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TECHNICAL DEVELOPMENT

Whole-body MRI is increasingly used to assess bone 
metastases (1). A key component of whole-body 

MRI protocols (2,3) is diffusion-weighted imaging 
(DWI), a functional imaging approach that measures the 
microscopic diffusion properties of water to probe tissue 
microstructure (4). Metastatic bone lesions are typically 
hyperintense on DW images and can be further evaluated 
quantitatively by computing the apparent diffusion co-
efficient (ADC) (2,5). However, identification of lesions 
can be difficult because high signal on DW images is also 
observed from some benign bone findings (2,6). Inter-
pretation of lesion ADC measurements is also challeng-
ing because measurements are confounded by commonly 
co-occurring factors, such as edema, necrosis, and local 
perfusion changes (7).

To overcome the limitations of conventional DWI, a 
number of techniques have been developed that leverage 
multicompartmental modeling of the diffusion-weighted 
signal (8–11). Restriction spectrum imaging (RSI) models 
the diffusion-weighted signal as the sum of signal contri-
butions from distinct, superimposed tissue compartments 
(11–13). Each compartment is characterized by a fixed 
diffusion coefficient, such that variation in signal between 
voxels reflects variation in the proportion of each tissue 
compartment comprising the total diffusion signal. Recent 
studies showed that multicompartmental RSI modeling 
outperforms conventional DWI for assessing cancer within 
specific organs such as prostate (12,14) and breast (15), but 
it has yet to be applied to whole-body imaging. Before RSI 
modeling can be applied to evaluate whole-body metastatic 
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Purpose:   To develop a multicompartmental signal model for whole-body diffusion-weighted imaging (DWI) and apply it to study the 
diffusion properties of normal tissue and metastatic prostate cancer bone lesions in vivo.

Materials and Methods:  This prospective study (ClinicalTrials.gov: NCT03440554) included 139 men with prostate cancer (mean age, 
70 years ± 9 [SD]). Multicompartmental models with two to four tissue compartments were fit to DWI data from whole-body scans 
to determine optimal compartmental diffusion coefficients. Bayesian information criterion (BIC) and model-fitting residuals were cal-
culated to quantify model complexity and goodness of fit. Diffusion coefficients for the optimal model (having lowest BIC) were used 
to compute compartmental signal-contribution maps. The signal intensity ratio (SIR) of bone lesions to normal-appearing bone was 
measured on these signal-contribution maps and on conventional DWI scans and compared using paired t tests (α = .05). Two-sample 
t tests (α = .05) were used to compare compartmental signal fractions between lesions and normal-appearing bone.

Results:  Lowest BIC was observed from the four-compartment model, with optimal compartmental diffusion coefficients of 0, 1.1 × 
10-3, 2.8 × 10-3, and >3.0 ×10-2 mm2/sec. Fitting residuals from this model were significantly lower than from conventional apparent 
diffusion coefficient mapping (P < .001). Bone lesion SIR was significantly higher on signal-contribution maps of model compart-
ments 1 and 2 than on conventional DWI scans (P < .008). The fraction of signal from compartments 2, 3, and 4 was also significantly 
different between metastatic bone lesions and normal-appearing bone tissue (P ≤ .02).

Conclusion:  The four-compartment model best described whole-body diffusion properties. Compartmental signal contributions from 
this model can be used to examine prostate cancer bone involvement.

Clinical trial registration no. NCT03440554

Supplemental material is available for this article.
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aged for each participant, corresponding to the head and 
neck, chest, abdomen, pelvis, and thighs. At each station, 
axial volumes of DW, T2-weighted, and T1-derived fat-water 
images were acquired with identical scan coverage. Multi-
shell diffusion data were acquired using four b values–0, 500, 
1000, and 2000 sec/mm2–sampled at one, six, six, and 12 
unique diffusion-encoding gradient directions, respectively, 
within a single acquisition (default tensor; repetition time, 
4750 msec; echo time, 75 msec; matrix, 80 × 80 resampled 
to 128 × 128; field of view, 400 mm; number of sections, 
46; section thickness, 6 mm; number of signals acquired, 
one; acquisition time, 5 minutes 45 seconds). The b = 0 sec/
mm2 volumes were acquired using forward and reverse phase 
encoding to allow for correction of distortion caused by B0 
inhomogeneity (16). T2-weighted data were acquired at a 
higher resolution for anatomic reference, using a single-shot 
fast spin-echo sequence (repetition time, 1350 msec; echo 
time, 113 msec; matrix, 384 × 224 resampled to 512 × 512; 
field of view, 400 mm; number of sections, 46; section thick-
ness, 6 mm). Acquisition details for the fat-water images are 
listed in Appendix S1.

MRI Data Postprocessing
All postprocessing and analysis of MRI data were performed 
using custom programs written in MATLAB (MathWorks) 
version R2017a. Each multishell DWI volume was corrected 
for distortions due to B0 inhomogeneity, gradient nonlinear-
ity, and eddy currents (11,16). To prevent image noise from 
biasing DWI parameter estimates (17), the signal intensity of 
the multishell DWI volumes was corrected to account for the 
presence of the noise floor (12,18). Isotropic diffusion was as-
sumed, so the directional DWI volumes at each b value were 
averaged. For comparison against RSI, conventional ADC 
maps were computed from these DWI data by fitting the signal 
at b values 0 and 1000 sec/mm2 to a monoexponential signal-
decay model (19).

Volumetric regions of interest (ROIs) were defined on the 
DW images by a radiation oncologist (C.H.F., 3 years of experi-
ence contouring images) using MIM software (MIM Software, 
version 7.2.6). ROIs were defined on the DWI volume acquired 
at the b value on which the lesion was best visualized. This was 
typically the volume acquired at b = 1000 sec/mm2, but b = 500 
sec/mm2 and b = 2000 sec/mm2 were also used. ROIs were re-
viewed for accuracy and adjusted where necessary by a board-
certified radiologist (M.E.H., 6 years of contouring experience). 
Bone-lesion ROIs were defined for 24 participants over 127 
identified bone lesions. Lesions were confirmed through radio-
logic, clinical, laboratory, and histologic evaluation of all avail-
able data by a board-certified radiologist (M.E.H.). In addition 
to these MRI data, standard-of-care clinical imaging for trial par-
ticipants included radiography, bone scintigraphy, conventional 
MRI, and PET/CT scans, which were also examined to assist in 
confirmation of lesions. Bone-lesion ROIs were defined directly 
on the DW images, but any other available imaging modality 
(eg, T2-weighted MRI, fat-water MRI, ADC maps) and all ap-
plicable clinical data were used as references to aid in the defini-
tion of lesion boundaries.

disease, model parameters need to be established that character-
ize diffusion properties throughout the body.

This study aimed to develop an RSI model suitable for whole-
body DWI by optimizing the number of model compartments 
and associated diffusion coefficient of each compartment. The 
optimized model was then applied to examine the diffusion signal 
properties of normal tissue and metastatic bone lesions in vivo.

Materials and Methods
This Health Insurance Portability and Accountability Act–
compliant, institutional review board–approved study was part 
of a single-center prospective whole-body MRI trial (Clinical 
Trials Registry no. NCT03440554).

Participants
Patients with suspected prostate cancer were recruited between 
August 2017 and October 2020. Inclusion criteria for this 
study were the following: age of 18 years or older, Eastern Co-
operative Oncology Group performance status 0–3, ability to 
lie supine for 60 minutes, and ability to hear and follow verbal 
instructions. Potential participants were excluded if they had 
contraindications to MRI, weighed 350 lb (157.5 kg) or more, 
or were unable to complete the full MRI examination. Partici-
pants provided written informed consent for whole-body MRI 
examination, which was performed in addition to any routine 
clinically indicated standard-of-care imaging.

Whole-Body MRI Acquisition
All MRI scans were performed with a 3-T clinical scanner 
(Discovery MR750; GE Healthcare). Five stations were im-

Abbreviations
ADC = apparent diffusion coefficient, BIC = Bayesian information 
criterion, DWI = diffusion-weighted imaging, PSA = prostate-spe-
cific antigen, ROI = region of interest, RSI = restriction spectrum 
imaging, SIR = signal intensity ratio

Summary
An optimized four-compartment model better characterizes whole-
body diffusion than conventional diffusion-weighted imaging meth-
ods. It can be applied to whole-body diffusion MRI data to examine 
metastatic prostate cancer.

Key Points
	■ A four-compartment diffusion-weighted imaging (DWI) signal 

model, with diffusion coefficients of 0, 1.1 × 10-3, 2.8 × 10-3, and 
>3.0 ×10-2 mm2/sec, yielded lower Bayesian information criterion 
and better fit to whole-body DWI data than other models.

	■ Metastatic bone lesion conspicuity was significantly higher on sig-
nal-contribution maps of model compartments 1 and 2 compared 
with conventional DWI (P < .008 for all comparisons).

	■ The fraction of signal from model compartments 2, 3, and 4 was 
significantly different between metastatic bone lesions and normal-
appearing bone tissue (P ≤ .02 for all comparisons).

Keywords
Whole-Body MRI, Diffusion-weighted Imaging, Restriction Spec-
trum Imaging, Diffusion Signal Model, Bone Metastases, Prostate 
Cancer
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DWI data. Fitting residual was also examined at the voxel 
level and ROI level within specific tissues to examine how the 
fit of each model varied between anatomic structures.

For the optimal RSI model (the model with lowest ΔBIC), 
signal-contribution (Ci) maps were computed for each partici-
pant via nonnegative least-squares fitting of the model to the 
signal-versus–b value curve from each voxel (12). To quantify 
bone-lesion appearance on signal-contribution maps, a signal 
intensity ratio (SIR) (previously used to measure lesion conspi-
cuity [7,12]) was calculated for each lesion by dividing the mean 
signal within the lesion ROI by the mean signal within the corre-
sponding control ROI. SIR was also computed for conventional 
DW images and ADC maps for comparison. To account for the 
inverse relationship between tumor cellularity and ADC values, 
we reported the inverse SIR on ADC maps, such that a decrease 
in lesion ADC relative to normal tissue (as expected for prostate 
cancer tumors) will produce an SIR greater than 1. Compart-
mental signal fractions for the optimal model were computed by 
normalizing the C value of each compartment by the sum of all 
C values: .

Statistical Analysis
Statistical analyses were performed using MATLAB (Math-
Works, version R2017a). ΔBIC (12,21) and model-fitting re-
sidual were recorded from the fitting of each model to all vox-
els. Fitting residual was also examined for individual voxels and 
within the specific tissue ROIs. Fitting residual was computed 
as the square root of the sum-of-squared difference between 
observed and model-predicted signal values. Violin plots were 
used to show the distribution of fitting residuals in each data 
set, and paired t tests were used to compare the distribution 
of fitting residuals between different models. Violin plots were 
also used to examine the distribution of lesion SIR values on 
conventional DWI and RSI signal-contribution maps. Paired 
t tests were used to determine if mean lesion SIR on RSI maps 
was significantly higher than on conventional DW images. 
Compartmental signal fractions were compared between bone 
lesions and normal-appearing bone using two-sample t tests. 
For all t tests, P < .05 was considered to indicate a significant 
difference. For SIR and signal fraction comparisons with P < 
.05, Cohen d was computed to assess the effect size of the ob-
served difference.

Results

Participant Characteristics
A flowchart illustrating participant selection for this study 
is shown in Figure 1. A total of 139 participants completed 
whole-body MRI (mean age, 70 years ± 9 [SD]; PSA level, 79.3 
ng/mL ± 234.2). Twenty-four of these participants presented 
with osseous metastatic lesions (mean age, 69 years ± 11; PSA 
level, 76.2 ng/mL ± 118.8) that could be confidently con-
toured for lesion-level analysis. Eighteen of these 24 underwent 
systemic treatment (such as androgen deprivation therapy and/
or chemotherapy) prior to their MRI examination. Five par-
ticipants without any known metastases and low clinical risk of 

For each lesion ROI, a corresponding control ROI was de-
fined in normal-appearing bone that contained the same num-
ber of voxels as the lesion ROI. For most lesions (120 of 127), 
this was accomplished by reflecting the lesion ROI across mid-
line, then manually reviewing the reflected ROI to ensure its 
placement in a normal-appearing region of bone contralateral 
to the lesion location. For three lesions in vertebrae that were 
located along the midline, control ROIs were manually placed 
in normal-appearing vertebral bone either superior or inferior 
to the lesion within the same imaging station. For four lesions 
in the sternum or ribs that could not be reflected without also 
containing lesion tissue, control ROIs were manually placed in 
normal-appearing bone within the same field of view. Control 
ROIs were inspected to ensure placement in normal-appearing 
bone. For three participants with systemic disease throughout 
the skeleton, no control ROIs were defined. ROIs were also de-
fined for five participants without known metastases and low 
clinical risk of metastatic disease (based on prostate-specific an-
tigen [PSA] level, cancer stage, and other available clinical imag-
ing) to examine the diffusion properties of various normal tissues 
in addition to metastatic bone lesions. These ROIs were drawn 
in the pelvic and thigh stations to avoid respiratory motion ar-
tifacts, specifically over the bladder (including urine), prostate, 
testes, and subcutaneous fat.

Multicompartmental RSI Modeling
RSI models the DWI signal as the summation of signal from 
distinct tissue compartments:

,

where S (b) denotes the noise-corrected DWI signal at a par-
ticular b value, K is the number of tissue compartments, Ci is 
the unitless weighting factor that describes the contribution 
of a particular compartment to the overall signal, and Di is 
the compartmental diffusion coefficient. By convention, the 
compartments are ordered from lowest to highest Di, with 
the first compartment (C1) typically describing restricted dif-
fusion (12). Depending on the application, other compart-
ments may variously account for hindered diffusion, free 
diffusion, and/or flow (11,12,15). To determine optimal K 
and Di values for whole-body DWI, simultaneous fitting of 
the model to data from all 139 participants (>235 million 
voxels) was performed (12), with K ranging from two to four 
(maximum K is limited by the number of b values used dur-
ing acquisition). This fitting process varied the Di values of 
the model and selected those that minimized the difference 
between observed and model-predicted DWI signal across all 
voxels (see White et al [12] for more implementation details 
and Conlin et al [20] for a formal examination of the esti-
mation theory underpinnings of the RSI fitting approach). 
Note that this approach aims to determine globally optimal 
Di values that produce the best fit across all voxels collectively, 
rather than attempting to optimize the diffusion coefficients 
for each voxel. The relative Bayesian information criterion 
(ΔBIC [12,21]) and model-fitting residual of each model was 
recorded to evaluate how well they described the whole-body 
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four-compartment model yielded lowest BIC. Mean fitting re-
sidual values (in units of signal intensity) were 8.0 (median, 
5.9) for the monoexponential model, 5.2 (median, 3.5) for 
the two-compartment RSI model, 2.6 (median, 1.8) for the 
three-compartment RSI model, and 2.0 (median, 1.3) for the 
four-compartment RSI model. The mean fitting residual from 
any RSI model was significantly lower than for the monoexpo-
nential model (P < .001 for each comparison). Fitting residual 
also decreased significantly with increasing RSI model order, 
with mean residual from the three-compartment model lower 
than from the two-compartment model (P < .001), and mean 
residual from the four-compartment model lower than from 
the three-compartment model (P < .001).

This overall trend of decreasing residual with increasing 
model order is apparent in both the voxelwise residual maps 
and tissue-specific ROIs (Fig 3). Mean and median fitting re-
sidual values for the different tissue ROIs are listed in Table 
S1. In normal-appearing bone, prostate, and testes, the fitting 
residual from any of the RSI models was lower than from the 
conventional monoexponential model (P < .001 for all com-
parisons). In bone lesions and subcutaneous fat, residuals from 
the two-compartment RSI model were not lower than from the 
monoexponential model (P > .99 for comparisons of both tis-
sues), but residuals from the three- and four-compartment RSI 
models were (P < .001 for all comparisons). In the urine-filled 
bladder, only the four-compartment RSI model yielded lower 
residuals than the monoexponential model (P > .99 for the two-
compartment RSI model, P > .99 for the three-compartment 
model, P < .001 for the four-compartment model). In all tissues 
examined, the fitting residual from the four-compartment RSI 
model was significantly lower than from any other model (P < 
.001 for all comparisons). Within bone lesions, the mean fitting 
residual from the four-compartment RSI model was five times 
lower than from the conventional monoexponential model.

metastatic disease (based on PSA level, cancer stage, and avail-
able imaging) were also included (mean age, 65 years ± 8; PSA 
level, 4.8 ng/mL ± 3.3) to examine the diffusion properties of 
various normal tissues in addition to metastatic bone lesions.

Multicompartmental Model Fitting
Figure 2 shows the relative BIC values and fitting residuals 
from each model’s fit to the voxels from all 139 participants. 
ΔBIC from the optimized RSI models was lower (more favor-
able) than that obtained from the monoexponential model 
used for conventional ADC (290 for the monoexponential 
model vs 206 for the two-compartment RSI model, 49 for 
the three-compartment RSI model, and 0 for the four-com-
partment RSI model). Among RSI models, ΔBIC decreased 
as the number of model compartments increased. Overall, the 

Figure 1:  Flowchart illustrates participant selection for this study. ECOG = 
Eastern Cooperative Oncology Group.

Figure 2:  Relative Bayesian information criterion (ΔBIC) and model-fitting residual describe the overall fit of each model to 
whole-body diffusion data. (A) Bars show the ΔBIC value of each model fit to all voxels from all 139 participants. (B) Violin plots 
show the distribution of fitting residuals across all voxels. The median of each distribution is indicated by a solid horizontal line, the 
mean by a dashed horizontal line. An asterisk (*) indicates that the mean fitting residual for a restriction spectrum imaging (RSI) 
model is significantly lower (P < .05) than for the monoexponential model used for conventional apparent diffusion coefficient map-
ping (labeled as “Mono”). Double daggers (‡) indicate that the mean fitting residual for an RSI model is significantly lower (P < .05) 
than for the RSI model with one fewer compartment. Lower ΔBIC or residual indicates a better fit to the data.
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bone lesions in the sacrum and right femur. The lesions are 
salient on the C1 and C2 maps. Computation time for these 
voxelwise signal-contribution maps was 3.88 seconds per par-
ticipant ± 0.37 (0.79 second per station ± 0.02) on a desktop 
computer with 64-GB RAM and an eight-core, 2.40-GHz 
CPU (Intel Xeon E5–2630 version 3). Figure 5 compares le-
sion SIR between Ci maps of the four-compartment RSI model 

Application of the Optimized RSI Model and Examination of 
Metastatic Bone Lesions
Diffusion coefficients (Di values) for the optimized four-com-
partment model were 0, 1.1 × 10-3, 2.8 × 10-3, and >3.0 ×10-2 
mm2/sec (Di values for all models are listed in Table S2). Rep-
resentative signal-contribution (Ci) maps computed using this 
model are shown in Figure 4 for a participant with metastatic 

Figure 3:  Model-fitting residual at the voxel and ROI level. (A) Voxelwise maps of fitting residual in a coronal plane of the same participant (67-year-old man with 
prostate cancer) using different models. A T2-weighted image of the same plane is included for reference. (B) Violin plots show the distribution of fitting residuals for all 
voxels in each tissue ROI. The median of each distribution is indicated by a solid horizontal line, the mean by a dashed horizontal line. An asterisk (*) indicates that the mean 
fitting residual for an RSI model is significantly lower (P < .05) than for the monoexponential model used for conventional apparent diffusion coefficient mapping (labeled as 
“Mono”). Double daggers (‡) indicate that the mean fitting residual for an RSI model is significantly lower (P < .05) than for the RSI model with one fewer compartment. ROI 
= region of interest, RSI = restriction spectrum imaging.
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and conventional DWI. Mean and median SIR values are also 
listed in Table S3. Lesion SIR was generally highest on RSI 
C2 maps, and the overall increase in lesion SIR on C2 was sig-
nificant compared with conventional ADC maps (P < .001) or 
DW images (P < .001 vs any of the sampled b values). Effect 
size of the observed increase in SIR on RSI C2 was d = 0.7 (Co-
hen d) versus ADC, d = 0.6 versus b value of 0 sec/mm2, d = 0.6 
versus b value of 500 sec/mm2, d = 0.6 versus b value of 1000 
sec/mm2, and d = 0.7 versus b value of 2000 sec/mm2. Lesion 
SIR was also higher on RSI C1 maps than on conventional im-
ages (P < .001 vs conventional ADC map, P = .008 vs b value 
of 0 sec/mm2, P = .002 vs b value of 500 sec/mm2, P = .001 
vs b value of 1000 sec/mm2, P < .001 vs b value of 2000 sec/
mm2) but was not as high as on RSI C2 maps. Effect size of the 
observed increase in SIR on RSI C1 was d = 0.6 versus ADC, d 
= 0.3 versus b value of 0 sec/mm2, d = 0.4 versus b value of 500 
sec/mm2, d = 0.4 versus b value of 1000 sec/mm2, and d = 0.4 
versus b value of 2000 sec/mm2.

Clear differences were observed in compartmental sig-
nal fractions between tissues (Fig 6, Table S4). Qualitatively, 
normal-appearing bone and subcutaneous fat showed the most 
even distribution of signal from all compartments. Prostate 
and testes were enriched in signal from compartments 2 and 
3. Signal from the urine-filled bladder was almost entirely de-
rived from compartments 3 and 4. Compared with normal-
appearing bone, lesions presented with a higher fraction of 

signal from compartment 2  (P < .001) and a lower fraction of 
signal from compartments 3 (P = .02) and 4 (P < .001). The ef-
fect size of the difference in compartmental signal composition 
between lesions and normal-appearing bone was d = 2.4 for C2,  
d = 0.7 for C3, and d = 1.4 for C4.

Discussion
This study extended the RSI modeling approach to whole-
body DWI as a first step in the development of biomarkers 
for prostate cancer bone metastases. Whole-body RSI requires 
a model that accurately characterizes diffusion, not only in 
metastatic disease foci, but also normal tissues throughout 
the body. We leveraged a previously described fitting proce-
dure (12,18) to determine globally optimal whole-body RSI 
model parameters, using DWI data from whole-body scans 
of participants with metastatic and nonmetastatic prostate 
cancer (more than 235 million voxels from 139 participants) 
for model development. We found that a four-compartment 
RSI model with Di values of 0, 1.1 × 10-3, 2.8 × 10-3, and >3.0 
×10-2 mm2/sec yielded lower BIC and better fit to whole-body 
DWI data than other models under consideration (P < .001 
for all comparisons).

Improvement in BIC and fit with the four-compartment 
model was particularly notable in comparison to the mono-
exponential model used for conventional ADC mapping. The 
monoexponential model assumes that diffusional displacement 

Figure 4:  Coronal whole-body images of a 
participant (67-year-old man with prostate cancer) 
with metastatic bone lesions in the sacrum and right 
femur (red arrows). (A) Conventional MR images 
of the participant. (B) Signal-contribution (Ci) maps 
for the optimized four-compartment RSI model. The 
corresponding diffusion coefficient (Di) of each model 
compartment is listed in parentheses next to the com-
partment label. ADC = apparent diffusion coefficient, 
DWI = diffusion-weighted imaging, RSI = restriction 
spectrum imaging.
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of water within each voxel can be adequately described by a sin-
gle Gaussian probability distribution, which is generally only 
true inside fluid-filled structures such as the urinary bladder 
(22). For most voxels, the complex microstructure of underly-
ing tissue causes the diffusional probability distribution to de-
viate substantially from the expected Gaussian form and results 
in a poor fit to the data from the monoexponential model, 
especially at higher b values (22,23). Conversely, multicom-
partmental RSI models account for different microstructural 
components co-occurring within a single voxel of tissue and 
thereby enable a better fit to the data.

Because RSI model Di values are optimized per compartment, 
rather than per voxel, computation of RSI signal-contribution 
maps is a linear estimation problem that can be performed 
quickly (under 1 second per volume), making it suitable for in-
corporation into clinical workflows. While the acquisition time 
for a single RSI volume was nearly 6 minutes, each RSI data set 
included DWI volumes at four different b values and multiple 
diffusion-encoding gradient directions. Because conventional 
DW images are directly acquired as part of an RSI protocol, RSI 
scans may be substituted for conventional DWI acquisitions to 
offset the additional scan time required for RSI.

Different physiologic aspects encapsulated by the four-
compartment model can be appreciated by examining the Di 
of each compartment and the anatomic distribution of com-
partmental signal. An optimal D value of 0 mm2/sec for com-
partment 1 indicates that diffusion in this compartment is too 
slow to be reliably measured given the relatively long diffusion 
times employed during data acquisition (rather than imply-
ing a total lack of diffusion). Signal from this compartment is 

likely attributable to restricted diffusion of intracellular water 
(11,24), although additional studies are needed for direct his-
tologic correlation. Signal from compartment 1 was enriched 
in metastatic bone lesions, as demonstrated by their hyperin-
tensity on C1 signal-contribution maps (that were computed 
using 0 mm2/sec as a proxy D1 value for the precise D1 that 
would require shorter diffusion times to measure). High C1 sig-
nal was also observed in the brain, spinal cord, and subcutane-
ous fat. Compartment 2, with a D value of 1.1 × 10-3 mm2/sec, 
likely reflects hindered diffusion of water through extracellular 
extravascular space (11,25). Signal from this compartment was 
notably hyperintense in bone lesions, brain, viscera, and skel-
etal muscle. The optimal D value of compartment 3 was 2.8 × 
10-3 mm2/sec, similar to the diffusion coefficient of free water 
(11,26). C3 signal corresponded to structures composed of or 
containing a high fraction of fluid, such as the urinary blad-
der, cerebrospinal fluid, and renal parenchyma. Compartment 
4 accounted for rapid pseudodiffusion (intravoxel incoherent 
motion flow effects [27]), having an optimal D much greater 
than that of free diffusion (>3.0 × 10-2 mm2/sec). A more pre-
cise estimate of the D value for compartment 4 would require 
additional sampling of the DWI signal at b values less than 100 
sec/mm2 (28). The smallest nonzero b value used for data ac-
quisition in this study (500 sec/mm2) was too high for reliable 
measurement of the rapidly decaying signal from vascular flow. 
Signal from compartment 4 was concentrated in major vessels 
and highly perfused tissues like the renal cortex, as indicated 
by their visibility on C4 signal-contribution maps (computed 
using an arbitrarily large proxy value for the exact D4 variable 
that was not precisely measured in this study).

Figure 5:  Violin plots show the signal intensity ratio (SIR) distributions of metastatic bone lesions on conventional DW 
images and compartmental signal-contribution (Ci) maps of the optimized four-compartment RSI model. SIR was calculated 
for each lesion by dividing the mean signal within the lesion ROI by the mean signal within a control ROI defined on normal-
appearing bone. The median of each distribution is indicated by a solid horizontal line, the mean by a dashed horizontal 
line. An asterisk (*) indicates significantly greater (P < .05) mean lesion SIR compared with conventional apparent diffusion 
coefficient maps. Double daggers (‡) denote significantly greater (P < .05) mean lesion SIR compared with DW images 
at any of the sampled b values. The dagger (†) indicates an inverted SIR for ADC maps, such that decreased lesion ADC 
relative to normal tissue yielded a value > 1. ADC = apparent diffusion coefficient, DWI = diffusion-weighted imaging, ROI 
= region of interest, RSI = restriction spectrum imaging.
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Metastatic bone lesion SIR was significantly higher on RSI C1 
and C2 signal-contribution maps than conventional DW images 
or ADC maps. C2 signal in particular shows the highest SIR of 
any model compartment and could potentially help distinguish 
metastatic bone lesions from normal bone. However, we empha-
size that the aim of this study was the technical development of 
a whole-body RSI model, en route to evaluation of its clinical 
efficacy. Future studies will formally examine whether RSI im-
proves the detection of metastatic bone lesions compared with 
conventional approaches.

The decomposition of diffusion signal into different mi-
crostructural compartments using RSI may also provide some 
insight into the physiology of prostate cancer bone involve-
ment. The significant increase in C2 signal fraction observed in 
metastatic lesions compared with normal bone suggests con-
siderable remodeling of the extracellular matrix (29), while the 
significant decrease in C3 and C4 signal fractions may indicate a 
concomitant reduction in local free water and perfusion. Given 
the large proportion of participants in our study who under-
went systemic therapy prior to their MRI examination, RSI 
signal changes may also reflect treatment effects superimposed 
on cancer-induced physiologic changes. Treatment effects may 
also explain the lack of any significant difference in fraction 
of signal from compartment 1 between metastatic lesions and 
normal-appearing bone. C1 signal is highly correlated with tis-
sue cellularity (13,30,31), which might be expected to increase 
as a result of metastatic lesion growth. Cytotoxic chemotherapy 
or radiation treatments, however, would counteract cancerous 

hyperplasia (11,32) and perhaps mitigate C1 signal increase. 
Furthermore, high cellularity of normal marrow adipose tissue 
and red bone marrow could mask cancerous hyperplasia on C1 
images even without treatment effects. Subsequent investiga-
tions will specifically examine how different histologic aspects 
of prostate cancer bone involvement affect the signal from dif-
ferent RSI model compartments.

A potential limitation of this study was that our bone-lesion 
data set was not uniform with respect to treatment; some par-
ticipants underwent therapy prior to their MRI examination 
while others were treatment naive. However, because treatment 
heterogeneity is typical of the broader patient population for 
which whole-body MRI scans are prescribed, it is not expected 
to limit the applicability of our findings. Furthermore, the pro-
posed model is meant to describe whole-body diffusion prop-
erties generally, not only the properties of prostate cancer bone 
metastases. The application of the model to evaluate prostate 
cancer bone metastases was intended as a demonstration of the 
potential clinical utility of the model, not to imply that it is 
only suitable for that specific disease phenotype. Because the 
model was developed using all voxels from many whole-body 
data sets, of which only a small fraction was from metastatic 
bone lesions, the treatment status of individual lesions has a 
negligible impact on the global model parameters determined 
in this study. Another limitation was that we were unable to 
reliably compare the RSI signal properties of treated lesions 
to those of untreated lesions. Because RSI C1 signal inten-
sity is strongly correlated with cellularity, however, we might 

Figure 6:  Compartmental signal fractions of different tissues for the optimized four-compartment RSI model. The height of each bar indicates the mean signal fraction 
across all ROIs, with the overlaid error bar indicating the SD. An asterisk (*) over a bar indicates that the signal fraction in this compartment is significantly different (P < .05) 
in bone lesions compared with normal-appearing bone. ROI = region of interest, RSI = restriction spectrum imaging.
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anticipate significantly lower C1 signal from lesions after cyto-
toxic chemotherapy or radiation treatments (11,32). This is an 
area of interest for future study.

In summary, an optimized RSI model may provide a more 
comprehensive characterization of whole-body diffusion than 
conventional DWI methods. Higher lesion signal intensity on 
RSI signal-contribution maps may help to discriminate between 
cancerous and normal bone during whole-body cancer assess-
ment, although formal clinical efficacy of RSI was not spe-
cifically investigated here. Examination of RSI compartmental 
signal contributions may provide insight into microstructural 
changes that accompany prostate cancer bone involvement.
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