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AN ELASTO-PLASTIC ANALYSIS
OF REISSNER-MINDLIN PLATES

PANAYIOTIS PAPADOPOULOS' and ROBERT L. TAYLOR?

Department of Civil Engineering
University of California at Berkeley, Berkeley, CA, USA

ABSTRACT

A finite element analysis of elasto-plastic Reissner-Mindlin plates is presented. The discrete field
equations are derived from a nonlinear version of the Hu-Washizu variational principle. Associa-
tive plasticity, including linear hardening, is employed by means of a generalized von Mises-type
yield function. A predictor/corrector scheme is used to integrate the plastic constitutive rate equa-
tions. Numerical simulations are conducted for a series of test problems to illustrate performance
of the formulation.

INTRODUCTION

Over the past two decades considerable effort has been directed towards the improve-
ment of thick plate finite elements. Much of this work has been done within the context of
linear elasticity. As a result, significant progress has been reported and new, efficient ele-
ments have emerged, see, e.g., [1,2,3]. These elements overcome the problem of transverse
shear locking in the thin plate limit through the use of mixed interpolations and, at the
same time, pass the patch test for pure bending.

This paper is devoted to inelastic analysis of plates, which include the effects of
transverse shear deformation. The particular plate theory is commonly referred to as a
Reissner-Mindlin theory and is based on results given in [4] and [5]. Here, the constitutive
model is elasto-plastic and the presentation is given in resultant form, namely in terms of
the stress resultants rather than the total stresses themselves. The choice of a resultant for-
mulation is dictated by an attempt to save computational effort required in order to
integrate local stresses through the plate thickness. The proposed model is based on an
additive decomposition of strains and is viewed as a generalization of the plane stress asso-
ciative model of von Mises. Indeed, the same model falls within the framework of classical
elasto-plastic shell model proposed by Shapiro, [6], and recently extended to include har-
dening effects by Simo et al., [7].

The solution of the discrete inelastic problem is obtained incrementally using a full
Newton method. Integration of the constitutive equations is performed by a
predictor/corrector scheme, which features an initial elastic step, followed by elasto-plastic
correction steps. This class of numerical algorithms (referred to as "return mapping algo-
rithms” in the engineering literature) originates in the work of Wilkins, [8], and has been
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investigated in various contexts thereafter, see, e.g., [9,10,11].

The strain-driven nature of computational plasticity is becoming increasingly more
appreciated. A continuum mechanics point of view is offered in [12]. Displacement con-
trol and continuation procedures (e.g., arc-length) are viewed as means of retaining con-
vergence of iterative solutions by enforcing, in various manners, a contained load-
displacement path. In this work, stress resuitants are used in the algorithmic development,
but it is implicitly understood that the energy conjugate strains are the primary variables of
the problem.

The proposed algorithm is incorporated into the mixed triangular non-locking ele-
ment presented in [13], and its performance is evaluated by a series of test problems.

1. REISSNER-MINDLIN PLATE BENDING THEORY

The plate model used here constitutes a simplification of the theories proposed by
Reissner, [4], and Mindlin, [5]. It is based on the following assumptions:

(i) The domain Q of the plate is of the form
( ; )
1= ’t(x,y,Z)éR | ze[-Yr Y] , (xy)€ACR j

(ii) o33 =0

(ii1) u=z08,(xy) ,v= -z0,(x,y) , w=w(xy),

where 8, and 6, are the rotations of transverse line elements about the x and y axes,
respectively (e.g., see [14]). Assumption (iii) implies that straight normals to the reference
surface, (z=0), remain straight, but do not necessarily remain normal to it after deforma-
tion takes place. Also the transverse displacement w does not depend upon the thickness.
Assumption (ii) is obviously inconsistent with three-dimensional elasticity. However, the
transverse normal stress may be neglected for plates where the thickness is small compared
with the other dimensions. The constitutive equations are required to satisfy a plane stress
condition augmented by transverse shear terms.

The assumed displacement field (iii) yields in-plane strains of the form
€ =128, , € = =28, , , V5 = z2(8y, — 8, ;) (1.1)
and transverse shear strains
Ve =Wt 8y Yy =W,y — 8, (1.2)

The in-plane stresses, when integrated along the plate thickness yield stress resultants
(moments) of the form :



t 13 i
2 2 2
M, = faxzdz , My, = fcryzdz , My = My, = foxyzdz (1.3)
! ] t
2 T2 )
In order to simplify the development, we introduce standard matrix notation and define
T
M= [M, M, Mxy]
and
€® = [0, 0y (8,050

Similarly, the out-of-plane stresses, when integrated along the thickness, give transverse

shear forces
(1.4)

oy, dz

'ﬂN"‘

o,dz , O,

A S NI
i

0, =

|
[S1E3
NI-—

Again, in matrix notation we have
= T [ T
e-lo. o] . v= ot oy —00)]

For further notational simplification, we establish the generalized force and strain vectors
(1.5)

defined respectively as
S = [ T = [ 1r
lM Q | , E K Y|

In isotropic linear elasticity, the constitutive equations are written in terms of the above

generalized vectors as
M] s 0] [«
1Q] e pfojvi
where
3 [1 v O
i= __E s-qv 1 0
12(1 — v*)
00 1-v
2 |

and
D; = KGIIZ = ole

Note that k is the correction parameter used to account for the assumption of constant

transverse shear along the plate thickness. Also 1, denotes an n Xn identity matrix. For

further details, see [13].
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2. RESULTANT STRESS ELASTO-PLASTICITY FORMULATION

In this section the underlying assumptions of the continuum elasto-plastic model are
presented. Matrix notation is used extensively to facilitate algebraic manipulations.

2.1 Decomposition of strains
Within the realm of linearized kinematics, generalized strains are decomposed addi-
tively to elastic and inelastic (plastic) parts according to

E=E + FF (2.1.1)

For the rationale and physical meaning of the above assumption, consult, e.g., [15].

Resultant stresses and elastic strains are related via the elastic moduli as

S = D°E* = D*(E — E?) (2.1.2)

2.2 The yield criterion

As noted above, the Reissner-Mindlin plate theory considered here neglects the
transverse normal stresses o33. This allows for a straightforward generalization of the von
Mises plane stress yield function to include, in addition to the in-plane forces, the effect of
transverse shear resultant forces, see Fig. (2.2.1). In stress space we define the dimension-

less function
1 1
f(S) = M2+ M} - MM, + 3M,;);;2— + (02 + 0P of (2.2.1)
U u

where for homogeneous solid plates

t
M, = =0, , Q,= —7=0,
4 \/g
and o, is the uniaxial yield stress.

Normalization of moments and shears in (2.2.1) is necessary for consistency. In
matrix notation we have

f(S) = sTas , (2.2.2)
where
[ii-P 0 ]
Mll
A =
1
0o Lo
“ o
and
) [ 2 -1 0]
P = 5‘ -1 2 0'
00 6]
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Taking into account (2.1.2), we may rewrite (2.2.2) in strain space as
f(S(E?)) = g(E°) = E° TBE* , (2.2.3)
with
B = D°AD®

Linear hardening is accommodated by admitting the existence of an internal variable
£, which constitutes a measure of the plastic deformation. We define £ at time 7 as

T
£= %(@EP):(BE” Nedr (2.2.4)
0
where
!
—1; 0
(513
0= I 0 1|
L
Consequently, we may write the yield criterion in strain space as
((ry + HE )2
D(E°,E) = g(E°) — l-—-—;—-—--J , (2.2.5)
y

with H being an isotropic linear hardening parameter.

2.3 Flow rule and ceonsistency condition
We consider an associative flow rule which is expressed as

P

Ef = yD° ! 2.3.1
Y prer (2.3.1)

Taking into account (2.2.3) and (2.2.4), we obtain
E’ = 4G | (2.3.2)

where
G = 2AS8 = 2ADE*

and vy is a parameter to be determined by enforcing the plastic consistency condition. Note
that, despite the fact that the plastic flow is specified in rate form, the constitutive law is
rate-independent.

The consistency condition dictates that, during plastic loading, stresses (strains)

remain on the yield surface in stress (strain) space. Enforcing this condition in strain space
and noting from (2.2.4) and (2.3.2) that

£ = [F(0F):(0F)]*

we have by means of (2.2.5)
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®(E*,£) = 0
or using (2.2.3)
(D*G):E* -2\/(%—)771 oy :—y—i—H-QI@GH 0,
where
|66 |- [(©6):®0) |*
Consequently,

ay (D°G):E*

- V(S
V= Va6, v aon Tec]

(2.3.3)

2.4 Variational formulation

In order to allow mixed finite element approximations, we introduce a variational
(weak) form of the momentum balance equations for the elasto-plastic problem. The for-
mulation is based on the total potential energy for bending and on the Hu-Washizu three-
field principle, [16], for the transverse shear. The inelastic version of the functional is
made possible by defining the stored (elastic) energy W as

W = W(e,y) = %—x‘ TDee + %’y’ Tpeye

where
k¢ = k(@) —w? , ¥y =y -7
and in matrix notation

W=WwW(0,y = %—E‘ Tpege

Accordingly, the functional form of the variational equations is

(8,w,Q,y) = JWdd — [QT(y — Vw —eB)dA ~ [wgdA + Ny . (2.4.1)
A A A

where the alternating tensor e is defined as

o

and Tlgyy describes the effect of boundary and other loads.

It should be noted that in order to retain a strain-based formulation, it is ultimately
necessary that the transverse stress resultants Q in (2.4.1) be dependent on strain quanti-

ties.
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2.5 The elasto-plastic problem - minimization statement

In view of the formulation developed in the above subsections, we obtain the qua-
dratic minimization problem which may be stated as;

minimize I,

subject to the Kuhn-Tucker loading/unloading unilateral constraints
® =< 0andy = 0 withy® = 0.

3. DISCRETE SOLUTION OF THE ELASTO-PLASTIC PROBLEM

The continuum elasto-plastic problem is tackled numerically on an incremental basis
by discretizing the (implicit) time involved in the rate equations (2.3.2) and computing
iteratively the resulting generalized stress-strain response function.

The discrete algorithmic problem can be stated as follows;

Given: previous state of strains and total strain increment
{En b E!’l’ ’ gn 1 3 !AEl I
{ ) C )

respectively, at time 7 = 7,.

Compute: the state of strains
'[En+1 ’ Ef%—l ’ §n+11
{ J

at the current time 7=T, 4+1.

3.1 Flow equations and consistency condition

The flow equations (2.3.2) and the internal variable evolution equation (2.2.4) are
integrated by the unconditionably stable backwards Cauchy-Euler method yielding

Ef‘f-l = Er}: + )‘n+1Gn+1 » (311)
2
Env1 = &4 Ma+1V( §’)|®G,.+1‘ ; (3.1.2)

where

A+l = Ya+1 ~ Ya
In addition, the discrete consistency condition

DE; 1,6+ =0 (3.1.3)
has to be fulfilled.
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Equations (3.1.1) and (3.1.3) are implicit and generally have to be solved iteratively.
For this reason, they are rewritten as
R = Ef + ha+1Gner — Er[:é-l =0,
r=-OE,s; —Ef41 , E4)) = 0
and a Newton scheme is employed to solve them. Specifically, given a state (i) of the local
Newton iteration (at every Gauss point in each finite element), we solve

_9R SR ), =0 (3.1.4)
oEL 11

)‘n +1

RV = R, + AEZ + 5

i
<

(3.1.5)

i

D =+ ARz 4

6E,{7+1 )\n +1
Taking into account (3.1.1-3) along with (2.3.1), (2.3.2) and (2.2.5), the above equations
are written in matnx form as
[Ri%] _ [1s + r2ape 6] [arr ) (3.1.6)
["n(i)1 ] -GT Ppe Q [ 1] o
where
2. H H 2. i ; i
Q= =2V(3) ={1+ (&, + Q6 1) 1ecf) |
3 oy o, 3

The initial guess for A, 41 and EZ,, is based on the assumption that the imposed increment
of strains is purely elastic (elastic predictor), namely that

MU=0 , ELQ=Ef
The subsequent steps account for the plastic deformation that the applied increment of
strains AE produces (plastic correctors), according to

v (i+1) _ ep (i N i
24D = B2 + aE2 Y

>
-~
+
ot
S
!

GHD = 29y + anfi),

Convergence of the above iterative scheme is guaranteed, since the yield surface described
by (2.2.5) is convex.

3.2 Elasto-plastic tangent modulus

The importance of using consistent (algorithmic) elasto-plastic tangent moduli, as
opposed to continuum moduli is demonstrated in [9].

Total differentiation of (2.1.2) gives the differential form
dS, 41 = D°(dE,,y — dEF,y) (3.2.1)
Similarly, the discrete flow equation (3.1.1), when differentiated, yields

dEF 11 = Ny 412AdS, 40 + Gpprdhayy (3.2.2)



while for the hardening variable §
2
dEs1 = V(N 0641 ldh, (3.2.3)

Substituting (3.2.3) into the algorithmic consistency condition

o, + HEy 41
2 n“§n+l 0,

Gry1:dSp4q — o
i

we may solve for d A, 4 and substitute along with (3.2.2) into (3.2.1) to find

G GT
!D" b n, 24 + et 1,45,,“ = dE,.;
M J
where
HE,
= mzH\/( )«—«-—»«~--—-—"——~4 0G, 41|
(92
y
Therefore, in matrix notation
DA 1dS, 4y = dE, 1 (3.2.4)

It is important that D in (3.2.4) be inverted explicitly, because otherwise perfect plasti-
city (H=0) cannot be handled.

Explicit inversion is easily performed for
H7l =D 1+ h4124
so then using the Sherman-Morrison formula for rank-one updates we finally have
H, +1G, +1Gn +1H, 41

D, =H - 3.2.5
e " GrliH,41Gpn + M ( )

H)i’ Db]

D — ngpT D‘"’J : (3.2.6)
S A

where clearly the off-diagonal terms (absent in the elastic case), indicate coupling between
bending and transverse shear, due to the contained nature of the plastic deformation.

Nonlinearity of the stress-strain relation is evident from (3.2.5) and implies that the
momentum balance equations stemming from the minimization of the discrete counterpart
of (2.4.1) must be solved by a global (at the assemblage level) Newton scheme.

3.3 Discrete solution - summary

Implementation of the discrete solution of the elasto-plastic plate problem is summar-
ized in Box 1;
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BOX 1. Return Mapping algorithm

1. GivenE,, E?, &, and AE

Compute elastic predictor

EZQ = Ef

2. For every Gauss point compute
PELD &)
2a. I &= 0 step elastic (use elastic stiffness)
Ef, = Ef
EXIT
2b. H $=0 step plastic
3. Solve system (3.1.4-5) iteratively with initial guess
ELD = Ef
ANy =0
toget Ayvy » Efy
Compute the elasto-plastic tangent stiffness (3.2.6)
Assemble global stiffness K, ,.; and residual R,
5a. I R, 41 = 0 (within tolerance)
CONVERGENCE ATTAINED

Compute stresses, displacement, etc.
EXIT

AT

5.b  Flse solve
Ry = Kn#lAun+l

fOI' Aun+1
Set Uyip Uy + Aun+1

Gotostep 1
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3.4 Application of the algorithm

The proposed algorithm is applied to a conforming mixed triangular plate element
called DRM3, [13], which is based on (2.4.1). In the DRM3 element the following type of
interpolation is implemented :

w=N,Ww+ N,g6 , 8 =Ngb ,
3 —

y=Ng ., Q= 38(x—x)h0f |
k=1

where & is the Dirac function, t; is the tangent to the element side and QF is the tangential
shear stress at the midpoint k of the element side. In particular, 8 is assumed to vary
according to

3 N 3 .

6 = EL,'Q,' = Z4L,L1ﬂkA89k y
i=1 i=1

where j = mod(i,3) + 1 , k = mod(j,3) + 1, L; are the standard area coordinates, {17],

and n, is the normal to the edge k.

Furthermore, w is interpolated according to
3 3
wo= P LW = PALL(egL; + BiLy)
i=1 i=1

where the parameters o, and B, 1=1,2,3 are to be determined by requiring the tangential
shear strain to be constant along each edge of the triangle. Additional details are provided
in [13].

The functional (2.4.1) is extremized with respect to Q producing the constraint equa-

tion

[8Q(y—Vw —e8)da =0 ,

which leads to
9= Qb + Q,W
Introducing the strain-displacement matrix B, as

[ aN,  aNg 1"
0 [i] ]

Jy dx
B, dNg 3N, I ’
dx ay |

and similarly
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Finally, minimization of (2.4.1) with respect to 8 and w and use of the elasto-plastic
tangent modulus (3.3.6) leads, for each element, to a matrix equation of the form

I Koo Kow | (A0 } Ry
lee wa J kAW lRW J ’
where

Kgp = f‘leTthpBb + B, 'DfFB,q +
A

B, D B, + B,,"DB,y}dA

Ko, = Klp = f{BbTszste + By DB, tdA
A
K,, = [BLDZB,, dA
A

and Ry , R,, are the residual forces.

4. NUMERICAL EXAMPLES

A series of numerical simulations were conducted to evaluate the performance of the
model and the numerical algorithm. All results are compared to existing analytical solu-
tions (either exact or in the form of upper and/or lower bounds) for thin plates. Computa-
tions have been performed within the environment of the Finite Element Analysis Program
(FEAP), (e.g. see Chap. 15 of [17]).

Unless otherwise stated, the following values of parameters have been used for the test
problems:

Young’s modulus E = 10.92 ,
Poisson’s ratio v = 0.3,
Uniaxial yield stress o, = 1000 .
Convergence of the global Newton scheme is monitored through the energy norm

defined for iteration (i) by
ED = [si)EL)da
A

and the tolerance for convergence in the above norm is set to 1076, A three-point Gauss
quadrature has been used for the numerical integration of the element arrays.

4.1 Simply-supported point-loaded square plate

A simply-supported square plate has been modeled with two different meshes (MS1
and MS2) and has been subjected to a point load P acting at its center. Due to symmetry,
only a quarter of the plate is actually analyzed, see Fig. (4.1). Hard simply supported
boundary conditions have been imposed (see, e.g., [2] or [13]).
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The plate thickness is t = 0.1 and the side length is a = 10.

For the case of perfect plasticity (H=0) the numerical collapse load is compared to an
upper bound for the thin plate given in [18], see Fig. (4.1.1). In addition, analyses have
been performed using mesh MS1 for H=0.05 and 0.10, see Fig. (4.1.2). The evolution of
plastic deformation for the perfectly plastic case is illustrated in Fig. (4.1.3).

4.2 Simply-supported uniformly loaded square plate

The same plate as in 4.1 has been analyzed for a uniform transverse load q and
H=0. The approximate critical loading obtained is compared to upper and lower bound
estimates for the thin plate as reported in [15], see Fig. (4.2.1). Again, plots of the mesh
indicating the plastic regions for various steps are provided, Fig. (4.2.2).

4.3 Clamped uniformly loaded square plate

The uniform mesh MS1 along with the selectively refined mesh MS3, Fig. (4.1), are
used to discretize the clamped plate with geometric properties as in 4.1 . An upper bound
for the thin plate is derived in [15] and is shown in Fig. (4.3.1) along with the solution
obtained by the finite element analysis for H = 0. Fig. (4.3.2) shows various steps of plas-
tification obtained during the numerical simulation.

4.4 Simply-supported uniformly loaded circular plate

Uniform meshes MC1 and MC2, Fig. (4.4), are used to model a simply-supported cir-
cular plate under uniform load q. Due to symmetry only one quarter of the plate is discre-
tized. The thickness of the plate is t=0.1 and the radius R=5. The estimated ultimate
load is compared to the numerical exact solution for the Kirchhoff plate reported in [15].
Since the plate to thickness ratio is small, good agreement is expected and, in fact,
obtained, see Fig. (4.4.1). The evolution of plastic deformation is illustrated in Fig.
(4.4.2).

In order to assess the effect of transverse shear deformation in the plastic process, a
parametric analysis is performed for plates with constant M, and the previously used radius
{therefore the same Kirchhoff limit load), but with different thicknesses and uniaxial yield
stresses. Mesh MCS5 is used throughout the analysis. Fig. (4.4.3) confirms that the effect of
shear becomes significant as the thickness to radius ratio increases.

4.5 Clamped uniformly loaded circular plate

Fine discretization is required for the clamped circular plate under uniform load q in
order to produce resulis featuring satisfactory agreement with the numerical exact solution
for the ultimate load in the thin plate limit, see [15]. The geometric data for the test prob-
lem are as in 4.4 . Selectively refined meshes MC3 and MC4 appear in Fig. (4.4). Refine-
ment is necessary both along the clamped edge and towards the center of the plate. Load-



displacement and plastic evolution diagrams are presented in Fig. (4.5.1) and (4.5.2)
respectively.

A plate having the shape of an equilateral triangle with side length a=12 and thick-
ness t=0.1 is subjected to a uniform load q. Soft simply supported boundary conditions are
employed (see [13]). Numerical simulations were conducted for a half of the plate and uni-
form meshes MT1 and MT2 are shown in Fig. (4.6). The load-displacement diagram 1s
given in Fig. (4.6.1), while the history of plastic deformation that leads to collapse is indi-
cated in Fig. (4.6.2). The computed ultimate load is below the upper bound calculated in
[18] for the Kirchhoff plate.

CONCLUSION

The theoretical and numerical aspects of an elasto-plastic analysis of thick plates are
addressed. Both the constitutive equations and the weakly enforced momentum balance
equations are written in resultant form. The numencal solution consists of an implicit local
integration scheme for the constitutive equations in the plastic regime and a global iterative
procedure that eliminates the residual of the momentum balance equations. The overall
performance of the numerical solution is excellent in terms of both stability for large time
steps and accuracy in simulating various test problems.
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Projection of yield function on principal moments
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Projection of yield function on tranverse shear resultants

Fig. 2.2.1 Yield function in stress space
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