to capture sneakpath problem.
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Algorithm 5.1 Modified BinaryNet algorithm

Require: a minibatch of inputs and targets (a0, a), previous weights W , previous Batch-
Norm parameters θ, weights initialization coefficients from γ, and previous learning rate
η

Ensure: updated weights W t+1, updated BatchNorm parameters θt+1 and updated learning
rate ηt+1.
{1. Computing the parameters gradients:}
{1.1.Forward propagation:}
for k = 1 to L do

W b
k ← Binarize(Wk)

P b
k ← Partition(W b

k) . Modification-1
Wspk ← P b

k �M . Modification-2
sk ← abk−1Wspk . Modification-3
ak ← BatchNorm (sk, θk)
if k < L then

abk ← Binarize(ak)
end if

end for
{1.2. Backward propagation:}
{Compute gaL = ∂C

∂aL
.}

for k = L to 1 do
if k < L then

gak ← gbak ◦ 1|ak|≤1

end if
(gsk , gθk)← BackBatchNorm (gak , sk, θk)
gabk−1

← gskWspk . Modification-4

gW b
k
← gTska

b
k−1

end for
{2. Accumulating the parameters gradients:}
for k = 1 to L do

θt+1
k ← Update(θk, η, gθk)
W t+1
k ← Clip(Update(Wk, γkη, gW b

k
),−1, 1)

ηt+1 ← λη
end for
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Table 5.2: Understudy Binary neural networks.

MNIST CIFAR10 SVHN
Network type MLP CNN CNN
#Layers 4 9 9
#Crossbar Arrays 640 864 402
Initial training #epochs 100 500 200
Retraining #epochs 50 200 80
Baseline test accuracy on GPU 98.41% 88.62% 97.18%

Table 5.3: MLP neural network validation accuracy using 128 × 128 crossbar arrays con-
figuration.

PPPPPPPPPRef Cols
r

104 103 500

1 78.4% 17.9% 18.2%

5 77.1% 10.7% 10.8%

9 75.9% 9.6% 10.5%

In this work, we run the experiments on one multilayer perceptron (MLP) network and two

convolutional neural networks (CNNs) that are supported by BinaryNet framework [142].

Table 5.2 summarized the networks’ structures. For instance, the binary neural network

for MNIST dataset classification consists of 4 layers; the layer connections are as follows:

784 ⇒ 2048 ⇒ 2048 ⇒ 2048 ⇒ 10 . Each layer is partitioned into an integer number of

128× 128 arrays. The missing elements in the remaining arrays are filled with random data.

Thus, the overall network requires 640 of 128× 128 crossbar arrays.

Table 5.3 and 5.4 list the DNN inference accuracy for test images when using the weights

trained for the original binary neural networks. While the BNNs achieve very high accuracy

that is nearly indistinguishable from that of floating-point version networks, our evaluation

shows that RRAM-based BNNs show unacceptable accuracy. This is mainly caused by the

sneak path problem, causing a discrepancy between the ideal crossbar behavior and RRAM-

based crossbar behavior. In the next section, we present hardware and software techniques

to minimize this discrepancy.
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Table 5.4: Convolutional neural network validation accuracy using 128×128 crossbar arrays
configuration.

CIFAR10 SVHN
PPPPPPPPPRef Cols

r
104 103 104 103

1 10.00% 10% 19.16% 19.59%

9 10.69% 10% 11.36% 9.69%

15 9.76% 10% 9.68% 9.69%

5.5 Mask Technique: Making Training Possible

The results in Table 5.3 and 5.4 are calculated without any (re)training for RRAM crossbar

arrays. DNN retraining means performing additional iterations of weight updates on top

of already trained weights as opposed to DNN training, which refers to the initial training

starting from random weights. Any kind of training incorporating the knowledge of RRAM

crossbar behavior will likely improve the accuracy of RRAM-based DNNs significantly. How-

ever, training requires many updates to the BNN weight parameters, each of which changes

the RRAM crossbar arrays’ behavior, thereby requiring very expensive simulation, whether

by SPICE or other numerical methods.

5.5.1 Mask Method

Our solution is to use the resulting normalized synaptic current values as a mask, to be

multiplied to the original binary weight matrix as follows. The mask enables us to predict

more realistic behavior of a crossbar array.

Wsp = Wb �M (5.8)

where Wsp is the wire-resistance-effect-compensated weight matrix, Wb the original weight

matrix, M a mask matrix, and � element-wise multiplication.
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The details of how to generate and use the mask may vary (see the next subsection), but the

core idea of using a very light weight modification rule manifested as a mask above enables

very quick retraining of DNNs for RRAM crossbar arrays and can be integrated into any

training framework. During training, our mask is applied to the forward evaluation and

error back-propagation. The weight update is done on the original weight matrix, which is

kept as real-valued (see Appendix A). Other details about the training are exactly the same

as in the original BNN training, including how and when weights are binarized. This training

is performed offline, meaning that we obtain optimized BNN weights from the BinaryNet

framework, which need to be programmed only once to RRAM crossbars. The programmed

weights remain binary during the inference time, as inference does not change the weights.

Applying masks during training does not increase training time significantly.

Since masks are only an approximation to the real behavior of RRAM crossbar arrays, we also

validate the results using an accurate numerical simulation, as reported in the experimental

results Section 5.6.

5.5.2 Mask Generation

The mask matrix can be generated from either SPICE simulations or equivalent numerical

methods, and is normalized to the ideal current (ie., sensed current without sneak path

problem), which is V/(2 · LRS). Choosing the suitable mask is very critical, since it should

reflect the behavior of the sneak path for any given data. In this work, we investigate

different mask generation methods. A mask is generated by simulating a crossbar array 100

times with different (random) data patterns to get a smooth mask.

In this work, we consider three types of masks.

1) Best/worst case mask : This is generated using a crossbar array with all switching devices

set to LRS (worst) or HRS (best). This mask may not be very accurate and does not describe
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Figure 5.13: Positive and negative masks of the 128x128 crossbar array

the typical sneak path. This mask is used to retrain the network giving good results [64].

However, the validation results are not good since the mask does not accurately describe the

real synaptic weights.

2) Asymmetric mask set : This mask is developed to capture the effect of the sneak path

problem for both positive and negative weights. Thus, two average masks are generated;

Positive Mask and Negative Masks to capture the behavior of positive and negative weights,

respectively. The positive and negative masks are generated by extracting the positive ones

and negative ones of the array then averaged over each one separately. Application of the

mask set during DNN training is done as follows.

Wsp =
1

2
((Wb + 1)�MP ) +

1

2
((Wb − 1)�MN) (5.9)

where MP and MN are the positive and negative mask matrices, respectively.

3) Average case mask : This type of mask can be generated by either one of two ways: (a)

averaging the positive and negative masks extracted using the asymmetric mask set which is

referred to as average mask, and (b) averaging the absolute value of the normalized measured

currents directly which is referred to as random mask. We found that their behavior is similar.

Application of the mask set during DNN training is done using (5.8).
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We have tested the proposed mask sets and we found that the average mask captures the

sneak path profile and helps the network to recover despite its simplicity.

5.5.3 Architecture Solutions

Logical Subarray Method

One way to reduce the effect of the sneak path problem is by using only a subarray of a larger

physical array. The used part of the array is called logical subarray where the rest is set to

HRS. Figure 5.13 shows 3D plots for both positive and negative masks. Clearly, they are

not identical and the positive mask spans a wider range of values than the negative mask but

both capture the sneak path effect. Moreover, the positive mask suffers a sign flip problem

where a part of the array has negative values which is expected according to Figure 5.7.

Figure 5.13a shows that a sign flip region exists in the last 18 rows which is around 8.4%

of the array. This means any data written there would give negative values. The logical

subarray method would help to remove the sign-flipped region found in the positive weights

(Figure 5.7). It was expected that this problem can be solved by training, possibly by a

redistributing of weights. However, since we are using a static mask, the sign flip region

always exists. In order to solve this issue, there are two possible solutions: (1) Truncate the

last rows that have sign flip problem, thus, the physical crossbar size would be 110 × 128

which is the same as logical array size. (2) Fix the sign-flipped rows to HRS, which means

negative ones and use only the upper part of the array to store the weights. In other words,

we would have a 128 × 128 physical crossbar array and 110 × 128 logical array size. These

rows are biased to zero voltages to do not disturb the operation of the neural network.

Figure 5.14 shows both positive and negative masks with fixing the last 18 rows to HRS to

eliminate the sign flip region. Figure 5.15 shows a comparison plot for the average mask of

110 × 128 logical array between 110 × 128 and 128 × 128 physical arrays where the last 18
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Figure 5.14: Positive and negative masks for 110×128 logical array using 128×128 physical
array.
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Figure 5.15: Comparison between 128 × 128 physical array size and 110 × 128 physical
array size for 110× 128 logical subarray mask

rows are fixed to HRS. Clearly, the masks have very close behavior which means the masks

can be used interchangeably. Figure 5.16 shows the average masks for different r. Clearly,

the smaller the wire resistance, the closer the mask is to the ideal case.

Multiple Reference Columns

An alternative method to solve the sign flip problem is to increase the number of reference

columns. Adding more reference columns makes the weight realization close to the first

weight realization discussed in section 5.4.1. However, adding too many reference columns

would make the sneak path problem worse and also increase the area and power consumption.

Figure 5.17 shows the positive mask for 1 and 9 reference columns. Increasing the number of
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Figure 5.16: Effect of changing Wire resistance on the sneak path problem.

Figure 5.17: Effect of changing number of reference columns on the mask.

reference columns can decrease the range of variation in positive weights, which might help

improve the sneak path problem. For instance, with 1 reference column, the mask suffers

the sign flip problem (red curve below the black plane) where it spans from {−0.03 ∼ 1.65}.

However, with 9 reference columns, there is no sign flip problem and the curve has less

variation range where it spans from {0.01 ∼ 1.15} which would improve the vector-matrix

multiplication accuracy. Figure 5.18 shows that increasing the number of reference columns

helps to have symmetric spread in the positive and negative weight values. This method is

very simple, and it is found that it can effectively address the problem as will be shown in

the next section.
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Figure 5.18: Normalized measured weight with changing the number of reference columns.
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Figure 5.19: DNN experiment flow (Sn means Step n).

5.6 BNN Results and Discussion

Figure 5.19 illustrates the flow of the DNN experiment. In Step 1, we use an existing BNN

framework [142] to find trained weights for a BNN. In Step 2, the trained binary weights

are fed to the BNN validation tool, which is the inference part of the same BNN training

framework extended with SPICE-equivalent simulation of RRAM crossbar arrays. The result

of the validation step is the classification accuracy that is expected of real hardware. In Step

3, we retrain the network. The most important difference of our retraining from Step 1

training is that the use of mask(s) during retraining allows training the network against

the more realistic real-valued reading of RRAM crossbar arrays vs. idealized binary weights.

Finally in Step 4, the binary weights are again fed to the validation tool, which is the same

as that of Step 2. All DNN classification accuracy results are for test images, which are not

seen during training.

Both proposed mask techniques were tested, where each network is constructed using 640

and 757 crossbar arrays for 128× 128 and 110× 128 logical array sizes, respectively.
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(a) MNIST Dataset (b) CIFAR10 Dataset (c) SVHN Dataset

Figure 5.20: DNN train and test accuracy during retraining the network.

(a) Using 110×128 subarray (b) Using the entire array (128×128)

Figure 5.21: DNN validation accuracy before retraining (un-hashed bars) after retraining
(hashed bars).

Table 5.5: MLP network validation accuracy before retraining

Logical
Array Size

PPPPPPPPPRef Cols
r

104 103 500

110× 128
1 83.8% 9.1% 9.1%

5 82.6% 8.9% 9.9%

9 81.4% 8.9% 10.3%

128× 128
1 78.4% 17.9% 18.2%

5 77.1% 10.7% 10.8%

9 75.9% 9.6% 10.5%
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5.6.1 Impact of Retraining on Binarized MLP Network

Table 5.5 shows the classification accuracy for the MNIST dataset before retraining, i.e., the

accuracy from Step 2 of Figure 5.19. Not surprisingly, the classification accuracy is very

low, which is due to the crossbar non-idealities distorting the result of VMM computation

significantly. It is worth mentioning that the validation accuracy decreases slightly with

increasing the number of reference columns because of the fluctuations that exist in the

structures with more than one reference column.

Figure 5.20a shows the progress of train/test accuracy during retraining MNIST network for

r = 104 with 9 reference columns using 128 × 128 array. Figure 5.21 shows the validation

accuracy before and after retraining versus the ratio r expressing the wire sneak path effect.

Retraining is done for 50 epochs. The validation accuracy after retraining is from Step 4

of Figure 5.19, as opposed to the accuracy from Step 3, which is during training. During

training, classification accuracy converges rather quickly to a very high level, eventually

reaching 97∼98% in all cases. For each of the cases, a different mask is generated as per

the method explained in Section 5.5.2. Thus, different trained weights are used for different

cases.

Interestingly, the drastic accuracy drop caused by wire resistance can be mostly recovered

by retraining the network with one of the proposed masks. The post-retraining accuracy

is upwards of 95% even in the worst case (with 9 reference columns), which reinforces the

need for considering crossbar non-idealities in DNN inference as well as training. We also

observe that increasing the number of columns improves the accuracy as well; in some cases,

using 9 reference columns improves accuracy by an extra 1 ∼ 3% point over using 5 reference

columns.

Per the accuracy results shown in Figure 5.21, the 110 × 128 logical mask shows much

better results compared to the 128 × 128 logical mask, where the entire array is used, for
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Table 5.6: MNIST validation Accuracy for different hardware configurations

r 104 103

# Ref Columns
per 128 columns

5 9 5 9

128× 128 Array 96.8% 97.23% 95.34% 95.84%
256× 256 Array 93.88% 94% 84.48% 88.17%

one reference column case. This result is expected since using 1 reference column has the

sign flip problem which requires increasing the number of reference columns to eliminate it.

By increasing the reference columns, the accuracy results of both mask techniques are very

comparable with less than one point difference in favor of 110 × 128 logical mask. Thus,

128× 128 logical mask with multiple reference columns would be preferred for less area and

power.

It is worth noting that the retrained weights are sensitive to the wire resistance value where

the usage of the trained weights with higher wire resistance does not work for low wire

resistance case. For instance, the retrained weights with r = 103 are used to validate the

r = 104 case with 1 reference column. We found that the accuracy drops to 79% from 91%

for 110× 128 logical mask. This means that retraining is always necessary.

Choosing the suitable hardware configuration is critical for a nonideality such as wire resis-

tance. Our choice is to maximize the crossbar array size without scarifying the accuracy.

Larger crossbar arrays reduce the routing fabric, but also degrade the performance. Thus,

we have conducted an experiment using 256× 256 crossbar array for MNIST classification.

Table 5.6 shows the validation accuracy for both configurations. For a fair comparison, we

doubled the number of reference columns for 256 × 256 array. Despite the effectiveness of

the mask technique to achieve reasonable accuracy values, 128 × 128 array configuration

approaches the baseline accuracy and outperforms 256× 256 configuration.
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Figure 5.22: Conventional neural networks validation accuracy for different reference
columns.

5.6.2 Impact of Retraining on Binarized CNNs

According to the previous discussion, the same or better results can be obtained by using

128 × 128 logical array instead of using 110 × 128 logical array, by adding more reference

columns to alleviate the sign flip problem. Thus, in CNNs, we report the results using

128× 128 logical array only. The validation accuracy without retraining the CNNs (step 2 )

is around 10% for both CIFAR10 and SVHN datasets as shown in Table 5.4.

Figure 5.20b and 5.20c show the progress of train/test accuracy during retraining of CIFAR10

and SVHN networks, respectively for r = 104 and with 9 reference columns using 128× 128

array. Per these results, the train accuracy saturates after 200 and 80 epochs for CIFAR10

and SVHN networks, respectively. Thus, we stop retrain when this number of epochs is

reached. Also, Figure 5.22 shows the training validation accuracies for CIFAR10 and SVHN

datasets for different scenarios. Due to the high sensitivity of these datasets, we increased the

number of reference columns to improve the validation accuracy. Clearly, validation accuracy

keeps improving with increasing the number of reference columns approaching training test

accuracy.
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Figure 5.23: Power dissipation comparison between proposed masks, 110 × 128 logical
mask (un-hashed bars) and 128×128 mask (hashed bars) in the crossbar arrays used for the
MNIST network.

(a) Using 110×128 subarray (b) Using the entire array (128×128)

Figure 5.24: DNN validation accuracy after retraining and validation of MNIST network
for different r values and for one (diamond), five (square) and nine (circle) reference columns
.
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5.6.3 Power Consumption in Resistive Crossbar Arrays

Power is inversely proportional to resistance. Thus, it is essential to have high resistance

devices to reduce total power consumption. Figure 5.23 shows the normalized power con-

sumption to LRS in resistive crossbar arrays, to consider different devices, for both masks

and for different r. It is important to mention that these power results are calculated for

crossbar arrays only to have a fair comparison with the proposed mask. Also, both config-

urations have the same number of drivers and sensing circuits consuming same amount of

power. It is expected that the power consumption using 110×128 logical array is higher than

the other case. Interestingly, increasing the wire resistance reduces power consumption, due

to the increased resistivity of the network. Also, for the same reason, increasing the number

of reference columns decreases the power consumption as well.

5.6.4 Discussion and Comparison

Due to the simplicity of the binary neural networks, simple drivers and sensing circuits can be

used, which can be placed beneath the crossbar arrays. The area can be estimated based on

the number of crossbar arrays and size of each cell. Thus, the 110×128 logical method would

occupy 18.2% extra area compared to the 128 × 128 logical method.In addition, increasing

the number of columns increases the total area by less than 1%.

Figure 5.24 shows the validation accuracy versus the normalized power area product, PAP,

for different wire resistance ratios and different crossbar arrays. Each mask has comparable

results in terms of PAP and accuracy for 5 and 9 reference columns. The 110 × 128 mask

method has 18% higher PAP than 128×128 mask method with a higher negligible difference

in the validation accuracy. In conclusion, the 128× 128 mask method is recommended with

nine reference columns.
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One of the important issues is the device to device variability in both low and high resistance

states. In addition, the reading operation might disturb the resistance as well. Thus, the

device variability should be taken into consideration while the training operation or the

retrained weights should be validated in the presence of the device variability. In this work,

we validated the results with 10% and 20% variations in both high and low resistance states.

We got the same performance results, obtained with the absence of the variations, with

a negligible difference which means that the retrained network is immune against device

variations. This conclusion matches the results in [131] since this is one of the advantages of

BNNs, being less sensitive to weight variations.

The higher r (the low wire resistance or the higher LRS) is, the less severe sneak path

problem is and the better validation accuracy is, without the retraining. For instance, for

r = 104, the accuracy without the retraining is 1− 2% point less than the baseline accuracy.

After the retraining a slight improvement is achieved of 0.5− 1% point.

One way to avoid the sneak path problem in crossbar structures is by using 1T1R-based

structures where the transistor works as a selector to activated one column at a time while

other columns are not selected. As a result, there are no other paths from the inputs to the

outputs which means no sneak path problem. This method avoids the sneak path problem

however it causes a high latency where each VMM operation is performed in at least N

cycles where N is the number of neurons per layer. Also, adding a transistor increases the

overall area by a constant factor which is approximately 3(1 + W/L)/4 where W/L is the

aspect ratio of the transistor (i.e., 2). In addition, in 1T1R structure, only one shared neural

activity circuit can be used per layer. But, it requires adding some memory cells (register)

to store the VMM outputs, which means N bit register is needed with dual supply ±Vdd,

since the neural activity is ±1.

A current sensing circuit is designed based on the circuit introduced in [138] using TSMC

65nm and a level shifter with some buffers are used to have ±1 voltage signal to be delivered
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Table 5.7: Comparison between 1T1R and 0T1R architectures.

Area (µm2) Latency (ns) Energy (J)
1T1R 0T1R 1T1R 0T1R 1T1R 0T1R

MNIST 2.54E+03 2.41E+03 9.23E+03 3.00E+00 1.57E-02 2.81E-06
CIFAR10 1.47E+04 1.36E+04 6.91E+05 4.04E+03 1.54E-01 2.05E-04

SVHN 1.06E+04 1.03E+04 5.44E+05 4.04E+03 2.54E-02 5.93E-05

to the next layer. In addition, registers have been used to store the outputs for 1T1R

structure. The register size for each layer equals the number of neurons existing in this

layer, e.g. for MNIST case, the used register sizes are 2048, 2048, 2048 and 10 for the first,

second, third and fourth layer, respectively.

Table 5.7 shows a comparison of the area, latency and energy while processing one input

image. The reported area is calculated for crossbar arrays, drivers, sensing circuits and

registers. The 0T1R-based hardware configuration has slightly less area compared to 1T1R-

based hardware configuration. It is worth mentioning that in the 0T1R-based configuration,

the CMOS circuits area (e.g. sensing circuits, and registers) are approximately equal to

crossbar arrays’ area which means 50% area saving if CMOS circuits are placed under the

crossbar arrays, unlike the the other implementation where the active area already occupied

by the transistor associated with each resistive device. On the other hand, the 0T1R is 3000×,

170× and 134.7× faster compared to 1T1R-based implementation for MNIST, CIFAR10

and SVHN datasets, respectively. The proposed technique results in a slight drop in the

accuracy while achieving highest parallelism. Also, 0T1R-based hardware configuration has

around 5590×, 750×, and 428× energy saving for MNIST, CIFAR10 and SVHN networks,

respectively due to less latency and power.
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Figure 5.25: Training time comparison (per iteration).

5.7 Extending Mask technique for Quantized Neural

Networks

In this section, we discuss the neuromorphic hardware based on RRAM-crossbar arrays

(RCAs) where the MVM computations are carried out.

5.7.1 Effect of Wire Resistance Problem on QNNs

The wire resistance is inevitable in nanostructure crossbar arrays. It is expected that the

wire resistance would reach around 90Ω for 5nm feature size [5]. The wire resistance creates

IR voltage drops, which create multiple paths, called sneak paths, from the input ports to

output ports because the columns are not grounded anymore, resulting in a highly distorted

MVM result.

Steady-State model of MVM using Crossbar Array

Figure 5.27 show the crossbar array with wire and capacitive parasitics. According to [5],

the nodal voltages can be obtained by solving the following 1st order system of differential
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(a)

(b) (c)

(d) (e)

Figure 5.26: (a) Measured weight per cell for 128× 128 and 256× 256 crossbar arrays at
Rw = 1Ω, (b) Histogram of the measured conductance normalized to Gmax of the crossbar
arrays shown in (a), (c) (5) Histogram of the measured conductance for 1-bit case for different
wire resistance, (d) and (e) Histograms of the normalized conductance for 3-bit and 4-bit
cases at Rw = 1Ω.
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equations:

MV + NV̇ = Gu (5.10)

where V and u are the nodal voltage and the excitation vectors, respectively and M, N and

G are the coefficient matrices containing the RRAM’s conductances, wire and capacitive

parasitics values. The construction of these matrices can be found in detail in [5]. Since our

concern is the steady-state behaviour, the capacitive parasitics can be ignored. Thus, the

steady-state nodal voltage vector can be written as

Vss = M−1Gu (5.11)

The output current is needed to have accurate MVM as discussed. Thus, the steady-state
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Figure 5.27: Circuit model of the crossbar array.
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output current equation can be defined as

Iss = ΨVss (5.12)

where Io is the output current vector and Ψ is the selection matrix which is given as

Ψ =
1

RsBL

[
0n×mn In×n 0n×(m−1)n

]
. (5.13)

where RsBL is the parasitic load resistance of the crossbar array and m and n are the array

dimensions. Consequently, the output current can be written as

Iss = ΨM−1Gu (5.14)

This equation can be written as Iss = Wspu where Wsp = ΨM−1G Similar analysis can be

adapted for nonlinear switching devices.

Thus, the output current with wire resistance effect can be modeled as

I = g(W,u) = Wspu (5.15)

where W is the programmed weight matrix and Wsp the effective sneak path weight matrix

which has the same size as the RCA, which is n×m.

Figure 5.26a shows the normalized measured effective weights for differential crossbar array

with 1Ω wire resistance for two crossbar arrays, 256×256 array and 128×128 array, filled with

random data. The measured weights decrease exponentially across the diagonal. Clearly,

increasing the crossbar array size increases the IR voltage drop across the array, creating

more sneak paths. Figure 5.26b also shows the histogram of random data with 1-bit ternary

quantization (i.e -1, 0, 1). The histogram of the 256 × 256 array has smaller mean value
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and bigger standard variation compared to the 128 × 128 array. In addition, Figure 5.26c

shows the effect of the wire resistance on the histogram of the measured data for 1Ω, 5Ω and

10Ω wire resistance for the 128× 128 array. The higher the wire resistance, the more severe

the sneak path. Figures 5.26 (d) and (e) show histograms of the quantized states for 3-bit

and 4-bit weights for the 128 × 128 case. Ideally, each state should be a narrow pulse and

non-overlapped but because of the sneak path problem, it becomes wider and overlapped.

5.7.2 Proposed IR-QNN Training and Inference

QNN Training Framework

Thanks to differential weight realization, it is possible to realize 2n + 1 states where n =

1, 2, 3, 4 is the device’s precision in bits. We use binarized activation function {−1, 1} for

simple and fast communication between the crossbar layers and eliminate area- and power-

expensive blocks such as ADCs and DACs.

IR-QNN framework is an extended version of BinaryNet [142] to support more weight states

and a bipolar activation function. During training, real-valued weights are quantized through

stochastic rounding to the equally distributed point sets within [−1, 1]. Activations are

binarized into {−1, 1}. MLP and CNN models are used for MNIST and CIFAR10 dataset,

respectively (see Table 5.9 and 5.10). Convolution filters are 4D tensors but reshaped to 2D

matrices with the number of output channels as the leading dimension, so that convolution

can be performed by matrix multiplication.

The modifications to the BinaryNet framework, to include higher quantized states and the

sneak path estimation technique in the forward and backward computation, are shown in

Algorithm 5.2. In the forward computation section, the modifications are as follows: (1)

partitioning the quantized weights of each layer, W b
k , into small weight matrices P b

k , (2)
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application of the sneak path estimation method (SPestimate function) to each partitioned

array to create Wsp to be used in (3) the forward inference and (4) backward computation

instead of the quantized weights W q. Similar modifications can be added to other QNN

frameworks to capture the effect of the sneak path problem.

Algorithm 5.2 Proposed IR-QNN Training Algorithm

Require: a minibatch of inputs and targets (a0, a), previous weights W , device precision nb,
previous BatchNorm parameters θ, weights initialization coefficients from γ, and previous
learning rate η

Ensure: updated weights W t+1, updated BatchNorm parameters θt+1 and updated learning
rate ηt+1.
{1. Computing the parameters gradients:}
{1.1.Forward propagation:}
for k = 1 to L do

W q
k ← Quantize(Wk, nb)

P q
k ← Partition(W q

k )
Wspk ← SPestimate(P q

k )
sk ← abk−1Wspk

ak ← BatchNorm (sk, θk)
if k < L then

abk ← Binarize (ak)
end if

end for
{1.2. Backward propagation:}
{Compute gaL = ∂C

∂aL
.}

for k = L to 1 do
if k < L then

gak ← gbak ◦ 1|ak|≤1

end if
(gsk , gθk)← BackBatchNorm (gak , sk, θk)
gabk−1

← gskWspk

gW q
k
← gTska

b
k−1

end for
{2. Accumulating the parameters gradients:}
for k = 1 to L do

θt+1
k ← Update(θk, η, gθk)
W t+1
k ← Clip(Update(Wk, γkη, gW q

k
),−1, 1)

ηt+1 ← λη
end for
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System Level Estimation of Sneak Path Problem

In this section, we introduce different methods to estimate the sneak path problem without

the need for SPICE or numerical simulations.

Training with multiplicative noise

It is clear in Fig. 5.26 that each state is spread with a certain statistical distribution due to

the sneak paths. One way to overcome the sneak path issue and to enable quick estimation

of realistic weights, is to create a statistical model for each state and include it into the DNN

framework which can be done as follows:

Wsp =

Q∑
i=1

Wq
i � nspi (5.16)

where Wsp is the wire-resistance-effect-compensated weight matrix, Wq
i is the quantized

weight matrix having ith state (such that
∑

i W
q
i equals the quantized weight matrix), Q the

number of states, � element-wise multiplication and nspi is multiplicative noise of ith state.

Each state is statistically curve-fitted to different distributions and we found that the log-

normal distribution is the best (e.g., the highest likelihood) to describe the noise per state.

The positive states and negative corresponding states have similar histograms. Table 5.8

shows the curve-fitted model parameters for different wire resistance simulating different

sneak path scenarios.

Although the method would have the same effect on summed current per column, this

method is not very effective since it treats all the locations in the array equally, which does

not describe the real behavior of the sneak path problem as shown in Fig. 5.26a.
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Table 5.8: Fitted Lognormal distributions of multiplicative noise for each state.

Rw = 1Ω Rw = 5Ω Rw = 10Ω
State µ σ µ σ µ σ

1 bit 1 -0.362 0.121 -1.337 0.460 -2.118 0.750

2 bit
0.5 -0.941 0.112 -1.859 0.427 -2.605 0.707
1 -0.343 0.113 -1.273 0.437 -2.031 0.717

3 bit

0.25 -1.466 0.109 -2.341 0.409 -3.066 0.680
0.5 -0.926 0.107 -1.811 0.412 -2.540 0.682
0.75 -0.580 0.107 -1.468 0.412 -2.204 0.687

1 -0.328 0.108 -1.228 0.419 -1.964 0.693

4 bit

0.125 -1.924 0.109 -2.783 0.397 -3.500 0.665
0.25 -1.453 0.105 -2.317 0.397 -3.034 0.663
0.375 -1.144 0.104 -2.010 0.400 -2.732 0.668
0.5 -0.914 0.103 -1.784 0.401 -2.506 0.668

0.625 -0.723 0.104 -1.597 0.404 -2.321 0.671
0.75 -0.567 0.104 -1.445 0.405 -2.173 0.673
0.875 -0.432 0.104 -1.312 0.406 -2.041 0.674

1 -0.316 0.104 -1.198 0.408 -1.931 0.678

Training with Masks

Another solution is to generate average mask that can account for the cell location in the

array. This mask is element-wise multiplied by the quantized weight matrix similar to [134],

as follows:

Wsp = Wq �M (5.17)

where M is the average mask matrix.

This mask method helps to predict more realistic behavior of a crossbar array and can

be easily calculated with fabricated crossbar array. The mask matrix is generated from

either SPICE simulations or equivalent numerical methods[5], and is normalized to the ideal

desired current. Masks are generated by averaging the results of many (e.g., 1000) SPICE

simulations using random input weight matrices [134, 64].
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(a) (b)

Figure 5.28: The generated masks for 2-bit neural network training.

Due to the averaging, the generated mask is static and fixed. However, in practice, Wsp

has some stochastic behaviour around this average mask. Thus, an additive white Gaussian

noise can be added to the mask to exhibits more practical behaviour, which we refer to as

stochastic mask.

The third solution is to generate a mask for each state and element-wise multiplied by its

corresponding state matrix. This solution can be mathematically formulated as follows:

Wsp =

Q∑
i=1

Wq
i �Mi (5.18)

where Mi is the corresponding mask matrix of ith state.

Figure 5.28 shows mask examples for training a 2-bit neural network having 5 states per

weight. Figure 5.28a shows the M±0.5 and M±1 masks for 1Ω wire resistance as an example.

In addition, Figure 5.28b shows the effect of the wire resistance on the M±1 mask. It is

clear the high degradation with higher wire resistance values. It is worth mentioning that

applying masks during training has a negligible effect on the training time.
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5.7.3 Batch Normalization during Inference

One of the important practices in training deep neural networks is adding a batch normal-

ization layers to speed up the training, improve the performance and overcome vanishing

gradient problem in DNNs, without the need for small learning rates which slow down the

convergence [143]. In other words, the batch normalization is data whitening (i.e removing

the mean and variance of the data) which can be mathematically defined as follows for jth

neuron

BN(yj) =
yj − µj
σj

γj + βj (5.19)

where µj and σj are the mean and the standard deviation values of the input vector yj, and

γj and βj are trainable parameters.

During the inference, these batch normalization layers can be removed by merging them

with the preceding layers. As aforementioned, we use the sign activation function, thus the

output activation o can be computed as

oj = sign

(
BN

(∑
i

wijVi + bj

))

= sign

(
γj
σj

(∑
i

wijVi + bj − µj +
σj
γj
βj

))
(5.20)

Using sign(AB) = sign(sign(A)B) property yields

oj =sign

(
sign

(
γj
σj

)(∑
i

wijVi + bj − µj +
σj
γj
βj

))
(5.21)

Since σ always has positive value, batch normalized layer merged with the proceeding layer
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Table 5.9: MLP network configuration (MNIST dataset)

layer type #output #input
1

fully connected

512 784
2 512 512
3 512 512
4 10 512

Table 5.10: CNN configuration (CIFAR10 dataset)

layer type
#output
channels

#input
channels

filter size

1
convolution

64 3 3x3
2 64 64 3x3
– max pooling – – 2x2
3

convolution
128 64 3x3

4 128 128 3x3
– max pooling – – 2x2
5

convolution
256 128 3x3

6 256 256 3x3
– max pooling – – 2x2
7

fully connected
1024 4096 –

8 1024 1024 –
9 10 1024 –

can be written as

oj = sign

(∑
i

w̃ijVi + b̃j

)
(5.22)

where w̃ij = sign(γj)wij and b̃j = sign(γj)(bj − µj +
σj
γj
βj). The matrix form of (5.22) can

be written as

O = sign
(
W̃V + b̃

)
(5.23)

where W̃ = WDsign(γ) and b̃ =
(
b− µ+DσD 1

γ
β
)

Dsign(γ), where Dv is a diagonal matrix

whose diagonal is v. It is worth highlighting that the weight parameters are kept quantized

even after merging batch normalization.
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5.7.4 QNN Experimental Setup

To evaluate the effectiveness of our proposed technique we use the MNIST and CIFAR10

datasets [144, 145]. For each dataset, we use the same network architecture as given in

BinaryNet [142], with these two changes: (1) instead of binary weights we use up to 4-bit

(or 17-state) quantized weights, (2) the model sizes are reduced. For MNIST the number

of hidden neurons is reduced to one-fourth and for CIFAR10, the number of channels is

reduced to half, roughly reducing the number of model parameters to about 1/16 and 1/4,

respectively. Details of the networks can be found in Table 5.9 and 5.10.

The experiments are done in three main steps. The first step is the baseline training, which

uses floating-point weights/activations to obtain the best test accuracy, where test accuracy

is the ratio of the correctly recognized samples for unseen data. We use the default training

parameters for 100 epochs of MNIST training and 500 epochs of CIFAR10. Learning rates

halve every 20 or 50 epochs for MNIST and CIFAR10, respectively, initially from 2−6. The

baseline accuracies are 98.4% for MNIST and 88.5% for CIFAR10, which is similar to the

best accuracies for the datasets reported in the literature. (The accuracy reported is test

accuracy, that is, the inference accuracy for unseen data.)

The second step is fine-tuning, which is running additional training iterations using the

weight from the first step as the initial weight. While the weight in the first step gives a

very high accuracy on GPU, it is unlikely to give good results if used for RRAM crossbar

arrays due to distorted MVM computation caused by IR drop and sneak paths. The fine-

tuning re-trains the networks to mitigate the discrepancy, by using the aforementioned mask

methods for different wire resistances and quantization levels. During fine-tuning, we use

learning rates starting from 2−9, training additional 50/200 epochs for MNIST/CIFAR10

models. The other parameters remain the same as the baseline training. At the beginning of

fine-tuning, the accuracy plummets due to the introduction of mask but eventually recovers
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Table 5.14: CIFAR10 dataset validation results after retraining.

1-bit 2-bit 3-bit 4-bit
Map-I Map-II Map-I Map-II Map-I & II Map-I & II

Rw
Stochastic

Mask
Multiple

Mask
Stochastic

Mask
Multiple

Mask
Stochastic

Mask
Multiple

Mask
Stochastic

Mask
Multiple

Mask
Stochastic

Mask
Multiple

Mask
Stochastic

Mask
Multiple

Mask
1Ω 86.53 87.05 86.79 87.07 76.99 87.27 76.95 87.24 63.39 87.31 59.98 87.04
5Ω 83.95 83.62 86.32 86.71 75.84 85.2 78.93 86.85 65.14 85.96 58.79 85.21
10Ω 81.75 82.35 86.39 86.27 72.32 83.54 76.14 85.95 61.32 84.39 55.7 83.82

through fine-tuning. Note that the accuracy at the end of fine-tuning is not indicative of the

real performance of RRAM crossbar arrays, for which we need a separate validation step.

The third step is validation. The output of the second step is quantized weights to be

programmed to RRAM crossbar arrays. Our validation setup takes the quantized weights,

and runs SPICE-based RRAM crossbar simulation, to get the effective output currents. The

effective output currents are fed back to our QNN inference framework to obtain network-

level inference results. Note that neither training nor mask is used during validation. The

test accuracy obtained from validation is what we can expect to see if the quantized weights

are perfectly programmed to RRAM crossbar arrays, barring stochastic and other unmodeled

noise/faults during RRAM read. Some of those nonidealities are considered in our additional

experiments (see Section 5.8).

5.8 QNN Results and Discussion

In this work, we consider three test scenarios; with 1Ω, 5Ω and 10Ω wire resistances to

consider different technology nodes. For instance for 50 nm feature size, it is expected to

have around 5Ω wire resistance [5, 25]. The results shown in Table 5.11 illustrate that

without considering the sneak path problem in the training, the accuracy drops to around

10 ∼ 12% from the baseline test accuracies regardless of the number of bits.

After the retraining using the proposed techniques, the networks were able to reach close

to the baseline accuracies. Tables 5.12 and 5.14 show the validation accuracy for MNIST
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and CIFAR10 datasets for different wire resistance scenarios and different mappings. The

higher the wire resistance the higher drop in the performance. Clearly mapping-II shows a

better performance for 1-bit and 2-bit cases since the used resistance values are much higher

than the one used for mapping-I and the severity of the sneak path problem is determined

by the ratio between device’s LRS and the wire resistance value. The smaller the ratio, the

severe the sneak path problem. In general, training with multiple mask set achieves the best

performance among the proposed solutions. On the other hand, increasing the number or

bits does not improve the performance monotonically. The accuracy drops with increasing

the number of bits to more than 2 bits, which is attributed to the overlap between states,

as illustrated in Fig. 5.26. The drop in CIFAR10 test accuracy is much higher than MNIST

test accuracy due to its high sensitivity to weight variations. Clearly, from these results, the

proposed training method provides the best performance with 2-bit devices.

5.8.1 Stuck-At Fault Effect

Figure 5.29 shows the recognition accuracy with changing the SAF percentage for 10Ω wire

resistance scenario. Clearly, the performance has no drop up to 50% and 20% SAF percentage

for MNIST and CIFAR10 datasets, respectively thanks to the existence of zero state which

mitigates reduces the effect of SAF devices. The results show that the SAF causes accuracy

drop regardless the weight precision. The higher weight precision has a slight accuracy

improvement after knee point. In conclusion, there is no need to retrain the network with the

full knowledge of the SAF devices’ locations, especially that the reported SAF percentages

are less than 20% [79, 80].
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(a) MNIST Results (b) CIFAR10 Results

Figure 5.29: Effect of changing the SAF percentage on the recognition accuracy using
mapping-I. Solid line refers to multiple mask trained network results and dashed line shows
stochastic mask trained network results.

(a) Rw = 1Ω (b) Rw = 5Ω (c) Rw = 10Ω

Figure 5.30: Effect of changing the variability of each conductance’s state on the recognition
accuracy using mapping II. Dashed lines show the validation accuracy drop with pre-trained
weights with multiple mask technique. Solid lines show the accuracy drop after retraining
with additive noise.

155



5.8.2 Effect of Device Variability

In order to achieve low variation in each conductance’s state i.e precise programming, error-

correcting techniques (ECCs) such as write-verify technique are usually used. Using such

ECCs would require multiple writes and read cycles which would increase the programming

time of the entire crossbar array. In addition, a write-disturb problem occurs where writing

some cells might disturb the written data in other cells [146]. With multiple writes to

the same cell, a higher rate of the disturbed cell occurs. Thus, it is better to write once

and take the variability into consideration during the training and validation. In order to

consider these device’s variabilities, we consider adding Gaussian noise to each conductance’s

state where we vary the the normalized standard deviation, σn, which is normalized to the

difference between the states (∆g = 6µS).

Figure 5.30 shows the effect of changing the normalized standard deviation on the MNIST

network. In this experiment, we used the trained model with stochastic mask and sampled

from the measured data shown in Fig. 6.3b without performing any retraining to include

new noise. Clearly, the performance slightly drop with increasing σn. The best accuracy

results are obtained around σn = 0.25, since we used the parameters which are trained with

measured values of the conductances, shown in Fig. 5.2. Although, the high overlapping

between the conductance states at σn, the performance dropped around 1.5% at worst case

for mapping-I. Approximately, the performance is the same regardless the number of bits

for mapping-I. On the other hand, mapping-II is more sensitive to the variations. The

performance is dropped around 4% for 1-bit and 2-bit cases with 1Ω wire resistance after

σn = 0.5. This drop is caused by narrow spacing between the states in mapping-II. Clearly,

training with higher wire resistance values, reduces the drop in the performance to 1.5%.
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5.8.3 Effect of Limited Retention

The main factor that would affect the performance of the DNNs over time (i.e. aging) is the

RRAMs’ retention. Recent works show different retention values based on device structure

and materials. These works also show that the device would drift over the time towards a

very low conductance state, Gf , which is less than the formed low conductance state, Gmin.

In addition, the drift speed is a function of the temperature. The higher the temperature

is, the higher drift occurs [147]. Due to the lack of aging model, we adopt the following

retention model to be incorporated in the validation simulations to study the performance

degradation with time. We would emphasize that the aging was taken into consideration in

the training process to simulate practical scenarios. The conductance change versus time

can be model as follows

G(t) = Gi − (Gi −Gf )

(
evdtn − 1

vd − 1

)
(5.24)

where Gi is the initial conductance state, vd is the drift coefficient, and tn normalized reten-

tion time which is normalized to the retention value of the device. We chose this normalized

model to simulate different RRAMs’ behaviors with different drift coefficients.

Figure 5.31 shows the effect of aging on the validation accuracy of MNIST dataset for two

scenarios vd = 10 and 0.1 with 25% variability in the normalized retention time to simulate

different device conditions. Clearly, the network was able to achieve the baseline accuracy

for more than the 50% of the retention time. Then, we start seeing performance degradation

regardless of the number of bits. The accuracy degrades faster for a smaller drift coefficient.
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(a) (b)

Figure 5.31: MNIST Recognition Accuracy against normalized retention time for a) vd =
10, and b) vd = 0.1.

5.8.4 Power and Area Results

The power dissipation during the inference consists of the power dissipation of RCAs and the

power dissipation in the peripheral circuits. However, due to the resistive nature of RCAs,

the power are mainly consumed inside the RCAs. Figure 5.32 shows the power dissipation

of RCAs for processing one input image at 0.1V . Clearly mapping-II consumes around 20%

and 35% of the power consumed in mapping-I for 1-bit and 2-bit cases, respectively. It is

worth to highlight that the power consumption of using the model trained with average mask

is the same as the trained with multiple mask set. Using the hardware setup discussed in

[134], the total power consumption per image is estimated to be around 0.9 W and 132 W

for MNIST and CIFAR10 networks where RCAs consumes 65.8% and 69.65% of the total

power while the rest is consumed in the sensing circuits and memory cells needed to store

intermediate stages while pipelining. on the other hand the, the total area is estimated to

be around 0.741nm2 and 0.112µm2 for MNIST and CIFAR10 networks, respectively, dis-

tributed as {17.68%, 45.53%, 36.78%} and {29.71%, 38.88%, 31.41%} for RCAs, peripheral

circuits and storage cells, respectively, using 5nm technology node. According to aforemen-

tioned power and area results, this hardware is able to achieve 204Tops/W and 239Tops/W
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(a) MNIST (b) CIFAR10

Figure 5.32: Static power dissipation in RCAs per image at 0.1V read voltage.

with 1.23KW/mm2 and 1.175KW/mm2 power density for MNIST and CIFAR10 networks,

respectively, at 100MHz operating frequency.

5.8.5 Time Overhead Comparison

In order to show the efficiency of the proposed technique, we compare the training time per

iteration with the mask versus the baseline training. Figure 5.25 shows the training time

comparison. The baseline training is 1.38×, 1.026× and 1.013× faster than the training with

the mask for MNIST, CIFAR10 and SVHN, respectively. The time overhead is negligible if

compared to the gained improvement in the performance. And, it is much faster compared to

running SPICE simulations for sneak path problem during the training, which takes around

20 ∼ 30 minutes per iteration for MNIST.

5.9 Driver and Neuronal Circuits Requirements

As previously discussed in section IV, we trained the the networks to have binary activation

function, {−1, 1}, for efficient communication and buffering between the fully connected

layers. Three nonidealities needs to considered while designing the periphery circuits:
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• Driver output resistance: Each crossbar array is driven by a driver or buffer circuit.

The output resistance of the driver circuit creates a voltage divider with the parallel

RRAMs within the same driven row in addition to the sneak paths loading.

• Neuronal input resistance: After the current is summed within the crossbar array,

a current sensing circuit is needed to sense the summed current from positive array

and compare it with the summed current from negative array, and give a positive or

negative output voltage. The input resistance of the sensing circuit create extra loading

to the crossbar array.

(a) (b)

(c) (d)

Figure 5.33: Effect of the driver resistance on the performance of MNIST recognition; (a)
and (b) for Mapping-I and (c) and (d) for mapping-II with multiple mask training for (a)
and (c) and with stochastic mask training for (b) and (d).
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(a) (b)

(c) (d)

Figure 5.34: Effect of the load resistance (the input resistance of the sensing circuit) on the
performance of MNIST recognition; (a) and (b) for Mapping-I and (c) and (d) for mapping-II
with multiple mask training for (a) and (c) and with stochastic mask training for (b) and
(d).

• Neuronal circuit variability: Due to PVT variations of the circuit, the comparison

between current sensed from positive and negative RCAs is biased to one of them with

random value.

These nonidealities disturb the MVM computation which affects the DNN performance.

With well designed circuits, there is no need to consider them during training. Ideally, the

driver circuit should have zero output resistance and the neuronal circuit should have zero

input resistance and zero offset.
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(a) (b)

Figure 5.35: Effect of the neuronal offset current deviation on the performance of MNIST
recognition for Mapping-I; (a)multiple mask training and (b) stochastic mask training.

In this section, we study the effect of these nonidealities on the MNIST network performance

to find the maximum values that the network can tolerate without affecting the performance.

It is worth to highlight that there is no retaining with peripheral circuits nonidealities is

performed. Including them in the training will relax the design requirements. Although, we

see it is more beneficial to consider the worst case.

Figure 5.33 shows performance degradation due to the output resistance of the driver circuit

with changing the number of bits and wire resistance. The results shows that the trained

network with multiple mask set can tolerate higher driver resistance especially with higher

number of bits. In addition, mapping-II exhibits better behavior compared to mapping-I.

Similarly, the effect of the load resistance is studied and shown in Fig. 5.34 for different wire

resistance, number of bits and different training methods. The performance degradation due

to increasing the load resistance is the same for any number of bits. Training with higher

wire resistance value exhibits better performance against load and driver resistances. The

effect of changing the standard deviation of the offset current on the recognition accuracy is

depicted in Fig. 5.35. Per these results, the network can tolerate up to 0.1mA, 0.5mA and

1mA standard deviation of the offset current for 1Ω, 5Ω and 10Ω wire resistance, respectively,

regardless the number of bits per device.
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5.10 Conclusion

In this chapter, we showed the high performance degradation in BNNs due to the existence

of crossbar array non-idealities especially the wire resistance. We presented a simple yet

very effective technique to include the crossbar wire resistance in the training of deep neural

networks. The proposed mask technique is fast and efficient training method to incorporate

the wire resistance without any numerical or SPICE simulations with a negligible time over-

head. In addition, the proposed technique can be easily integrated into any neural network

framework. Different cases have been studied showing a significant improvement in the per-

formance after retraining the different networks with the proposed mask method. Per our

results, increasing the wire resistance is useful to decrease the power consumption as long as

the same accuracy is maintained which is achievable using the proposed technique.

In this work, the mask is generated using SPICE simulations to capture the effect of the wire

resistance. The same method can be used for fabricated crossbar arrays where the mask can

be generated from real measurements of the fabricated crossbar arrays which will be more

accurate and help to overcome other nonidealities such as RRAM’s variability and stuck-at-

fault devices. In addition, the proposed mask technique can be generalized and applied for

multilevel RRAM devices to build quantized neural networks.

The chapter proposed software-level techniques to incorporate the sneak path problem (IR

drop) in training the deep quantized neural networks. A comparison among the proposed

methods is introduced for different sneak path scenarios. We studied the effect of other

nonidealities such as device variability, stuck-at faults and aging. Our results shows that 2-

bit device exhibits the best performance and training with multiple mask set. As a conclusion

from our experiments, we recommend using a driver with output resistance to be less than

200Ω and input resistance of the sensing circuit should be less than 100Ω. In addition, the

input referred current offset deviation should be less than 0.1mA.
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In this work, we considered only the effect of the wire resistance causing the sneak path

problem in addition to other non-idealities from the driver and neuronal circuits, SAF etc.

However, some non-idealities resulting from capacitive parasitics and routing of the parti-

tioned crossbar arrays need more study. Such non-idealities require physical simulations to

extract parasitic models to be considered in the software-based simulations. These non-

idealites are out of the scope of this work and will be pursued in future works.
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Chapter 6

Efficient Online Learning

The last decade witnessed significant progress in developing neuromorphic hardware that can

solve large scale tasks much faster and with online learning capabilities unlike Von-Neumann

based processor architectures [21, 148, 23, 149]. Von-Neumann architectures suffer from the

memory-wall bottleneck, especially when performing neuromorphic tasks where massive data

blocks are transferred from the memory to processing nodes [150]. Recently developed solid-

state devices have shown non-volatile storage capabilities such as RRAM (i.e memristors),

phase-change memory, and spin-transfer torque-RAM [151]. A major advantage of these

devices is the ability to be assembled as a crossbar array that enables the Matrix-Vector

Multiplication (MVM) operation to be completed in a single step. This is unlike other

hardware solutions that require N ×M steps, where N and M are the dimensions of the

weight matrix.

Several RRAM devices demonstrating promising synaptic behaviors are characterized by

nonlinear and asymmetric update dynamics, which is a major obstacle for large-scale de-

ployment in neural networks [65], especially for learning tasks. Applying the vanilla back-

propagation algorithms without taking into consideration the device non-idealities does not

guarantee the convergence of the network. Thus, a closed-form model for the device non-

linearity must be derived based on the device dynamics and added to the neural network

training algorithm to guarantee convergence to the optimal point (minimal error).
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Recently, different supervised learning techniques were proposed which are more energy and

data-efficient such as random backpropagation, direct and indirect feedback alignment and

surrogate gradient learning [152, 153, 154]. These techniques have not been utilized to enable

more efficient hardware learning yet. The existing emerging hardware accelerators rely on

stochastic gradient propagation [81, 61, 62, 155]. In this work, we discuss the local learning

on memristive Spiking Neural Network for efficient write energy solutions.

6.1 Independent Component Analysis using RRAMs

The Internet of Things (IoT) market is growing exponentially and it is expected to have

around 50 billion connected devices generating around 500 zettabytes of data per year by

2019 [14]. As a result, almost all IoT applications need a system to analyze patterns in this

data, detect certain types of events and take decisions. Component analysis techniques [156]

are promising candidates to perform these tasks especially with using local and efficient

learning rules, that enable online learning, rather than the conventional techniques that

require massive matrix operations. Additionally, by using hardware-based matrix-vector

multiplication accelerators, a significant improvement in both performance and power can

be achieved enabling handling the massive data generated from IoT [157].

Independent component analysis (ICA) is a very powerful tool to solve the cocktail party

problem (blind source separation), feature extraction (sparse coding) and can be utilized

in many applications such as de-noising images, Electroencephalograms (EEG) signals, and

telecommunications [158].

As an illustrative example of cocktail party problem, it is required to recover signals that

result from mixtures of sources that are statistically independent. An illustrative example

can be given as follows; Figure 6.1a shows two observed signals. These signals are linear

combinations (mixture) of two sources which are sinusoidal and square wave signals shown
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in Fig. 6.1a. This problem can be mathematically modeled as

x1 = a11S1 + a12S2

x2 = a21S1 + a22S2 (6.1)

where x1 and x2 are the observed signals, S1 and S2 are the original sources, and S11, S12, S21

and S22 are the mixing coefficients. In practice, both original sources and mixing coefficients

are unknown. We only have the observed signals and it is required to recover the original

sources. This problem is typically refereed to as the ”cocktail party problem”. In order to

solve this problem, there are some constraints [158]; 1) the sources should be statistically

independent (may have the same distribution) and (2) the sources are not Gaussian since sum

of Gaussian variables is Gaussian as well. The solution key of the cocktail party problem is

the statistical independence of the sources. Independent component analysis (ICA) can be

applied to find the sources using different methods such as minimizing the mutual information

between the components or maximizing non-Gaussianity between the components by using

the higher-order statistics (such as kurtosis; the fourth standardized moment). Depending

on the nature of the data, the appropriate ICA algorithm is chosen.

(a) (b)

Figure 6.1: (a)Observed signals (mixtures of sources), and (b) original sources.

167



ICA consists of finding mutually independent and non-Gaussian hidden factors (compo-

nents), s, that form a set of signals or measurements, x. This problem can be mathematically

described for linearly mixed components as follows:

x = As (6.2)

where A is the mixing matrix. Both A and s are unknowns. In order to find the independent

components (sources), the problem can be formulated as u = wx where x is the mixed signals

(inputs of ICA algorithm), w is the weight matrix (demixing matrix), u is the outputs of ICA

algorithm (independent components). ICA’s strength lies in utilizing the mutual statistical

independence of components to separate the sources.

Resistive crossbar structures are considered a key enabler to hardware based neuromorphic

acceleration due to their natural ability to do matrix-vector multiplication which is the basic

operation for neural network acceleration (e.g. Multiply and Add). Crossbar arrays can

perform matrix-vector multiplication in a single step as compared to m2 steps for digital

realizations, where m is the length of the vector. Furthermore, each RRAM occupies a

very small area (4F 2), where F is the feature size, and operates as a nonvolatile continuous

weight. In the digital realization, each weight is stored in at least a 32 bits register to have

continuous weight which requires 38 transistors per bit. In addition, m× (m− 1) multiply

and accumulate (MAC) blocks are needed, increasing the power budget of the overall system.

A comparative example of the network that was used for the De-mixing problem is given

in the supplementary materials. RRAMs offer features such as high density, low power

consumption, high endurance, high retention, high speed switching and 3D stack-ability in

addition to ease of programming. Recently, RRAM-based neural network architectures have

been deployed in brain-inspired computing applications[159] such as dimensionality reduction

through PCA [160], sparse coding [161], reservoir computing [162] and image processing [81].
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Figure 6.2: Illustration of used RRAM crossbar array to realize the ICA preceptron net-
work.

Recently, Isomura and Toyoizumi have proposed an interesting biological plausible learning

rule called Error-Gated Hebbian Rule (EGHR) [163] that enables local and efficient learning

to find the independent components. But, the expensive part in this algorithm is the matrix-

vector multiplication which can calculated using RRAMs-based crossbar array offering a low

power and efficient solution. In this letter, a RRAM-based hardware realization for ICA is

investigated using EGHR for online evaluation of the weights. We demonstrate that this

learning rule is capable of local and efficient learning, even when taking into consideration

the RRAM non-idealities, the asymmetric nonlinear conductance, and device variability.

6.1.1 Proposed RRAM’s learning method

In this work, we consider the second weight realization technique, discussed in chapter V,

and show that the algorithm converges despite the reduced dynamic range compared to the

first realization.

Due to the importance of blind source separation problem, many algorithms and learning

rules have been proposed to find the independent components such as minimizing the mutual

information or maximum likelihood estimation [158] and Bell-Sejnowski or Amari [163], etc.

Recently, Isomura and Toyoizumi have proposed an interesting biological plausible learning

rule called Error-Gated Hebbian Rule (EGHR) inspired from the standard Hebbian rule [163].
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In their work, the authors proved mathematically and numerically the efficiency of EGHR

to achieve ICA. The EGHR learning rule can be written as

ẇ = η〈(Eo − E(u)) g(u)xT 〉 (6.3)

where η is the learning rate, 〈·〉 is the expectation over the ensemble (training samples),

g(ui)xj is the Hebbian learning rule, g(ui), xj are the postsynaptic and presynaptic terms of

the neuron, respectively, (Eo − E(u)) is the global error signal which consists of Eo which

is a constant, and E(u) which is the surprise or reward that guides the learning. The cost

function of EGHR is defined as L = c1
2
〈(E0 − E(u))2〉. It was proven mathematically and

numerically that this learning rule is robust, stable and its equilibrium point is proportional

to the inverse of the mixture matrix, i.e. the solution of ICA. However, there are some

conditions that should be satisfied; 1) g(ui) is a monotonically increasing odd function,

and 2) E(u) is a convex function. In order to satisfy these conditions, g(ui) is chosen to be

either a hypertangent function or hard hypertangent function and E(u) is chosen as modulus

function.

ICA assumes that the sources are linearly mixed using a mixture matrix A. The final weight

matrix, w, should converge to cA−1 which is still a valid solution since c is a scaling factor.

If the sources have known distributions, the optimal E0 can be calculated as discussed in

[163]. On the other hand, if there is no knowledge about source distributions, Isomura and

Toyoizumi proved that for any E0 > 0, there is a positive c that gives the equilibrium point

of EGHR regardless of the input source nature (unknown distributions) since the relation

between E0 and c is a monotonically increasing function [163]. Thus, E0 can be used as a

tuning knob to the learning rule to achieve the solution.

As previously discussed, the weights are enclosed between [−DR
2
, DR

2
], thus E0 must be chosen

to keep the weights in this range. With unknown sources, one can iterate over E0 until a

170



solution is obtained. We start with an initial point (i.e. Eo = 1.) then keep decreasing it

until the expectation of E(u) becomes constant.

Different test cases with linear update for nonlinear devices were performed. We found that

the algorithm does not converge to the independent components. The nonlinear asymmetric

derived expressions are needed to make the RRAMs behave like the standard EGHR ICA

weight update to guarantee convergence. Given below, is an example of the simulated cases

without variations. Clearly, the weights converged to negative constant values within the

RRAM range.

(a) (b)

Figure 6.3: (a) Evolution of the weights, and (b) Visual results of the input and the output.

To have the resistive devices behave as EGHR to overcome the asymmetric nonlinearity,

the change in each weight must be proportional to the change in the RRAM’s conductance,

∆G ∝ ∆w. To achieve this, the asymmetric nonlinear behavior of potentiation and de-

pression should be included in developing the learning rule. We first calculate the change

in the weights for both potentiation and depression cases taking into effect the asymmetric

nonlinearity of the RRAM model. In general, the change in the LTP’s conductance due to

applying ∆n is

∆GLTP = G(n+ ∆n)−G(n) = (Gmax −G(n))
(
1− e−αP∆n

)
(6.4)

where G(n) is the previous conductance. Similarly, the change in the LTD conductance due
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to applying ∆n is ∆GLTD = (G(n)−Gmin)(e−αD∆n − 1). Clearly, the relation between the

rate of change in conductance and ∆n is an injective function. Thus, the number of pulses

to cause ∆GLTP and ∆GLTD are

∆nLTP = − 1

αP
ln

(
1− ∆GLTP

Gmax −G(n)

)
, and (6.5)

∆nLTD = − 1

αD
ln

(
∆GLTD

G(n)−Gmin

+ 1

)
, (6.6)

respectively. After learning, ∆G goes to 0. As a result, ∆n goes to zero as well. Equations

(6.17) and (6.18) are nonlinear functions which are hardware expensive to implement. Thus,

both can be linearized as ln(1 − x) ≈ −x(1 + 0.5x) ≈ −x and ln(1 + x) ≈ x(1 − 0.5x) ≈ x

for x� 1. As previously discussed, we can replace ∆Gi,j by η′∆wi,j, where η′ is the scaled

learning rate, and ∆wi,j is given by EGHR. Thus, the final equations for potentiation and

depression pulses can be written as follows:

∆ni,j|LTP ≈
1

αP

(
η′(Eo − E(u))g(uj)xi

Gmax −Gi,j(n)

)
, and (6.7)

∆ni,j|LTD = − 1

αD

(
η′(Eo − E(u))g(uj)xi

Gi,j(n)−Gmin

)
, (6.8)

respectively.

By programming the RRAMs using the previous equations, the circuit behaves as required

and compensates for the asymmetric nonlinearity of the devices. The proposed training

algorithm is shown in Algorithm 1. We chose to initialize the weights with identity because

we assume initially that the inputs are the independent components themselves and unmixed

which means u=x, thus W=I. The inference part is represented in lines 5-7 however lines

8-9 represent the learning part. Line 5 in the algorithm is implemented using crossbar array
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shown in Fig.6.2. Lines 6-7 can be implemented using either CMOS circuitry or off the shelf

components such as operational amplifiers similar to those discussed in [61]. The training

part, can be implemented either using analog or digital circuits.

Algorithm 6.1 Proposed Training Algorithm.

1: Set Eo = 1
2: while 〈E(u)〉 become constant do
3: Initialize RRAMs’ weights to Identity
4: for x ∈ the training set do
5: u = (G−Gr)x
6: g = hard tanh(bu)
7: E =

∑
i |g(ui)|

8: ∆W = η(Eo − E)gxT

9: ∆P=round(f(∆W)
10: end for
11: Decrease Eo
12: end while

6.1.2 De-mixing Example and Results

As a test bench for the proposed technique, we consider two Laplacian random variables

that are generated and mixed using a mixture matrix which is set to a rotation matrix

A = (cos θ,− sin θ; sin θ, cos θ) with θ = π/6. The circuit has been implemented as shown in

Fig.6.2. The system weights are trained using 5 × 106 samples with 5 × 10−9 learning rate

and hard tanh activation function (g) with b = 2 × 106Ω. On the other hand, RRAMs are

programmed using 1µs pulses with ±3V using the aforementioned conductance parameters.

The variability of model parameters are considered with different Gaussian distribution for

each device to consider device to device variability as well using the aforementioned param-

eters.

Figure 6.4 shows the results of the online learning of independent components of the mixed

signals. Figure 6.4a shows the weights evolution during the training. The weights W =

G−Gr are initialized by the identity matrix (no knowledge about the mixture matrix) where
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the conductance matrix is G = [Gmax,−Gr;Gr, Gmax]. After learning, the weight matrix is

W = [0.2034, 0.1133;−0.11, 0.17]µS and WA = 0.233× [1,−0.0155;−0.043, 0.8733]µS which

is approaching identity. Clearly, there are some oscillations in the weights around the

final solution after 104 samples because of the continuous on line learning and the devices

variations. Figure 6.4c shows the evolution of pulses for programming each weight and the

evolution of the global surprise signal E is shown in Fig.6.4b. A visual representation of the

signals before mixing, after mixing and after training is shown in Fig. 6.4d which depicts

the similarity between the source and output signals.

Endurance and retention of RRAMs are very important measures especially for online learn-

ing case. It is required to guarantee that the algorithm converges after a number of update

cycles much smaller than the endurance of the used device. The recent fabricated devices

have good endurance and retention values typically around 108 and 4 years, respectively [68].

The total number of programming pulses for each weight are {2.96, 1.4, 0.64, 2.73} million

pulses which are less than the endurance. One way to decrease the number of program-

ming pulses is by updating the weights using batch-based updates which will decrease the

variations in the weights as well.

6.1.3 Power, area and speed comparison with CMOS realization

RRAM crossbar array offers performing the matrix vector multiplication in only one step

compared to N2 steps for other realizations. Thus, in terms of the speed, it highly accelerates

the inference part N2 times. The area of RRAM device in the crossbar is 4F 2, where

F is the feature size which is expected to be around 5nm. Thus, the total area of the

entire crossbar array (matrix vector multiplication engine) is around 4N2F 2. On the other

hand, the transistor-based implementation requires registers, and MAC operation per cell

which occupies a massive area in the chip. The registers, and MAC operation consumes a

lot of power compared to one RRAM. Thus, crossbar based neuromorphic hardware has a
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Figure 6.4: The online training results versus training time (a) Evolution of the weights,
(b) surprise Energy function, (c) Required programming pulses for each weight, and (d)
Visual results of the input and the output.
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significant performance improvement. Consider the following numerical example for matrix-

vector multiplication of two Laplacian sources. The transistor-based ICA is implemented

using UMC 130nm (32-bit fixed point registers (16 bits for the integer part and 16 bits for

the floating part)). The following tabulated results are post layout. To have fair comparison,

these results are scaled to 5nm to be comparable to expected RRAM feature size (F = 5nm).

Table 6.1: Comparison between RRAM- and transistor-based ICA realization

RRAM-based Transistor-based
UMC 130nm Expected F = 5nm

Area 400nm2 5333.76µm2 7.89µm2

Power (0.12− 2.8)µW 0.432mW 0.64µW
Delay 0.1ns 3.684ns 0.1416ns

6.2 Deep Neural Network with Local Learning

6.2.1 Neural Network Model

The SNN model consists of spiking integrate-and-fire neurons without temperal dynamics to

have a sparse and simple communications between the SNN layers to overcome the need for

analog to digital and digital to analog converters. The discrete-time model can be formulated

as

U l
i [n] =

∑
j

W l
ijS

l−1
j [n] (6.9a)

Sli[n] = Θ(U l
i [n]) (6.9b)

where j and i are the indices of the input and the output signals, respectively, U l
i [n] is the

membrane potential of the neuron i at layer l at time step n, W l is the synaptic weight
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Figure 6.5: Single memristive spiking neural network layer with online local learning ca-
pabilities.

matrix between layer l − 1 and l, and Sli is the binary output of this neuron i. The step

function Θ is the spiking mechanism, i.e. Sli[n] = 1 for U l
i [n] > 0. It is worth to highlight

that in this SNN, the reset mechanism is omitted for simple implementation without loss

in the performance [154]. Thus, it can be seen as spiking version of the artificial neural

networks.

6.2.2 Local Learning with Crossbar Arrays

RRAMs are used to implement the synaptic weights. In practice, two RRAMs are needed

to realize each weight to have positive and negative values. In this work, we use a balanced

realization where two RRAMs are used for each weight such that w = G+ − G−. If the

G+ is greater/less than G−, it represents positive/negative weight, respectively. Thus, the

memristive SNN, shown in Fig. 6.5, can be written as

U l
i [n] =

∑
j

(
G+l
ij −G−lij

)
Sl−1
j [n] (6.10)
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Assuming a local cost function L for each layer, the gradients with respect to each device’s

conductance are formulated as three factors

∂L
∂G±lij

=
∂L
∂Sli

∂Sli
∂U l

i

∂U l
i

∂G±lij
(6.11)

The term ∂U l
i/∂G

±l
ij is equal to ±Slj[n] in the integrate and fire neuron. The middle factor,

∂Sli/∂U
l
i is the derivative of the step function Θ which is not differentiable. In practice, the

step function is replaced by a piecewise linear function [154]. The derivative of the piecewise

linear function is the box function ∂Sli/∂U
l
i = 1 if u− < Ui < u+ and 0 otherwise. The

term ∂L/∂Sli describes the change in the spiking state affects in the loss is called the local

error denoted as δli and computed by gradient backpropagation. The positive and negative

conductances become

∆G±lij = −η ∂L
∂G±lij

= ∓ηδliSl−1
j , if u− < Ui < u+, (6.12)

where η is the learning rate.

In the local learning, the local losses are local classifiers (using same output labels) [164].

Local losses may outperform the regular backpropagation in some tasks [165]. The local

classifier is a random linear transformation J that reduce the dimension of each layer output

Sl to the number of classes. This comparison with class labels can be performed using

either mean-squared error loss or cross-entropy or any other loss function. For example,

mean-squared error loss is

Ll =
1

C

C∑
k=1

Llk = ‖
N l∑
i=1

J lkiS
l
i − ŷk‖2, (6.13)

where C is the number of classes, N l is the layer width and J lki is an element in a random,

fixed matrix, and ŷk are one-hot encoded labels. Thus, δli =
∑C

k=1 J
l
ikerr

l
k where errlk =
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Figure 6.6: RRAM’s conductance change relation with number of pulses .∑
i=1 J

l
kiS

l
i − ŷk. For simplicity, it can be written in matrix form as δl = Jl

T
(JlSl − ŷ).

The common practice to potentiate or depress the conductance value is through applying

positive or negative voltage pulses, respectively. Ideally, the conductance change should have

a linear relation with the update pulses, as follows:

G = Gmin +
Gmax −Gmin

N
n, G ∈ [Gmin, Gmax] (6.14)

where Gmax and Gmin are the maximum and minimum achievable conductances, respectively,

n is the pulse index, and N is the total number of pulses to fully potentiate or depress the

device. According to this modeling equation, the required number of pulses to cause a certain

change in conductance ∆G can be written as

∆n =
N

Gmax −Gmin

∆G (6.15)

which should be rounded to the nearest integer. The previous equation can be rewritten in

normalized form as ∆n = N
1−K∆w where K = Gmin/Gmax and ∆w = ∆G/Gmax.
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Figure 6.7: Ideal validation with limited weight range and with stochastic rounding at
K = 1/20 and N = 100.

6.2.3 Experimental Setup

A three-layer fully connected spiking network is implemented using Pytorch with local learn-

ing using random local classifiers. The layer connections are as follows: 784 −→ 500 −→ 500

−→ 250. In this work, we used Adam optimizer with a cross-entropy loss function. The

back-propagation calculation of each layer is calculated using autograd functionality [166].

Figure 6.7 shows the local test accuracy of each layer of a three-layer spiking neural network

with limited weight value w ∈ [K − 1, 1−K] and with stochastically rounded updates. The

stochastic rounding is common practice for limited numerical precision calculation where it

is an unbiased rounding and has zero expected rounding error [167]. Without the stochastic

rounding, the network fails to learn.

6.2.4 Online Training Under Asymmetric Nonlinear Updates

In section IV, we proposed a method to have the resistive devices behave exactly like the

learning rule where the change in each weight must be proportional to the change in the
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RRAM’s conductance, ∆G ∝ ∆w. To achieve this, the asymmetric nonlinear behavior of

potentiation and depression are included in the learning rule. We first calculate the change in

the weights for both potentiation and depression cases taking into effect the asymmetric non-

linearity of the RRAM model. In general, the change in the LTP’s and LTD’s conductance

due to applying ∆n is

∆GLTP = (Gmax −G)
(
1− e−αP∆n

)
, and

∆GLTD = (G−Gmin)(e−αD∆n − 1),

(6.16)

respectively where G is the previous conductance. Clearly, the relation between the rate of

change in conductance and ∆n is an injective function. Thus, the number of pulses to cause

∆GLTP and ∆GLTD are

∆nP = − 1

αP
ln

(
1− ∆GLTP

Gmax −G(n)

)
, and (6.17)

∆nD = − 1

αD
ln

(
∆GLTD

G(n)−Gmin

+ 1

)
, (6.18)

respectively. After learning, ∆G goes to 0. As a result, ∆n goes to zero as well.

The update equations ((6.17) and (6.18)) require the knowledge of the weight value, meaning

a read operation is needed to calculate the required number of pulses to update. This nonlin-

ear cancellation can be realized either in analog domain using logarithmic amplifier circuits

or in digital domain using lookup tables. However, they are area and latency expensive.

One way to overcome the need for extra hardware for the nonlinearity cancellation is by

linearizing the updated model as discussed in [121]. Both equations 6.17 and 6.18 can be

linearity as ln(1− x) ≈ −x(1 + 0.5x) ≈ −x and ln(1 + x) ≈ x(1− 0.5x) ≈ x for x� 1. This
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leads to that the potentiation and depression updates are given by

∆nP =
1

αP

∆GLTP
Gmax −G(n)

, ∆GLTP�Gmax−G(n), and (6.19a)

∆nD =
1

αD

|∆GLTD|
G(n)−Gmin

, |∆GLTD|�G(n)−Gmin, (6.19b)

respectively. As previously discussed, it is needed to make ∆G ∝ ∆w, these two conditions

can be satisfied by using smaller learning rates. But, the weight read cycle is still needed

even in this linearized model. The rounding of the integer number of update pulses does not

guarantee the convergence to the optimal point since the rounding is done after nonlinearity

cancellation and gradient calculations. The device dynamics should be included directly to

the learning rule.

6.2.5 Stochastic Ternary Update Method

Another practical method to update the weight is that we use only directional updates where

the update pulses are proportional or equal to ∆w = ∆G/Gmax. Since ∆G is always less

than Gmax, then only positive or negative or zero update pulse is applied to each conductance

which we can refer to as Ternary Update. This update method may cause slow learning. To

have faster learning. scaling factors can be added to the update rule which can be generally

written as

∆nP,D = γP,DSR(∆w), (6.20)

where γP,D are scaling factors and SR is a stochastic rounding function. γP and γD can be

equal or different based on the asymmetry in the potentiation and depression of the used

device. This update model can be easily implemented without the need for any kind of
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(a) (b)

Figure 6.8: (a) Test accuracy of the outer classifier for different scaling factors of ternary
update rule and (b) total number of positive and negative update pulses for each epoch.

nonlinearity cancellation (i.e. lookup tables) and read cycles.

6.2.6 Results and Comparsion

Figure 6.8a shows a comparison between the baseline performance and the proposed ternary

update rule for different γ values. The results show that the network can achieve almost the

baseline with a 2% drop for equal γ values. In order to accelerate the training, we considered

higher γ values. It is clear that when γ increased 3× or 5× the training is speedup by the

same ratio. We can see that we asymmetric γ values that the network is able to achieve an

extra 1% in the accuracy compared to symmetric or equal γ values.

Figure 6.8b shows the number of update pulses performed in each epoch. At the beginning

of the training, the number of update pulses is high and reduces during the progress of

the training. The number of update pulses settles after 10 epochs where fine tuning of the

network. Clearly, with increasing the scale factor, γ, the number of update pulses increases

2× and 2.85× for γP + γP = 4 and 6, respectively. Thus, the write energy is expected to

increase with the same ratios. Clearly, the asymmetric updates is needed to achieve a better

performance and faster learning.
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Device-I [11] Device-II [168] Device-III [169]

𝑇" = 10𝜇𝑠

M
o
d
el

P
ar

am
et

er
s Gmax 674nS 10.36nS 2.845µS

Gmin 30nS 1.154nS 47.46nS

αP 0.03 0.0464 0.0598

αD 0.2761 0.063 1.78

βP 626.8nS 9.14nS 3.026µS

βD 921.9nS 9.292nS 2.043µS

ANLF 0.78 0.9027 0.4052

ASF=αD/αP 9.2 1.358 29.766

Table 6.2: Extracted model parameters of the three devices understudy. ANLF is the
asymmeteric nonlinearity factor and ASF is the asymmetery factor,

Comparison with other devices

In order to study the effect of the asymmeteric nonlinearity on the performance, two other

devices are modeled using the same model discussed before. The first device of those is

TiOx-based device which we refer to as Device II [168]. While the second device is aligned

carbon nanotube (CNT) synaptic transistor which can be assembled in crossbar architecture

to perform MVM [169]. We refer to this device as Device-III. Table 6.2 summarized the

extracted model parameters of the three devices.

Figure 6.9(a) shows the MNIST test accuracy trained with the modeled devices with vari-

ations added to the parameters with sysmteric maginude update, γP = γD = 1. Clearly,

Device-II has the slowest learning rate in contrast with Device-II that has the fastest learn-

ing rate. This happend because Device-II and -III have the highest and lowest ANL factors,

respectively. As a conclusion, the higher ANL factor, the slower the learning. On the other
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(a) (b)

Figure 6.9: MNIST recognition accuracy for three different devices with a) γP = γD = 1
and b) γP = 3γD = 3.

hand, training with Device-II achieves as slightly higher train accuracy (extra 0.3%) com-

pared to the other devices which happens since this device has less a asymmetry factor which

is 1.3 compared to 9.2 and 29.76 in the other devices. While with γP = 3γD = 3, fig. 6.9(b)

shows that the learning rate is improved by the double (i.e the same accuracy is achieved

with half the number of epochs.) and the recognition accuracy is improved by 1% for device-I

and Device-II. However, Device-III is improved by 0.3% only due to the high asymmetry in

that device.

6.2.7 RRAM’s Energy Update Model

The instantaneous power consumed while potentiating and depressing the conductance is

pP,D(t) = G(t)V 2
P,D, and the write energy is the time integral of the instantaneous power

which can be written as

EwP,D(t) =

∫ t

0

G(τ)V 2
P,Ddτ (6.21)
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Figure 6.10: Total Write Energy for each epoch for γP = γD = 1 and γP = 3γD = 3

Since, the potentiation and depression are done through pulses as previously discussed then

the write energy is given by

EwP,D(n) =

∫ ∆n

0

G(n)V 2
P,DTdn (6.22)

The potentiation and depression update of the conductance (G(n) = Go + ∆G(n)) can be

written as follows

GP,D(n) = Gmax,min

(
1− e−αP,Dn

)
+Goe

−αP,Dn (6.23)

Thus, the potentiation and depression write energy can be written as

EwP,D = V 2
P,DT

[
Gmax,min∆n+

(
G−Gmax,min

αP,D

)(
1− e−αP,D∆n

)]
(6.24)

Figure 6.10 shows the the total write energy while the training. Clearly, it decreases then

saturates. Device III has the less the write energy while Device-I has the highest write

energy around 700× of the Device-I. The total write energy is 2.7× higher with using 3×

asymmetric weight pulses.
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6.2.8 Limited Endurance

Endurance is a critical obstacle to RRAM deployment in neuromorphic hardware with online

learning capabilities where the devices are frequently updated, and especially so during

gradient-based learning [66, 68]. With limited endurance, it is necessary to complete the

training before the devices degrade. In standard deep learning, weight updates are usually

performed every batch. The bigger the batch size, the less number of updates. However, it

would require a bigger memory to store the error signals and corresponding input for each

input.

6.2.9 Conductance Degradation Model

In [151], the authors reported a conductance degradation in terms of reducing conductance

ratio, Gmax/Gmin. Based on this behavior, a mathematical model can be developed to model

the degradation in the conductance ratio as follows:

Gmax(nn) = Gmax − (Gmax −Gmin)

(
evnn − 1

ev − 1

)
(6.25)

where v and nn are the drift coefficient and normalized programming pulses, normalized to

the endurance value.

Figure 6.12 shows the test accuracy for different batch sizes. The smaller the batch size, the

higher accuracy degradation while the training is proceeding. Besides, the final test accuracy

is degraded extra 4% due to the endurance behavior. Larger batch sizes are required however

it would require extra memory hardware to store the batch data for both inputs and local

outputs. In order to overcome the endurance problem, more efficient training techniques are

needed which we discuss in the next section.
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Figure 6.11: The potentiation and depression conductance degradation for different nor-
malized programming pulses.

Figure 6.12: MNIST test accuracy for different batch sizes with 106 endurance value.
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6.3 Error-triggered Learning

For most interesting cost functions, errors must be computed extrinsically and communicated

to the neuron. To make this communication efficient, we encode errors using positive and

negative events as follows:

El
i =


1 if errli > θ,

−1 if errli < −θ,

0 otherwise

(6.26)

where θ ∈ R is a constant or slowly varying error threshold. Using this encoding, the

parameter update rule becomes:

∆W l
ij = −θEl

iP
l
jB(U l

i ) (6.27)

where θ is called the stop-learning threshold (η was folded into θ). Thus, an update takes

place on an error of magnitude θ and if B(U l
i ) = 1. The sign of the weight update is −El

i

and its magnitude θP l
j . Provided that the layer-wide update magnitude can be modulated

proportionally to θ, this learning rule implies two comparisons and an addition (subtraction).

6.3.1 Local Losses and Local Errors

Up to now, we have side-stepped the calculation of err[n]li. If l is not the output layer, then

computing this term requires solving a deep credit assignment problem. Gradient BP can

solve this, but is not compatible with a physical implementation of the neural network [170].

Several approximations have emerged recently to solve this, such as feedback alignment

[152, 153, 171], and local losses defined for each layer [164, 7, 165]. For classification, local
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losses can be local classifiers (using output labels) [164], and supervised clustering, which

perform on par and sometimes better than BP in classical ML benchmark tasks [165]. For

all experiments used in this work, we use a layer-wise local classifier using a mean-squared

error loss defined as Lli = ||
∑C

k=1(J likS
l
k − ŷk)||2, where J lik is a random, fixed matrix, ŷk

are one-hot encoded labels, and C is the number of classes. The gradients of Lli involve

backpropagation within the time step n and thus requires the symmetric transpose, J l,T . If

this symmetric transpose is available, then L can be optimized directly. To account for the

case where JT is unavailable, for example in mixed signal systems, we train through feedback

alignment using another random matrix H l [152] whose elements are equal to H l
ij = J l,Tij ω

l
ij

with Gaussian distributed ωlij ∼ N(1, 1
2
), where T indicates transpose. Weight updates

are achieved through stochastic gradient descent (SGD). We note that an error can be

computed with any loss function (e.g. mean-squared error or cross entropy) provided there

is no temporal dependency, i.e. L[n] does not depend on variables in time step n−1. If such

temporal dependencies exist, for example with Van Rossum distance [172], the learning rule

becomes considerably more complex and (6.12). The matrices J l and H l can be very large,

especially in the case of convolutional networks. One solution to the memory footprint of

J l is to generate these matrices on the fly using a random number generator [164]. Another

solution is to define J l as a sparse, binary matrix [170]. Using a binary matrix would further

reduce the need for multiplications in the computation of erri.

6.3.2 Large-scale Simulation Experiments

An important feature of the used learning rule is its scalability to multilayer networks with

very small loss of performance compared to a standard deep neural network when using ide-

alized dynamics. To demonstrate this, we simulate the learning dynamics for classification in

large-scale, multilayer spiking networks. The GPU simulations focus on event-based datasets

acquired using a neuromorphic sensor, namely the N-MNIST and DVS Gestures dataset for
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Table 6.3: Recognition Error in Idealized Spiking Neural Network Simulations Averaged
over 5 Runs.

DVSGesture N-MNIST
〈E〉 Error Writes Error Writes

Cont. 3.82% 1M 2.3% 1.5M
50Hz 4.22% 50k 2.31% 75k
10Hz 6.25% 10k 2.71% 45k

demonstrating the learning model. Both datasets were pre-processed as in [7]. The N-

MNIST network is fully connected (1000–1000–1000), while the DVS Gestures network is

convolutional (64c7-128c7-128c7). For practical reasons, the neural networks were trained

in minibatches of 72 (DVS Gestures) and 100 (N-MNIST). We note that the choice of using

minibatches is advantageous when using GPUs to simulate the dynamics and is not specific

to (6.12), and can also be used for gradient backpropagation through time and spike-timing

dependent plastisity. The parameters of our model are similar to that of [7] except that the

time constants were randomized. In our experiments, we used a proportional controller to

adjust θ such as the average error spike rate 〈E〉 remains stable. The column writes indicates

an upper bound on the number of weight writes. It is an approximate upper boundary, as

the effect of B(U) has not been taken into account. These results in Table 6.3 demonstrate

a small loss in accuracy across the two tasks when updates are error-triggered. As compar-

ison, published work on DVS Gestures with spiking neurons trained with backpropagation

achieved 5.41% [173] and 6.36% [174] error rates and 1.3% [175].

6.4 Conclusion

The realization of ICA using RRAMs is introduced taking into consideration the asymmetric

nonlinearity behavior of the devices and the variations. The closed form learning rule is in-

troduced and is applied to de-mixing two Laplacian signals. The proposed algorithm showed

good performance and converges to the independent components even with the existence of

the device variability.
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we proposed an effective method to train a memristive spiking neural network with local

learning containing RRAMs with asymmetric nonlinearity update dynamics. Stochastic

rounding is necessary to have a successful training. we showed with the experiments that

the ternary update method was very efficient and almost achieve baseline accuracy. Other

nonidealites such as IR drop (i.e sneak path problem), limited endurance will be investigated

in the future work.
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Chapter 7

Prospects on Memristive Neuromorphic

Hardware

The implementation of learning dynamics as synaptic plasticity in neuromorphic hardware

can lead to highly efficient, lifelong learning systems [21, 176, 177, 23, 149]. While gra-

dient Backpropagation (BP) is the workhorse for training nearly all deep neural network

architectures, it is incompatible with neuromorphic hardware because it is not spatially and

temporally local [170]. Recent work addresses this problem using Surrogate Gradient (SG)

learning [154]. SGs use a differentiable surrogate network to compute weight updates in a

local fashion, and formulate the updates as three-factor synaptic plasticity rules. The SG

approach reveals from first principles the mathematical nature of the three factors, and a

learning dynamic that is continuous in time. While temporal continuity is a plausible prop-

erty in the brain, while being able to perform a large number of weight updates (writes)

which can be energetically expensive in hardware [176].

7.1 Synaptic Plasticity and Learning in SNN

As RRAM arrays provide a scalable physical substrate for implementing neural computations

and plasticity, we now turn to the modeling of synaptic plasticity. Synaptic plasticity in the
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brain is realized using some constraints as in RRAMs. One of these constraints is that

information necessary for performing efficient weight updates must available at the physical

location where the weights updates are computed and stored.

The brain is capable of learning and adapting at different time scales. Generally, learning

processes operate in the hours to years range, which is thought to be implemented by synaptic

plasticity and structural plasticity. Focusing on the former, a common synaptic plasticity

process dictates that synaptic weights changes according to a modulated Hebbian-like process

[178], which can be written in a functional form as:

∆Wij = f(Wij, Si, Sj,Mi)

where Mi is some modulating function that is not yet specified. A common, biologically

inspired model is fSTDP. The classical STDP rule modifies the synaptic strengths of con-

nected pre- and post-synaptic neurons based on the spike history in the following way: if a

post–synaptic neuron generates action potential within a time interval after the pre-synaptic

neuron has fired multiple spikes then the synaptic strength between these two neurons be-

comes stronger (causal updates, long-term potentiation–LTP). Note that STDP does not use

the modulation term. Formally:

∆W STDP
ij ∝ Si(t)(εpre ∗ Sj(t))− Sj(t)(εpost ∗ Si(t)) (7.1)

where εpost and εpre are two kernels, generally of first or second order (exponential or double

exponential) filters as they relate to the neuron dynamics. The convolution terms ε ∗S(t) =∫
dsε(s)S(t − s) capture the trace of the spiking activity, and serve as key building blocks

for synaptic plasticity. These terms are key for learning in SNN as they provide eligibility

traces or memory of the neural activity history. These traces emerge from the gradients on

the neural membrane potential dynamics [172].
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STDP captures the change in the postsynaptic potential amplitude in an experimental set-

ting [179] where the pair of neurons is elicited to fire at precise times. As such, it only

captures a particular temporal aspect of the synaptic plasticity dynamics. Experimental

work argues that STDP alone does not account for several observations in synaptic plastic-

ity [180]. Theoretical work suggested that synapses require complex internal dynamics on

different timescales to achieve extensive memory capacity [181]. Furthermore, error-driven

learning rules derived from first principles are not directly compatible with pair-wise STDP

[182]. These observations are not in contradiction with seminal work of [179], as consider-

able variation in LTP and LTD is indeed observed. Instead, [182] suggests that STDP is an

incomplete description of synaptic plasticity.

On the flip-side, normative approaches derive synaptic plasticity dynamics from mathe-

matical principles. While several normative approaches exist, in the following we focus on

three-factor rules that are particularly well-suited for neuromorphic applications.

7.1.1 Gradient-based Learning in SNN and Three-Factor Rules

Three-factor rules can be viewed as extensions of Hebbian learning and STDP, and are de-

rived from a normative approach [183]. The first two factors are functions of pre-synaptic

activity and post-synaptic activity, and the third factor is a modulating function that is

relevant to the learning task. Such rules have been shown to be compatible with a wide

number of unsupervised, supervised, and reinforcement learning paradigms [183], and im-

plementations can have scaling properties comparable to that of STDP [184].

Three-factor rules can be derived from gradient descent on the spiking neural network

[182, 154]. Such rules are often “local” in the sense that all the information necessary

for computing the gradient is available at the post-synaptic neuron [176]. Recent digital

implementations of learning use three-factor rules, where the third factor is a modulation
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term that depends on an internal synaptic state [21] or postsynaptic neuron state [184].

Three-factor rules are motivated by biology, where additional extrinsic factors that modu-

late the learning, for example, Dopamine, Acetylcholine, or Noradrenaline in reward-based

learning [185], or GABA neuromodulator controlling STDP [186]. The three-factor learning

rule can be written as follows:

∆W 3F
ij ∝ fpre(Sj(t))fpost(Si(t))Mi (7.2)

where fpre and fpost correspond to functions over presynaptic and post synaptic variables,

respectively, and Mi is the modulating term of postsynaptic neuron i. The modulating term

is a task-dependent function, which can represent error, surprise, or reward.

The equivalence of SNN with artificial neural networks paired with synaptic plasticity derived

from gradient descent suggests that the same approaches used for training artificial networks

can be applied to SNN. In other words, the synaptic plasticity rule can be formulated in a

way that it optimizes a task-relevant objective function [176]. A machine learning description

of SNN training consists of three parts: The objective function, the (neural network) model

and the optimization strategy. The objective, noted L(S(Ω),Sdata) is a scalar function

describing the performance of the task at hand (e.g. classification error, reconstruction error,

free energy, etc.), where Ω are trainable parameters and S,Sdata are neural states (spikes,

membrane potentials, etc.) and input spikes, respectively dictated by the SNN dynamics. If

operating in a firing rate mode (where spike counts or mean firing rates are carriers of task-

level information), S, and Sdata can be interpreted as firing rates instead. The optimization

strategy consists of a parameter update derived from gradient descent on L. If this update

rule can be expressed in terms of variables that are local to the connection, then the learning

rule will be called a synaptic plasticity rule.

Gradient-based approaches have been used in a wide range of work. For examples, the Tem-
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potron is a learning rule using a membrane potential-based objective function to learn to

discriminate between inputs on the basis of the spike train statistics [187]; [182] expresses

the neuron model as a stochastic generative model and derive learning rules by maximiz-

ing the likelihood of a target spike train. Gradient-based approaches identify (non-unique)

relationships between the STDP parameters and those of the neural and synaptic dynam-

ics; and SpikeProp [188], a spike-based gradient backpropagation algorithm. Several other

approaches that can collectively be described as surrogate gradient descent [154] rely on

approximations of the gradient to perform SNN parameter updates [189, 174, 190, 172].

While the above models are computationally promising, there are important challenges in

learning multilayer models on a physical substrate such as the brain: The physical substrate

defines which variables are available to which processes and when. This is in stark contrast

to von Neumann computers where learning processes have access to shared memory. One

consequence of this limitation is the weight transport problem of gradient backpropagation,

where the symmetric transpose of the weights is necessary to train deep networks. In many

cases, however, the neurons and weight tables cannot be ”reversed” in this fashion. Another

less studied consequence is the temporal locality due to the continual dynamics of SNN:

solving the credit assignment problem in recurrent neural networks requires some memory of

the previous states and inputs, either in the form of buffers or eligibility traces [191]. Both

of these problems, namely the weight transport problem and temporal credit assignment,

must be solved in order to successfully implement memristor-based machine inference and

learning. Below, we describe some promising approaches that overcome these two problems.

Feedback Alignment and Event-driven RBP One way to alleviate the weight trans-

port problem is to replace the weights used in backpropagation with fixed, random ones

[152]. Theoretical work suggests that the network adjusts its feed-forward weights such that

they align with the (random) feedback weights, which is arguably equally good in commu-
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nicating gradients. This approach is naturally extended to SNN to overcome the weight

transport problem. Event-driven Random Back Propagation (eRBP) is one such rule that

extends feedback alignment to meet the other constraints of learning in SNN, namely that

weight updates are event-based (no separate forward and backward phases) and errors are

maintained on a dedicated compartment of the neuron, rather than in a globally accessible

buffer. Because it is local, it can be implemented as a presynaptic spike-driven plasticity

rule modulated by top-down errors and gated by the state of the postsynaptic neuron and

is simple to implement. The learning rule can be written as:

Mi =
∑
k

gikErrork

∆W eRBP
ij ∝MiBoxcar(Ui)Sj(t)

(7.3)

where gik are fixed, random weights and Boxcar is a symmetric function that is equal

to 1 in the vicinity of Ui = 0, and zero otherwise. Here, Mi represents the state of the

neural compartment that modulates the plasticity rule according to top-down errors. Its

functionality is to maintain a trace of Errork = targetk − Sk when an input spike occurs.

ERBP solves the nonlocality problems, leading to remarkably good performance on MNIST

handwritten digit recognition tasks, achieving close to 2% error compared to 1.9% error using

gradient backpropagation on the same network architecture.

Figure 7.1 shows a network that consists of feed-forward layers (784-200-200-10) for predic-

tion and feedback layers for supervised training with labels (targets) L. Full arrows indicate

synaptic connections, thick full arrows indicate plastic synapses, and dashed arrows indicate

synaptic plasticity modulation. Neurons in the network indicated by black circles were im-

plemented as two-compartment LIF neurons. The top-layer errors are proportional to the

difference between labels (L) and predictions (P) and is implemented using a pair of neurons

coding for positive error (blue) and negative error (red). Each hidden neuron receives inputs

from a random combination of the pair of error neurons. Output neurons receive inputs from
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Figure 7.1: Network Architecture for Event-driven Random Backpropagation (eRBP).
Reproduced from [6]
.

the pair of error neurons in a one-to-one fashion.

One limitation eRBP is related to the “loop duration”, i.e. the duration necessary from the

input onset to a stable response in the error neurons. A related problem is layerwise locking

in deep neural networks: because errors are backpropagated from the top layers, hidden

layers must wait until the prediction is made available [192]. This duration scales with

the number of layers, limiting eRBP scalability for very deep networks. The loop duration

problem is caused by the temporal dynamics of the spiking neuron, which are not taken into

account in (7.3).

This problem can be partly overcome by maintaining traces of the input spiking activity,

and a solution was reported in [172]. Their rule, called Superspike is derived from gradient

descent over the LIF neuron dynamics, resulting in the following three-factor rule:

∆W SS
ij ∝ α ∗ (Erroriρ

′(Ui)(εpre ∗ Sj))) (7.4)

where ρ describes the slope of the activation function ρ at the membrane potential Ui, and

εpre here is the response of the post-synaptic neuron to a pre-synaptic spike (the impulse

response function at U).
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Interestingly, both (7.4) and (7.3) rules are reminiscent of STDP but include further terms

that vary according to some external modulation, itself related to some task. Unsurprisingly,

the three terms in (7.2) can be related to the classical Widrow-Hoff (Delta) rule, where the

first term is the error, the second is the derivative of the output activation function, and the

third term is the input.

The loop duration is only partly solved with (7.4), as α and ε introduce memory of the

previous activity into the synapses. However, this is only an approximation, as the dynamics

of every layer leading to the top layer must be taken into account with one additional

temporal convolution per layer. As a result, (7.4) and (7.3) do not scale well with multiple

layers.

Local Errors A more effective method to overcome the loop duration and the layerwise

locking problem is to use synthetic gradients: gradients that can be computed locally, at

every layer. Synthetic gradients were initially proposed to decouple one or more layers from

the rest of the network to prevent layerwise locking [192]. Synthetic gradients usually involve

an outer loop consisting of a full backpropagation through the network. While this provides

convergence guarantees, a full backpropagation step cannot be done locally in spiking neural

networks. Instead, relying on initialization of the local random classifier weights and forgoing

the outer loop training yields good empirical results [164].

Using layerwise local classifiers [164], the gradients are computed locally using pseudo-targets

(for classification, the labels themselves). To take the temporal dynamics of the neurons into

account, the learning rule is similar to SuperSpike [172]. However, the gradients are computed

locally through a fixed random projection of the network activities into a local classifier.

Learning is achieved using a local rate-based cost function reminiscent of readout neurons

in liquid state machines [193], but where the readout is performed over a fixed random

combination of the neuron outputs. The readout does not have a temporal convolution
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(a) (b)

Figure 7.2: Deep continuous local learning example.Reproduced from [7].

term in the cost function, the absence of which enables linear scaling, and does not prevent

learning precise temporal spike trains (7.2). The resulting learning dynamics are called DEep

COntinuous Local LEarning (DECOLLE), and written:

∆WDECOLLE
ij ∝ (

∑
k

gikErrork)ρ
′(Ui)(εpre ∗ Sj)). (7.5)

Here, the error is computed with respect to a random linear combination of the neuron

outputs: Errork = targetk −
∑

i gikSi. While SuperSpike scales at least quadratically with

the number of neurons, learning with local errors scales linearly [7]. Linearity greatly im-

proves the memory and computational cost of computing the weight updates and simplifies

potential RRAM implementations (see 7.2.2).

In figure 7.2 (a), Each layer consists of spiking neurons with continuous dynamics. Each

layer feeds into a local classifier through fixed, random connections (diamond-shaped, y).

The classifier is trained to produce auxiliary targets ŷ. Errors in the local classifiers are

propagated through the random connections to train the input weights, but no further (curvy,
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dashed line). To simplify the learning rule and enable linear scaling of the computations, the

cost function is formulated using a rate code. The states of the spiking neurons (membrane

potential, synaptic states, refractory state) are carried forward in time. Consequently, even

in the absence of recurrent connections, the neurons are stateful in the sense of recurrent

neural networks. In figure 7.2 (b), Snapshot of the neural states illustrating the DECOLLE

learning rule in the top layer. In this example, the network is trained to produce three

time-varying pseudotargets ŷ1, ŷ2 and ŷ3.

7.2 Stochastic Spiking Neural Networks

Up to now, we have considered fully deterministic neuron and synapse models. However,

the writing of RRAMs values are stochastic. Additionally, analog VLSI neuron circuits have

significant variability across neurons due to fabrication mismatch (fixed pattern noise) and

behave stochastically due to noise intrinsic to the device operation. The variability at the

device level can be taken in to account in SNN models and sometimes be exploited for im-

proving learning performance and implementing probabilistic inference [194, 195]. Here, we

list avenues for implementing online learning in memory devices that exploit the stochasticity

in the neurons and synapses.

A stochastic model of the neurons can be expressed as:

P (Si|s) = ρ(Ui(t)) (7.6)

where ρi is the stochastic intensity (the equivalent of the activation function in artificial

neurons), and η and ε are kernels that reflect neural and synaptic dynamics, e.g. refrac-

toriness, reset and postsynaptic potentials [178]. The stochastic intensity can be derived or

estimated experimentally if the noiseless membrane potential (Ui(t)) can be measured at the

times of the spike [196]. This type of stochastic neuron model drives numerous investigations
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in theoretical neuroscience and forms the starting point for other types of adapting spiking

neural networks capable of efficient communication [197].

7.2.1 Learning in Stochastic Spiking Neural Networks

Neural and synaptic unreliability can induce the necessary stochasticity without requiring

a dedicated source of stochastic inputs, for example, the unreliable transmission of synaptic

vesicles in biological neurons. This is a well-studied phenomenon [198, 199], and many

studies suggested it as a major source of stochasticity in the brain [200, 201, 202, 203]. In

the cortex, synaptic failures were argued to reduce energy consumption while maintaining

the computational information transmitted by the post-synaptic neuron [204]. More recent

work suggested synaptic sampling as a mechanism for representing uncertainty in the brain,

and its role in synaptic plasticity and rewiring [205].

Strikingly, the simplest model of synaptic unreliability, a “blank-out” synapse, can improve

the performance of spiking neural networks in practical machine learning tasks over existing

solutions, while being extremely easy to implement in hardware [206], and often naturally

occurring in emerging memory technologies [207, 208, 209].

One approach to learning with such neurons and synapses is Event-Driven Contrastive Di-

vergence (ECD), using ideas borrowed from Contrastive Divergence in restricted Boltzmann

machines [210]. The stochastic neural network produces samples from a probability distri-

bution, and STDP carries out the weight updates according to the Contrastive Divergence

rule in an online, asynchronous fashion. In terms of the three-factor rule above, ECD can

be written:

∆WECD
ij = Mi(t)∆W

STDP
ij (7.7)

where Mi(t) = 1 during the “data” phase and Mi(t) = −1 during the “reconstruction” phase.
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Figure 7.3: The Synaptic Sampling Machines (SSM). (a) At every occurrence of a pre-
synaptic event, a pre-synaptic event is propagated to the post-synaptic neuron with proba-
bility p. (b) Synaptic stochasticity can be viewed as a continuous DropConnect method [8]
where weights are masked by a binary matrix Θ(t), where ∗ denotes element-wise multiplica-
tion. (c) SSM Network architecture, consisting of a visible and a hidden layer. Reproduced
from [9]

.

These neural networks can be viewed as a stochastic counterpart of Hopfield networks [211],

but where stochasticity is caused by multiplicative noise at the connections (synapses) or at

the nodes (neurons).

ECD requires symmetric weights, which is difficult to achieve due to the weight transport

problem discussed above. A variation of ECD called random Contrastive Hebbian learning

(rCHL) [212], replaces the transpose of the synaptic weights with fixed random matrices.

This was performed similarly to Feedback Alignment (FDA) [152]. Contrastive Hebbian

Learning (CHL) is similar to Contrastive Divergence, but it employs continuous nonlinear

dynamics at the neuronal level. Like Contrastive Divergence, it does not rely on a spe-

cial circuitry to compute gradients (but can be interpreted as the gradient of an objective

function), allows information to flow in a coupled, synchronous way, and is grounded upon

Hebb’s learning rule. CHL uses feedback to transmit information from the output layer to

hidden(s) layer(s), and in instances when the feedback gain is small (such as in the clamped
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phase), has been demonstrated by Xie and Seung to be equivalent to Backpropagation [213].

Using this approach, the information necessary for learning propagates backward, though it

is not transmitted through the same axons (as required in the symmetric case), but instead

via separate pathways or neural populations.

Equilibrium Propagation (EP) describes another modification of CHL that generalizes the

objective functions it can solve and improve on its theoretical groundings. In EP the neuron

dynamics are derived from the energy function, however, EP requires symmetric weights.

The energy function used in Equilibrium Propagation includes a mean-squared error term

on the output units, allowing the output to be weakly clamped to the true outputs. (e.g.

labels). The neuron model takes a form which is reminiscent of the LIF neuron. The recurrent

dynamics in the network affect the other layers in the network, similarly to CHL. Both rCHL

and EP were formulated for continuous (rate-based) neurons, although their implementation

with spikes is straightforward following the same approach as Synaptic Sampling Machines

(SSM).

Learning in stochastic neuron networks can also be performed using the surrogate gradient

approach and three-factor rules. In this case, a simple approach is to use the stochastic

intensity ρ as a drop-in replacement of the neural activation function for purposes of com-

puting the weight updates [154]. In this case, stochasticity plays a regularization role similar

to dropout in deep learning [153] and weight normalization [214] an online modification of

batch normalization.

7.2.2 Three Factor Learning in Memristor Arrays

So far, we have discussed how to implement gradient-based learning as local synaptic plastic-

ity rules in SNN. In many cases, gradient-based learning provides superior results compared

to STDP and take the form of three-factor rules. These rules are biologically credible since
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pre- and post-synaptic activities are available at the level of the neuron and neurotrans-

mitters in the brain can carry the extrinsic factor. However, besides the LTP and LTD

asymmetry problems already discussed, the implementation of the three-factors in memris-

tor arrays come with certain challenges. The first challenge concerns the implementation of

the synaptic traces. In certain simple cases, such as when the subthreshold neural dynamics

are linear, only one trace for each neuron involved in the learning connections is required

for learning [7], similar to the STDP case. Previous work has demonstrated STDP learning

in RRAM and hence capture some form of a neural trace. The majority of these include

additional CMOS circuitry in a “hybrid configuration” [215] to enable STDP. The simplest

of these implementations consists of a 2T1R configuration that enables an update when both

terminals are high (both spike). While this is sufficient for the case where α = β = 0, an

additional mechanism that filters the spike is necessary to recover STDP like curves when

α > 0 or β > 0. This can be achieved with a circuit that is similar to that of the synapse

[216] or calcium variables [217]. For more complex neuron dynamics (such as non-linear

neuron dynamics), then at least one trace per synapse is required, [218], and ideally, one

trace per connection and per neuron [191].

Since the synaptic trace dynamics follow similar first order (RC) dynamics, the same circuits

used to implement first-order synaptic dynamics can be used to implement synaptic traces

[219] or dedicated calcium dynamics circuits [220]. However, scalability can become an issue:

the same amount of memory for storing the weights is necessary for computing the traces,

but the latter must be carried out continuously. One potential solution comes from recent

work in using diffusive memristors to implement the leaky dynamics of integrate and fire

neurons [221], which can be used for computing neural traces.

The second issue concerns the modulation. In many gradient-based three-factor rules, the

modulation of the learning rule is specific to each neuron, not each synapse. This means

that a similar approach to eRBP (7.3), where a separate neuron compartment is used for
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maintaining the modulation factor can in principle be used in memristor arrays, i.e. the

weight update can consist in the two factors (εpre ∗ Sj)), where Miρ
′(Ui).

Additionally, the variability in the conductance reading and writing can cause the learning

to fail or slow down. Independent noise in the read or write is not a problem and can even

help learning, as discussed in the stochastic SNN section. Fixed pattern noise, however,

can be problematic as it translates into variable learning rates per weight and can impair

learning.
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Appendix A

KCL Formulation of the crossbar

Equations (Ch3.4) and (Ch3.5) describe KCL continuity equations of the crossbar array.

These equations at the boundary lines (i = 1 or i = m or j = 1, or j = n) are different

than the nodes inside the array. By rewriting (Ch3.44) and (Ch3.45) in voltage form and

rearranging them, the nodal voltages are given by (A.1) and (A.10) for internal nodes where

2 ≤ j ≤ n − 1 for WLs and 2 ≤ i ≤ m − 1 for BLs. Where Rm,i,j is the switching device

at cell number (i, j). The boundary nodes, which are connected to the applied voltages, are

given by (A.2-A.9) for WLs and (A.11- A.18) for BLs. It worth to note that RsWL
and RsBL

contains the value of access resistors and half line resistance. Now, there are 2mn equations

in 2mn unknowns, and 2 (m+ n) applied signals.

0 =
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1

Rm,i,j

+
2

RWL

]
VWL,i,j−

VBL,i,j
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A.0.1 Linear Switching Modeling Equations Derivation

Consequently, These equations can be arranged in matrix form as follows:

MV +N V̇ = Gu (A.19)

whereM and N are 2mn× 2mn matrix, V̇ is 2mn× 1 vector, G is 2mn× 2(m+n) matrix.

And, V̇ is the time derivative of V.

Equation (A.19) can be further described by introducing a number of intermediate coeffi-

cients. M, N and G represent the coefficients of the nodal voltages and are segmented as
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(A.21a)

Bi=Diag
(

−1

Rm (i, 1)
,

−1

Rm (i, 2)
, . . . ,

−1

Rm (i, n)

)
(A.21b)

follows

M=

 A B

C D

 , N=

 P Q

R S

 , andG=

 GWL1GWL2 0

0 GBL1GBL2

 (A.20)

where A,B, C, D, P , Q, R and S are all mn ×mn matrices. Moreover, GWL1 and GWL2

are nm ×m and GBL1 and GBL2is nm × n. The model equations can be organized so that

C = B and R = Q.

A and B are diagonal matrices whereA = Diag (A1, A2, . . . , Am), C = B = Diag(B1, B2, . . . , Bm)

where Ai and Bi are n × n matrix for 1 ≤ i ≤ m and are given by (A.21). Moreover,

D = [D1D2 . . .Dn]T where Cj and Dj are m × mn matrix, for 1 ≤ j ≤ n and are given

by(A.22a). In addition, R = Q = −CmImn×mn.P and S are given by (A.22b) and (A.22c),

respectively. Finally, GWL1, GWL2, GBL1 and GBL2 are given by (A.23).
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D((m−1)n+ j, (m−1)n+ j)= 1
Rs BL2(j)

+ 1
Rm,i,j

+ 1
RBL

D ((i−1)n+j, (m−1)n+j)= 1
Rm,i,j

+ 2
RBL

2 ≤ i ≤ m− 1

D ((i−1)n+j, (i−2)n+ j)= −1
RBL

2 ≤ i ≤ m

D ((i−1)n+j, in+ j)= −1
RBL

1 ≤ i ≤ m− 1

(A.22a)

P=


P ((i−1)n+j, (i−1)n+j)=CWC+CWsb+Cm i = 1,m
P ((i−1)n+j, (i−1)n+j)=2CWC+CWs+Cm 2 ≤ i ≤ m− 1
P ((i− 1)n+ j, in+ j)= −CWC 1 ≤ i ≤ m− 1 ∀ 1 ≤ j ≤ n
P ((i− 1)n+ j, (i− 2)n+ j)= −CWC 2 ≤ i ≤ m

(A.22b)

S=


S ((i− 1)m+ j, (i− 1)m+ j)= CBC + CBsb + Cm j = 1, n
S ((i− 1)m+ j, (i− 1)m+ j)= 2CBC + CBs + Cm 2 ≤ j ≤ n− 1
S ((i− 1)m+ j, (i− 1)m+ j ± 1)= −CBC 2 ≤ j ≤ n− 1 ∀ 1 ≤ i ≤ m
S ((i− 1)m+ j, (i− 1)m+ 2)= −CBC
S ((i− 1)m+ j, (i− 1)m+ n− 1)= −CBC

(A.22c)

GWL1 =


gWL11

...

gWL1m

,gWL1i(1, i)=
1

RSWL1
(i)
, 1 ≤ i ≤ m (A.23a)

GWL2 =


gWL12

...

gWL2m

,gWL2i(n, i)=
1

RSWL2
(i)
, 1 ≤ i ≤ m (A.23b)

GBL1(j, j) =
1

RSBL1
(j)

1 ≤ j ≤ n (A.23c)

GBL2((2m− 1)n+ j, 2m+ n+ j) =
1

RSBL2
(j)

, 1 ≤ j ≤ n (A.23d)
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A.0.2 Nonlinear Switching Modeling Equations Derivation

The modeling equations are the same proposed in the linear case except that the switching

devices are function of the voltage across them. This affects only the coefficient matrix of

nodal voltages,M. Consider a simple case of nonlinearity and similarly it can be generalized

to general case. Assume that the switching device transconductance is Gm,i,j = Gmo,i,j +

Gm1,i,j × Vm,i,j where Vm,i,j = VWL,i,j − VBL,i,j. Thus, for inner node of a word line, the

resistive part will change to (A.24). As clear that a new quadratic term of the difference

between voltages of word line and bit line, respectively and another Rm,i,j is replaced by

1/ai,j. This system can be written in a matrix form as (A.25) whereMa is linear coefficient

matrix and is the same as coefficient matrix,M, in the linear case with replacing Rm,i,j by

1/Gmo,i,j. Mb nonlinear coefficients matrix and is the same as M with replacing Rm,i,j by

1/Gm1,i,j and RWL = RBL = RSWL
= RSBL = 0. T is a transformation matrix to rotate

nodal voltages vector, V, and is given as (A.26).

[
Gmo,i,j +

2

RWL

]
VWL,i,j−Gmo,i,jVBL,i,j+

Gm1,i,j(VWL,i,j − VBL,i,j)2 − VWL,i,j−1

RWL

− VWL,i,j+1

RWL

(A.24)

N V̇ = −MaV −Mb1(V −TV)2 +Gu (A.25)

T=

 0mn Imn

Imn 0mn

 (A.26)

Similarly, the higher nonlinear coefficients can be obtained creating the matrix form of

generalized system of equations given in (17).
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