
UNIVERSITY OF CALIFORNIA SAN DIEGO

Computational and Statistical Complexity of Learning in Sequential Models

A dissertation submitted in partial satisfaction of the
requirements for the degree Doctor of Philosophy

in

Computer Science

by

Gaurav Mahajan

Committee in charge:

Professor Sanjoy Dasgupta, Co-Chair
Professor Shachar Lovett, Co-Chair
Professor Kamalika Chaudhuri
Professor Daniel Kane
Professor Arya Mazumdar

2023

Copyright

Gaurav Mahajan, 2023

All rights reserved.

The Dissertation of Gaurav Mahajan is approved, and it is acceptable in quality

and form for publication on microfilm and electronically.

University of California San Diego

2023

iii

DEDICATION

To my wife, who constantly supported my desire to work on challenging problems
in spite of how much she hated me working on them

iv

TABLE OF CONTENTS

Dissertation Approval Page . iii

Dedication . iv

Table of Contents . v

List of Figures . vii

List of Tables . viii

Acknowledgements . ix

Vita . xi

Abstract of the Dissertation . xiii

Chapter 1 Introduction . 1
1.1 Our results . 2

1.1.1 Computational-statistical gaps in reinforcement learning 2
1.1.2 Computationally efficient algorithms for learning HMMs 3
1.1.3 Understanding algorithms in practice . 4

Chapter 2 Computational-statistical gaps in reinforcement learning 6
2.1 Preliminaries . 6

2.1.1 Markov Decision Process (MDP) . 6
2.1.2 Computational problems . 7

2.2 Our results . 8
2.3 Proof of the main result . 10

2.3.1 From 3-CNF formulas to 3-action MDPs . 12
2.3.2 From RL algorithms to 3-SAT algorithms . 15
2.3.3 Setting of Parameters . 19

Chapter 3 Computationally efficient algorithms for learning HMMs 21
3.1 Preliminaries . 21

3.1.1 Hidden Markov Models and low rank distributions 22
3.1.2 Learning models . 23

3.2 Our results . 24
3.3 Technical overview . 26

3.3.1 Background: Observable operators and hard instances 26
3.3.2 Efficient representation . 27
3.3.3 Error propagation . 30
3.3.4 Estimating operators . 32
3.3.5 Finding the basis . 34

v

3.4 Learning with conditional probabilities . 36
3.4.1 Algorithm . 40
3.4.2 Analysis . 40

3.5 Learning with conditional samples . 43
3.5.1 Algorithm . 44
3.5.2 Analysis . 45

3.6 Discussion . 47

Chapter 4 Understanding algorithms in practice . 49
4.1 Preliminaries . 49
4.2 Our results . 54
4.3 Related work . 59
4.4 Warmup: Constrained tabular parameterization . 63

4.4.1 Gradient domination . 64
4.4.2 Convergence rates for projected gradient ascent . 66
4.4.3 Lower bound: Vanishing gradients and saddle points 68

4.5 Softmax tabular parameterization . 70
4.5.1 Asymptotic convergence, without regularization . 70
4.5.2 Polynomial convergence with log barrier regularization 72
4.5.3 Dimension-free convergence of Natural Policy Gradient Ascent 76

4.6 Discussion . 80

Bibliography . 83

vi

LIST OF FIGURES

Figure 2.1. Example construction of 3-action MDP Mϕ from a 3-CNF formula (x1 ∨
x2 ∨ x3)∧ (x̄1 ∨ x2 ∨ x3)∧ (x̄1 ∨ x3 ∨ x4)∧ (x1 ∨ x2 ∨ x̄3)∧ (x̄1 ∨ x2 ∨ x̄3)∧
(x̄3 ∨ x̄3 ∨ x̄3)∧ (x1 ∨ x1 ∨ x1). The only satisfying assignment for this
formula is (1,1,−1,1). 11

Figure 3.1. Schematic of the circulant structure relating the Pr[Ft |Ht] and Pr[Ft+1|Ht+1]
matrices. Columns of Pr[Ft | Ht] can be represented linearly in basis Bt
using coefficients β (·). The blocks Pr[oFt+1 | Bt] appear in the next matrix
Pr[Ft+1 | Ht+1] (up to scaling), so they can be represented in basis Bt+1. . . 28

Figure 4.1. (Non-concavity example) A deterministic MDP corresponding to Lemma
24 where V πθ (s) is not concave. Numbers on arrows represent the rewards
for each action. 52

Figure 4.2. (Vanishing gradient example) A deterministic, chain MDP of length H +2.
We consider a policy where π(a|si) = θsi,a for i = 1,2, . . . ,H. Rewards are
0 everywhere other than r(sH+1,a1) = 1. See Proposition 28. 52

vii

LIST OF TABLES

Table 4.1. Iteration Complexities with Exact Gradients for the Tabular Case: A
summary of the number of iterations required by different algorithms to
find a policy π such that V ⋆(s0)−V π(s0)≤ ε for some fixed s0, assuming
access to exact policy gradients. 54

Table 4.2. Overview of Approximate Methods: The suboptimality, V ⋆(s0)−V π(s0),
after T iterations for various approximate algorithms, which use differ-
ent notions of approximation error (sample complexities are not directly
considered but instead may be thought of as part of ε1 and εstat). 57

viii

ACKNOWLEDGEMENTS

First and foremost, I am immensely grateful to my advisors, Shachar Lovett and Sanjoy

Dasgupta. I started working with both of them in the middle of my PhD (Winter 2020). Even

though, changing areas this late into my PhD could have been stressful, it in fact turned out to be

the most fulfilling period of my research life.

Shachar introduced me to many interesting problems, gave me many enlightening ideas

and even guided me on problems he initially had no interest in. Meetings with him always filled

me with hope. This allowed me to work on interesting problems at the boundary of ones I could

possibly solve and constantly push this boundary.

Sanjoy has always been a great friend to me. I remember in my early PhD years (when I

was advisor-less), sitting outside a classroom contemplating my life, and Sanjoy offering to hear

my thoughts. I can not imagine anyone else being so humble and welcoming. He has always had

this faith in me, and my best interests have always been his primary concern. Sanjoy taught me

how to find new interesting problems and techniques to solve them. Research with Sanjoy has

been a lesson in looking at the bigger picture of life and research.

Outside of research, both Sanjoy and Shachar, always gave me great lessons: where I

should go for postdoc, where to hike in Zion National Park, how to lead a happy family life, and

so on. I will forever be grateful to them for their generosity.

Other than my advisors, Daniel Kane, Sham Kakade and Jason Lee have been great

collaborators and mentors. Their ability to solve problems continue to amaze me and a lot of

techniques used in my research, were developed in discussions with them and my advisors. Also,

I am grateful to Kamalika Chaudhuri and Arya Mazumdar for reading my thesis and serving on

my committee. Arya especially has been encouraging, and my only regret is not being able to

find a problem in coding theory to work with him. Hopefully this will change in the future.

I also thank my student collaborators at UCSD: Robi Bhattacharjee, Max Hopkins, Geelon

So and Sihan Lui. Robi is especially brilliant at solving problems and I enjoyed discussing

problems with him. I thank him for showing me how being laid-back is an option. Max is

ix

meticulous and was the driving force in all the work I did with him. He rewrote and made

beautiful most of the early writing I did with him and in general did most of the writing for our

works. I thank him for all this hard work and constant flow of good problems to work on. Geelon

is a budding mathematician, great at working on really hard problems. I thank him for not giving

up and teaching me about Stochastic Processes.

Thank you to all my collaborators and supporters- especially Akshay Krishnamurthy,

Jason Lee, Simon Du, Ruosong Wang, Wen Sun, Cyril Zhang, Gellért Weisz, Alekh Agarwal

and Csaba Szepesvári.

Thank you to all my friends during graduate school - especially Matt Zhang, Aditi

Mavalankar, Geelon So, Rex Lei, Sophia Sun, Mark Schultz, Jessica Sorrell, Ken Hoover,

Sankeerth Rao and Marco Carmosino. Your friendship has made my PhD a fantastic experience.

Most importantly, I would like to thank my wife: Nirjhar Kabery. Your love and support

has made this thesis possible. I am truly lucky to have found someone with such tremendous

amount of honesty and trust. Walking with you has been the constant source of happiness. I

dedicate this thesis to you, Kabery.

Chapter 2 contains a reprint of the material as it appears in Conference on Learning

Theory (COLT 2022). Daniel Kane, Sihan Liu, Shachar Lovett, Gaurav Mahajan. Computational-

statistical gaps in reinforcement learning. The dissertation author was the primary investigator

and author of this paper.

Chapter 3, in part is currently being prepared for submission for publication of the

material. Sham M. Kakade, Akshay Krishnamurthy, Gaurav Mahajan and Cyril Zhang. Learning

Hidden Markov Models Using Conditional Samples. The dissertation author was the primary

investigator and author of this material.

Chapter 4 contains a reprint of the material as it appears in Conference on Learning

Theory (COLT 2020). Alekh Agarwal, Sham M. Kakade, Jason D. Lee, Gaurav Mahajan.

Optimality and approximation with policy gradient methods in markov decision processes. The

dissertation author was the primary investigator and author of this paper.

x

VITA

2013 BS in Mathematics, Indian Institute of Technology Delhi

2023 PhD in Computer Science, University of California San Diego

PUBLICATIONS

• Daniel M. Kane, Sihan Liu, Shachar Lovett, Gaurav Mahajan, Csaba Szepesvári and
Gellért Weisz. Exponential Hardness of Reinforcement Learning with Linear Function
Approximation. Preprint [57]

• Sham M. Kakade, Akshay Krishnamurthy, Gaurav Mahajan and Cyril Zhang. Learning
Hidden Markov Models Using Conditional Samples. Preprint [55]

• Max Hopkins, Daniel M. Kane, Shachar Lovett and Gaurav Mahajan. Do PAC-Learners
Learn the Marginal Distribution?. Preprint [45]

• Max Hopkins, Daniel M. Kane, Shachar Lovett and Gaurav Mahajan. Realizable learning
is all you need. Conference on Learning Theory (COLT 2022) [43]

• Geelon So, Gaurav Mahajan and Sanjoy Dasgupta. Convergence of online k-means.
International Conference on Artificial Intelligence and Statistics (AISTATS 2022) [89]

• Daniel M. Kane, Sihan Liu, Shachar Lovett and Gaurav Mahajan. Computational-
statistical gaps in reinforcement learning. Conference on Learning Theory (COLT 2022)
[56]

• Robi Bhattacharjee and Gaurav Mahajan. Learning what to remember. International
Conference on Algorithmic Learning Theory (ALT 2022) [20]

• Simon S. Du, Sham M. Kakade, Jason D. Lee, Shachar Lovett, Gaurav Mahajan, Wen Sun
and Ruosong Wang. Bilinear classes: A structural framework for provable generalization
in rl. International Conference on Machine Learning (ICML 2021) [31]

• Alekh Agarwal, Sham M. Kakade, Jason D. Lee and Gaurav Mahajan. On the theory of
policy gradient methods: Optimality, approximation, and distribution shift. Journal of
Machine Learning Research (JMLR 2021) [6]

• Max Hopkins, Daniel M. Kane, Shachar Lovett and Gaurav Mahajan. Noise-tolerant,
reliable active classification with comparison queries. Conference on Learning Theory
(COLT 2020) [42]

• Alekh Agarwal, Sham M. Kakade, Jason D Lee and Gaurav Mahajan. Optimality and
approximation with policy gradient methods in markov decision processes. Conference on
Learning Theory (COLT 2020) [5]

xi

• Max Hopkins, Daniel M. Kane, Shachar Lovett and Gaurav Mahajan. Point location
and active learning: Learning halfspaces almost optimally. 61st Annual Symposium on
Foundations of Computer Science (FOCS 2020) [44]

• Simon S. Du, Jason D. Lee, Gaurav Mahajan and Ruosong Wang: Agnostic -learning
with Function Approximation in Deterministic Systems. Advances in Neural Information
Processing Systems (NeurIPS 2020) [32]

xii

ABSTRACT OF THE DISSERTATION

Computational and Statistical Complexity of Learning in Sequential Models

by

Gaurav Mahajan

Doctor of Philosophy in Computer Science

University of California San Diego, 2023

Professor Sanjoy Dasgupta, Co-Chair
Professor Shachar Lovett, Co-Chair

Recent success of machine learning is driven by scaling laws: larger architectures

trained using more data and compute lead to more “intelligent” agents. Therefore, even minor

enhancements to the sample and compute complexity of these algorithms can have significant

scientific and financial implications. In this dissertation, we study these question in the context

of sequential models. In particular, we study the following questions.

• Computational-statistical gaps in reinforcement learning. In this part, we study the

computational and statistical complexity of sequential decision-making under the frame-

work of reinforcement learning. A fundamental assumption in theory of reinforcement

xiii

learning is ”RL with linear function approximation”. Under this assumption, the optimal

value function (either Q*, or V*, or both) can be obtained as the linear combination of

finitely many known basis functions. Even though it was observed as early as 1963 that

there are empirical benefits of using linear function approximation, only recently a series of

work designed sample efficient algorithms for this setting. These works posed an important

open problem: Can we design polynomial time algorithms for this setting? Here, we show

progress on this open problem by proving: unless NP=RP, no polynomial time algorithm

exists for this settings.

• Computationally efficient algorithms for learning HMMs. In this part, we study the

computational complexity of learning structured distributions over sequences of obser-

vations (e.g. DNA sequences, proteins, spoken words and so on). In particular, we are

concerned with the computational complexity of learning Hidden Markov Model (HMM).

Although HMMs are some of the most widely used tools in sequential and time series

modeling, they are cryptographically hard to learn in the standard setting where one

has access to i.i.d. samples of observation sequences. Here, we show a positive result:

computationally efficient algorithm for learning HMMs when the learner has access to

conditional samples from the target distribution. We also show that these results extend to

“low rank” distributions.

• Understanding algorithms in practice. In this part, we study the most commonly

used algorithms for sequence decision-making in practice: policy gradient methods.

Even though these algorithms are simple to implement, their convergence properties

are only established at a relatively coarse level; in particular, the folklore guarantee is that

these methods converge to a stationary point of the objective. Here, we present the first

global convergence results for policy gradient methods like vanilla policy gradient (w/wo

regularization) and natural policy gradient.

xiv

Chapter 1

Introduction

Recent years have seen empirical success of simple gradient based algorithms in complex

sequential tasks, ranging from playing games like Chess, Go to more serious endeavors like

robotics, stratospheric flight, conversational AI, etc. Theoretically, this was surprising since we

expect the worst case data and compute requirement for such algorithms to be unnaturally large

(for example, according to classical theory, Chess should require > 2100 samples and compute.).

Then, a natural question arises: What properties of these environments allows these simple

algorithms to escape worst case scenarios?

This question is theoretically enticing as it requires understanding how the complexity of

this problem depends on its structure (similar attempts like semi-random models [22] in graph

theory have been very fruitful). But this question also has important practical implications. As

we have become more ambitious in our goals, the data requirements for existing algorithms has

become exceedingly high, preventing us from automating higher cognition tasks. For example,

OpenAI Five, a bot for a collaborative game DOTA2, was trained for almost 10 months in real

time. Moreover, many real world tasks require data generation via complex interaction with

humans or interaction with expensive hardware. As a result, we have not seen much success in

these domains (e.g. healthcare, self-driving cars). My research goal is to investigate if such data

requirements are fundamental or can we design efficient algorithms for these applications?

1

1.1 Our results

1.1.1 Computational-statistical gaps in reinforcement learning

We first study this question from the perspective of sequential decision-making under

the framework of reinforcement learning. There is a growing interest in reinforcement learning

theory community, to design and analyze efficient algorithms for the large state space regime. In

this regime, the goal is to design algorithms whose complexity does not polynomially depend on

the size of the state space. Since, this is impossible when we do not make any assumptions about

the environment, much effort has been spent on finding minimal assumptions under which an

optimal policy can be found efficiently: State Aggregation [65, 30], Linear qπ [33, 63, 102, 96],

Linear MDPs [101, 52], Linear Mixture MDPs [69, 12, 104], Reactive POMDPs [62], Block

MDPs [34], FLAMBE [4], Reactive PSRs [66], Linear Bellman Complete [72, 103], Bellman

rank [48], Witness rank [90], Bilinear Classes [31], Bellman Eluder [51] and Decision-Estimation

Coefficient [38].

One such minimal assumption that came out of this line of work is RL with linear function

approximation: when the optimal value function (either Q∗, or V ∗, or both) can be obtained as

the linear combination of finitely many, known basis functions. Under this assumption, a series

of works [31, 98, 97, 94, 38] showed sample efficient algorithms for constant number of actions.

These works leave finding a computationally efficient algorithm for this setting as an important

open question.

In a joint work with Daniel Kane, Sihan Liu and Shachar Lovett [56], we make progress

on this open problem by showing that under well believed complexity assumptions (NP doesn’t

have efficient randomized algorithms), no polynomial time algorithm exists for RL with linear

function approximation. In a follow-up work [57], we show an almost tight computational lower

bound, which is exponential in the number of basis functions and horizon under the Randomized

Exponential Time Hypothesis.

There are a couple of implications of these results. First, this shows for the first time a

2

computational-statistical gap in RL, that is a regime where the underlying statistical problem is

information theoretically possible, but no computationally efficient algorithm exists.1 Second,

this shows the effect of noise in RL, adding little noise to reward signal turns this problem from

linear-time to computationally hard.2 On a high level, this is very similar to how solving LWE

is computationally hard, whereas exact linear equations can be efficiently solved by Gaussian

Elimination.

1.1.2 Computationally efficient algorithms for learning HMMs

We next study this question from the perspective of learning distributions over observation

sequences. Hidden Markov Models (HMMs) are among the most fundamental tools for modeling

temporal and sequential phenomena. These probabilistic models specify a joint distribution over

a sequence of observations generated via a Markov chain of latent states. This structure enjoys

the simultaneous benefits of low description complexity, sufficient expressivity to capture long-

range dependencies, and efficient inference algorithms. For these reasons, HMMs have become

ubiquitous building blocks for sequence modeling in varied fields, ranging from bioinformatics

to natural language processing to finance. A long-standing challenge, in both theory and practice,

is the computational difficulty of learning an unknown HMM in TV distance.

In the standard realizable formulation, we are given observation sequences randomly

sampled from an underlying HMM and are asked to efficiently compute a distribution that is

close to the HMM in TV distance. Under this formulation, maximum likelihood estimation

is known to be statistically efficient, but no computationally efficient implementations of this

approach are known. More generally, HMMs can encode the parity with noise problem [70],

which is widely believed to be computationally hard [21, 59, 8], and so we do not expect to

find efficient algorithms for general HMMs. Recent works have therefore focused on obtain-

1This phenomenon is also observed in other problems in cs theory like community detection, planted clique and
sparse principal component analysis.

2In another work [32], we showed that noiseless version of this problem has a simple (computationally efficient)
linear-time algorithm.

3

ing computationally efficient algorithms under structural assumptions which evade these hard

instances [29, 46, 88].

In a joint work with Sham Kakade, Akshay Krishnamurthy and Cyril Zhang [55], we

develop new algorithms and techniques for learning Hidden Markov models when provided with

conditional samples from HMM. We show how a generalization of Angluin’s L∗ algorithm can

efficiently learn any HMM when the learner can query for exact conditional probabilities. We

then extend this result to more natural setting, where the learner only has access to samples

from the conditional distributions. Here, we obtain an algorithm that is computationally efficient

for all HMMs with “high fidelity,” a new property we introduce. Our results require a number

of new algorithmic ideas and analysis techniques, most notably: an efficient representation for

distributions over exponentially large domains and a new perturbation argument for mitigating

error amplification over long sequences.

1.1.3 Understanding algorithms in practice

Lastly, we study the most commonly used algorithms for sequence decision-making

in practice: policy gradient methods. Policy gradient methods have a long history in the

reinforcement learning (RL) literature [99, 91, 61, 53] and are an attractive class of algorithms

as they are applicable to any differentiable policy parameterization; admit easy extensions

to function approximation; easily incorporate structured state and action spaces; are easy to

implement in a simulation based, model-free manner. Owing to their flexibility and generality,

there has also been a flurry of improvements and refinements to make these ideas work robustly

with deep neural network based approaches (see e.g. [84, 85]).

Despite the large body of empirical work around these methods, their convergence

properties are only established at a relatively coarse level; in particular, the folklore guarantee is

that these methods converge to a stationary point of the objective, assuming adequate smoothness

properties hold and assuming either exact or unbiased estimates of a gradient can be obtained

(with appropriate regularity conditions on the variance). However, this local convergence

4

viewpoint does not address some of the most basic theoretical convergence questions, including:

1) if and how fast they converge to a globally optimal solution (say with a sufficiently rich policy

class); 2) how they cope with approximation error due to using a restricted class of parametric

policies; or 3) their finite sample behavior. These questions are the focus of this work.

In a joint work with Alekh Agarwal, Sham Kakade and Jason Lee, we analyze typical

variants of policy gradient methods and show that just like supervised learning, the non-convexity

of the policy optimization problem is not the fundamental challenge for policy gradient approach.

We answer: 1) if and how fast they converge to a globally optimal solution; and 2) how they

cope with approximation error due to using a restricted class of parametric policies. Overall, the

results of this work place policy gradient methods under a solid theoretical footing, analogous to

the global convergence guarantees of iterative value function based algorithms.

5

Chapter 2

Computational-statistical gaps in rein-
forcement learning

2.1 Preliminaries

2.1.1 Markov Decision Process (MDP)

We first define the framework for reinforcement learning, a Markov Decision Process

(MDP). We define a deterministic MDP as a tuple M = (S ,A ,R,P), where S is the state

space, A is the action space, R : S ×A 7→ ∆([0,1]) is the stochastic reward function 1, and

P : S ×A 7→ S is the deterministic transition function. An MDP M defines a discrete time

sequential decision process where the agent starts from a starting state s0 ∈ S . Then, at each

time t, the agent at some current state St , takes action At , receiving reward Rt ∼ R(St ,At) and

transitions to next state St+1. This goes on till the agent reaches the end state ⊥. Each such

trajectory/path from starting state s0 to end state ⊥ is of length at most horizon H. A deterministic,

stationary policy π : S 7→ A specifies a decision-making strategy in which the agent chooses

actions adaptively based on the current state, i.e. At = π(St). Given a policy π and a state-action

pair (s,a) ∈ S ×A , the Q-function and V -function under a policy π are defined as

V π(s) = E

[
τ−1

∑
t=0

R(St ,At) | S0 = s,π

]
, Qπ(s,a) = E

[
τ−1

∑
t=0

R(St ,At) | S0 = s,A0 = a,π

]
,

(2.1)
1∆([0,1]) denotes the set of all distributions over interval [0,1].

6

where S1,A1, . . .Sτ−1,Aτ−1 are obtained by executing policy π in the MDP M and τ is the first

time when policy π reaches the end state ⊥, that is Sτ = ⊥ where it always holds that τ ≤ H.

We use Q∗ and V ∗ to denote the optimal value functions

V ∗(s) = sup
π

V π(s) , Q∗(s,a) = sup
π

Qπ(s,a) , s ∈ S ,a ∈ A

We say that the optimal value functions V ∗ and Q∗ can be written as a linear function of d-

dimensional features ψ : S ∪ (S ×A)→ Rd if for all state s and action a, V ∗(s) = ⟨θ ,ψ(s)⟩

and Q∗(s,a) = ⟨θ ,ψ(s,a)⟩ for some fixed θ ∈ Rd independent of s and a.

2.1.2 Computational problems

We next introduce 3-SAT, a satisfiability problem for 3-CNF formulas. In a 3-SAT prob-

lem, we are given as input, a 3-CNF formula ϕ with v variables and O(v) clauses and our goal

is to decide if ϕ is satisfiable. Our computational lower bound is based on a reduction from

UNIQUE-3-SAT, a variant of 3-SAT. UNIQUE-3-SAT is the promise version of 3-SAT where the

given formula is promised to have either 0 or 1 satisfying assignments.

The focus of this work is the computational RL problem, LINEAR-k-RL. In a LINEAR-

k-RL problem with feature dimension d, we are given access to a deterministic MDP M with k

actions and horizon H = O(d) such that the optimal value functions Q∗ and V ∗ can be written

as a linear function of d-dimensional features ψ . Our goal is to output a good policy, which

we define as any policy π that satisfies V π >V ∗−1/4. Note that here V π and V ∗ refers to the

value of the policy π and optimal policy respectively at the starting state and is always in [0,H] 2.

Moreover, the constant 1/4 can be replaced by any arbitrary constant < 1. From now on, we

always assume number of actions k is 2 or 3.

2in our constructions, we satisfy the more stringent condition that V ∗ ∈ [0,1].

7

Complexity problem LINEAR-k-RL

Oracle: a deterministic MDP M with k actions, optimal value functions V ∗ and Q∗

linear in d dimensional features ψ and horizon H = O(d).

Goal: find policy π such that V π >V ∗−1/4.

We now describe how the algorithm interacts with the MDP. We assume that the algorithm

has access to the associated (i) reward function R, (ii) transition function P and (iii) features ψ .

For all these functions, the algorithm provides a state s and action a (if needed) and receives

a random sample from the distribution R(s,a) (for the reward function), the state P(s,a) (for

the transition function) or feature ψ(s) or ψ(s,a) (for the features). We assume that each call

accrues constant runtime and input/output for these functions are of size polynomial in feature

dimension d.

We will often talk about randomized algorithm A solving a problem in time t with error

probability p. By this we mean (i) A runs in time O(t); (ii) for satisfiability problems, it returns

YES on positive input instances with probability at least 1− p and returns NO on negative input

instances with probability 1; and (iii) for RL problem, it returns a good policy with probability at

least 1− p.

2.2 Our results

With these considerations in mind, we present our main result that asserts that unless

NP=RP, no randomized polynomial time algorithm can find a good policy in deterministic

MDPs with a constant number of actions and linear optimal value functions.

Theorem 1 (LINEAR-3-RL ∈ RP =⇒ NP=RP). Unless NP=RP, no randomized algorithm

can solve LINEAR-3-RL with feature dimension d in time polynomial in d with error probability

1/10.

This resolves the open problem from [97] and [31] by showing that unless RP=NP, no

8

polynomial time randomized algorithm exists for deterministic transition MDPs with a constant

number of actions and linear optimal value functions.

Our main technical contribution is a reduction from UNIQUE-3-SAT to LINEAR-3-

RL such that a polynomial time algorithm for LINEAR-3-RL implies a polynomial time algo-

rithm for UNIQUE-3-SAT. To achieve this, we use the input for UNIQUE-3-SAT: a 3-CNF for-

mula ϕ with v variables, to design an input for LINEAR-3-RL: an MDP Mϕ with 3 actions and

optimal value functions V ∗ and Q∗ linear in d-dimensional features. On a high level, the MDP is

constructed such that each state represents an assignment to the UNIQUE-3-SAT variables and

the goal is to “search” for the solution to the UNIQUE-3-SAT instance. In particular, at each state,

the 3 actions available to the agent correspond to an unsatisfied clause which ensures at least one

action available to the agent decreases the distance to the solution. To incentivize finding the

solution, a large reward is awarded on reaching the solution and a very small expected reward on

reaching the horizon (this reward is small enough that any polynomial time RL algorithm only

receives 0 reward with high probability on reaching the horizon). This ensures that (i) finding a

good policy also finds the satisfying assignment of ϕ and (ii) the optimal value functions V ∗ and

Q∗ are linear in some low dimensional features. We present this construction in Section 2.3.

These reductions allow us to simulate a polynomial time algorithm for UNIQUE-3-

SAT on input ϕ by running the polynomial time algorithm for LINEAR-3-RL on MDP Mϕ . More

formally, our reduction gives a polynomial relationship between the complexity of UNIQUE-3-

SAT and LINEAR-3-RL: a polynomial dq time algorithm for LINEAR-3-RL implies a polynomial

vO(q2) time algorithm for UNIQUE-3-SAT.

Proposition 1. Suppose q ≥ 1. If LINEAR-3-RL with feature dimension d can be solved in

time dq with error probability 1/10, then UNIQUE-3-SAT with v variables can be solved in time

vO(q2) with error probability 1/8.

This relates the complexity of UNIQUE-3-SAT to LINEAR-3-RL. To relate these prob-

lems to complexity class NP, we use a seminal result from [93] which showed that uniqueness

9

of solution can not be used to solve search problems quickly. In particular, they showed a

randomized polynomial time reduction from 3-SAT to UNIQUE-3-SAT.

Theorem 2 (Valiant-Vazirani Theorem). Unless NP=RP, no polynomial time randomized

algorithm can solve UNIQUE-3-SAT with error probability 1/8.

Combining our reduction with Valiant-Vazirani Theorem proves our main result, Theo-

rem 4.

2.3 Proof of the main result

In this section, we will prove Proposition 1. The overall idea is to first build a randomized

algorithm ASAT which can decide UNIQUE-3-SAT using a randomized algorithm ARL which

solves LINEAR-3-RL. The two reductions only differ in their settings of parameters.

In the first setting, which we use to prove that no polynomial time algorithm exists for

LINEAR-3-RL, we set the feature dimension d to be polynomial in the number of variables

v. Under this setting, we can build a polynomial time randomized algorithm for UNIQUE-3-

SAT using a polynomial time randomized algorithm for LINEAR-3-RL.

Proposition 2 (Restatement of Proposition 1). Suppose q ≥ 1. If LINEAR-3-RL with feature

dimension d can be solved in time dq with error probability 1/10, then UNIQUE-3-SAT with v

variables can be solved in time O(v8q+16q2
) with error probability 1/8.

Before we prove this results, we give a brief outline of our reduction from UNIQUE-3-

SAT to LINEAR-3-RL. On a high level, we construct an MDP where the goal is to ”search” for

the solution w∗ to a UNIQUE-3-SAT instance with v variables. In particular, at each time, the

agent is given an unsatisfied clause and asked to flip assignment for a variable present in the

clause. Notice that since the clause is unsatisfied, there must be at least one variable whose

assignment differs from the solution and therefore, the agent can “reach” the solution in at most

d(w,w∗) steps. To incentivize the agent, if the agents at time l finds the solution i.e. w = w∗ or

10

x1 ∨ x2 ∨ x3
(−1,−1,−1,−1)

l = 0
x1 ∨ x2 ∨ x̄3

(−1,−1,1,−1)
l = 1

x3

x2

x̄1 ∨ x2 ∨ x3
(1,−1,−1,−1)

l = 1

x̄1 ∨ x2 ∨ x̄3
(1,−1,1,−1)

l = 2

x3

x1

x̄1 ∨ x3 ∨ x4
(1,1,−1,−1)

l = 2

x1

x3

(1,1,−1,1)
l = 3

⊥
x4

x2

x1

Figure 2.1. Example construction of 3-action MDP Mϕ from a 3-CNF formula (x1 ∨ x2 ∨ x3)∧
(x̄1 ∨x2 ∨x3)∧ (x̄1 ∨x3 ∨x4)∧ (x1 ∨x2 ∨ x̄3)∧ (x̄1 ∨x2 ∨ x̄3)∧ (x̄3 ∨ x̄3 ∨ x̄3)∧ (x1 ∨x1 ∨x1). The
only satisfying assignment for this formula is (1,1,−1,1).

reaches the end of the MDP i.e. l = H, it receives reward according to the following degree-r

polynomial

g(l,w) =
(

1− l +dist(w,w∗)

H + v

)r

.

We show how to build an MDPs from a UNIQUE-3-SAT instance in Section 2.3.1. Furthermore,

we show that the optimal value functions V ∗ and Q∗ for the constructed MDP are linear in

d = O(vr)-dimensional features. Since the expected reward at last layer of the MDP is O(v−r2
)

(which can be replaced with 0 for any poly(d) time RL algorithm), the only non-zero reward is

achieved by solving the underlying UNIQUE-3-SAT instance, proving our reduction. We give

a formal argument in Section 2.3.2, where we show how to build a randomized algorithm for

UNIQUE-3-SAT using a randomized algorithm for LINEAR-3-RL. In Section 2.3.3, we discuss

the setting of parameters which will prove Proposition 2.

11

2.3.1 From 3-CNF formulas to 3-action MDPs

We will start by defining a mapping from an input of UNIQUE-3-SAT problem: 3-

CNF formula ϕ with v variables and O(v) clauses to an MDP Mϕ with 3 actions and H = O(d)

horizon with optimal value functions linear in d dimensions. Our informal goal is to design an

MDP Mϕ such that finding a good policy also implies finding the satisfying assignment for the

formula ϕ . We now formally describe the MDP Mϕ when the formula ϕ has a unique satisfying

assignment w∗ ∈ {−1,1}v and later show how the MDP Mϕ differs when the formula ϕ has no

solution. See Figure 2.1 for an example.

Transitions. In our setting, it will be useful to visualize an MDP as a tree, where nodes represent

states and edges represent actions. A policy is then a sequence of actions or equivalently a path

in the aforementioned tree. The MDP Mϕ is a ternary tree i.e. each state/node in the tree has 3

children. The transitions/dynamics are deterministic i.e. the first action goes to first child, the

second action goes to second child and so on.

Assignments. Each state is associated with an assignment to the v variables i.e. a binary vector in

{−1,1}v and a natural number l denoting the depth of the state. Our goal here is to choose assign-

ments such that it is always possible to choose an action which decreases the hamming distance

to the satisfying assignment. The root in the tree is associated with the all zeroes assignment

(−1,−1, . . . ,−1). For any state s with a non-satisfying assignment w = (w1,w2, . . . ,wv) ̸= w∗,

the assignment associated to the three children are as follows. Since w is not a satisfying assign-

ment, consider the first unsatisfied clause with variables xi1,xi2,xi3 . The first child is associated

with the assignment where the i1-th bit of w is flipped, the second child is associated with vector

where i2-th bit is flipped and so on. More formally, the assignment associated to j-th child is

(w′
1,w

′
2, . . . ,w

′
v) where w′

k = ¬wk if k = i j and w′
k = wk otherwise. The two exceptions to this

are (i) states with the satisfying assignment w∗ and (ii) states at the last level H. For such states,

12

all actions go to the end state ⊥.

Rewards. To ensure that finding good policies implies finding the satisfying assignment in our

MDP, we will only give rewards when a satisfying assignment is found or at the last layer. More

formally, the rewards everywhere are zero except on (i) states with the satisfying assignment

w∗ and (ii) states on the last level H. In both the cases above, say the state is at level l with

assignment w, then the associated reward distribution for any action is a Bernoulli distribution

Ber(g(l,w)) where

g(l,w) =
(

1− l +dist(w,w∗)

H + v

)r

and the Bernoulli distribution Ber(p) is 1 with probability p and 0 with probability 1− p. Here r

is a parameter which we will specify in Section 2.3.3. When the formula ϕ has no satisfying

assignment, all rewards are 0. Note that in our simulation (Section 2.3.2), we don’t know/use w∗

and instead use an approximate reward function that is easy to compute.

Linear Optimal Value Functions. We next show that in the MDP Mϕ , the optimal value

functions V ∗ and Q∗ can be written as a linear function of d = O(vr) dimensional features ψ ,

where ψ(s) or ψ(s,a) depends only on w, the corresponding assignment, and l, the depth of the

state.

Proposition 3. For any state s in level l with assignment w and action a,

(i) the optimal value function is V ∗(s) = g(l,w).

(ii) for large enough v, there exists features ψ(s),ψ(s,a) ∈Rd with feature dimension d ≤ 2vr

depending only on state s and action a; and θ ∈ Rd depending only on w∗ such that

V ∗ and Q∗ can be written as a linear function of features ψ i.e. V ∗(s) = ⟨θ ,ψ(s)⟩ and

Q∗(s,a) = ⟨θ ,ψ(s,a)⟩.

13

Proof. To prove our first claim, we start by showing that there exists a policy π that achieves this

value for each state. Let π be the policy which for any state s with assignment w ̸= w∗ chooses

the action which decreases the hamming distance dist(w,w∗) by 1. Note that one such action

always exists in our construction, since a satisfying assignment satisfies all clauses. Therefore,

from a state s at level l with assignment w, we can reach a state with assignment w1 such that

either (i) w1 is a satisfying assignment or (ii) w1 is at the last level and on the optimal path from

w to w∗ i.e. dist(w,w∗) = dist(w,w1)+dist(w1,w∗). In both cases,

V π(s) =
(

1− l +dist(w,w1)+dist(w1,w∗)

H + v

)r

= g(l,w)

Next, for any other policy π ′ that ends on state s′ at level l′ with assignment w′ (i.e. either l′ = H

or w′ = w∗), we have

V π ′
(s) =

(
1− l′+dist(w′,w∗)

H + v

)r

≤
(

1− l +dist(w,w′)+dist(w′,w∗)

H + v

)r

≤ g(l,w)

where the first inequality follows from l′− l ≥ dist(w,w′). This proves our first claim about V ∗

i.e. V ∗(s) = g(l,w).

To prove our second claim, that V ∗ and Q∗ can be written as a linear function of features

ψ , we will show that V ∗(s) can be written as a polynomial of degree at most r in w∗. To see why

this is enough, we set θ to be all monomials in w∗ of degree at most r. That is, each coordinate

of θ corresponds to a multiset S ⊂ [v] of size |S| ≤ r, and its value is θS = ∏i∈S w∗
i . We set ψ(s)

to be the corresponding coefficients in the polynomial V ∗. Then, we can write V ∗(s) = ⟨θ ,ψ(s)⟩.

Since, there are at most ∑
r
i=0 vi ≤ 2vr many coefficients we can set the feature dimension as

d = 2vr.

Finally, we prove that V ∗(s) can be written as a polynomial of degree at most r in w and

14

w∗. Firstly hamming distance dist(w,w∗) is linear in both w and w∗ i.e.

dist(w,w∗) =
v−⟨w,w∗⟩

2

Our claim follows from noting that g(l,w) is a polynomial of degree r in dist(w,w∗). Note that

linear V ∗ implies linear Q∗ in deterministic MDPs for ψ(s,a) = ψ(P(s,a)), since by definition,

in MDPs with deterministic transition, Q∗(s,a) =V ∗(P(s,a)).

Even though ψ(s) does not depend on w∗, unlike the constructions of [95, 94], ψ(s) does

depend on the MDP Mϕ making this construction statistically easy but computationally hard to

solve.

2.3.2 From RL algorithms to 3-SAT algorithms

We now build a randomized algorithm ASAT for UNIQUE-3-SAT using a randomized

algorithm ARL for the RL problem. However, as mentioned before, since the runtime for ARL

accrues only constant runtime for each call to the MDP oracle, to efficiently build ASAT using

ARL, we need to be able to efficiently simulate the calls to MDP oracle, namely: calls to the

reward function, the transition function and the features. To do so, we build an “approximate”

simulator M̄ϕ for the MDP oracle Mϕ . The simulator M̄ϕ is exactly MDP Mϕ in terms of transi-

tion function and features associated with the MDP Mϕ , but differs in the reward function at the

last layer which is always 0 for the simulator M̄ϕ . This modification is crucial for an efficient

reduction because unlike transitions and features for any state which can be computed in time

poly(d) on the MDP Mϕ , the rewards at the last layer when dist(w,w∗) ̸= 0 require access to w∗

which can not be done efficiently. With the purposed modification, we can execute each call to

simulator M̄ϕ in time poly(d).

Algorithm. On input 3-CNF formula ϕ , ASAT runs the algorithm ARL replacing each call to

MDP oracle Mϕ with the corresponding call to simulator M̄ϕ . Recall that the output for the RL

15

algorithm in our setting is a sequence of actions. If the sequence of actions returned by ARL ends

on a state with assignment w, ASAT outputs YES if w is the satisfying assignment and returns

NO otherwise.

Correctness. We set the horizon H = vr. We will assume throughout that r ≥ 2 and that the

runtime of ARL is ≤ vr2/4. The setting of r satisfying these assumptions will prove Proposition 2

for 3-action MDPs, which we will discuss in Section 2.3.3. To complete our reduction, we will

show the following:

(i) If algorithm ARL outputs a policy π such that V π >V ∗−1/4, then ASAT on 3-CNF for-

mula ϕ outputs YES if ϕ is satisfiable and NO otherwise.

(ii) If ARL with access to MDP oracle Mϕ outputs a policy π such that V π >V ∗−1/4 with

error probability 1/10, then ARL with access to simulator M̄ϕ outputs a policy π such that

V π >V ∗−1/4 with error probability 1/8.

These together will show that ASAT solves UNIQUE-3-SAT with error probability ≤ 1/8. We

start by proving that if ARL succeeds on MDP M̄ϕ , then ASAT succeeds on 3-CNF formula ϕ .

This follows from the fact that any good policy in the MDP Mϕ must reach a state with satisfying

assignment w∗.

Proposition 4. Suppose r > 1 and horizon H = vr. If ARL outputs a policy π such that V π >

V ∗−1/4, then ASAT on 3-CNF formula ϕ outputs YES if ϕ is satisfiable and NO otherwise.

Proof. Since algorithm ASAT always returns NO on an unsatisfiable formula, we restrict our

attention to a satisfiable formula ϕ . In the MDP Mϕ , (i) rewards are “very small” everywhere

except on reaching the satisfying assignment i.e. the expected reward at the last layer in the MDP

Mϕ is upper bounded by (for large enough v and r > 1)

(
1− H

H + v

)r

=

(
v

H + v

)r

≤ v−r2+r < 1/4

16

and (ii) the optimal value V ∗ is large

V ∗ ≥
(

1− v
H + v

)r

=
(

1+
v
vr

)−r
≥ 1− rv

vr ≥ 1
2

where the second last inequality follows from Bernoulli’s inequality and the last inequality holds

for large enough v and r > 1. Therefore, if the value of policy is large i.e. V π >V ∗−1/4, then

the policy π (and therefore the corresponding sequence of actions) has to end on a state with

the satisfying assignment w∗. By construction of ASAT , this implies ASAT will succeed on the

formula ϕ .

Since we can not simulate the rewards on MDP oracle Mϕ efficiently, our reduction runs

the algorithm ARL on an approximate simulator M̄ϕ . However, it’s not clear why ARL would still

succeed when each call to MDP oracle is replaced by a call to the simulator M̄ϕ . The following

proposition shows that in fact ARL would succeed on the outputs of simulator M̄ϕ albeit with a

smaller constant probability.

Proposition 5. Suppose r ≥ 2 and horizon H = vr. Suppose ARL with access to MDP oracle Mϕ

runs in time vr2/4 and outputs a policy π such that V π >V ∗−1/4 with error probability 1/10.

Then ARL with access to simulator M̄ϕ , still running in time vr2/4, outputs a policy π such that

V π >V ∗−1/4 with error probability 1/8.

Proof. Let PrMϕ
and PrM̄ϕ

denote the distribution on the observed rewards and output policies

induced by the algorithm ARL when running on access to MDP oracle Mϕ and simulator M̄ϕ

respectively. Let Ri denote the reward received on the last layer at the end of i-th trajectory.

Let T be the total number of trajectories sampled by algorithm ARL when running on access to

MDP oracle Mϕ . By our assumption, ARL runs in time vr2/4 and therefore T ≤ vr2/4. Since the

expected reward at the last layer in the MDP Mϕ is upper bounded by (for large enough v and

17

r ≥ 2)

(
1− H

H + v

)r

=

(
v

H + v

)r

≤ v−r2+r ≤ v−
r2
2

and and the algorithm only visits at most vr2/4 states on last layer, we get by the union bound

that with high probability all the rewards at the last level are zero. More precisely (and assuming

v is large enough),

Pr
Mϕ

[Ri = 0 ∀i ∈ [T]]≥ 1− v−r2/4 ≥ 4
5

We say ARL succeeds with access to Mϕ (or M̄ϕ) if the output policy π after running for time

at most vr2/4 satisfies V π >V ∗−1/4. Using the above reasoning and the assumption that ARL

succeeds with access to MDP oracle Mϕ with probability 9/10 implies

Pr
Mϕ

[
ARL succeeds with access to Mϕ | Ri = 0 ∀i ∈ [T]

]
≥

9
10 −

1
5

4
5

=
7
8

Note that the marginal distributions PrMϕ
and PrM̄ϕ

on output policy π given Ri = 0 ∀i ∈ [T] are

exactly the same because MDP oracle M̄ϕ and simulator Mϕ only differ on last layer rewards.

This implies

Pr
M̄ϕ

[
ARL succeeds with access to M̄ϕ | Ri = 0 ∀i ∈ [T]

]
= Pr

Mϕ

[
ARL succeeds with access to Mϕ | Ri = 0 ∀i ∈ [T]

]
Since, PrM̄ϕ

[Ri = 0 ∀i ∈ [T]] = 1, we conclude that

Pr
M̄ϕ

[
ARL succeeds with access to M̄ϕ

]
≥ 7

8

18

2.3.3 Setting of Parameters

It follows from Propositions 3 to 5 that if LINEAR-3-RL with feature dimension d = 2vr

can be solved in time vr2/4 with error probability 1/10, then UNIQUE-3-SAT with v variables

can be solved in time d · vr2/4 with error probability 1/8 (here the extra d factor is because each

call to the simulator M̄ϕ takes d time). In this section, we discuss the two different settings of r

we use to prove our lower bounds. As we increase r, we decrease the expected reward available

to the algorithm at the last layer on the order of v−O(r2), making the problem harder. However,

increasing r also increases the feature dimension on the order of vr. This non-polynomial gap in

the feature dimension and expected reward at the last layer will give our main reduction.

In the first setting, we will set r to be a constant wrt number of variables v and prove that

a polynomial algorithm for LINEAR-3-RL implies a polynomial algorithm for UNIQUE-3-SAT.

Proof of Proposition 2. For any q ≥ 1, we set

r = 8q . (2.2)

Note that q ≥ 1 implies r ≥ 2. Therefore, to prove our proposition, we just need to show

dq ≤ vr2/4 (2.3)

d · vr2/4 ≤ v8q+16q2+1 (2.4)

under this setting of d and r. Here the first equation bounds the time complexity of LINEAR-

3-RL in terms of feature dimension d and the second equation bounds the time complexity of

UNIQUE-3-SAT in terms of the number of variables v. Equation (2.3) is true as

v
r2
4 = (vr)

r
4 ≥ d

r
8 = dq

where the first inequality follows from d ≤ v2r for large enough v and the last equality follows

19

from Equation (2.2) above. Equation (2.4) holds since

d · vr2/4 = 2vr+r2/4 = O(v8q+16q2
),

where the first equality follows from d = 2vr and the last equality follows from Equation (2.2)

for large enough v.

Acknowledgements. Chapter 2 contains a reprint of the material as it appears in Con-

ference on Learning Theory (COLT 2022). Daniel Kane, Sihan Liu, Shachar Lovett, Gaurav

Mahajan. Computational-statistical gaps in reinforcement learning. The dissertation author was

the primary investigator and author of this paper.

20

Chapter 3

Computationally efficient algorithms for
learning HMMs

3.1 Preliminaries

Notation. Let O := {1, . . . ,O} denote a finite observation space and let O∗ denote

observation sequences of arbitrary length. We consider a distribution Pr[·] over T random

variables x1, . . . ,xT with a sequential ordering, and we use xt ∈ O to denote the value taken

by the t th random variable. For convenience, we often simply write Pr[x1,x2, . . . ,xT] in lieu of

Pr[x1=x1, . . . ,xT=xT], omitting explicit reference to the random variables themselves.

When considering conditionals of this distribution, we always condition on assignment

to a prefix of the random variables and marginalize out a suffix. For example, we consider

conditionals of the form Pr[xt+1=xt+1, . . . ,xt+k=xt+k|x1=x1, . . . ,xt=xt], and we write this as

Pr[xt+1, . . . ,xt+k|x1, . . . ,xt]. Similarly, when considering tuples f := (x′1, . . . ,x
′
k) ∈ Ok and h :=

(x1, . . . ,xt) ∈ Ot , we write Pr[xt+1=x′1, . . . ,xt+k=x′k|x1=x1, . . . ,xt=xt] as Pr[f |h], noting that the

random variables assigned to f are determined by the length of h.

We lift this conditioning notation to sets of observation sequences in the following manner.

If F := { f1, f2, . . .} and H := {h1,h2, . . .} where each fi,h j ∈ O∗, we write Pr[F |H] to denote

the |F |× |H| matrix whose (i, j)th entry is Pr[fi|h j]. We allow the sequences in F and H to have

different lengths, but always ensure that len(fi)+ len(h j)≤ T so that this matrix is well-defined.

21

We refer to rows and columns of this matrix as Pr[f |H] and Pr[F |h] respectively.1

Lastly, for h = (x1, . . . ,xt) we use ho = (x1, . . . ,xt ,o) to denote concatenation, and we lift

this notation to sequences and sets. For instance, if H = {h1,h2, . . .} then Ho = {h1o,h2o, . . .}.

3.1.1 Hidden Markov Models and low rank distributions

Hidden Markov Models provide a low-complexity parametrization for distributions over

observation sequences. These models are defined formally as follows.

Definition 6 (Hidden Markov Models). Let S := {1, . . . ,S}. An HMM with S ∈N hidden states

is specified by (1) an initial distribution µ ∈ ∆(S), (2) an emission matrix O ∈ RO×S, and (3) a

state transition matrix T ∈ RS×S, and defines a distribution over sequences of length T via:

Pr[x1, . . . ,xT] := ∑
s1,...,sT+1∈S T+1

µ(s1)
T

∏
t=1

O[xt ,st]T[st+1,st]. (3.1)

Here M[i, j] represents the (i, j)th entry of a matrix M.

As the name suggests, HMMs parameterize the distribution with a Markov chain over a

hidden state sequence along with an emission function that generates observations. While this

specific model is particularly natural, our analysis only leverages a certain low rank structure

present in HMMs. To highlight the importance of this structure, we define the rank of a

distribution.

Definition 7 (Rank of a distribution). We say distribution Pr[·] over observation sequences of

length T has rank r if, for each t ∈ [T], the conditional probability matrix Pr[O≤T−t |Ot] has rank

at most r.2

1We always refer to rows, columns, and entries of these matrices in this manner, so no confusion arises when
constructing these matrices from (unordered) sets of sequences.

2When some histories occur with zero probability, there might be multiple consistent conditional probability
functions associated to a distribution, in which case the rank is not uniquely defined. We address this by defining the
distribution via its conditionals (which determine the rank); see [55].

22

An HMM with S hidden states has rank at most S, which can be verified using the fact

that the hidden states form a Markov chain (we give a proof in [55]).3 More generally, the rank

identifies a low dimensional structure in the distribution: we have exponentially many vectors

Pr[O≤T−t |h], one for each history h, in an r-dimensional subspace of an exponentially larger

ambient space. Thus, we are interested in algorithms that exploit the low dimensional structure

and admit statistical and computational guarantees scaling polynomially with the rank.

3.1.2 Learning models

To circumvent computational hardness, we allow the learner to access conditional dis-

tributions of the underlying distribution Pr[·]. We specifically consider two access models

formalized with the following oracles: 4

Definition 8 (Exact conditional probability oracle). The exact conditional probability oracle is

given as input: observation sequences h and f of length t ≤ T and T − t respectively, chosen by

the algorithm, and returns the scalar Pr[f |h].

Definition 9 (Conditional sampling oracle). The conditional sampling oracle is given as input:

an observation sequence h of length t ≤ T , chosen by the algorithm, and returns an observation

sequence f of length T − t such that the probability that f is returned is Pr[f |h], independently

of all other randomness.

When considering the exact probability oracle, we also allow the learner to obtain

independent samples from the joint distribution Pr[·]. Note that this oracle equivalently provides

access to exact (unconditional) probabilities of length T sequences. We view this as a noiseless

analog of the conditional sampling oracle, which is the main model of interest.

As a learning goal, we consider distribution learning in total variation distance as studied

in prior works [59, 70, 46, 9]. Given access to a target distribution Pr[·] we want to efficiently
3In fact the rank of the HMM can be much smaller, since the decomposition alluded to above realizes the

non-negative rank of the matrix, which can be exponentially larger than the rank.
4Both oracles require committing to a consistent choice of conditional probability distribution when conditioning

on zero probability events. See [55].

23

compute an estimate P̂r[·] that is close in total variation distance to Pr[·]. Formally, we want

an algorithm that, when given parameters ε,δ > 0, computes an estimate P̂r[·] such that with

probability at least 1−δ :

TV(Pr, P̂r) :=
1
2 ∑

x1,...,xT∈OT

∣∣∣Pr[x1, . . . ,xT]− P̂r[x1, . . . ,xT]
∣∣∣≤ ε.

The algorithm is efficient if its computational complexity (and hence number of oracle calls)

scale polynomially in r,T,O,1/ε and log(1/δ).

Remark 10. Note that, as the support of Pr[·] is exponentially large in T , it is not possible to

write down all OT values of P̂r efficiently. Instead, the goal is to return an efficient representation

from which we can evaluate P̂r[x1, . . . ,xT] for any sequence x1, . . . ,xT efficiently. It will become

clear what constitutes an efficient representation for low rank distributions in the sequel; indeed

the fact that one even exists is one of our central structural results. for HMMs, for example, the

tuple of initial distribution µ , observation operator O, and transition operator T form an efficient

representation.

3.2 Our results

Our first result studies the computational power provided by the exact probability oracle

(Definition 8). We show how a generalization of Angluin’s L∗ algorithm can efficiently learn any

HMM given access to this oracle. The result is summarized in the following theorem:5

Theorem 3 (Learning with exact conditional probabilities). Assume O = {0,1}. Let Pr[·]

be any rank r distribution over observation sequences of length T . Pick any 0 < ε,δ < 1.

Then Algorithm 1 with access to an exact probability oracle and samples from Pr[·], runs in

poly(r,T,1/ε, log(1/δ)) time and returns an efficiently represented approximation P̂r[·] satisfy-

ing TV(Pr, P̂r)≤ ε with probability at least 1−δ .

5As this result is a warmup for our main result, we focus on the setting where O = {0,1} for simplicity.

24

The main technical challenge is finding a succinct and observable representation of

the distribution, so that we can infer all conditional distributions using polynomially many

queries. This observable parameterization plays a central role in our main result, and in this

sense Theorem 3 can be seen as an insightful warmup.

Our main contribution is in extending this result to the more natural interactive setting

where the learner only accesses conditional samples via the oracle in Definition 9. Our algorithm

here can be viewed as a robust version of L∗, and we obtain the following guarantee:

Theorem 4 (Learning with conditional samples). Let Pr[·] be any rank r distribution over

observation sequences of length T . Assume distribution Pr[·] has fidelity ∆∗. Pick any 0 <

ε,δ < 1. Then Algorithm 2 with access to a conditional sampling oracle runs in poly(r, T , O,

1/∆∗, 1/ε , log(1/δ)) time and returns an efficiently represented approximation P̂r[·] satisfying

TV(Pr, P̂r)≤ ε with probability at least 1−δ .

The theorem provides a robust analog to Theorem 3 in the much weaker conditional

sampling access model. The caveat is that the guarantee depends on a spectral property of a

distribution, which we call the fidelity. The definition of fidelity (Definition 13) requires further

development of the algebraic structure in Pr[·] and is deferred to Section 3.3. Nevertheless, we

can show that the cryptographically hard examples of HMMs and positive results from prior

work on learning HMMs have fidelity that is lower bounded by a (small) polynomial of the other

parameters and thus are efficiently learnable by our algorithm (see [55]). On the other hand,

there are HMMs with exponentially small fidelity, and we have no evidence that these instances

are computationally intractable when provided with conditional samples. This leads to the main

open question stemming from our work.

Open Problem 11. Is there a computationally efficient algorithm for learning any low rank

distribution given access to a conditional sampling oracle?

Chapter organization. In Section 3.3, we present an overview of our techniques, explaining

the challenges and how we address them. Then we turn to the more formal presentation of the

25

proofs, with Section 3.4 devoted to Theorem 3 and Section 3.5 devoted to Theorem 4. These

sections present our algorithms and the main ingredients for their analysis, with some details

deferred to the appendices. We close the main body of the chapter in Section 3.6, with some

further discussion regarding Open Problem 11.

3.3 Technical overview

To explain the central challenges with learning low rank distributions and how we

overcome them, let us introduce the following notation: let Ht := Ot and Ft := OT−t denote the

observation sequences of length t and T − t respectively. Then the matrix Pr[Ft |Ht] is a submatrix

of Pr[O≤T−t |Ot] and hence is rank at most r by assumption. If we define these matrices for each

length t ∈ [T], then clearly we have encoded the entire distribution. Hence, estimating these

matrices in an appropriate sense would suffice for distribution learning. Although the matrices all

have rank at most r, they are exponentially large, so the low rank property does not immediately

yield an efficient representation of the distribution. Indeed, we must leverage further structure to

obtain efficient algorithms.

3.3.1 Background: Observable operators and hard instances

For HMMs, we can hope to leverage the explicit formula for the probability of a sequence

(Equation (3.1)) to obtain an efficient algorithm. Indeed, this is the approach adopted by Hsu,

Kakade, and Zhang [46]. Specifically, they use the observable operator representation [47]: if

we define S×S matrices {Ao}o∈O as Ao := Tdiag(O[o, ·]) then we can write the probability of

any observation sequence as

Pr[x1, . . . ,xT] = 1⊤AxT . . .Ax1 µ,

where 1 is the all-ones vector and recall that µ is the initial state distribution. Hsu, Kakade and

Zhang show that these operators can be estimated, up to a linear transformation, whenever T and

26

O have full column rank. In fact, under their assumptions, these operators can be recovered from

Pr[x1=·,x2=·,x3=·] alone; no higher order moments of the distribution are required.

Unfortunately, this approach fails if either T or O are (column) rank deficient, and it is

conjectured that the rank deficient HMMs are precisely the hard instances [70]. On the other

hand, many interesting HMMs are rank deficient. For example, any overcomplete HMM—one

with fewer observations than states—cannot have a full column rank O matrix. This captures all

deterministic finite automata where the alphabet size is smaller than the number of states as well

as the parity with noise problem.

Learning parity with noise is a particularly interesting case. The standard formulation is

that we obtain samples of the form (z,y) ∈ {0,1}T−1 ×{0,1} where z is uniformly distributed

on the hypercube and y =
⊕

i∈I zi with probability 1−α and y = 1−
⊕

i∈I zi with the remaining

probability. Here
⊕

denotes the parity operation, I is a secret subset of indices I ⊆ [T − 1],

and α ∈ (0,1/2) is a noise parameter. We want to learn the subset I, given samples from this

process. This problem is widely believed to be computationally hard and can be encoded as an

HMM with O = {0,1} and 4T states (see [55]). Considering this problem, it is quite apparent

that low degree moments, like those used by Hsu, Kakade, and Zhang, reveal no information

about the subset I. In particular, the observable operators Ao are not identifiable from low degree

moments. One must use higher order information, i.e., statistics about long sequences, to solve

this problem.

3.3.2 Efficient representation

For rank deficient HMMs, it is not clear how to identify the observable operators and it

is not even clear that such operators exist for the more general case of low rank distributions.

So, we must return to the question of how to efficiently represent the distribution. Here, our first

observation is that any submatrix of Pr[Ft |Ht] that has the same rank as the entire matrix can be

used to build an efficient representation. To see why, suppose we have such a submatrix, and let

us index the columns/histories of the submatrix by Bt , which we refer to as the basis. It follows

27

Bt Bt+1 Bto1 Bto2

o1Ft+1

o2Ft+1

h

β(h) β(Bto1) β(Bto2)

Pr[Ft ∣ Ht]

Pr[Ft+1 ∣ Ht+1]

Pr[o2Ft+1 ∣ Bt] = Pr[Ft+1 ∣ Bto2]diag(Pr[o2 ∣ Bt])

Figure 3.1. Schematic of the circulant structure relating the Pr[Ft |Ht] and Pr[Ft+1|Ht+1] matrices.
Columns of Pr[Ft | Ht] can be represented linearly in basis Bt using coefficients β (·). The blocks
Pr[oFt+1 | Bt] appear in the next matrix Pr[Ft+1 | Ht+1] (up to scaling), so they can be represented
in basis Bt+1.

that Pr[Ft |Bt] spans the column space of Pr[Ft |Ht], which implies that for any history h ∈ Ht there

exists coefficients β (h) ∈ R|Bt | such that

Pr[Ft |h] = Pr[Ft |Bt]β (h).

The main observation toward obtaining an efficient representation is to exploit a certain circulant

structure in the matrices {Pr[Ft |Ht]}t≤T to model the evolution of the coefficients (visualized

in Figure 3.1). The circulant structure is simply that for basis Bt , observation o, and future

f ∈ Ft+1 (i.e., of length T − t − 1) the vector Pr[Bto f] appears in two of the matrices (albeit

with different scaling). It appears in the matrix Pr[Ft |Ht] in row o f and columns Bt , and it

appears in the matrix Pr[Ft+1|Ht+1] in row f and columns Bto. Thus, if we learn how to represent

28

the columns Pr[Ft+1|Bto] in terms of the columns Pr[Ft+1|Bt+1]—which we can do via the

coefficients—the circulant property provides a connection between the matrices Pr[Ft+1|Ht+1]

and Pr[Ft |Ht].

Formally, we can define operators {Ao,t} for each observation o ∈O and sequence length

t ∈ [T] satisfying

Pr[Ft+1|Bt+1]Ao,t = Pr[oFt+1|Bt], (3.2)

which can then be used to express sequence probabilities by iterated application. Indeed, we

have

Pr[x1, . . . ,xT] = Pr[x1, . . . ,xT |B0] = Pr[x2, . . . ,xT |B1]Ax1,0 = . . .

. . .= Pr[xT |BT−1]AxT−1,T−2 . . .Ax1,0 = AxT ,T−1 . . .Ax1,0 , (3.3)

where by an explicit choice of B0, BT and FT , the matrices Ax1,0 and AxT ,T−1 are column and row

vectors respectively, and so the right-hand side is a scalar (see Proposition 16 for details)6. More

importantly, these operators can also be viewed as evolving the coefficients via the identity:

∀h ∈ Ht ,o ∈ O : β (ho) =
Ao,tβ (h)
Pr[o|h]

. (3.4)

This identity is proved in Proposition 16. We highlight the scaling, which results in a nonlinear

update equation and appears because the coefficients express conditional rather than joint

probabilities. This viewpoint of operators evolving coefficients will play a central role in our

error analysis.

Thus, it remains to find the bases {Bt}t≤T , estimate the operators {Ao,t}o∈O,t≤T , and

6We define B0, BT and FT to be singleton sets. B0 and FT contain the empty string ϕ and BT contains any length
T observation sequence. These new definitions, in conjunction with Proposition 16 imply: AxT ,T−1 = Pr[xT |BT−1]
and therefore will be a row vector. Similarly, Ax1,0 is a solution of Pr[F1|B1]Ax1,0 = Pr[x1F1|ϕ] and is therefore a
column vector.

29

control the error amplification from iteratively multiplying these estimates. We turn to these

issues next.

Remark 12. The approach of Hsu, Kakade, and Zhang can also be viewed as estimating operators

via Equation (3.2) with the particular choice of basis. They show that conditional distribution of

futures given any history can be written in the span of the conditional distributions of the single

observation histories, so that O itself forms a basis. This is implied by their assumptions and

it permits using only second and third degree moments to estimate the operators. However, in

general we will need to use long sequences in our bases and interactive access will be crucial for

estimation. Additionally, under their choice of bases and their assumptions they show that the

solution of Equation (3.2) is related to the observable operators [47], explicitly given by T and

O, by an invertible and bounded transformation, which is instrumental in their error analysis.

When considering general bases B, we do not have such a connection and will require a novel

error propagation argument.

3.3.3 Error propagation

Although finding the bases Bt and estimating corresponding operators Ao,t is nontrivial,

even if we have estimated these operators accurately, we must address the error amplification

that can arise from repeated application of the learned operators. This challenge makes up the

majority of our technical analysis. We discuss estimating operators Ao,t in Section 3.3.4 and how

to find the basis in Section 3.3.5.

To explain the error amplification challenge, suppose for now that we are given bases

{Bt}t≤T and subsequently estimate the operators Ao,t in ℓ2 norm, i.e., we have estimate Âo,t

satisfying ∥Âo,t −Ao,t∥2 ≤ ε . We first define our estimated model P̂r in terms of the estimated

operators Âo,t . Considering Equation (3.3), the natural estimator is

P̂r[x1, . . . ,xT] = ÂxT ,T−1 . . . Âx2,1Âx1,0, (3.5)

30

where, as before, the matrices Âx1,0 and ÂxT ,T−1 are column and row vectors respectively, so the

right hand side is a scalar. To simplify notation for this section, we omit the time indexing on the

operators.

Given this estimate, the total variation distance is

1
2 ∑

x1,...,xT∈OT

∣∣∣ÂxT . . . Âx1 −AxT . . .Ax1

∣∣∣ .
Let us first discuss two strategies for bounding this expression that can work in some cases, but

do not seem to work in our setting. One idea is to pass to the ℓ2 norm and use a telescoping

argument to obtain several terms of the form

∑
x1,...,xT∈OT

∥ÂxT . . . Âxt+2∥2 · ∥
(

Âxt+1 −Axt+1

)
Axt . . .Ax1∥2

These terms are convenient because the matrix products only disagree in the t th operator. However,

both the “incoming” product Axt . . .Ax1 that pre-multiplies this difference and the “outgoing”

product ÂxT . . . Âxt+2 whose norm we must bound can be rather poorly behaved. For example,

the product Axt . . .Ax1 can have ℓ2 norm that grows exponentially with t, since the ℓ2 norm of

the individual matrices can be much larger than 1. An even worse problem is that we have

exponentially many terms in the sum, so that even bounding each term by ε (which would be

possible if the incoming and outgoing products were well behaved) is grossly insufficient.

The other approach is the strategy adopted by Hsu, Kakade, and Zhang [46], which uses

the definition of the observable operators [47], Ax = Tdiag(O[x, ·]), explicitly. This allows them

to control the incoming and outgoing products in a decomposition analogous to the one above,

but in the ℓ1 norm. Their decomposition involves several terms, but to convey the main idea,

observe that we can bound

∑
x1,...,xt+1

∥
(
Âxt+1 −Axt+1

)
Axt . . . ,Ax1∥1 ≲ Oε · ∑

x1,...,xt

∥Axt . . . ,Ax1∥1 ≤ Oε.

31

The idea is that each term in the final sum can be seen as a joint probability of the history

x1, . . . ,xt and the hidden state st+1, so we can sum over all histories with no error amplification.

Unfortunately, there is no hidden state in the more general setting (and for the rank deficient

case, the observable operators can not be learned accurately as discussed in Section 3.3.1), so

we cannot appeal to an argument of this form. Indeed, our main technical contribution is a new

perturbation analysis that relies on no structural assumptions.

At a more technical level, the issue with both of these arguments is that passing to any

norm, seems to be too coarse to adequately control the error amplification. Instead, our argument

carefully tracks the error in the space of the coefficients. Precisely, given estimates Âo,t that

satisfy ∥Âo,t −Ao,t∥2 ≤ ε , we can show, via an inductive argument, that for any x1, . . . ,xt

(Âxt . . . Âx1 −Axt . . .Ax1) = ∑
h∈Ht

β (h)αh + ∑
v∈V⊥

t

vγv,

where V⊥
t is an orthonormal basis for the kernel of Pr[Ft | Bt] and αh,γv are scalars. Moreover,

the TV distance between Pr[·] and P̂r[·] is exactly equal to the sum of these scalars over all

sequences x1, . . . ,xT . Even though there could be exponentially many terms in this sum, we show

that this sum is small via an inductive argument. This makes up the most technical component of

our proof, and we give a more detailed overview in Section 3.5 with the formal proofs in [55].

3.3.4 Estimating operators

We next discuss estimating the operators {Ao,t}o∈O,t≤T using the conditional sampling

oracle. A natural idea is to use samples to estimate both sides of the system in Equation (3.2) and

solve the noisy version via linear regression. Unfortunately, this system may have exponentially

small (in T − t) singular values, making it highly sensitive to perturbation. There is also a

cosmetic issue when working with Pr[Ft+1|Bt+1], namely this matrix is exponentially large.

To address these challenges, we introduce a particular preconditioner that stabilizes the

32

system. Specifically, we instead estimate and solve

Pr[Ft+1|Bt+1]
⊤D−1

t+1 Pr[Ft+1|Bt+1]Ao,t = Pr[Ft+1|Bt+1]
⊤D−1

t+1 Pr[oFt+1|Bt] , (3.6)

where Dt+1 is a diagonal matrix with entries dt+1(f) := 1
|Bt+1| ∑b∈Bt+1 Pr[f |b] on the diagonal.7

The benefit of this preconditioner is that the new matrices are of size |Bt+1|× |Bt+1| rather than

exponentially large, and yet they can still be estimated efficiently using the conditional sampling

oracle. To see why the latter holds, observe that the (i, j)th entry of the matrix on the LHS is

[
Pr[Ft+1|Bt+1]

⊤D−1
t+1 Pr[Ft+1|Bt+1]

]
i, j

= ∑
f∈Ft+1

dt+1(f)
[

Pr[f |bi]Pr[f |b j]

dt+1(f)2

]
,

where Bt+1 = {b1,b2, . . . ,}. Intuitively, we can estimate this entry by sampling futures f from

Pr[·|b] to approximate any term in the sum and sampling futures from dt+1(·) to approximate the

sum itself. While this is true, there is one technical issue to overcome: to estimate the ratio to

additive accuracy, we must estimate the individual probabilities Pr[f | bi], Pr[f | b j] and dt+1(f)

to relative accuracy. We can obtain (1±ζ) relative error estimates using conditional samples as

long as the one-step probabilities are at least Ω(ζ/T), but this is challenging when even a single

one-step probability is small. To address this issue, we show that such futures actually contribute

very little to the overall sum, and we design a test to safely ignore them. See [55] for details.

While the ability to estimate the entries is clearly important, the hope with preconditioning

is that it dramatically amplifies the singular values of the matrix on the left hand side. In particular,

we want that the matrix Pr[Ft+1|Bt+1]
⊤D−1

t+1 Pr[Ft+1|Bt+1] has large (non-zero) singular values, as

this will allow us to estimate the operators Ao,t in the ℓ2 norm. Our choice of preconditioner does

achieve this in the important example of parity with noise: we can show that Pr[Ft+1|Bt+1] has

exponentially small (in T − t) singular values for every choice of Bt+1, while there exists a basis

Bt+1 for which the non-zero singular values of the preconditioned matrix are Ω(1) (see [55]).

7This choice of Dt+1 ensures there is no division-by-zero issue, see [55].

33

Unfortunately, in general, a basis which ensures the preconditioner has large singular values

might not exist, and we address this by introducing the notion of fidelity.

Definition 13 (Fidelity). We say that distribution Pr[·] has fidelity ∆∗ if there exists some bases

{Bt}t∈[T], such that maxt |Bt | ≤ 1/∆∗ and

∀t ∈ [T] : σ+

(
S

1
2
t Pr[Ft |Ht]

⊤D−1
t Pr[Ft |Ht]S

1
2
t

)
≥ ∆

∗

where σ+(M) denotes the magnitude of the smallest non-zero eigenvalue of M, Dt is a diagonal

matrix of size |Ft |× |Ft | with entries dt(f) := 1
|Bt | ∑b∈Bt Pr[f |b], and St is a diagonal matrix of

size |Ht |× |Ht | with entries st(h) := Pr[h].

Importantly, we only assume the existence of bases with this property, not that it is given

to us or otherwise known in advance. Note that, although the matrix with large eigenvalues

according to the fidelity definition is not the same as the preconditioned matrix we care about for

learning operators, nevertheless when the distribution has high fidelity (i.e., ∆∗ is large), we can

find a basis for which Pr[Ft+1|Bt+1]
⊤D−1

t+1 Pr[Ft+1|Bt+1] has large eigenvalues. This, combined

with our approach for estimating entries of the preconditioned matrix, allow us to learn operators

Ao,t in the ℓ2 norm. We provide details in [55].

Remark 14. Although our approach seems to require large fidelity, the parity with noise example

suggests that this definition of fidelity, which can lead to a favorable preconditioned system, is

more appropriate than directly assuming Pr[Ft+1|Bt+1] has large singular values. Indeed, we can

also show that fidelity captures all previously studied positive results for learning HMMs. We

also believe our approach can be extended to learn HMMs with small fidelity as described in

Section 3.6.

3.3.5 Finding the basis

The only remaining challenge is to find the bases {Bt}t∈[T]. Recall that, when considering

the conditional sampling oracle, we want bases for which the preconditioned matrices have

34

large eigenvalues. It turns out that when the distribution has high fidelity a random sample of

polynomially many histories will form a basis with this property with high probability. Given

that the other aspects of our analysis seem to require high fidelity, this random sampling approach

thus suffices to prove Theorem 4.

On the other hand, for low fidelity distributions, random sampling will fail to cover

the directions with small singular value, and so basis finding becomes an intriguing aspect of

learning with the conditional sampling oracle. Basis finding is also the final issue to address

for Theorem 3, using the exact oracle. In both cases, we provide adaptations of Angluin’s L∗

algorithm that finds bases for any low rank distribution. We defer discussion of the conditional

sampling version to [55] and hope that it serves as a starting point toward resolving Open

Problem 11.

Adapting L∗ for basis finding with the exact oracle. We close this section by explaining how

to find a basis when provided with the exact probability oracle. As a first observation, note that

we need not construct the entire system in Equation (3.2) to identify operators Ao,t . It suffices

to find a set of futures Λt ⊂ Ft such that Pr[Λt | Ht] spans the row space of Pr[Ft | Ht]. In other

words, we just need Bt and Λt for which Pr[Λt | Bt] has the same rank as Pr[Ft | Ht].

The difficulty is that there is no universal choice of Bt ,Λt for general low rank distribu-

tions, and finding these sets poses a challenge search problem in an exponentially large space.

We address this challenge using the exact probability oracle and an adaptation of Angluin’s L∗

algorithm for learning DFAs. The basic idea is as follows: given sets Bt ,Λt whose submatrix is

not of the required rank, we can still solve the underdetermined system

Pr[Λt |Bt]Ao,t = Pr[oΛt |Bt]

and obtain an estimate P̂r[·] via Equation (3.5). Then, we can sample sequences x1, . . . ,xt ∼ Pr[·]

and check if our estimate makes the correct predictions on these sequences. In particular, we

35

check

P̂r[x1, . . . ,xt ,Λt]
?
= Pr[x1, . . . ,xt ,Λt].

If the predictions are accurate (i.e., these equalities hold) for each t and for polynomially many

random sequences, then we can show that P̂r[·] is close Pr[·] in total variation distance.

On the other hand, if these equalities do not hold for some sample x1, . . . ,xt , then we can

use it as a counterexample to improve our basis. We provide all the details in Section 3.4.

3.4 Learning with conditional probabilities

In this section we prove Theorem 3.

Theorem 3 (Learning with exact conditional probabilities). Assume O = {0,1}. Let Pr[·]

be any rank r distribution over observation sequences of length T . Pick any 0 < ε,δ < 1.

Then Algorithm 1 with access to an exact probability oracle and samples from Pr[·], runs in

poly(r,T,1/ε, log(1/δ)) time and returns an efficiently represented approximation P̂r[·] satisfy-

ing TV(Pr, P̂r)≤ ε with probability at least 1−δ .

We first introduce some notation, which differs from Section 3.3 slightly. We define

Ht := Ot to be the set of histories of length t. Similarly, we define Ft := O≤T−t to be the set of

futures of length ≤ T − t, coinciding with our rank definition. Notice that unlike in Section 3.3,

we take Ft to be all futures of length up to T −t, so that one may append elements from the futures

Ft to elements from the histories Ht to obtain a valid observation sequence of length at most T .

To simplify the technical notation, let ϕ be the empty string and define probabilities associated to

empty string as: Pr[x1 . . .xT |ϕ] = Pr[x1 . . .xT] and Pr[ϕ|x1 . . .xT] = 1 for any T -length sequence

x1, . . . ,xT .

We now formally define the notion of bases for distribution Pr[·].

36

Definition 15 (Basis). Let Pr[·] be any distribution over observation sequences of length T . A

set {Bt}t∈[T], where each Bt ⊂ Ht , forms bases for Pr[·], if for each t ∈ [T] and all x ∈ Ot , there

exists coefficients β (x) such that:

Pr[Ft |x] = Pr[Ft |Bt]β (x) .

We call each Bt a basis for Pr[·] at sequence length t.

In other words, a set Bt ⊂ Ht forms a basis for distribution Pr[·] if the column vectors

Pr[Ft |Bt] span the column space of Pr[Ft |Ht]. For now, when choosing Bt , we impose no constraint

on the size of these coefficients, and we also do not require the columns Pr[Ft | Bt] to be linearly

independent. The low rank property of Pr[·] directly implies that for each t, there exists a basis

Bt with |Bt | ≤ r. However, as discussed in Section 3.3.2, there are exponentially many histories

in Ht , so even if we had such a small basis Bt , simply learning the coefficients for each history

will not suffice for an efficient algorithm. We address this issue with the following structural

result: because of the circulant structure of the conditional probability matrix, we can generate

all the coefficients using OT matrices each of size at most r× r.

Proposition 16 (Existence of efficient representation). Let B0 = FT = {ϕ} and BT = {h} for any

observation sequence h ∈ HT .8 For t ∈ {1, . . . ,T −1}, let Bt ⊂ Ht be any basis for distribution

Pr[·] at sequence length t. Then, the probability distribution Pr[·] can be written as9:

Pr[x1 . . .xT] = AxT ,T−1AxT−1,T−2 . . .Ax1,0

8We set BT to be a singleton set for notational clarity, as otherwise we would have to pre-multiply our probability
estimate with the all ones row vector. Note that any singleton set forms a basis because Pr[FT |HT] is the all ones
matrix.

9Here by choice of basis B0 and BT , AxT ,T−1 = Pr[xT |BT−1] by definition and is therefore a row vector. Similarly,
Ax1,0 is a solution of Pr[F1|B1]Ax1,0 = Pr[x1F1|ϕ] and is therefore a column vector.

37

where matrices Ao,t for every o ∈ O and t ∈ {0, . . . ,T −1} satisfy

Pr[Ft+1|Bt+1]Ao,t = Pr[oFt+1|Bt]. (3.7)

Moreover, this equation always has a solution.

Proof. We first show there exists a solution Ao,t for Equation (3.7). For basis Bt = {b1, . . . ,bn}

and Bt+1, we claim the following Ao,t is a solution:

Ao,t =

[
β (b1o) β (b2o) · · · β (bno)

]

Pr[o|b1] 0 · · · 0

0 Pr[o|b2] · · · 0
...

... . . . 0

0 · · · 0 Pr[o|bn]

(3.8)

Here β (x) and β (xo) are the coefficients associated to history x of length t under Bt and history

xo of length t +1 under Bt+1 respectively. Recall that, in particular, these coefficients are such

that Pr[Ft+1 | Bt+1]β (xo) = Pr[Ft+1 | xo]. By definition of Ao,t ,

Pr[Ft+1|Bt+1]Ao,t

=Pr[Ft+1|Bt+1]

[
β (b1o) β (b2o) · · · β (bno)

]
Pr[o|b1] 0 · · · 0

...
... . . . 0

0 · · · 0 Pr[o|bn]

=Pr[Ft+1|Bto]

Pr[o|b1] 0 · · · 0

...
... . . . 0

0 · · · 0 Pr[o|bn]

 (by definition of β (bio))

=Pr[oFt+1|Bt]. (by Bayes rule)

38

Algorithm 1: Learning low rank distributions using exact conditional probabili-
ties.

1 Set B0 = ΛT = {ϕ}.
2 Set Bt = {0t} where 0t is (0, . . . ,0) with t zeroes for all t ∈ {1, . . . ,T}.
3 Set Λt = {0} or {1} to ensure Pr[Λt |Bt] ̸= 0 for all t ∈ {0, . . . ,T −1}. 10

4 for round 1,2, . . . do
5 Choose Âo,t for each o ∈ O and t ∈ [T −1] to be any matrix that satisfies

Pr[Λt+1|Bt+1]Âo,t = Pr[oΛt+1|Bt] (3.9)

6 Let Pr be a function defined on observation sequence (x1 . . .xt) for any t ∈ [T] as,

Pr[x1, . . . ,xt ,Λt] = Pr[Λt |Bt]Âxt ,t−1 . . . Âx1,0 (3.10)

7 Sample n sequences (x1, . . .xt) for each length t ∈ [T] and check if any one of
these nT sequences is a counterexample, i.e., it satisfies

Pr[x1, . . . ,xt ,Λt] ̸= Pr[x1, . . . ,xt ,Λt]

8 if we find such a counterexample (x1, . . . ,xt) then
9 Use Proposition 17 to find a time step τ ∈ [t], a new test future λ ′ ∈ Fτ , and a

new representative history b′ ∈ Hτ . Update Λτ := Λτ ∪{λ ′} and
Bτ := Bτ ∪{b′}.

10 else
11 return {Âo,t}o∈O,t∈[T−1]

Since oFt+1 is a subset of Ft , by repeatedly applying this equation, we get

Pr[FT |BT]AxT ,T−1AxT−1,T−2 . . .Ax1,0 = Pr[xT FT | BT−1]AxT−1,T−2 . . .Ax1,0 = Pr[x1x2 . . .xT FT |B0]

Noting Pr[FT |BT] = 1 and Pr[x1x2 . . .xT FT |B0] = Pr[x1x2 . . .xT ϕ|ϕ] = Pr[x1x2 . . .xT] as FT =

B0 = {ϕ} completes the proof.

10either Pr[0|Bt] or Pr[1 | Bt] must be nonzero.

39

3.4.1 Algorithm

We now present our algorithm (Algorithm 1). The user furnishes ε , the accuracy with

which the distribution is to be learned; and δ , a confidence parameter. The parameter n depends

on the input and is detailed in the proof of Theorem 3.

As discussed in Section 3.3, the algorithm iteratively builds a set of histories Bt ⊂ Ht and

a set of futures Λt ⊂ Ft (for each t), to span the column/row space of Pr[Ft | Ht], respectively.

Via Proposition 16, if we can find such sets, they would provide an efficient representation of

the distribution. We refer to Bt and Λt as representative histories and test futures, respectively,

and as we grow these sets, we maintain the invariant that the matrix Pr[Λt | Bt] is square and

invertible.

We start with Bt ,Λt of size 1. Then, we repeat the following: motivated by the evolving

equation in Proposition 16, we use Equation (3.9) to compute estimates Âo,t using our current

representative histories and test futures. This may be an under-determined linear system, but

Proposition 16 guarantees that it has a solution, and we take Âo,t to be any such solution. We use

these operators to define our estimate for the distribution, given in Equation (3.10), via iterated

multiplication of the operators. Then, we sample several sequences from the distribution and

check if any of them certify that our estimate is incorrect, i.e., serve as a counterexample. If we

do find a counterexample, then the algorithm finds a time step τ , a new history b′ ∈ Hτ and a

new future λ ′ ∈ Fτ that increases the rank of Pr[Fτ | Bτ] (this step is described in Proposition 17

below). This can only happen rT times if the distribution has rank r. On the other hand, if we do

not find a counterexample, then we simply output our current estimate.

3.4.2 Analysis

We first show how to use a counterexample to improve our set of representative histories

and test futures.

Proposition 17 (Finding representative histories and test futures). If x1 . . .xt is a counterexample,

40

that is, it satisfies the following:

Pr[x1, . . . ,xt ,Λt] ̸= Pr[x1, . . . ,xt ,Λt] (3.11)

then we can find a new test future λ ′ ∈ Fτ and representative history b′ ∈ Hτ for τ ∈ [t] in at

most poly(r,T) time such that rank(Pr[Λτ ∪{λ ′}|Bτ ∪{b′}]) = rank(Pr[Λτ |Bτ])+1.

Proof. For clarity, in the poof, we abuse notation and do not explicitly mention the sequence

length when writing the operator Ao,t , i.e., we use Axt instead of Axt ,t−1. First, we find a time

τ ∈ [t] where the following equations hold:

Pr[x1 . . .xτΛτ] = Pr[Λτ |Bτ]Âxτ
. . . Âx1

Pr[x1 . . .xτxτ+1Λτ+1] ̸= Pr[Λτ+1|Bτ+1]Âxτ+1Âxτ
. . . Âx1

Such a τ must exist because (a) the first equation is true for τ = 0 by definition, and (b) the second

equation is true for τ = t −1 because of the counterexample property (Equation (3.11)). Now,

we can simplify the equations above by substituting the vector v := (Pr[x1 . . .xτ])
−1Âxτ

. . . Âx1

which gives

Pr[Λτ |x1 . . .xτ] = Pr[Λτ |Bτ]v (3.12)

Pr[xτ+1Λτ+1|x1 . . .xτ] ̸= Pr[Λτ+1|Bτ+1]Âxτ+1v = Pr[xτ+1Λτ+1|Bτ]v, (3.13)

where the last step holds by definition of Âxτ+1 (Equation (3.9)). Let xτ+1λτ+1 index the row

of Equation (3.13) where equality does not hold. Define λ ′ = xτ+1λτ+1 and b′ = x1 . . .xτ . We

show that the equations above imply that the row vector Pr[λ ′|B′
τ] := Pr[xτ+1λτ+1|B′

τ] is linearly

independent of the rows of Pr[Λτ |B′
τ]. This is enough to prove our claim that rank(Pr[Λ′

τ |B′
τ]) =

rank(Pr[Λτ |Bτ])+1.

We establish linear independence by contradiction. Assume that Pr[λ ′ | B′
τ] is in the span

41

of the rows of Pr[Λτ | B′
τ]. Then, there exists a vector w such that:

Pr[xτ+1λτ+1|B′
τ] = w⊤Pr[Λτ |B′

τ] . (3.14)

Then, we reach a contradiction as

Pr[xτ+1λτ+1|x1 . . .xτ] = w⊤Pr[Λτ |x1 . . .xτ]

= w⊤Pr[Λτ |Bτ]v

= Pr[xτ+1λτ+1|Bτ]v

̸= Pr[xτ+1λτ+1|x1 . . .xτ]

where the first and third equality follows from linear dependence (Equation (3.14)), the second

equality follows from Equation (3.12), and the last inequality follows from Equation (3.13).

Finally, we need a technical lemma which allows us to estimate the TV distance using

conditional samples. This lemma implies that if our algorithm does not find a violation, then

with high probability our estimate is close to the true distribution in TV distance.

Proposition 18 (Substitute for TV oracle). Let Pr[·] and P̂r[·] be two probability distributions

over observation sequences of length T . Suppose that for all t ∈ {0, . . . ,T} and observations

o ∈ O

Ex1,...,xt∼Pr[·]

[∣∣∣P̂r[o|x1, . . . ,xt]−Pr[o|x1, . . . ,xt]
∣∣∣]≤ ε .

Then

TV (Pr, P̂r) =
1
2 ∑

x1,...,xT

|(Pr[x1:T]− P̂r[x1:T])| ≤
(T +1)|O|ε

2

Since, Pr[·] might not be a probability distribution, we need to apply this proposition to a

probability distribution P̂r[·] that is close to Pr[·], which can be obtained by a simple construction.

These details and the proof of Proposition 18 are relatively straightforward and deferred to [55].

42

Algorithm 2: Learning low rank distributions using conditional samples.
1 for sequence length t = 0,1,2, . . . ,T do
2 Build set Bt = {b1, . . . ,bn} of n observation sequences of length t using

Lemma 20.
3 Build empirical estimates q̂(bo) and Σ̂Bt (defined in Equation (3.17) and

Equation (3.16)) for each history b ∈ Bt , observations o ∈ O with m conditional
samples (see [55] for details).

4 Compute SVD of Σ̂Bt .
5 Let V̂t be the matrix of eigenvectors corresponding to eigenvalues > ∆/2.
6 Compute coefficients β̂ (b′io) for each observation o ∈ O and sequence b′i ∈ Bt−1

by solving:
β̂ (b′io) = argminz∥Σ̂Bt z− q̂(b′io)∥2

2 +λ∥z∥2
2.

7 Compute model parameters Âo,t−1 for each observation o ∈ O:

Âo,t−1 = V̂tV̂⊤
t

[
β̂ (b′1o) · · · β̂ (b′no)

]
P̂r[o|b′1] · · · 0

0 · · · 0
... . . . 0
0 0 P̂r[o|b′n]

V̂t−1V̂⊤
t−1.

(3.15)
8 Return model parameters {Âo,t}.

3.5 Learning with conditional samples

In this section, we prove Theorem 4

Theorem 4 (Learning with conditional samples). Let Pr[·] be any rank r distribution over

observation sequences of length T . Assume distribution Pr[·] has fidelity ∆∗. Pick any 0 <

ε,δ < 1. Then Algorithm 2 with access to a conditional sampling oracle runs in poly(r, T , O,

1/∆∗, 1/ε , log(1/δ)) time and returns an efficiently represented approximation P̂r[·] satisfying

TV(Pr, P̂r)≤ ε with probability at least 1−δ .

Throughout this section, we use the same notation as Section 3.3, the set of futures

Ft := OT−t .

43

3.5.1 Algorithm

Algorithm pseudocode is displayed in Algorithm 2. The user furnishes ε , the accuracy

with which the distribution is to be learned; δ , a confidence parameter; ∆∗, the fidelity of the

distribution and r, the rank of the distribution. The parameters ∆,λ ,n and m are detailed in the

proof of Theorem 4 in [55].

As with the previous algorithm, Algorithm 2 relies on the efficient representation provided

by Proposition 16. First, the algorithm finds basis histories Bt for each t ∈ [T]. As discussed in

Section 3.3, under the fidelity assumption, this is not particularly challenging and can be done by

sampling from the distribution. The remaining steps in the algorithm constitute a specialized

technique for estimating the operators Ao,t−1 specified in Proposition 16.

Our estimate Âo,t−1 is based on the formula for Ao,t−1 given in Equation (3.8) and

involves three components: (a) projection onto (an estimate of) the row space of Pr[Ft | Bt], (b)

estimates of coefficients β (bo) and (c) estimates of probabilities Pr[o | b], where the latter two

are for bi ∈ Bt−1. Item (c) is straightforward using conditional samples. For item (a), we define

the “preconditioned matrix”

ΣBt := Pr[Ft | Bt]
⊤D−1

t Pr[Ft | Bt], (3.16)

where Dt is a |Ft |× |Ft | diagonal matrix with dt(f) = 1
|Bt | ∑b∈Bt Pr[f | b] on the diagonal. We

show in [55], how this matrix can be estimated using conditional samples. We project onto the

principal subspace of the estimated matrix, i.e., onto the span of the eigenvectors with eigenvalue

larger than ∆/2. These projections help with error propagation, as it eliminates errors that leave

the principal subspace.

For item (b), we estimate the coefficients β (bo) for b ∈ Bt−1 via linear regression. Using

44

our preconditioner and the definition of the coefficients, we can see that the coefficients satisfy:

q(bo) = ΣBt β (bo) where q(bo) := Pr[Ft | Bt]
⊤D−1

t Pr[Ft | bo] (3.17)

As with ΣBt , q(bo) can also be estimated using conditional samples (via the approach in [55]).

Moreover, our basis Bt will ensure that ∥β (bo)∥2 is bounded by a universal constant, so we

can use ridge regression to find estimates β̂ (bo). Then we can plug these into Equation (3.15)

to obtain estimates Âo,t−1. We return these matrices as the representation of our estimated

distribution.

3.5.2 Analysis

In the previous setting, when we had access to exact conditional probability oracle, the

main challenge was finding the bases. In contrast, now that we can only obtain samples, even if

we know the bases, we can only learn operators Ao,t approximately. As discussed in Section 3.3,

controlling estimation errors will require the notion of robust bases, which we define next.

Definition 19 (Robust bases). Bases {Bt}t∈[T] for distribution Pr[·] are ∆-robust if for every

t ∈ [T]:

σ+

(
Pr[Ft |Bt]

⊤D−1
t Pr[Ft |Bt]

)
≥ ∆

where σ+(M) denotes the minimum non-zero eigenvalue of M and Dt is a diagonal matrix of

size |Ft |× |Ft | with entries dt(f) := 1
|Bt | ∑b∈Bt Pr[f |b] on the diagonal.

A priori, it is unclear if such bases exists for arbitrary low rank distributions. Moreover,

even if robust bases exist, how do we find them? Our first lemma show how to find robust bases

for high fidelity distributions (Definition 13).

Lemma 20 (Finding robust bases). Assume distribution Pr[·] has rank r and fidelity ∆∗. Pick

0 < δ < 1. Let n = O(∆∗−8 log(r/δT)) and ∆ = Ω(∆∗−11/2 log(r/δT)). For each t ∈ [T], let St

45

be a random sample of size n of observation sequences of length t from distribution Pr[·]. Then,

with probability 1−δ , {St}t∈[T] form ∆-robust bases for Pr[·].

We provide a proof in [55]. According to this lemma, a random sample from a high

fidelity distribution forms a robust basis for each t. With access to a ∆-robust basis Bt , we turn

to the issues of estimation and error analysis. First we study estimation of the preconditioned

quantities q(bo) and ΣBt used by the algorithm. Note that all entries of these vectors and matrices

are of the following form, where b∗ ∈ Bt and x is a history of length t:

s(b∗,x) = ∑
f∈Ft

Pr[f |b∗]Pr[f |x]
d(f)

.

We show such quantities can be estimated efficiently using conditional samples.

Lemma 21 (Estimating preconditioned quantities). Let {Bt}t∈[T] be bases for distribution Pr[·]

where max0≤t≤T |Bt | ≤ n. Pick any 0 < ε,δ < 1. Fix b∗ ∈ Bt and x ∈ Ht . Then we can build

estimate ŝ(b∗,x) in poly(n, |O|,T,1/ε, log(1/δ)) time such that with probability 1−δ ,

|s(b∗,x)− ŝ(b∗,x)| ≤ ε .

We provide the estimation algorithm and a proof in [55]. Using this lemma, we can esti-

mate the operators Ao,t via Equation (3.15). The next lemma provides a precise characterization

of the estimation error for these operators.

Lemma 22 (Estimating operators). Assume the distribution Pr[·] has rank r and that {Bt}t∈[T] are

∆-robust bases. Pick 0 < ε,δ < 1. Then, we can learn approximations Âo,t for all observations

o ∈ O and t ∈ [T] in poly(r, |O|, T , 1/ε , 1/∆, log(1/δ)) time such that with probability 1−δ ,

for any unit vector v

(Âo,t −Ao,t)v = β (Bt+1)α(o,v)+V⊥
t+1α

⊥(o,v),

46

where β (Bt+1) is a matrix with columns β (b) for b ∈ Bt+1, V⊥
t+1 is a matrix whose columns form

an orthonormal basis for the kernel of Pr[Ft+1|Bt+1]
⊤D−1

t+1 Pr[Ft+1|Bt+1], and the vectors α(o,v)

and α⊥(o,v) are ℓ1 bounded, i.e.,

max(∥α(o,v)∥1,∥α
⊥(o,v)∥1)≤ ε .

We provide the proof in [55]. As noted in Section 3.3, the main technical challenge is

in analyzing how the estimation error propagates to errors in induced distributions. Using this

structured error, we can show how to bound the TV distance between the induced distributions.

Lemma 23 (Perturbation argument). Assume for each sequence length t ∈ [T] and observation

o ∈ O , we have an operator Âo,t which is close to Ao,t as defined above in Lemma 22. Let P̂r[·]

be a function over observation sequences of length T given by

P̂r[x1 . . .xT] = ÂxT ,T−1 . . . Âx1,0

Then, the functions Pr[·] and P̂r[·] are close in TV distance:

TV(Pr, P̂r)≤ 2|O|T ε

This makes up the most technical component of our proof, and we give the formal proofs

in [55]. Together with previous lemmas, this proves our main theorem, Theorem 4.

3.6 Discussion

In this chapter we show how interactive access to hidden Markov models (and more

generally low rank distributions) can circumvent computational barriers to efficient learning. In

particular, we show that all low rank distributions with a certain fidelity property can be efficiently

learned assuming access to a conditional sampling oracle. In [55], we show that fidelity captures

47

the assumptions considered in prior work on (non-interactive) learning of HMMs, specifically:

• Parity with noise admits bases Bt each of cardinality 2 with fidelity (1−2α2)/2, where α

is the noise parameter.

• Full rank HMMs, where T and O are full column rank, admit bases of size O with fidelity

bounded by the minimum singular value of the second moment matrix Pr[x2 = ·,x1 = ·].

This parameter also appears polynomially in the analysis of [46].

• The overcomplete setting of [88], where sequences of length logS are used for estimation,

admits bases of size S with fidelity 1/poly(S), matching their parameters.

Despite this, the reliance on the fidelity parameter is the main limitation of our results.

We believe this dependence is not necessary, which leads to the main open problem, Open

Problem 11. We close the chapter with some final remarks regarding this open problem.

As we have mentioned previously, although fidelity greatly simplifies the basis finding

aspect of our algorithm, it is not necessary for this part and refer the reader to [55] where we

give a general algorithm for basis finding. Indeed the only place where fidelity is required is in

our error propagation analysis, where our techniques require that operators Âo,t are estimated

in ℓ2 norm. In the general case, we will only be able to learn operators in the directions for

which the preconditioned matrix has large eigenvalues, and ideally we should be able to ignore

the directions with small eigenvalues. This strategy would work if we can show that ignoring

the small directions preserves the low rank property, which is the linear-algebraic analog of

approximating an HMM by one with fewer states. Unfortunately, we do not know if the latter

holds, and we believe this is the key challenge to resolving Open Problem 11. We look forward

to further progress on this problem.

Acknowledgements. Chapter 3, in part is currently being prepared for submission for

publication of the material. Sham M. Kakade, Akshay Krishnamurthy, Gaurav Mahajan and

Cyril Zhang. Learning Hidden Markov Models Using Conditional Samples. The dissertation

author was the primary investigator and author of this material.

48

Chapter 4

Understanding algorithms in practice

4.1 Preliminaries

A (finite) Markov Decision Process (MDP) M = (S ,A ,P,r,γ,ρ) is specified by: a finite

state space S ; a finite action space A ; a transition model P where P(s′|s,a) is the probability of

transitioning into state s′ upon taking action a in state s; a reward function r : S ×A → [0,1]

where r(s,a) is the immediate reward associated with taking action a in state s; a discount factor

γ ∈ [0,1); a starting state distribution ρ over S .

A deterministic, stationary policy π : S → A specifies a decision-making strategy in

which the agent chooses actions adaptively based on the current state, i.e., at = π(st). The agent

may also choose actions according to a stochastic policy π : S → ∆(A) (where ∆(A) is the

probability simplex over A), and, overloading notation, we write at ∼ π(·|st).

A policy induces a distribution over trajectories τ = (st ,at ,rt)
∞
t=0, where s0 is drawn

from the starting state distribution ρ , and, for all subsequent timesteps t, at ∼ π(·|st) and

st+1 ∼ P(·|st ,at). The value function V π : S → R is defined as the discounted sum of future

rewards starting at state s and executing π , i.e.

V π(s) := E

[
∞

∑
t=0

γ
tr(st ,at)|π,s0 = s

]
,

where the expectation is with respect to the randomness of the trajectory τ induced by π in M.

49

Since we assume that r(s,a) ∈ [0,1], we have 0 ≤V π(s)≤ 1
1−γ

. We overload notation and define

V π(ρ) as the expected value under the initial state distribution ρ , i.e.

V π(ρ) := Es0∼ρ [V π(s0)].

The action-value (or Q-value) function Qπ : S ×A → R and the advantage function

Aπ : S ×A → R are defined as:

Qπ(s,a) = E

[
∞

∑
t=0

γ
tr(st ,at)|π,s0 = s,a0 = a

]
, Aπ(s,a) := Qπ(s,a)−V π(s) .

The goal of the agent is to find a policy π that maximizes the expected value from the

initial state, i.e. the optimization problem the agent seeks to solve is:

max
π

V π(ρ), (4.1)

where the max is over all policies. The famous theorem of [16] shows there exists a policy π⋆

which simultaneously maximizes V π(s0), for all states s0 ∈ S .

Policy Parameterizations. This work studies ascent methods for the optimization problem:

max
θ∈Θ

V πθ (ρ),

where {πθ |θ ∈ Θ} is some class of parametric (stochastic) policies. We consider a number of

different policy classes. The first two are complete in the sense that any stochastic policy can be

represented in the class. The final class may be restrictive. These classes are as follows:

• Direct parameterization: The policies are parameterized by

πθ (a|s) = θs,a, (4.2)

50

where θ ∈ ∆(A)|S |, i.e. θ is subject to θs,a ≥ 0 and ∑a∈A θs,a = 1 for all s ∈ S and

a ∈ A .

• Softmax parameterization: For unconstrained θ ∈ R|S ||A |,

πθ (a|s) =
exp(θs,a)

∑a′∈A exp(θs,a′)
. (4.3)

The softmax parameterization is also complete.

• Restricted parameterizations: We also study parametric classes {πθ |θ ∈ Θ} that may not

contain all stochastic policies. In particular, we pay close attention to both log-linear policy

classes and neural policy classes (see [6]). Here, the best we may hope for is an agnostic

result where we do as well as the best policy in this class.

While the softmax parameterization is the more natural parametrization among the two complete

policy classes, it is also informative to consider the direct parameterization.

Non-Concavity. It is worth explicitly noting that V πθ (s) is non-concave in θ for both the

direct and the softmax parameterizations, so the standard tools of convex optimization are not

applicable. For completeness, we formalize this as follows (with a proof in [6], along with an

example in Figure 4.1):

Lemma 24. There is an MDP M (described in Figure 4.1) such that the optimization problem

V πθ (s) is not concave for both the direct and softmax parameterizations.

Policy gradients. In order to introduce these methods, it is useful to define the discounted state

visitation distribution dπ
s0

of a policy π as:

dπ
s0
(s) := (1− γ)

∞

∑
t=0

γ
tPrπ(st = s|s0), (4.4)

51

s1 s2

s4

s5

s3

0

0

0

0

0 r > 0

0

Figure 4.1. (Non-concavity example) A de-
terministic MDP corresponding to Lemma
24 where V πθ (s) is not concave. Numbers
on arrows represent the rewards for each
action.

s0 s1 · · · sH sH+1

a1

a1 a1
a1

a2 a2

a3

a4
a3

a4

Figure 4.2. (Vanishing gradient example)
A deterministic, chain MDP of length H+2.
We consider a policy where π(a|si) = θsi,a
for i = 1,2, . . . ,H. Rewards are 0 every-
where other than r(sH+1,a1) = 1. See
Proposition 28.

where Prπ(st = s|s0) is the state visitation probability that st = s, after we execute π starting at

state s0. Again, we overload notation and write:

dπ
ρ (s) = Es0∼ρ

[
dπ

s0
(s)
]
,

where dπ
ρ is the discounted state visitation distribution under initial distribution ρ .

The policy gradient functional form (see e.g. [99, 91]) is then:

∇θV πθ (s0) =
1

1− γ
Es∼d

πθ
s0
Ea∼πθ (·|s)

[
∇θ logπθ (a|s)Qπθ (s,a)

]
. (4.5)

Furthermore, if we are working with a differentiable parameterization of πθ (·|s) that explicitly

constrains πθ (·|s) to be in the simplex, i.e. πθ ∈ ∆(A)|S | for all θ , then we also have:

∇θV πθ (s0) =
1

1− γ
Es∼d

πθ
s0
Ea∼πθ (·|s)

[
∇θ logπθ (a|s)Aπθ (s,a)

]
. (4.6)

Note the above gradient expression (Equation 4.6) does not hold for the direct parameterization,

while Equation 4.5 is valid. 1

1This is due to ∑a ∇θ πθ (a|s) = 0 not explicitly being maintained by the direct parameterization.

52

The performance difference lemma. The following lemma is helpful throughout:

Lemma 25. (The performance difference lemma [54]) For all policies π,π ′ and states s0,

V π(s0)−V π ′
(s0) =

1
1− γ

Es∼dπ
s0
Ea∼π(·|s)

[
Aπ ′

(s,a)
]
.

For completeness, we provide a proof in [6].

The distribution mismatch coefficient. We often characterize the difficulty of the exploration

problem faced by our policy optimization algorithms when maximizing the objective V π(µ)

through the following notion of distribution mismatch coefficient.

Definition 26 (Distribution mismatch coefficient). Given a policy π and measures ρ,µ ∈ ∆(S),

we refer to
∥∥∥dπ

ρ

µ

∥∥∥
∞

as the distribution mismatch coefficient of π relative to µ . Here,
dπ

ρ

µ
denotes

componentwise division.

We often instantiate this coefficient with µ as the initial state distribution used in a

policy optimization algorithm, ρ as the distribution to measure the sub-optimality of our pol-

icy (this is the start state distribution of interest), and where π above is often chosen to be

π⋆ ∈ argmaxπ∈ΠV π(ρ), given a policy class Π.

Notation. Following convention, we use V ⋆ and Q⋆ to denote V π⋆
and Qπ⋆

respectively. For

iterative algorithms which obtain policy parameters θ (t) at iteration t, we let π(t), V (t) and A(t)

denote the corresponding quantities parameterized by θ (t), i.e. π
θ (t) , V θ (t)

and Aθ (t)
, respectively.

For vectors u and v, we use u
v to denote the componentwise ratio; u ≥ v denotes a componentwise

inequality; we use the standard convention where ∥v∥2 =
√

∑i v2
i , ∥v∥1 = ∑i |vi|, and ∥v∥∞ =

maxi |vi|.

53

Table 4.1. Iteration Complexities with Exact Gradients for the Tabular Case: A summary
of the number of iterations required by different algorithms to find a policy π such that V ⋆(s0)−
V π(s0)≤ ε for some fixed s0, assuming access to exact policy gradients.

Algorithm Iteration complexity

Projected Gradient Ascent on Simplex (Thm 5)
O
(

D2
∞|S ||A |
(1−γ)6ε2

)
Policy Gradient, softmax parameterization (Thm 6) asymptotic

Policy Gradient + log barrier regularization,
softmax parameterization (Cor 33)

O
(

D2
∞|S |2|A |2
(1−γ)6 ε2

)
Natural Policy Gradient (NPG),

softmax parameterization (Thm 8)
2

(1−γ)2ε

4.2 Our results

This chapter focuses on first-order and quasi second-order policy gradient methods

which directly work in the space of some parameterized policy class (rather than value-based

approaches). We characterize the computational, approximation, and sample size properties of

these methods in the context of a discounted Markov Decision Process (MDP). We focus on: 1)

tabular policy parameterizations, where there is one parameter per state-action pair so the policy

class is complete in that it contains the optimal policy, and 2) function approximation, where we

have a restricted class or parametric policies which may not contain the globally optimal policy.

Note that policy gradient methods for discrete action MDPs work in the space of stochastic

policies, which permits the policy class to be differentiable. We now discuss our contributions in

the both of these contexts.

Tabular case: We consider three algorithms: two of which are first order methods, projected

gradient ascent (on the simplex) and gradient ascent (with a softmax policy parameterization);

and the third algorithm, natural policy gradient ascent, can be viewed as a quasi second-order

54

method (or preconditioned first-order method). Table 4.1 summarizes our main results in this

case: upper bounds on the number of iterations taken by these algorithms to find an ε-optimal

policy, when we have access to exact policy gradients.

Arguably, the most natural starting point for an analysis of policy gradient methods is

to consider directly doing gradient ascent on the policy simplex itself and then to project back

onto the simplex if the constraint is violated after a gradient update; we refer to this algorithm

as projected gradient ascent on the simplex. Using a notion of gradient domination [79], our

results provably show that any first-order stationary point of the value function results in an

approximately optimal policy, under certain regularity assumptions; this allows for a global

convergence analysis by directly appealing to standard results in the non-convex optimization

literature.

A more practical and commonly used parameterization is the softmax parameterization,

where the simplex constraint is explicitly enforced by the exponential parameterization, thus

avoiding projections. This work provides the first global convergence guarantees using only

first-order gradient information for the widely-used softmax parameterization. Our first result for

this parameterization establishes the asymptotic convergence of the policy gradient algorithm;

the analysis challenge here is that the optimal policy (which is deterministic) is attained by

sending the softmax parameters to infinity.

In order to establish a finite time convergence rate to optimality for the softmax parame-

terization, we then consider a log barrier regularizer and provide an iteration complexity bound

that is polynomial in all relevant quantities. Our use of the log barrier regularizer is critical to

avoiding the issue of gradients becomingly vanishingly small at suboptimal near-deterministic

policies, an issue of significant practical relevance. The log barrier regularizer can also be viewed

as using a relative entropy regularizer; here, we note the general approach of entropy based

regularization is common in practice (e.g. see [100, 68, 77, 3, 7]). One notable distinction,

which we discuss later, is that our analysis is for the log barrier regularization rather than the

entropy regularization.

55

For these aforementioned algorithms, our convergence rates depend on the optimization

measure having coverage over the state space, as measured by the distribution mismatch coef-

ficient D∞ (see Table 4.1 caption). In particular, for the convergence rates shown in Table 4.1

(for the aforementioned algorithms), we assume that the optimization objective is the expected

(discounted) cumulative value where the initial state is sampled under some distribution, and D∞

is a measure of the coverage of this initial distribution. Furthermore, we provide a lower bound

that shows such a dependence is unavoidable for first-order methods, even when exact gradients

are available.

We then consider the Natural Policy Gradient (NPG) algorithm [53] (also see [15,

78]), which can be considered a quasi second-order method due to the use of its particular

preconditioner, and provide an iteration complexity to achieve an ε-optimal policy that is at most

2
(1−γ)2ε

iterations, improving upon the previous related results of [35, 41] (see Section 4.3). Note

the convergence rate has no dependence on the number of states or the number of actions, nor

does it depend on the distribution mismatch coefficient D∞. We provide a simple and concise

proof for the convergence rate analysis by extending the approach developed in [35], which

uses a mirror descent style of analysis [73, 27] and also handles the non-concavity of the policy

optimization problem.

This fast and dimension free convergence rate shows how the variable preconditioner in

the natural gradient method improves over the standard gradient ascent algorithm. The dimension

free aspect of this convergence rate is worth reflecting on, especially given the widespread use

of the natural policy gradient algorithm along with variants such as the Trust Region Policy

Optimization (TRPO) algorithm [84]; our results may help to provide analysis of a more general

family of entropy based algorithms (see for example [76]).

Function Approximation: We now summarize our results with regards to policy gradient meth-

ods in the setting where we work with a restricted policy class, which may not contain the optimal

policy. In this sense, these methods can be viewed as approximate methods. Table 4.2 provides

56

Table 4.2. Overview of Approximate Methods: The suboptimality, V ⋆(s0)−V π(s0), after T
iterations for various approximate algorithms, which use different notions of approximation error
(sample complexities are not directly considered but instead may be thought of as part of ε1 and
εstat).

Algorithm Suboptimality
after T Iterations Relevant Quantities

Approx. Value/Policy Iteration
[17]

ε∞

(1−γ)2 +
γT

(1−γ)2 ε∞: ℓ∞ error of values

Approx. Value/Policy Iteration,
with concentrability

[72, 10]

C∞ε1
(1−γ)2 +

γT

(1−γ)2

ε1: an ℓ1 average error
C∞: concentrability

(max density ratio)

Conservative Policy Iteration
[54]

D∞ε1
(1−γ)2 +

1
(1−γ)

√
T

ε1: an ℓ1 average error
D∞: max density ratio

to opt., D∞ ≤C∞

Natural Policy Gradient
[6]

√
κεstat+D∞εapprox

(1−γ)3 +
1

(1−γ)
√

T

εstat: excess risk
εapprox: approx. error
κ: a condition number
D∞: max density ratio
to opt., D∞ ≤C∞

a summary along with the comparisons to some relevant approximate dynamic programming

methods.

A long line of work in the function approximation setting focuses on mitigating the

worst-case “ℓ∞” guarantees that are inherent to approximate dynamic programming methods [17]

(see the first row in Table 4.2). The reason to focus on average case guarantees is that it supports

the applicability of supervised machine learning methods to solve the underlying approximation

problem. This is because supervised learning methods, like classification and regression, typically

have bounds on the expected error under a distribution, as opposed to worst-case guarantees over

all possible inputs.

The existing literature largely consists of two lines of provable guarantees that attempt to

mitigate the explicit ℓ∞ error conditions of approximate dynamic programming: those methods

57

which utilize a problem dependent parameter (the concentrability coefficient [72]) to provide

more refined dynamic programming guarantees (e.g. see [72, 92, 10, 36]) and those which work

with a restricted policy class, making incremental updates, such as Conservative Policy Iteration

(CPI) [54, 82], Policy Search by Dynamic Programming (PSDP) [14], and MD-MPI [41]. Both

styles of approaches give guarantees based on worst-case density ratios, i.e. they depend on a

maximum ratio between two different densities over the state space. As discussed in[81], the

assumptions in the latter class of algorithms are substantially weaker, in that the worst-case

density ratio only depends on the state visitation distribution of an optimal policy (also see

Table 4.2 caption and Section 4.3).

With regards to function approximation, our main contribution is in providing perfor-

mance bounds that, in some cases, have milder dependence on these density ratios. We precisely

quantify an approximation/estimation error decomposition relevant for the analysis of the natural

gradient method; this decomposition is stated in terms of the compatible function approximation

error as introduced in [91]. More generally, we quantify our function approximation results

in terms of a precisely quantified transfer error notion, based on approximation error under

distribution shift. Table 4.2 shows a special case of our convergence rates of NPG, which is

governed by four quantities: εstat, εapprox, κ , and D∞.

Let us discuss the important special case of log-linear policies (i.e. policies that take the

softmax of linear functions in a given feature space) where the relevant quantities are as follows:

εstat is a bound on the excess risk (the estimation error) in fitting linearly parameterized value

functions, which can be driven to 0 with more samples (at the usual statistical rate of O(1/
√

N)

where N is the number of samples); εapprox is the usual notion of average squared approximation

error where the target function may not be perfectly representable by a linear function; κ can be

upper bounded with an inverse dependence on the minimal eigenvalue of the feature covariance

matrix of the fitting measure (as such it can be viewed as a dimension dependent quantity but not

necessarily state dependent); and D∞ is as before.

For the realizable case, where all policies have values which are linear in the given

58

features (such as in linear MDP models of [52, 101, 49]), we have that the approximation error

εapprox is 0. Here, our guarantees yield a fully polynomial and sample efficient convergence

guarantee, provided the condition number κ is bounded. Importantly, there always exists a good

(universal) initial measure that ensures κ is bounded by a quantity that is only polynomial in the

dimension of the features, d, as opposed to an explicit dependence on the size of the (infinite)

state space (see [6]). Such a guarantee would not be implied by algorithms which depend on the

coefficients C∞ or D∞.2

Our results are also suggestive that a broader class of incremental algorithms — such

as CPI [54], PSDP [14], and MD-MPI [41] which make small changes to the policy from one

iteration to the next — may also permit a sharper analysis, where the dependence of worst-case

density ratios can be avoided through an appropriate approximation/estimation decomposition;

this is an interesting direction for future work (a point which we return to in Section 4.6). One

significant advantage of NPG is that the explicit parametric policy representation in NPG (and

other policy gradient methods) leads to a succinct policy representation in comparison to CPI,

PSDP, or related boosting-style methods [82], where the representation complexity of the policy

of the latter class of methods grows linearly in the number of iterations (since these methods add

one policy to the ensemble per iteration). This representation complexity is likely why the latter

class of algorithms are less widely used in practice.

4.3 Related work

We now discuss related work, roughly in the order which reflects our presentation of

results in the previous section.

For the direct policy parameterization in the tabular case, we make use of a gradient

domination-like property, namely any first-order stationary point of the policy value is approxi-

2Bounding C∞ would require a restriction on the dynamics of the MDP (see [28] and Section 4.3). Bounding D∞

would require an initial state distribution that is constructed using knowledge of π⋆, through dπ⋆
. In contrast, κ can

be made O(d), with an initial state distribution that only depends on the geometry of the features (and does not
depend on any other properties of the MDP). See [6].

59

mately optimal up to a distribution mismatch coefficient. A variant of this result also appears

in Theorem 2 of [82], which itself can be viewed as a generalization of the approach in [54].

In contrast to CPI [54] and the more general boosting-based approach in [82], we phrase this

approach as a Polyak-like gradient domination property [79] in order to directly allow for the

transfer of any advances in non-convex optimization to policy optimization in RL. More broadly,

it is worth noting the global convergence of policy gradients for Linear Quadratic Regulators [37]

also goes through a similar proof approach of gradient domination.

Empirically, the recent work of [7] studies entropy based regularization and shows the

value of regularization in policy optimization, even with exact gradients. This is related to our

use of the log barrier regularization.

For our convergence results of the natural policy gradient algorithm in the tabular setting,

there are close connections between our results and the works of [35, 41]. [35] provides provable

online regret guarantees in changing MDPs utilizing experts algorithms (also see [75, 1]); as a

special case, their MDP Experts Algorithm is equivalent to the natural policy gradient algorithm

with the softmax policy parameterization. While the convergence result due to [35] was not

specifically designed for this setting, it is instructive to see what it implies due to the close

connections between optimization and regret [27, 86]. The Mirror Descent-Modified Policy

Iteration (MD-MPI) algorithm [41] with negative entropy as the Bregman divergence results is

an identical algorithm as NPG for softmax parameterization in the tabular case; Corollary 3 [41]

applies to our updates, leading to a bound worse by a 1/(1− γ) factor and also has logarithmic

dependence on |A |. Our proof for this case is concise and may be of independent interest. Also

worth noting is the Dynamic Policy Programming of [13], which is an actor-critic algorithm

with a softmax parameterization; this algorithm, even though not identical, comes with similar

guarantees in terms of its rate (it is weaker in terms of an additional 1/(1− γ) factor) than the

NPG algorithm.

We now turn to function approximation, starting with a discussion of iterative algorithms

which make incremental updates in which the next policy is effectively constrained to be close to

60

the previous policy, such as in CPI and PSDP [14]. Here, the work in [82] show how CPI is part

of broader family of boosting-style methods. Also, with regards to PSDP, the work in [81] shows

how PSDP actually enjoys an improved iteration complexity over CPI, namely O(log1/εopt)

vs. O(1/ε2
opt). It is worthwhile to note that both NPG and projected gradient ascent are also

incremental algorithms.

We now discuss the approximate dynamic programming results characterized in terms

of the concentrability coefficient. Broadly we use the term approximate dynamic programming

to refer to fitted value iteration, fitted policy iteration and more generally generalized policy

iteration schemes such as classification-based policy iteration as well, in addition to the classical

approximate value/policy iteration works. While the approximate dynamic programming results

typically require ℓ∞ bounded errors, which is quite stringent, the notion of concentrability (origi-

nally due to [71, 72]) permits sharper bounds in terms of average case function approximation

error, provided that the concentrability coefficient is bounded (e.g. see [72, 92, 10, 64]). [28]

provide a more detailed discussion on this quantity. Based on this problem dependent constant

being bounded, [72, 92], [10] and [64] provide meaningful sample size and error bounds for

approximate dynamic programming methods, where there is a data collection policy (under

which value-function fitting occurs) that induces a concentrability coefficient. In terms of the

concentrability coefficient C∞ and the “distribution mismatch coefficient” D∞ in Table 4.2 , we

have that D∞ ≤C∞, as discussed in [81] (also see the table caption). Also, as discussed in [28], a

finite concentrability coefficient is a restriction on the MDP dynamics itself, while a bounded

D∞ does not require any restrictions on the MDP dynamics. The more refined quantities defined

by [36] (for the approximate policy iteration result) partially alleviate some of these concerns,

but their assumptions still implicitly constrain the MDP dynamics, like the finiteness of the

concentrability coefficient.

Assuming bounded concentrability coefficient, there are a notable set of provable average

case guarantees for the MD-MPI algorithm [41] (see also [13, 83]), which are stated in terms of

various norms of function approximation error. MD-MPI is a class of algorithms for approximate

61

planning under regularized notions of optimality in MDPs. Specifically, [41] analyze a family

of actor-critic style algorithms, where there are both approximate value functions updates and

approximate policy updates. As a consequence of utilizing approximate value function updates

for the critic, the guarantees of [41] are stated with dependencies on concentrability coefficients.

When dealing with function approximation, computational and statistical complexities

are relevant because they determine the effectiveness of approximate updates with finite samples.

With regards to sample complexity, the work in [92, 10] provide finite sample rates (as discussed

above), further generalized to actor-critic methods in [13, 83]. In our policy optimization ap-

proach, the analysis of both computational and statistical complexities are straightforward, since

we can leverage known statistical and computational results from the stochastic approximation

literature; in particular, we use the stochastic projected gradient ascent to obtain a simple, linear

time method for the critic estimation step in the natural policy gradient algorithm.

In terms of the algorithmic updates for the function approximation setting, our devel-

opment of NPG bears similarity to the natural actor-critic algorithm [78], for which some

asymptotic guarantees under finite concentrability coefficients are obtained in [19]. While both

updates seek to minimize the compatible function approximation error, we perform streaming

updates based on stochastic optimization using Monte Carlo estimates for values. In contrast [78]

utilize Least Squares Temporal Difference methods [24] to minimize the loss. As a consequence,

their updates additionally make linear approximations to the value functions in order to estimate

the advantages; our approach is flexible in allowing for wide family of smoothly differentiable

policy classes (including neural policies).

Finally, we remark on some concurrent works. The work of [18] provides gradient

domination-like conditions under which there is (asymptotic) global convergence to the optimal

policy. Their results are applicable to the projected gradient ascent algorithm; they are not

applicable to gradient ascent with the softmax parameterization (see the discussion in Section 4.5

herein for the analysis challenges). [18] also provide global convergence results beyond MDPs.

Also, [67] provide an analysis of the TRPO algorithm [84] with neural network parameterizations,

62

which bears resemblance to our natural policy gradient analysis. In particular, [67] utilize ideas

from both [35] (with a mirror descent style of analysis) along with [26] (to handle approximation

with neural networks) to provide conditions under which TRPO returns a near optimal policy.

[67] do not explicitly consider the case where the policy class is not complete (i.e when there

is approximation). Another related work of [87] considers the TRPO algorithm and provides

theoretical guarantees in the tabular case; their convergence rates with exact updates are O(1/
√

T)

for the (unregularized) objective function of interest; they also provide faster rates on a modified

(regularized) objective function. They do not consider the case of infinite state spaces and function

approximation. The closely related recent papers [1, 2] also consider closely related algorithms

to the Natural Policy Gradient approach studied here, in an infinite horizon, average reward

setting. Specifically, the EE-POLITEX algorithm is closely related to the Q-NPG algorithm

which we study in [6], though our approach is in the discounted setting. We adopt the name

Q-NPG to capture its close relationship with the NPG algorithm, with the main difference being

the use of function approximation for the Q-function instead of advantages. We refer the reader

to [6] for more discussion of the technical differences between the two works.

4.4 Warmup: Constrained tabular parameterization

Our starting point is, arguably, the simplest first-order method: we directly take gradient

ascent updates on the policy simplex itself and then project back onto the simplex if the constraints

are violated after a gradient update. This algorithm is projected gradient ascent on the direct

policy parametrization of the MDP, where the parameters are the state-action probabilities, i.e.

θs,a = πθ (a|s) (see (4.2)). As noted in Lemma 24, V πθ (s) is non-concave in the parameters πθ .

Here, we first prove that V πθ (µ) satisfies a Polyak-like gradient domination condition [79], and

this tool helps in providing convergence rates. The basic approach was also used in the analysis

of CPI [54]; related gradient domination-like lemmas also appeared in [82].

It is instructive to consider this special case due to the connections it makes to the non-

63

convex optimization literature. We also provide a lower bound that rules out algorithms whose

runtime appeals to the curvature of saddle points (e.g. [74, 40, 50]).

For the direct policy parametrization where θs,a = πθ (a|s), the gradient is:

∂V π(µ)

∂π(a|s)
=

1
1− γ

dπ
µ(s)Q

π(s,a), (4.7)

using (4.5). In particular, for this parameterization, we may write ∇πV π(µ) instead of ∇θV πθ (µ).

4.4.1 Gradient domination

Informally, we say a function f (θ) satisfies a gradient domination property if for all

θ ∈ Θ,

f (θ ⋆)− f (θ) = O(G(θ)),

where θ ⋆ ∈ argmaxθ ′∈Θ f (θ ′) and where G(θ) is some suitable scalar notion of first-order

stationarity, which can be considered a measure of how large the gradient is (see [58, 23,

11]). Thus if one can find a θ that is (approximately) a first-order stationary point, then the

parameter θ will be near optimal (in terms of function value). Such conditions are a standard

device to establishing global convergence in non-convex optimization, as they effectively rule

out the presence of bad critical points. In other words, given such a condition, quantifying

the convergence rate for a specific algorithm, like say projected gradient ascent, will require

quantifying the rate of its convergence to a first-order stationary point, for which one can invoke

standard results from the optimization literature.

The following lemma shows that the direct policy parameterization satisfies a notion of

gradient domination. This is the basic approach used in the analysis of CPI [54]; a variant of this

lemma also appears in [82]. We give a proof for completeness.

Even though we are interested in the value V π(ρ), it is helpful to consider the gradient

with respect to another state distribution µ ∈ ∆(S).

64

Lemma 27 (Gradient domination). For the direct policy parameterization (as in (4.2)), for all

state distributions µ,ρ ∈ ∆(S), we have

V ⋆(ρ)−V π(ρ) ≤

∥∥∥∥∥dπ⋆

ρ

dπ
µ

∥∥∥∥∥
∞

max
π̄

(π̄ −π)⊤∇πV π(µ)

≤ 1
1− γ

∥∥∥∥∥dπ⋆

ρ

µ

∥∥∥∥∥
∞

max
π̄

(π̄ −π)⊤∇πV π(µ),

where the max is over the set of all policies, i.e. π̄ ∈ ∆(A)|S |.

Before we provide the proof, a few comments are in order with regards to the performance

measure ρ and the optimization measure µ . Subtly, note that although the gradient is with respect

to V π(µ), the final guarantee applies to all distributions ρ . The significance is that even though

we may be interested in our performance under ρ , it may be helpful to optimize under the

distribution µ . To see this, note the lemma shows that a sufficiently small gradient magnitude in

the feasible directions implies the policy is nearly optimal in terms of its value, but only if the

state distribution of π , i.e. dπ
µ , adequately covers the state distribution of some optimal policy π⋆.

Here, it is also worth recalling the theorem of [16] which shows there exists a single policy π⋆

that is simultaneously optimal for all starting states s0. Note that the hardness of the exploration

problem is captured through the distribution mismatch coefficient (Definition 26).

of Lemma 27. By the performance difference lemma (Lemma 25),

V ⋆(ρ)−V π(ρ) =
1

1− γ
∑
s,a

dπ⋆

ρ (s)π⋆(a|s)Aπ(s,a)

≤ 1
1− γ

∑
s,a

dπ⋆

ρ (s)max
ā

Aπ(s, ā)

=
1

1− γ
∑
s

dπ⋆

ρ (s)

dπ
µ(s)

·dπ
µ(s)max

ā
Aπ(s, ā)

≤ 1
1− γ

(
max

s

dπ⋆

ρ (s)

dπ
µ(s)

)
∑
s

dπ
µ(s)max

ā
Aπ(s, ā), (4.8)

65

where the last inequality follows since maxā Aπ(s, ā)≥ 0 for all states s and policies π . We wish

to upper bound (4.8). We then have:

∑
s

dπ
µ(s)

1− γ
max

ā
Aπ(s, ā) = max

π̄∈∆(A)|S |∑s,a

dπ
µ(s)

1− γ
π̄(a|s)Aπ(s,a)

= max
π̄∈∆(A)|S |∑s,a

dπ
µ(s)

1− γ
(π̄(a|s)−π(a|s))Aπ(s,a)

= max
π̄∈∆(A)|S |∑s,a

dπ
µ(s)

1− γ
(π̄(a|s)−π(a|s))Qπ(s,a)

= max
π̄∈∆(A)|S |

(π̄ −π)⊤∇πV π(µ)

where the first step follows since maxπ̄ is attained at an action which maximizes Aπ(s, ·)

(per state); the second step follows as ∑a π(a|s)Aπ(s,a) = 0; the third step uses ∑a(π̄(a|s)−

π(a|s))V π(s) = 0 for all s; and the final step follows from the gradient expression (see (4.7)).

Using this in (4.8),

V ⋆(ρ)−V π(ρ)≤

∥∥∥∥∥dπ⋆

ρ

dπ
µ

∥∥∥∥∥
∞

max
π̄∈∆(A)|S |

(π̄ −π)⊤∇πV π(µ)

≤ 1
1− γ

∥∥∥∥∥dπ⋆

ρ

µ

∥∥∥∥∥
∞

max
π̄∈∆(A)|S |

(π̄ −π)⊤∇πV π(µ).

where the last step follows due to max
π̄∈∆(A)|S | (π̄ −π)⊤∇πV π(µ) ≥ 0 for any policy π and

dπ
µ(s)≥ (1− γ)µ(s) (see (4.4)).

In a sense, the use of an appropriate µ circumvents the issues of strategic exploration. It

is natural to ask whether this additional term is necessary, a question which we return to. First,

we provide a convergence rate for the projected gradient ascent algorithm.

4.4.2 Convergence rates for projected gradient ascent

Using this notion of gradient domination, we now give an iteration complexity bound for

projected gradient ascent over the space of stochastic policies, i.e. over ∆(A)|S |. The projected

66

gradient ascent algorithm updates

π
(t+1) = P

∆(A)|S|(π
(t)+η∇πV (t)(µ)), (4.9)

where P
∆(A)|S | is the projection onto ∆(A)|S | in the Euclidean norm.

Theorem 5. The projected gradient ascent algorithm (4.9) on V π(µ) with stepsize η = (1−γ)3

2γ|A |

satisfies for all distributions ρ ∈ ∆(S),

min
t<T

{
V ⋆(ρ)−V (t)(ρ)

}
≤ ε whenever T >

64γ|S ||A |
(1− γ)6ε2

∥∥∥∥∥dπ⋆

ρ

µ

∥∥∥∥∥
2

∞

.

A proof is provided in [6]. The proof first invokes a standard iteration complexity

result of projected gradient ascent to show that the gradient magnitude with respect to all

feasible directions is small. More concretely, we show the policy is ε-stationary3, that is, for all

πθ +δ ∈ ∆(A)|S | and ∥δ∥2 ≤ 1, δ⊤∇πV πθ (µ)≤ ε . We then use Lemma 27 to complete the

proof.

Note that the guarantee we provide is for the best policy found over the T rounds, which

we obtain from a bound on the average norm of the gradients. This type of a guarantee is standard

in the non-convex optimization literature, where an average regret bound cannot be used to

extract a single good solution, e.g. by averaging. In the context of policy optimization, this is not

a serious limitation as we collect on-policy trajectories for each policy in doing sample-based

gradient estimation, and these samples can be also used to estimate the policy’s value. Note that

the evaluation step is not required for every policy, and can also happen on a schedule, though

we still need to evaluate O(T) policies to obtain the convergence rates described here.

3See [6] for discussion on this definition.

67

4.4.3 Lower bound: Vanishing gradients and saddle points

To understand the necessity of the distribution mismatch coefficient in Lemma 27 and

Theorem 5, let us first give an informal argument that some condition on the state distribution

of π , or equivalently µ , is necessary for stationarity to imply optimality. For example, in a

sparse-reward MDP (where the agent is only rewarded upon visiting some small set of states), a

policy that does not visit any rewarding states will have zero gradient, even though it is arbitrarily

suboptimal in terms of values. Below, we give a more quantitative version of this intuition, which

demonstrates that even if π chooses all actions with reasonable probabilities (and hence the agent

will visit all states if the MDP is connected), then there is an MDP where a large fraction of the

policies π have vanishingly small gradients, and yet these policies are highly suboptimal in terms

of their value.

Concretely, consider the chain MDP of length H +2 shown in Figure 4.2. The starting

state of interest is state s0 and the discount factor γ =H/(H+1). Suppose we work with the direct

parameterization, where πθ (a|s) = θs,a for a = a1,a2,a3 and πθ (a4|s) = 1−θs,a1 −θs,a2 −θs,a3 .

Note we do not over-parameterize the policy. For this MDP and policy structure, if we were to

initialize the probabilities over actions, say deterministically, then there is an MDP (obtained by

permuting the actions) where all the probabilities for a1 will be less than 1/4.

The following result not only shows that the gradient is exponentially small in H, it also

shows that many higher order derivatives, up to O(H/ logH), are also exponentially small in H.

Proposition 28 (Vanishing gradients at suboptimal parameters). Consider the chain MDP of Fig-

ure 4.2, with H+2 states, γ =H/(H+1), and with the direct policy parameterization (with 3|S |

parameters, as described in the text above). Suppose θ is such that 0 < θ < 1 (componentwise)

and θs,a1 < 1/4 (for all states s). For all k ≤ H
40log(2H) −1, we have ∥∇k

θ
V πθ (s0)∥ ≤ (1/3)H/4,

where ∇k
θ
V πθ (s0) is a tensor of the kth order derivatives of V πθ (s0) and the norm is the operator

norm of the tensor.4 Furthermore, V ⋆(s0)−V πθ (s0)≥ (H +1)/8− (H +1)2/3H .

4The operator norm of a kth-order tensor J ∈ Rd⊗k
is defined as supu1,...,uk∈Rd : ∥ui∥2=1⟨J,u1 ⊗ . . .⊗ud⟩.

68

This lemma also suggests that results in the non-convex optimization literature, on

escaping from saddle points, e.g. [74, 40, 50], do not directly imply global convergence due to

that the higher order derivatives are small.

Remark 29. (Exact vs. Approximate Gradients) The chain MDP of Figure 4.2, is a common

example where sample based estimates of gradients will be 0 under random exploration strategies;

there is an exponentially small in H chance of hitting the goal state under a random exploration

strategy. Note that this lemma is with regards to exact gradients. This suggests that even with

exact computations (along with using exact higher order derivatives) we might expect numerical

instabilities.

Remark 30. (Comparison with the upper bound) The lower bound does not contradict the upper

bound of Theorem 27 (where a small gradient is turned into a small policy suboptimality bound),

as the distribution mismatch coefficient, as defined in Definition 26, could be infinite in the chain

MDP of Figure 4.2, since the start-state distribution is concentrated on one state only. More

generally, for any policy with θs,a1 < 1/4 in all states s,
∥∥∥∥ dπ⋆

ρ

d
πθ
ρ

∥∥∥∥
∞

= Ω(4H).

Remark 31. (Comparison with information-theoretic lower bounds) The lower bound here is

not information theoretic, in that it does not present a hard problem instance for all algorithms.

Indeed, exploration algorithms for tabular MDPs starting from E3 [60], RMAX [25] and several

subsequent works yield polynomial sample complexities for the chain MDP. Proposition 28

should be interpreted as a hardness result for the specific class of policy gradient like approaches

that search for a policy with a small policy gradient, as these methods will find the initial

parameters to be valid in terms of the size of (several orders of) gradients. In particular, it

precludes any meaningful claims on global optimality, based just on the size of the policy

gradients, without additional assumptions as discussed in the previous remark.

The proof is provided in [6]. The lemma illustrates that lack of good exploration can

indeed be detrimental in policy gradient algorithms, since the gradient can be small either due

69

to π being near-optimal, or, simply because π does not visit advantageous states often enough.

In this sense, it also demonstrates the necessity of the distribution mismatch coefficient in

Lemma 27.

4.5 Softmax tabular parameterization

We now consider the softmax policy parameterization (4.3). Here, we still have a non-

concave optimization problem in general, as shown in Lemma 24, though we do show that global

optimality can be reached under certain regularity conditions. From a practical perspective,

the softmax parameterization of policies is preferable to the direct parameterization, since the

parameters θ are unconstrained and standard unconstrained optimization algorithms can be

employed. However, optimization over this policy class creates other challenges as we study in

this section, as the optimal policy (which is deterministic) is attained by sending the parameters

to infinity.

We study three algorithms for this problem. The first performs direct policy gradient

ascent on the objective without modification, while the second adds a log barrier regularizer to

keep the parameters from becoming too large, as a means to ensure adequate exploration. Finally,

we study the natural policy gradient algorithm and establish a global optimality result with no

dependence on the distribution mismatch coefficient or dimension-dependent factors.

For the softmax parameterization, the gradient takes the form:

∂V πθ (µ)

∂θs,a
=

1
1− γ

dπθ
µ (s)πθ (a|s)Aπθ (s,a) (4.10)

(see [6] for a proof).

4.5.1 Asymptotic convergence, without regularization

Due to the exponential scaling with the parameters θ in the softmax parameterization,

any policy that is nearly deterministic will have gradients close to 0. In spite of this difficulty, we

70

provide a positive result that gradient ascent asymptotically converges to the global optimum for

the softmax parameterization.

The update rule for gradient ascent is:

θ
(t+1) = θ

(t)+η∇θV (t)(µ). (4.11)

Theorem 6 (Global convergence for softmax parameterization). Assume we follow the gradient

ascent update rule as specified in Equation (4.11) and that the distribution µ is strictly positive i.e.

µ(s)> 0 for all states s. Suppose η ≤ (1−γ)3

8 , then we have that for all states s, V (t)(s)→V ⋆(s)

as t → ∞.

Remark 32. (Strict positivity of µ and exploration) Theorem 6 assumed that optimization

distribution µ was strictly positive, i.e. µ(s)> 0 for all states s. We leave it is an open question

of whether or not gradient ascent will globally converge if this condition is not met. The concern

is that if this condition is not met, then gradient ascent may not globally converge due to that

dπθ
µ (s) effectively scales down the learning rate for the parameters associated with state s (see

(4.10)).

The complete proof is provided in [6]. We now discuss the subtleties in the proof and

show why the softmax parameterization precludes a direct application of the gradient domination

lemma. In order to utilize the gradient domination property (in Lemma 27), we would desire to

show that: ∇πV π(µ)→ 0. However, using the functional form of the softmax parameterization

and (4.7), we have that:

∂V πθ (µ)

∂θs,a
=

1
1− γ

dπθ
µ (s)πθ (a|s)Aπθ (s,a) = πθ (a|s)

∂V πθ (µ)

∂πθ (a|s)
.

Hence, we see that even if ∇θV πθ (µ)→ 0, we are not guaranteed that ∇πV πθ (µ)→ 0.

We now briefly discuss the main technical challenges in the proof. The proof first shows

that the sequence V (t)(s) is monotone increasing pointwise, i.e. for every state s, V (t+1)(s) ≥

71

V (t)(s). This implies the existence of a limit V (∞)(s) by the monotone convergence theorem.

Based on the limiting quantities V (∞)(s) and Q(∞)(s,a), which we show exist, define the following

limiting sets for each state s:

Is
0 := {a|Q(∞)(s,a) =V (∞)(s)}

Is
+ := {a|Q(∞)(s,a)>V (∞)(s)}

Is
− := {a|Q(∞)(s,a)<V (∞)(s)} .

The challenge is to then show that, for all states s, the set Is
+ is the empty set, which would

immediately imply V (∞)(s) = V ⋆(s). The proof proceeds by contradiction, assuming that Is
+

is non-empty. Using that Is
+ is non-empty and that the gradient tends to zero in the limit, i.e.

∇θV πθ (µ) → 0, we have that for all a ∈ Is
+, π(t)(a|s) → 0 (see (4.10)). This, along with the

functional form of the softmax parameterization, implies that there must be divergence (in

magnitude) among the set of parameters associated with some action a at state s, i.e. that

maxa∈A |θ (t)
s,a | → ∞. The primary technical challenge in the proof is to then use this divergence,

along with the dynamics of gradient ascent, to show that Is
+ is empty via a contradiction.

We leave it as a question for future work as to characterizing the convergence rate, which

we conjecture is exponentially slow in some of the relevant quantities, such as in terms of the

size of state space. Here, we turn to a regularization based approach to ensure convergence at a

polynomial rate in all relevant quantities.

4.5.2 Polynomial convergence with log barrier regularization

Due to the exponential scaling with the parameters θ , policies can rapidly become

near deterministic, when optimizing under the softmax parameterization, which can result in

slow convergence. Indeed a key challenge in the asymptotic analysis in the previous section

was to handle the growth of the absolute values of parameters as they tend to infinity. A

common practical remedy for this is to use entropy-based regularization to keep the probabilities

72

from getting too small [100, 68], and we study gradient ascent on a similarly regularized

objective in this section. Recall that the relative-entropy for distributions p and q is defined as:

KL(p,q) := Ex∼p[− logq(x)/p(x)]. Denote the uniform distribution over a set X by UnifX ,

and define the following log barrier regularized objective as:

Lλ (θ) := V πθ (µ)−λ Es∼UnifS

[
KL(UnifA ,πθ (·|s))

]
= V πθ (µ)+

λ

|S | |A |∑s,a
logπθ (a|s)+λ log |A | , (4.12)

where λ is a regularization parameter. The constant (i.e. the last term) is not relevant with

regards to optimization. This regularizer is different from the more commonly utilized entropy

regularizer as in [68], a point which we return to in Remark 34.

The policy gradient ascent updates for Lλ (θ) are given by:

θ
(t+1) = θ

(t)+η∇θ Lλ (θ
(t)). (4.13)

Our next theorem shows that approximate first-order stationary points of the entropy-regularized

objective are approximately globally optimal, provided the regularization is sufficiently small.

Theorem 7. (Log barrier regularization) Suppose θ is such that:

∥∇θ Lλ (θ)∥2 ≤ εopt

and εopt ≤ λ/(2|S | |A |). Then we have that for all starting state distributions ρ:

V πθ (ρ) ≥ V ⋆(ρ)− 2λ

1− γ

∥∥∥∥∥dπ⋆

ρ

µ

∥∥∥∥∥
∞

.

Proof. The proof consists of showing that maxa Aπθ (s,a)≤ 2λ/(µ(s)|S |) for all states. To see

73

that this is sufficient, observe that by the performance difference lemma (Lemma 25),

V ⋆(ρ)−V πθ (ρ) =
1

1− γ
∑
s,a

dπ⋆

ρ (s)π⋆(a|s)Aπθ (s,a)

≤ 1
1− γ

∑
s

dπ⋆

ρ (s)max
a∈A

Aπθ (s,a)

≤ 1
1− γ

∑
s

2dπ⋆

ρ (s)λ/(µ(s)|S |)

≤ 2λ

1− γ
max

s

(
dπ⋆

ρ (s)

µ(s)

)
.

which would then complete the proof.

We now proceed to show that maxa Aπθ (s,a) ≤ 2λ/(µ(s)|S |). For this, it suffices to

bound Aπθ (s,a) for any state-action pair s,a where Aπθ (s,a)≥ 0 else the claim is trivially true.

Consider an (s,a) pair such that Aπθ (s,a) > 0. Using the policy gradient expression for the

softmax parameterization,

∂Lλ (θ)

∂θs,a
=

1
1− γ

dπθ
µ (s)πθ (a|s)Aπθ (s,a)+

λ

|S |

(
1

|A |
−πθ (a|s)

)
. (4.14)

The gradient norm assumption ∥∇θ Lλ (θ)∥2 ≤ εopt implies that:

εopt ≥
∂Lλ (θ)

∂θs,a
=

1
1− γ

dπθ
µ (s)πθ (a|s)Aπθ (s,a)+

λ

|S |

(
1

|A |
−πθ (a|s)

)
≥ λ

|S |

(
1

|A |
−πθ (a|s)

)
,

where we have used Aπθ (s,a)≥ 0. Rearranging and using our assumption εopt ≤ λ/(2|S | |A |),

πθ (a|s)≥
1

|A |
−

εopt|S |
λ

≥ 1
2|A |

.

74

Solving for Aπθ (s,a) in (4.14), we have:

Aπθ (s,a) =
1− γ

dπθ
µ (s)

(
1

πθ (a|s)
∂Lλ (θ)

∂θs,a
+

λ

|S |

(
1− 1

πθ (a|s)|A |

))
≤ 1− γ

dπθ
µ (s)

(
2|A |εopt +

λ

|S |

)
≤ 2

1− γ

dπθ
µ (s)

λ

|S |
≤ 2λ/(µ(s)|S |) ,

where the penultimate step uses εopt ≤ λ/(2|S | |A |) and the final step uses dπθ
µ (s)≥ (1−γ)µ(s).

This completes the proof.

By combining the above theorem with standard results on the convergence of gradient

ascent (to first order stationary points), we obtain the following corollary.

Corollary 33. (Iteration complexity with log barrier regularization) Let βλ := 8γ

(1−γ)3 +
2λ

|S | .

Starting from any initial θ (0), consider the updates (4.13) with λ = ε(1−γ)

2

∥∥∥∥∥ dπ⋆
ρ

µ

∥∥∥∥∥
∞

and η = 1/βλ . Then

for all starting state distributions ρ , we have

min
t<T

{
V ⋆(ρ)−V (t)(ρ)

}
≤ ε whenever T ≥ 320|S |2|A |2

(1− γ)6 ε2

∥∥∥∥∥dπ⋆

ρ

µ

∥∥∥∥∥
2

∞

.

See [6] for the proof. The corollary shows the importance of balancing how the regular-

ization parameter λ is set relative to the desired accuracy ε , as well as the importance of the

initial distribution µ to obtain global optimality.

Remark 34. (Entropy vs. log barrier regularization) The more commonly considered regularizer

is the entropy [68] (also see [7] for a more detailed empirical investigation), where the regularizer

would be:
1

|S |∑s
H(πθ (·|s)) =

1
|S |∑s

∑
a
−πθ (a|s) logπθ (a|s).

75

Note the entropy is far less aggressive in penalizing small probabilities, in comparison to the log

barrier, which is equivalent to the relative entropy. In particular, the entropy regularizer is always

bounded between 0 and log |A |, while the relative entropy (against the uniform distribution over

actions), is bounded between 0 and infinity, where it tends to infinity as probabilities tend to

0. We leave it is an open question if a polynomial convergence rate 5 is achievable with the

more common entropy regularizer; our polynomial convergence rate using the KL regularizer

crucially relies on the aggressive nature in which the relative entropy prevents small probabilities

(the proof shows that any action, with a positive advantage, has a significant probability for any

near-stationary policy of the regularized objective).

4.5.3 Dimension-free convergence of Natural Policy Gradient Ascent

We now show the Natural Policy Gradient algorithm, with the softmax parameteriza-

tion (4.3), obtains an improved iteration complexity. The NPG algorithm defines a Fisher

information matrix (induced by π), and performs gradient updates in the geometry induced by

this matrix as follows:

Fρ(θ) = Es∼d
πθ
ρ

Ea∼πθ (·|s)

[
∇θ logπθ (a|s)

(
∇θ logπθ (a|s)

)⊤]
θ
(t+1) = θ

(t)+ηFρ(θ
(t))†

∇θV (t)(ρ), (4.15)

where M† denotes the Moore-Penrose pseudoinverse of the matrix M. Throughout this section,

we restrict to using the initial state distribution ρ ∈ ∆(S) in our update rule in (4.15) (so our

optimization measure µ and the performance measure ρ are identical). Also, we restrict attention

to states s ∈ S reachable from ρ , since, without loss of generality, we can exclude states that are

not reachable under this start state distribution6.

We leverage a particularly convenient form the update takes for the softmax parameteri-

5Here, ideally we would like to be poly in |S |, |A |, 1/(1− γ), 1/ε , and the distribution mismatch coefficient,
which we conjecture may not be possible.

6Specifically, we restrict the MDP to the set of states {s ∈ S : ∃π such that dπ
ρ (s)> 0}.

76

zation (see [53]). For completeness, we provide a proof in [6].

Lemma 35. (NPG as soft policy iteration) For the softmax parameterization (4.3), the NPG

updates (4.15) take the form:

θ
(t+1) = θ

(t)+
η

1− γ
A(t) and π

(t+1)(a|s) = π
(t)(a|s)exp(ηA(t)(s,a)/(1− γ))

Zt(s)
,

where Zt(s) = ∑a∈A π(t)(a|s)exp(ηA(t)(s,a)/(1− γ)).

The updates take a strikingly simple form in this special case; they are identical to

the classical multiplicative weights updates [39, 27] for online linear optimization over the

probability simplex, where the linear functions are specified by the advantage function of the

current policy at each iteration. Notably, there is no dependence on the state distribution d(t)
ρ ,

since the pseudoinverse of the Fisher information cancels out the effect of the state distribution

in NPG. We now provide a dimension free convergence rate of this algorithm.

Theorem 8 (Global convergence for NPG). Suppose we run the NPG updates (4.15) using

ρ ∈ ∆(S) and with θ (0) = 0. Fix η > 0. For all T > 0, we have:

V (T)(ρ)≥V ∗(ρ)− log |A |
ηT

− 1
(1− γ)2T

.

In particular, setting η ≥ (1− γ)2 log |A |, we see that NPG finds an ε-optimal policy in

a number of iterations that is at most:

T ≤ 2
(1− γ)2ε

,

which has no dependence on the number of states or actions, despite the non-concavity of the

underlying optimization problem.

77

The proof strategy we take borrows ideas from the online regret framework in changing

MDPs (in [35]); here, we provide a faster rate of convergence than the analysis implied by [35]

or by [41]. We also note that while this proof is obtained for the NPG updates, it is known in the

literature that in the limit of small stepsizes, NPG and TRPO updates are closely related (e.g. see

[84, 76, 80]).

First, the following improvement lemma is helpful:

Lemma 36 (Improvement lower bound for NPG). For the iterates π(t) generated by the NPG

updates (4.15), we have for all starting state distributions µ

V (t+1)(µ)−V (t)(µ)≥ (1− γ)

η
Es∼µ logZt(s)≥ 0.

Proof. First, let us show that logZt(s)≥ 0. To see this, observe:

logZt(s) = log∑
a

π
(t)(a|s)exp(ηA(t)(s,a)/(1− γ))

≥ ∑
a

π
(t)(a|s) logexp(ηA(t)(s,a)/(1− γ)) =

η

1− γ
∑
a

π
(t)(a|s)A(t)(s,a) = 0.

where the inequality follows by Jensen’s inequality on the concave function logx and the final

equality uses ∑a π(t)(a|s)A(t)(s,a) = 0. Using d(t+1) as shorthand for d(t+1)
µ , the performance

difference lemma implies:

V (t+1)(µ)−V (t)(µ) =
1

1− γ
Es∼d(t+1) ∑

a
π
(t+1)(a|s)A(t)(s,a)

=
1
η
Es∼d(t+1) ∑

a
π
(t+1)(a|s) log

π(t+1)(a|s)Zt(s)
π(t)(a|s)

=
1
η
Es∼d(t+1)KL(π(t+1)

s ||π(t)
s)+

1
η
Es∼d(t+1) logZt(s)

≥ 1
η
Es∼d(t+1) logZt(s)≥

1− γ

η
Es∼µ logZt(s),

where the last step uses that d(t+1) = d(t+1)
µ ≥ (1− γ)µ , componentwise (by (4.4)), and that

78

logZt(s)≥ 0.

With this lemma, we now prove Theorem 8.

of Theorem 8. Since ρ is fixed, we use d⋆ as shorthand for dπ⋆

ρ ; we also use πs as shorthand for

the vector of π(·|s). By the performance difference lemma (Lemma 25),

V π⋆
(ρ)−V (t)(ρ) =

1
1− γ

Es∼d⋆ ∑
a

π
⋆(a|s)A(t)(s,a)

=
1
η
Es∼d⋆ ∑

a
π
⋆(a|s) log

π(t+1)(a|s)Zt(s)
π(t)(a|s)

=
1
η
Es∼d⋆

(
KL(π⋆

s ||π
(t)
s)−KL(π⋆

s ||π
(t+1)
s)+∑

a
π
∗(a|s) logZt(s)

)
=

1
η
Es∼d⋆

(
KL(π⋆

s ||π
(t)
s)−KL(π⋆

s ||π
(t+1)
s)+ logZt(s)

)
,

where we have used the closed form of our updates from Lemma 35 in the second step.

By applying Lemma 36 with d⋆ as the starting state distribution, we have:

1
η
Es∼d⋆ logZt(s)≤

1
1− γ

(
V (t+1)(d⋆)−V (t)(d⋆)

)

which gives us a bound on Es∼d⋆ logZt(s).

Using the above equation and that V (t+1)(ρ) ≥ V (t)(ρ) (as V (t+1)(s) ≥ V (t)(s) for all

79

states s by Lemma 36), we have:

V π⋆
(ρ)−V (T−1)(ρ)≤ 1

T

T−1

∑
t=0

(V π⋆
(ρ)−V (t)(ρ))

≤ 1
ηT

T−1

∑
t=0

Es∼d⋆(KL(π⋆
s ||π

(t)
s)−KL(π⋆

s ||π
(t+1)
s))+

1
ηT

T−1

∑
t=0

Es∼d⋆ logZt(s)

≤ Es∼d⋆KL(π⋆
s ||π(0))

ηT
+

1
(1− γ)T

T−1

∑
t=0

(
V (t+1)(d⋆)−V (t)(d⋆)

)
=

Es∼d⋆KL(π⋆
s ||π(0))

ηT
+

V (T)(d⋆)−V (0)(d⋆)

(1− γ)T

≤ log |A |
ηT

+
1

(1− γ)2T
.

The proof is completed using that V (T)(ρ)≥V (T−1)(ρ).

4.6 Discussion

This work provides a systematic study of the convergence properties of policy optimiza-

tion techniques, both in the tabular and the function approximation settings. At the core, our

results imply that the non-convexity of the policy optimization problem is not the fundamen-

tal challenge for typical variants of the policy gradient approach. This is evidenced by the

global convergence results which we establish and that demonstrate the relative niceness of

the underlying optimization problem. At the same time, our results highlight that insufficient

exploration can lead to the convergence to sub-optimal policies, as is also observed in practice;

technically, we show how this is an issue of conditioning. Conversely, we can expect typical

policy gradient algorithms to find the best policy from amongst those whose state-visitation

distribution is adequately aligned with the policies we discover, provided a distribution-shifted

notion of approximation error is small.

In the tabular case, our results show that the nature and severity of the exploration /

distribution mismatch term differs in different policy optimization approaches. For instance, we

find that doing policy gradient in its standard form for both the direct and softmax parameteri-

80

zations can be slow to converge, particularly in the face of distribution mismatch, even when

policy gradients are computed exactly. Natural policy gradient, on the other hand, enjoys a fast

dimension-free convergence when we are in tabular settings with exact gradients. On the other

hand, for the function approximation setting, or when using finite samples, all algorithms suffer

to some degree from the exploration issue captured through a conditioning effect.

With regards to function approximation, the guarantees herein are the first provable

results that permit average case approximation errors, where the guarantees do not have explicit

worst case dependencies over the state space. These worst case dependencies are avoided by

precisely characterizing an approximation/estimation error decomposition, where the relevant

approximation error is under distribution shift to an optimal policies measure. Here, we see

that successful function approximation relies on two key aspects: good conditioning (related to

exploration) and low distribution-shifted, approximation error. In particular, these results identify

the relevant measure of the expressivity of a policy class, for the natural policy gradient.

With regards to sample size issues, we showed that simply using stochastic (projected)

gradient ascent suffices for accurate policy optimization. However, in terms of improving sample

efficiency and polynomial dependencies, there are number of important questions for future

research, including variance reduction techniques along with data re-use.

There are number of compelling directions for further study. The first is in understanding

how to remove the density ratio guarantees among prior algorithms; our results are sugges-

tive that the incremental policy optimization approaches, including CPI [54], PSDP [14], and

MD-MPI [41], may permit such an improved analysis. The question of understanding what

representations are robust to distribution shift is well-motivated by the nature of our distribution-

shifted, approximation error (the transfer error). Finally, we hope that policy optimization

approaches can be combined with exploration approaches, so that, provably, these approaches

can retain their robustness properties (in terms of their agnostic learning guarantees) while

mitigating the need for a well conditioned initial starting distribution.

Acknowledgements. Chapter 4 contains a reprint of the material as it appears in Con-

81

ference on Learning Theory (COLT 2020). Alekh Agarwal, Sham M. Kakade, Jason D. Lee,

Gaurav Mahajan. Optimality and approximation with policy gradient methods in markov decision

processes. The dissertation author was the primary investigator and author of this paper.

82

Bibliography

[1] Yasin Abbasi-Yadkori, Peter Bartlett, Kush Bhatia, Nevena Lazic, Csaba Szepesvari, and
Gellért Weisz. POLITEX: Regret bounds for policy iteration using expert prediction. In
International Conference on Machine Learning, pages 3692–3702, 2019.

[2] Yasin Abbasi-Yadkori, Nevena Lazic, Csaba Szepesvari, and Gellert Weisz. Exploration-
enhanced politex. arXiv preprint arXiv:1908.10479, 2019.

[3] Abbas Abdolmaleki, Jost Tobias Springenberg, Yuval Tassa, Remi Munos, Nicolas Heess,
and Martin Riedmiller. Maximum a posteriori policy optimisation. In International
Conference on Learning Representations, 2018.

[4] Alekh Agarwal, Sham Kakade, Akshay Krishnamurthy, and Wen Sun. Flambe:
Structural complexity and representation learning of low rank mdps. arXiv preprint
arXiv:2006.10814, 2020.

[5] Alekh Agarwal, Sham M. Kakade, Jason D. Lee, and Gaurav Mahajan. Optimality and
approximation with policy gradient methods in markov decision processes. In 33rd
Conference on Learning Theory, COLT 2020.

[6] Alekh Agarwal, Sham M. Kakade, Jason D. Lee, and Gaurav Mahajan. On the theory of
policy gradient methods: Optimality, approximation, and distribution shift. In Journal of
Machine Learning Research, JMLR 2021.

[7] Zafarali Ahmed, Nicolas Le Roux, Mohammad Norouzi, and Dale Schuurmans, editors.
Understanding the impact of entropy on policy optimization, 2019.

[8] Michael Alekhnovich. More on average case vs approximation complexity. In Symposium
on Foundations of Computer Science, 2003.

[9] Animashree Anandkumar, Rong Ge, Daniel Hsu, Sham M Kakade, and Matus Telgarsky.
Tensor decompositions for learning latent variable models. Journal of machine learning
research, 2014.

[10] András Antos, Csaba Szepesvári, and Rémi Munos. Learning near-optimal policies with
bellman-residual minimization based fitted policy iteration and a single sample path.
Machine Learning, 71(1):89–129, 2008.

83

[11] Hédy Attouch, Jérôme Bolte, Patrick Redont, and Antoine Soubeyran. Proximal alternat-
ing minimization and projection methods for nonconvex problems: An approach based on
the kurdyka-łojasiewicz inequality. Mathematics of Operations Research, 35(2):438–457,
2010.

[12] Alex Ayoub, Zeyu Jia, Csaba Szepesvari, Mengdi Wang, and Lin F Yang. Model-based
reinforcement learning with value-targeted regression. arXiv:2006.01107, 2020.

[13] Mohammad Gheshlaghi Azar, Vicenç Gómez, and Hilbert J. Kappen. Dynamic policy
programming. J. Mach. Learn. Res., 13(1), November 2012.

[14] J. A. Bagnell, Sham M Kakade, Jeff G. Schneider, and Andrew Y. Ng. Policy search by
dynamic programming. In S. Thrun, L. K. Saul, and B. Schölkopf, editors, Advances in
Neural Information Processing Systems 16, pages 831–838. MIT Press, 2004.

[15] J. Andrew Bagnell and Jeff Schneider. Covariant policy search. In Proceedings of the 18th
International Joint Conference on Artificial Intelligence, IJCAI’03, pages 1019–1024, San
Francisco, CA, USA, 2003. Morgan Kaufmann Publishers Inc.

[16] Richard Bellman and Stuart Dreyfus. Functional approximations and dynamic program-
ming. Mathematical Tables and Other Aids to Computation, 13(68):247–251, 1959.

[17] Dimitri P Bertsekas and John N Tsitsiklis. Neuro-Dynamic Programming. Athena
Scientific, Belmont, MA, 1996.

[18] Jalaj Bhandari and Daniel Russo. Global optimality guarantees for policy gradient
methods. CoRR, abs/1906.01786, 2019.

[19] Shalabh Bhatnagar, Richard S Sutton, Mohammad Ghavamzadeh, and Mark Lee. Natural
actor–critic algorithms. Automatica, 45(11):2471–2482, 2009.

[20] Robi Bhattacharjee and Gaurav Mahajan. Learning what to remember. In 33rd Interna-
tional Conference on Algorithmic Learning Theory, ALT 2022.

[21] Avrim Blum, Merrick Furst, Michael Kearns, and Richard J Lipton. Cryptographic
primitives based on hard learning problems. In Advances in Cryptology, 1994.

[22] Avrim Blum and Joel Spencer. Coloring random and semi-random k-colorable graphs.
Journal of Algorithms, 1995.

[23] Jérôme Bolte, Aris Daniilidis, and Adrian Lewis. The łojasiewicz inequality for nonsmooth
subanalytic functions with applications to subgradient dynamical systems. SIAM Journal
on Optimization, 17(4):1205–1223, 2007.

[24] Justin A Boyan. Least-squares temporal difference learning. In Proceedings of the Six-
teenth International Conference on Machine Learning, pages 49–56. Morgan Kaufmann
Publishers Inc., 1999.

84

[25] Ronen I Brafman and Moshe Tennenholtz. R-max-a general polynomial time algorithm
for near-optimal reinforcement learning. The Journal of Machine Learning Research,
3:213–231, 2003.

[26] Qi Cai, Zhuoran Yang, Jason D. Lee, and Zhaoran Wang. Neural temporal-difference
learning converges to global optima. CoRR, abs/1905.10027, 2019.

[27] Nicolo Cesa-Bianchi and Gabor Lugosi. Prediction, Learning, and Games. Cambridge
University Press, New York, NY, USA, 2006.

[28] Jinglin Chen and Nan Jiang. Information-theoretic considerations in batch reinforcement
learning. In International Conference on Machine Learning, 2019.

[29] Mary Cryan, Leslie Ann Goldberg, and Paul W Goldberg. Evolutionary trees can be
learned in polynomial time in the two-state general Markov model. SIAM Journal on
Computing, 2001.

[30] Shi Dong, Benjamin Van Roy, and Zhengyuan Zhou. Provably efficient reinforcement
learning with aggregated states, 2020.

[31] Simon Du, Sham Kakade, Jason Lee, Shachar Lovett, Gaurav Mahajan, Wen Sun, and
Ruosong Wang. Bilinear classes: A structural framework for provable generalization in rl.
In 38th International Conference on Machine Learning, ICML 2021.

[32] Simon Du, Jason Lee, Gaurav Mahajan, and Ruosong Wang. Agnostic q-learning with
function approximation in deterministic systems. In Advances in Neural Information
Processing Systems, NeurIPS 2020.

[33] Simon S Du, Sham M Kakade, Ruosong Wang, and Lin F Yang. Is a good representation
sufficient for sample efficient reinforcement learning? In International Conference on
Learning Representations, 2020.

[34] Simon S Du, Akshay Krishnamurthy, Nan Jiang, Alekh Agarwal, Miroslav Dudı́k, and
John Langford. Provably efficient RL with rich observations via latent state decoding. In
International Conference on Machine Learning, 2019.

[35] Eyal Even-Dar, Sham M Kakade, and Yishay Mansour. Online Markov decision processes.
Mathematics of Operations Research, 34(3):726–736, 2009.

[36] Amir-massoud Farahmand, Csaba Szepesvári, and Rémi Munos. Error propagation for
approximate policy and value iteration. In Advances in Neural Information Processing
Systems, pages 568–576, 2010.

[37] Maryam Fazel, Rong Ge, Sham M Kakade, and Mehran Mesbahi. Global conver-
gence of policy gradient methods for the linear quadratic regulator. arXiv preprint
arXiv:1801.05039, 2018.

85

[38] Dylan J Foster, Sham M Kakade, Jian Qian, and Alexander Rakhlin. The statistical
complexity of interactive decision making. arXiv preprint arXiv:2112.13487, 2021.

[39] Yoav Freund and Robert E Schapire. A decision-theoretic generalization of on-line
learning and an application to boosting. Journal of computer and system sciences,
55(1):119–139, 1997.

[40] Rong Ge, Furong Huang, Chi Jin, and Yang Yuan. Escaping from saddle points - online
stochastic gradient for tensor decomposition. Proceedings of The 28th Conference on
Learning Theory, COLT 2015, Paris, France, July 3-6, 2015, 2015.

[41] Matthieu Geist, Bruno Scherrer, and Olivier Pietquin. A theory of regularized markov
decision processes. arXiv preprint arXiv:1901.11275, 2019.

[42] Max Hopkins, Daniel Kane, Shachar Lovett, and Gaurav Mahajan. Noise-tolerant, reliable
active classification with comparison queries. In 33rd Conference on Learning Theory,
COLT 2020.

[43] Max Hopkins, Daniel Kane, Shachar Lovett, and Gaurav Mahajan. Realizable learning is
all you need. In 35th Conference on Learning Theory, COLT 2022.

[44] Max Hopkins, Daniel Kane, Shachar Lovett, and Gaurav Mahajan. Point location and
active learning: Learning halfspaces almost optimally. In IEEE 61st Annual Symposium
on Foundations of Computer Science, FOCS 2020.

[45] Max Hopkins, Daniel M Kane, Shachar Lovett, and Gaurav Mahajan. Do pac-learners
learn the marginal distribution? arXiv preprint arXiv:2302.06285, 2023.

[46] Daniel Hsu, Sham M Kakade, and Tong Zhang. A spectral algorithm for learning hidden
Markov models. Journal of Computer and System Sciences, 2012.

[47] Herbert Jaeger. Observable operator models for discrete stochastic time series. Neural
computation, 2000.

[48] Nan Jiang, Akshay Krishnamurthy, Alekh Agarwal, John Langford, and Robert E.
Schapire. Contextual decision processes with low bellman rank are pac-learnable, 2016.

[49] Nan Jiang, Akshay Krishnamurthy, Alekh Agarwal, John Langford, and Robert E Schapire.
Contextual decision processes with low Bellman rank are PAC-learnable. In International
Conference on Machine Learning, 2017.

[50] Chi Jin, Rong Ge, Praneeth Netrapalli, Sham M. Kakade, and Michael I. Jordan. How
to escape saddle points efficiently. In Proceedings of the 34th International Conference
on Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August 2017, pages
1724–1732, 2017.

[51] Chi Jin, Qinghua Liu, and Sobhan Miryoosefi. Bellman eluder dimension: New rich
classes of rl problems, and sample-efficient algorithms. arXiv preprint arXiv:2102.00815,
2021.

86

[52] Chi Jin, Zhuoran Yang, Zhaoran Wang, and Michael I Jordan. Provably efficient reinforce-
ment learning with linear function approximation. In Conference on Learning Theory,
2020.

[53] S. Kakade. A natural policy gradient. In NIPS, 2001.

[54] Sham Kakade and John Langford. Approximately Optimal Approximate Reinforcement
Learning. In Proceedings of the 19th International Conference on Machine Learning,
volume 2, pages 267–274, 2002.

[55] Sham M. Kakade, Akshay Krishnamurthy, Gaurav Mahajan, and Cyril Zhang. Learning
hidden markov models using conditional samples. arXiv preprint arXiv:2302.14753,
2023.

[56] Daniel Kane, Sihan Liu, Shachar Lovett, and Gaurav Mahajan. Computational-statistical
gap in reinforcement learning. In 35th Conference on Learning Theory, COLT 2022.

[57] Daniel Kane, Sihan Liu, Shachar Lovett, Gaurav Mahajan, Csaba Szepesvári, and Gellért
Weisz. Exponential hardness of reinforcement learning with linear function approximation.
arXiv preprint arXiv:2302.12940, 2023.

[58] Hamed Karimi, Julie Nutini, and Mark Schmidt. Linear convergence of gradient and
proximal-gradient methods under the polyak-łojasiewicz condition. In Joint European
Conference on Machine Learning and Knowledge Discovery in Databases, pages 795–811.
Springer, 2016.

[59] Michael Kearns, Yishay Mansour, Dana Ron, Ronitt Rubinfeld, Robert E Schapire, and
Linda Sellie. On the learnability of discrete distributions. In Symposium on Theory of
Computing, 1994.

[60] Michael Kearns and Satinder Singh. Near-optimal reinforcement learning in polynomial
time. Machine Learning, 49(2-3):209–232, 2002.

[61] Vijay R Konda and John N Tsitsiklis. Actor-critic algorithms. In Advances in neural
information processing systems, pages 1008–1014, 2000.

[62] Akshay Krishnamurthy, Alekh Agarwal, and John Langford. Pac reinforcement learning
with rich observations. In Proceedings of the 30th International Conference on Neural
Information Processing Systems, pages 1848–1856, 2016.

[63] Tor Lattimore, Csaba Szepesvari, and Gellert Weisz. Learning with good feature repre-
sentations in bandits and in rl with a generative model. In International Conference on
Machine Learning, 2020.

[64] Alessandro Lazaric, Mohammad Ghavamzadeh, and Rémi Munos. Analysis of
classification-based policy iteration algorithms. The Journal of Machine Learning Re-
search, 17(1):583–612, 2016.

87

[65] Lihong Li. A Unifying Framework for Computational Reinforcement Learning Theory.
PhD thesis, USA, 2009. AAI3386797.

[66] Michael L Littman, Richard S Sutton, and Satinder P Singh. Predictive representations of
state. In NIPS, volume 14, page 30, 2001.

[67] Boyi Liu, Qi Cai, Zhuoran Yang, and Zhaoran Wang. Neural proximal/trust region policy
optimization attains globally optimal policy. CoRR, abs/1906.10306, 2019.

[68] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy
Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods
for deep reinforcement learning. In International conference on machine learning, pages
1928–1937, 2016.

[69] Aditya Modi, Nan Jiang, Ambuj Tewari, and Satinder Singh. Sample complexity of
reinforcement learning using linearly combined model ensembles. In Conference on
Artificial Intelligence and Statistics, 2020.

[70] Elchanan Mossel and Sébastien Roch. Learning nonsingular phylogenies and hidden
markov models. In Symposium on Theory of Computing, 2005.

[71] Rémi Munos. Error bounds for approximate policy iteration. In ICML, volume 3, pages
560–567, 2003.

[72] Rémi Munos. Error bounds for approximate value iteration. In Proceedings of the National
Conference on Artificial Intelligence, volume 20, page 1006. Menlo Park, CA; Cambridge,
MA; London; AAAI Press; MIT Press; 1999, 2005.

[73] Arkadii Semenovich Nemirovsky and David Borisovich Yudin. Problem complexity and
method efficiency in optimization. 1983.

[74] Yurii Nesterov and Boris T. Polyak. Cubic regularization of newton method and its global
performance. Math. Program., pages 177–205, 2006.

[75] Gergely Neu, Andras Antos, András György, and Csaba Szepesvári. Online markov
decision processes under bandit feedback. In Advances in Neural Information Processing
Systems 23. Curran Associates, Inc., 2010.

[76] Gergely Neu, Anders Jonsson, and Vicenç Gómez. A unified view of entropy-regularized
markov decision processes. CoRR, abs/1705.07798, 2017.

[77] Jan Peters, Katharina Mülling, and Yasemin Altün. Relative entropy policy search. In
Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence (AAAI 2010),
pages 1607–1612. AAAI Press, 2010.

[78] Jan Peters and Stefan Schaal. Natural actor-critic. Neurocomput., 71(7-9):1180–1190,
2008.

88

[79] B. T. Polyak. Gradient methods for minimizing functionals. USSR Computational
Mathematics and Mathematical Physics, 3(4):864–878, 1963.

[80] Aravind Rajeswaran, Kendall Lowrey, Emanuel V. Todorov, and Sham M Kakade. Towards
generalization and simplicity in continuous control. In I. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural
Information Processing Systems 30, pages 6550–6561. Curran Associates, Inc., 2017.

[81] Bruno Scherrer. Approximate policy iteration schemes: A comparison. In Proceedings of
the 31st International Conference on International Conference on Machine Learning -
Volume 32, ICML’14. JMLR.org, 2014.

[82] Bruno Scherrer and Matthieu Geist. Local policy search in a convex space and conservative
policy iteration as boosted policy search. In Joint European Conference on Machine
Learning and Knowledge Discovery in Databases, pages 35–50. Springer, 2014.

[83] Bruno Scherrer, Mohammad Ghavamzadeh, Victor Gabillon, Boris Lesner, and Matthieu
Geist. Approximate modified policy iteration and its application to the game of tetris.
Journal of Machine Learning Research, 16:1629–1676, 2015.

[84] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust
region policy optimization. In International Conference on Machine Learning, pages
1889–1897, 2015.

[85] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proxi-
mal policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[86] Shai Shalev-Shwartz et al. Online learning and online convex optimization. Foundations
and Trends in Machine Learning, 4(2):107–194, 2012.

[87] Lior Shani, Yonathan Efroni, and Shie Mannor. Adaptive trust region policy optimization:
Global convergence and fa ster rates for regularized mdps, 2019.

[88] Vatsal Sharan, Sham M Kakade, Percy S Liang, and Gregory Valiant. Learning overcom-
plete HMMs. Advances in Neural Information Processing Systems, 2017.

[89] Geelon So, Gaurav Mahajan, and Sanjoy Dasgupta. Convergence of online k-means. In
25th International Conference on Artificial Intelligence and Statistics, AISTATS 2022.

[90] Wen Sun, Nan Jiang, Akshay Krishnamurthy, Alekh Agarwal, and John Langford. Model-
based RL in contextual decision processes: PAC bounds and exponential improvements
over model-free approaches. In Conference on Learning Theory, 2019.

[91] Richard S Sutton, David A McAllester, Satinder P Singh, and Yishay Mansour. Policy
gradient methods for reinforcement learning with function approximation. In Advances in
Neural Information Processing Systems, volume 99, pages 1057–1063, 1999.

89

[92] Csaba Szepesvári and Rémi Munos. Finite time bounds for sampling based fitted value
iteration. In Proceedings of the 22nd international conference on Machine learning, pages
880–887. ACM, 2005.

[93] L G Valiant and V V Vazirani. Np is as easy as detecting unique solutions. In Proceedings
of the Seventeenth Annual ACM Symposium on Theory of Computing, page 458–463,
1985.

[94] Yuanhao Wang, Ruosong Wang, and Sham M. Kakade. An exponential lower bound for
linearly-realizable mdps with constant suboptimality gap, 2021.

[95] Gellért Weisz, Philip Amortila, and Csaba Szepesvári. Exponential lower bounds for
planning in mdps with linearly-realizable optimal action-value functions. In Proceedings
of the 32nd International Conference on Algorithmic Learning Theory, volume 132, pages
1237–1264. PMLR, 2021.

[96] Gellért Weisz, András György, Tadashi Kozuno, and Csaba Szepesvári. Confident approx-
imate policy iteration for efficient local planning in qπ -realizable mdps. In Advances in
Neural Information Processing Systems, 2022.

[97] Gellért Weisz, Csaba Szepesvári, and András György. Tensorplan and the few actions
lower bound for planning in mdps under linear realizability of optimal value functions.
In International Conference on Algorithmic Learning Theory, pages 1097–1137. PMLR,
2022.

[98] Gellért Weisz, Philip Amortila, Barnabás Janzer, Yasin Abbasi-Yadkori, Nan Jiang, and
Csaba Szepesvári. On query-efficient planning in mdps under linear realizability of the
optimal state-value function, 2021.

[99] Ronald J Williams. Simple statistical gradient-following algorithms for connectionist
reinforcement learning. Machine learning, 8(3-4):229–256, 1992.

[100] Ronald J Williams and Jing Peng. Function optimization using connectionist reinforcement
learning algorithms. Connection Science, 3(3):241–268, 1991.

[101] Lin Yang and Mengdi Wang. Sample-optimal parametric Q-learning using linearly additive
features. In International Conference on Machine Learning, 2019.

[102] Dong Yin, Botao Hao, Yasin Abbasi-Yadkori, Nevena Lazić, and Csaba Szepesvári.
Efficient local planning with linear function approximation. In International Conference
on Algorithmic Learning Theory, pages 1165–1192. PMLR, 2022.

[103] Andrea Zanette, Alessandro Lazaric, Mykel Kochenderfer, and Emma Brunskill. Learning
near optimal policies with low inherent bellman error, 2020.

[104] Dongruo Zhou, Jiafan He, and Quanquan Gu. Provably efficient reinforcement learning
for discounted mdps with feature mapping. In International Conference on Machine
Learning, pages 12793–12802, 2021.

90

	Dissertation Approval Page
	Dedication
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Vita
	Abstract of the Dissertation
	Introduction
	Our results
	Computational-statistical gaps in reinforcement learning
	Computationally efficient algorithms for learning HMMs
	Understanding algorithms in practice

	Computational-statistical gaps in reinforcement learning
	Preliminaries
	Markov Decision Process (MDP)
	Computational problems

	Our results
	Proof of the main result
	From 3-CNF formulas to 3-action MDPs
	From RL algorithms to 3-SAT algorithms
	Setting of Parameters

	Computationally efficient algorithms for learning HMMs
	Preliminaries
	Hidden Markov Models and low rank distributions
	Learning models

	Our results
	Technical overview
	Background: Observable operators and hard instances
	Efficient representation
	Error propagation
	Estimating operators
	Finding the basis

	Learning with conditional probabilities
	Algorithm
	Analysis

	Learning with conditional samples
	Algorithm
	Analysis

	Discussion

	Understanding algorithms in practice
	Preliminaries
	Our results
	Related work
	Warmup: Constrained tabular parameterization
	Gradient domination
	Convergence rates for projected gradient ascent
	Lower bound: Vanishing gradients and saddle points

	Softmax tabular parameterization
	Asymptotic convergence, without regularization
	Polynomial convergence with log barrier regularization
	Dimension-free convergence of Natural Policy Gradient Ascent

	Discussion

	Bibliography

