UC Merced
Proceedings of the Annual Meeting of the Cognitive Science
Society

Title
Setting the First Few Syntactic Parameters - A Computational Analysis

Permalink
https://escholarship.org/uc/item/4tb5n4hj

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 20(0)

Authors
Sakas, Wiliiam G.
Fodor, Janet Dean

Publication Date
1998

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/4tb5n4hj
https://escholarship.org
http://www.cdlib.org/

Setting the First Few Syntactic Parameters - A Computational Analysis

William G. Sakas (sakas@roz hunter.cuny.edu)
Ph.D. program in Computer Science; CUNY Graduate Center,;
33 West 42 Street, New York, NY 10036 USA

Janet Dean Fodor (jfodor@email.gc.cuny.edu)
Ph.D. program in Linguistics; CUNY Graduate Center,
33 West 42 Street, New York, NY 10036 USA

Abstract

We consider the process by which the syntactic parameters of
human language are set. Previous work has shown that for
natural languages there can be no instant "automatic”
triggering of parameters because the trigger properties in
natural languages are often deep properties, not recognizable
without parsing the input sentence. There are parametric
algorithms that learn by parsing, but they are inefficient
because they do not respect the Parametric Principle: they
evaluate millions of grammars, rather than establishing the
values of a few dozen parameters. They do so because they
cannot tell in advance which input sentences are pertinent to
which parameters, and because they have no protection
against mislearning due to parametric ambiguity of the input.
There is one model that does implement the Parametric
Principle. This is the Structural Triggers Learner (STL).
For an STL, a parameter value and its trigger are one and the
same thing; they are what we call a structural trigger or
treelet (a subtree or in the limiting case a single feature).
These structural triggers are made available by UG and
adopted into the learner's grammar just in case they prove
essential for parsing input sentences. This permits efficient
recognition of the parameter values entailed by input
sentences and allows the learner to avoid errors by
discarding ambiguous input. However, the high degree of
ambiguity inherent in natural language impedes leamning
even for this efficient system. An STL must wait a long time
between unambiguous inputs. As we explain, this problem
is particularly acute in the early stages of learning. In this
paper we give a computational analysis of the performance of
an STL. We then identify an important factor - the
paranetric expression rate - that holds promise of a solution
to this early leaming problem.

Setting Syntactic Parameters is Hard Work

The Parametric Principle

Chomsky (1981 and elsewhere) has proposed that all
natural languages share the same innate universal
principles (Universal Grammar - UG) and differ only with
respect to the settings of a finite number of parameters. For
example, all languages have subjects of some sort, but
whether a language's grammar dictates that the subject
must be overt is determined by the setting of the "null
subject" parameter. The null subject parameter is set "off"
in English and "on" in Spanish and Italian.

These syntactic parameters are standardly taken to be
binary and their two values to be mutually exclusive. It is
not yet known how many syntactic parameters there are
(sec Roberts, in press, for discussion). For convenience
here, suppose humans are equipped with 30. Then there are
2*° = 1,073,741,824 possible languages. Importantly, the
number of languages grows exponentially with the number
of parameters. The insight that underlies Chomsky’s
parametric approach to language is that for a learner that
sets parameters, the complexity of the learning process
need be no more than linear in the number of ways
grammars can differ from each other (i.e. in the number of
parameters). For this, the learner must establish the value
of each parameter independently of the values of all others.
We call this the Parametric Principle.

Setting parameters in accordance with the Parametric
Principle permits a very rapid reduction of the pool of
possible grammars. Each time a parameter is set, one
parameter value is eliminated; and since half of all
grammars have that wvalue, that eliminates from
consideration half of the candidate grammars remaining.
In a domain of 30 parameters, setting one parameter rules
out roughly 500 million grammars; setting the next one
excludes another 250 million; setting five reduces the pool
to roughly 3% of its original size.

Very few existing parameter-based learning models abide
by the Parametric Principle. Rather, the learner evaluates
complete collections of parameter values, i.e. whole
grammars. Typically, no one parameter valuc is finally
established until the learner discovers the full target
grammar. Statistical weighting systems, such as those
proposed by Valian (1990) and Kapur (1994), do settle on a
value for each parameter independently, although along the
way they postpone setting a parameter for some time while
evaluating the evidence. It seems surprising that other
models do not take advantage of the powerful reduction of
the acquisition problem that the Parametric Principle
makes possible. There are no compensating advantages to
be gained by searching through the space of grammars. At
best, clever search strategies may make it less punishing
(see Nyberg, 1992). It appears that the sole reason for
violating the Parametric Principle is that obeying it has
been judged to be too difficult. The literature on language
learnability has not emphasized this. Only Clark (1994)
has addressed it explicitly, and he considered the

917

mailto:jfodoF@email.gc.cuny.edu

computational costs of respecting the Parametric Principle
to be "too grcat to be acceptable." We believe this
pessimistic conclusion to be premature. The learning
model we present here obeys the Parametric Principle at
minimal cost, and has other advantages besidcs.

Parametric Ambiguity

A sentence is parametrically ambiguous if it is licensed by
two or more distinct combinations of parameter values.
Parametric ambiguity is rampant in natural language. For
example, an input string of the form Subject-Verb-Object
(SVO) is parametrically ambiguous between underlying
SVO order as in English, and “verb second” order as in
German. Although SVO sentences can be parsed by either
kind of grammar, the derivations will be different due to
the different parameter settings.

A "verb second" language has a positive value of the V2
parameter (i.e. +V2). This entails that the finite verb is
transformationally fronted and that a topic phrase is moved
into first position before it. If the topic is the subject, this
gives an SV(O) sentence. SVO order can be licensed by
+V2 with any values for the parameters that control the
underlying order of subject, verb and object (in German the
underlying order is SOV). SVO order can also be licensed,
without movement. by the parameter values for underlying
subject-before-verb and verb-before-object order with a
negative value of the V2 parameter, as in English. By
contrast, a VOS sentence is not parametrically ambiguous
(at least with respect to its word order). It can be licensed
only by the -V2 value with underlying verb-before-object
and verb-before-subject.

In order to abide by the Parametric Principle, a learner
must be able to establish a parameter value with sufficient
confidence to be prepared to rule out all grammars in which
that parameter takes the opposite value. Otherwise, the
number of candidate grammars could never be reduced.
This would effcctively nullify the benefit of the Parametric
Principle: the halving of available grammars with each
parameter that is set. Parametric ambiguity is potentially
very damaging since it robs the learner of confidence. To
be certain that its setting of a parameter was correct, the
learner would need to run an exhaustive check of all
possible parses of the input sentence. If the parameter
value in question were present in every grammar that could
parse the sentence, then it could be adopted with full
confidence. Anything short of exhaustive grammar testing
would leave it uncertain whether the parameter value was
indeed necessary. Grammars can be applied to sentences
by parsers; however, an exhaustive search through a billion
grammars is hopelessly impractical. The consensus in
sentence processing research is that even adults are capable
of only limited parallel parsing if any (see Gibson, 1991),
even when the alternative analyses all involve the same
grammar. It does not seem plausible to suppose that a two-
year old can apply a billion grammars to each sentence.

It might seem that a less demanding alternative would be
for the learner simply to establish which inputs were
parametrically ambiguous and refrain from setting
parameters in response to them. Learning would be based
solely on unambiguous triggers. However, this also

demands parsing with multiple grammars. Parametric
ambiguity can be established by parsing with just enough
grammars to find two that parse the input, but non-
ambiguity can be established only by parsing with all
possible grammars and finding no more than one that
parses the input. Fortunately, the STL model proposed by
Fodor (1998) and described below manages to curtail the
excessive parallel parsing needed to test multiple
grammars.

In summary: the complexity of the learning problem
remains exponential unless the Parametric Principle can be
implemented. But, this must not require massively parallel
parsing of input sentences, which appears to be far beyond
the capacity of a human lcarner. What is needed is a
system that can test grammars in parallel without having
to engage in full parallel parsing of input sentences. This
is possible within the STL model to which we now turn.

The Structural Triggers Learner

The Structural Triggers Learner (STL) has made parallel
grammar testing possible without the need for full parallel
parsing of input sentences. It achieves this because it takes
triggers and parameter values to be the kinds of things that
are both ingredients of grammars and ingredients of trees.
What fits these specifications is a subtree consisting of just
a few nodes and/or feature specifications. A trigger and the
parameter value it triggers are then identical, so that only
one innate specification is needed, rather than linked
specifications of parameter values and their triggers. UG
provides a pool of these schematic freelets, one for each
parameter value, and each natural language chooses to
employ some subset of them. The UG treelets can be folded
into the learmer’s current grammar, when the current
grammar alone is insufficient to parse an input. The
resulting grammar (termed a “supergrammar”) can be
applied by the parser to the input in exactly the same way
as any natural language grammar would be applied. No
unusual parsing activity is needed, yet all parameter values
are evaluated simultancously. Parametric treelets necessary
to that sentence can be detected in the output of the parser.
The learning device can “see™ which values contributed to
the parsing of an input sentence, and thus know which
values to adopt. Once a parameter value is adopted into the
learner’s grammar, it is available for licensing new
sentences.

Fodor discusses various learning strategies which could
utilize these structural triggers / parameter values. The one
that is of interest here is what has been called the weak STL
(WSTL), which is most appropriate as a model of human
learners. The WSTL employs what is essentially a serial
parser that parses sentences with the supergrammar (i.e. the
current grammar augmented with parametric treelets).
When the parser notes a choice point in assigning structure
to a sentence, it selects one analysis to pursue for purposes
of comprehension and it ignores all other analyses. But it
reports the presence of ambiguity to the learning
mechanism, and the learner thereafter adopts no new
parameter values on the basis of that sentence. Since it
cannot know what parameter values might have been

918

file:////ith
file:///alue

involved in the other parses, had it pursued them, it cannot
be certain which values, if any, would be common to all
analyses of the string, and so it cannot safely acquirc any of
them. However, if during the parse, no choice points were
encountered, then the parser reports that the sentence is
unambiguous and consequently the learner adopts all of the
novel treelets that were used by the parser in constructing
the parse tree.

The WSTL thus learns only from fully unambiguous
sentences, so it does not make errors. The drawback is
that, due to the high degree of parametric ambiguity in
natural language, fully unambiguous input is likely to be
scarce. So the WSTL, though efficient in other ways, faces
the problem that it must discard a high proportion of
sentences and must often wait a long time for usable
(unambiguous) input. This problem is particularly acute at
the earliest stages of parameter setting. In later stages, the
input has become less ambiguous because each parameter
that is set disambiguates some previously ambiguous
sentences. But, before progressive disambiguation gets
underway, it would seem that the learner could find very
few unambiguous input sentences to learn from. We now
formalize the WSTL model to illustrate the scale of this
problem and in following sections we offer a solution.

Analysis of a WSTL

The WSTL-minus

The WSTL outlined above is the one we believe most
closely models human learners. However, the complete
mathematics that describes its performance is intricate (due
to the dynamic nature of the progressive disambiguation;
for details of this, see Sakas, in prep). Moreover, the full
mathematics is not necessary for the present purpose of
analyzing early parameter setting. We can consider here a
simpler version of the WSTL that we will call the WSTL-
minus (WSTL-). This does no learning unless a sentence is
completely unambiguous regardless of whether any
parameters have already been set, i.e. it behaves as if there
were no progressive disambiguation. This can be
implemented by assuming that the WSTL- has access,
while parsing an input sentence, to both treelets associated
with each parameter (whereas for the “true” WSTL, the
parser's pool of parametric values does not include the
rejected value of a parameter that has already been set).
Due to the lack of progressive disambiguation, the WSTL-
does not do justice to the efficiency of the full WSTL: it
requires substantially more input sentences to acquire the
target grammar than the WSTL does. Yet, at the outset of
learning, when few parameters have been set, the
performance of the two versions differs relatively little, and
so the WSTL- is adequate as an approximation to the true
WSTL.

919

WSTL- Algorithm:

1) Receive an input sentence s from the
linguistic environment

2) Attempt to parse s with the current
grammar; if successful, go to 1

3) Otherwise, begin to parse s with the
supergrammar (= current grammar +
both parametric treelets for every
parameter)

4) If at some point in the parse, there is a
choice of treelets, disregard s for
learning

5) Otherwise, s is unambiguous, so adopt
all novel parametric treelets that have
been employed in parsing s

6) If not all parameters have been set,
gotol

The number of input sentences consumed by the WSTL-
before convergence on the target grammar can be derived
from the probability that the WSTL- will adopt some
number of new parameter values, w, on the basis of a single
sentence. There are several factors (described in detail
below) that determine this probability:

e the number of relevant parameters (r)

e the expression rate (e)

e the "effective” expression rate (e')

Not all parameters are relevant parameters. Irrelevant
parameters control properties of phenomena not present in
the target language, such as clitic order in a language
without clitics. For our purposes, the number of relevant
parameters, r, is the total number of parameters that need to
be set in order to license all and only the sentences of the
target language.

Of the parameters relevant to the target language as a
whole, only some will be relevant to any given sentence. A
sentence expresses those parameters for which a specific
value is required in order to build a parse tree, i.e. those
parameters that are essential to its structural description.
For instance, if a sentence does not have a relative clause, it
will not express parameters that concern only relative
clauses; if it is a declarative sentence, it won't express the
properties peculiar to questions; and so on. The expression
rate, e, for a language, is the average number of parameters
expressed by its input sentences. For simplicity, we will
assume here (not realistically) that e is the same for all
target language sentences.

As a measure of ambiguity, consider that each sentence,
on average, is ambiguous with respect to a of the
parameters it expresses. The effective rate of expression,
e’, is the average number of expressed parameters that are
expressed unambiguously (i.e. e’ =e - a). (Note: Readers
not interested in further mathematical details may skip the
following sub-section.)

Derivation of a Transition Probability Function

We can now present a derivation of the number of inputs
the WSTL- can be expected to consume before converging
on the target grammar. We make the following
background assumptions throughout this section.

e The sample of the target language that a learner is
exposed to entails the value of every parameter
relevant to the language.

o The sample is uniformly distributed (i.e. no
particular sentence type within it is systematically
withheld or delayed).

e All sentences within the target language are
ambiguous with respect to the same number of
parameters. (This is for mathematical convenience
only.)

Our approach is to first derive the probability that the
learner is exposed to a sentence containing one or more
parameters (expressed ambiguously or unambiguously) that
have not yet been set. We then derive the probability that
the WSTL- does not discard that sentence because it
contains an ambiguity. Combining these probabilities, as
shown below, we will arrive at a formula that yields the
probability that the learner will adopt w new parameter
values (0 < w < e) on the basis of a given input sentence,
given that ¢ parameters had already been set.

To begin this computation, let us set ambiguity aside for
a moment. In order to set all » parameters, the WSTL- has
to encounter enough batches of e parameter values possibly
(in fact. probably) overlapping with each other, to make up
the full set of » parameter values that have to be established.
Let P(wit,r,e) be the probability that an arbitrary input
sentence. s, expresses w new (i.e. as yet unset) parameters,
given that the learner has already set r parameters
(correctly), for some 7 and e as defined above.

P(w|t,r.e) is simply the number of ways s can express w
unset parameters drawn from the current total pool of unset
parameters (the size of which is 7 - 1), times the number of
ways s can express e-w previously set parameters from the
total collection of r set parameters, divided by the total
number of ways s can express e parameters out of all »
relevant ones. This is displayed in the following equation:

r—t t
w le—w
r
e
Now, to deal with ambiguity, we bring the effective rate
of expression, e', into play in order to calculate the
probability that any single parameter is expressed
unambiguously. This is e/e. The probability that all e
parameters expressed by a sentence are expressed

unambiguously is (e'/e)’. This is the probability, u, that an
input is unambiguous and hence usable for learning.

)

P(w|t,r.e)=

920

We arc now in a position to give the formula for the
probability, P'(w|t.r.e.e’), that the WSTL- will set w
additional parameters after encountering an arbitrary input
scntence.

(1-u)+uPw|tre), if w=0

P'twltree')= {uP(H'l""-e)'

otherwise

For values of w other than 0, the probability of setting w
new parameters is simply the probability that the sentence
is usable for learning (i.e., all e parameters are
unambiguously expressed (= «)) times the probability that w
of those e parameters werc previously unset (= P(w|t,r.e)).
The probability of setting 0 parameters (i.e., w = 0) is the
probability that not all e parameters are unambiguously
expressed (= 1- u) plus the probability that even if the e
parameters are unambiguously expressed (= u) all of them
had already been set (= P(w=0|t,r.e)).

In order to analyze the performance of the WSTL- after
several inputs have been encountered, we model the learner
as an absorbing Markov system where each state depicts the
number of parameters that have been set' The system
starts in state S, and on receiving an input, may stay in
state S, or move to any of the states S;, Sz, S;, ... S.. In
general, the transition probability that the system will
change from an arbitrary state S, to state S, is given by:

PSS, =»S,.,,)=P(w|tree) 0<sw<e

Given values for r, e and e’ one can calculate all possible
transitions of the system and present them in a transition
matrix. Since the WSTL- is error-driven (if the input is
licensed by the current grammar no learning occurs), once
it has set all relevant parameters (i.e. once it achieves state
S,), it stays in state S,. Thus the system is absorbing. A
well-known result from Markov chain theory is that the
fundamental matrix of an absorbing Markov system yields
the expected waiting time until absorption (see Waner and
Costenoble, 1996, for a readable presentation of Absorbing
Markov Models). The fundamental matrix @ is defined as
the inverse of the difference between the identity matrix
and the sub-matrix, N, that gives the transition probabilities
between the non-absorbing states. That is: 0 = (I - N)".
The sum of the first (Sy) row of Q yields the average
number of inputs required for the WSTL- to enter the
absorbing state S, starting in state Sp.

! What follows is a presentation of one method for arriving at
the expected size of the input sample consumed by the WSTL-.
This approach is related to discussions in the literature by Niyogi
and Berwick (1996) and elsewhere. There is at least one other
approach that can be used for establishing these results. It utilizes
dynamic programming to compute the following recurrence
relation: that the expected sample size required, on average, to set
n parameters can be determined from the size required to set n-i,
O<i<e parameters, together with the probability of setting i
additional parameters given that n-i have been set.

Numeric Results

Table 1, below, displays numerical results derived for
different values of », e, and e’. e’ enters indirectly via an
ambiguity factor, Rather than using a as defined above, we
employ a percentage measure of ambiguity @’ in order to
make comparable assessments of performance across
different situations. We calculate a’ as: a'= 100 (e-¢")/e.

Table 1: Average number of inputs consumed by the
WSTL- before convergence

e a'(%) R=15 =20 r=25 =30
1 20 62 90 119 150
40 83 120 159 200
60 124 180 238 300
80 249 360 477 599
5 20 27 40 55 69
40 115 171 230 292
60 871 1,296 1,747 2,218
80 27,885 41,472 55,895 70,983
10 20 34 54 76 98
40 604 964 1,342 1,738
60 34,848 55,578 77,397 100,193
80 35,683,968 56,912,149 79,254,943 102,597,823
15 20 28 91 135 181
40 2,127 6,794 10,136 13,545
60 931,323 2,975,115 4,438,464 5,931,148
80 over 30 billion almost 200 billion
20 20 87 256 366
40 27,351 80,601 115,415
60 90,949,470 268,017,383 383,783,455
80 - ... in the trillions ...
Adjusting the mathematics to take into account

progressive disambiguation as parameters are set (Sakas, in
prep), we find that the input consumption rates in Table 1
are reduced by a factor of anything from approximately 1 to
20. This is useful, but less of a reduction than one might
expect. The reason is that the benefit is strongest at later
stages of learning, where fewer and fewer parameters in a
sentence need to be expressed unambiguously; only new
parameters need to be expressed unambiguously in order
for the sentence to be usable for learning. Thus, once
learning gets well underway, it is quite efficient. But at the
early stages, the wait for unambiguous input is crippling.
Fortunately, this early ambiguity problem is not equally
severe throughout the learning domain. Notice that the
number of parameters to be set () has relatively little effect
on convergence time. What dominates learning speed is
the degree of ambiguity and the expression rate. When
both a’ and e are high, unambiguous inputs are very scarce.
This is to be expected. For instance: there is little chance
of encountering a fully unambiguous input if every sentence
expresses 20 parameters and the ambiguity rate is 99% (the
probability would be (1/100)*°). As a result, for high rates

921

of expression and ambiguity there are very few sentences
that the learner can make use of. This is why the worst
cases in Tablel occur for high 2" and e. For low ambiguity
and/or low expression rate, however, learning proceeds
very much more rapidly.

We emphasis that the results presented in this table
portray the weakest WSTL which does not benefit from
progressive disambiguation. This serves as a useful
baseline for what follows, where we will consider how its
performance can be improved.

How to Set the First Parameters

To avoid the inefficiency due to making and correcting
errors, a WSTL waits for fully unambiguous input to learn
from. We have shown that this can result in very slow rates
of learning. Fortunately, this problem is not equally severe
across the board. The generally damaging effect of
ambiguity is absent at lower expression rates. We see that
humble sentences that reveal only a few parameter values
are the most useful for a learner secking reliable
information. This is important because expression rate is
the one factor that might plausibly be low in real life
learning. That there is a high degree of parametric
ambiguity in natural languages seems undeniable. And,
though linguistic research might prove otherwise, there
seems little hope that the number of syntactic parameters
relevant to a language will be reduced to less than a dozen.
So there is not much prospect of a breakthrough in learning
efficiency due to a reduction of either ambiguity rate or
total number of parameters to be set. But it does seem
within the realms of possibility that the expression rate for
natural languages is as low as half a dozen parameters per
sentence, particularly at the early stages of learning where
the degree of parametric ambiguity is at its greatest. It is
encouraging, therefore, to find that in the Structural
Triggers framework, a reduction in the expression rate has
a beneficial effect on learning speed.

Whether the earliest encountered sentences exhibit low
expression rates must be determined by empirical research
on child-directed language. But it seems reasonable to
suppose that most of the sentences that early learners
encounter do not exhibit every syntactic phenomenon in the
language packed into 4 or 5 words or so. For instance,
there are early child-directed sentences that contain
negation, or overt WH-movement, or a subordinate clause,
but probably few that involve them all.

To summarize: We have observed here that accurate
learning is possible without loss of efficiency if the learner
can take advantage of low expression rates at early stages of
learning. What is essential to this solution to the early
learning problem is the WSTL’s ability to distinguish
ambiguity of parameter expression from irrelevance of a
parameter to a sentence. The former is to be avoided; the
latter is very welcome as it divides the learning task into
manageable steps. By contrast, whole-grammar testing
systems treat parametric irrelevance as a species of
parametric ambiguity. The parser reports success or
failure for a grammar without distinguishing between the
case where all its parameter values are either correct or

file:///alues

irrelevant, and the case where its parameter values give a
wrong analysis of a sentence that is parametrically
ambiguous. The WSTL does not conflate ambiguity and
irrelevance because the conception of parameter values as
treelets permits “superparsing”, in which ambiguity shows
up as a choice point, while irrelevant parameters ncver
intrude at all.

References

Berwick, R. C. and Niyogi, P. (1996) Learning from
triggers. Linguistic Inquiry 27.4, 605-622.

Chomsky, N. (1981) Lectures on Government and Binding,
Foris, Dordrecht.

Clark, R. (1994) Finiteness, Boundedness and Complexity:
Learnability and the Study of First Language
Acquisition. in Lust et al. (eds.).

Fodor, J. D. (1998) Unambiguous triggers. Linguistic
Inquiry 29.1, 1-36.

Gibson, E. A. F. (1991) A Computational Theory of
Human Linguistic Processing: Memory Limitations and
Processing Breakdown, unpublished Ph.D. dissertation,
Carnegie Mellon University, Pittsburgh, PA.

Kapur, S. (1994) Some applications of formal learning
theory results to natural language acquisition. In Lust et
al. (eds.).

922

B. Lust, G. Hermon and J. Kornfilt (eds.) (1994) Syntactic
Theory and First Language Acquisition: Crosslinguistic
Perspectives, Vol. 1I, Lawrence Erlbaum Associates,
Hillsdale, NJ.

Nyberg, E. (1992) A Non-deterministic Success-driven
Model of Parameter Setting in Language Acquisition.
Unpublished Ph.D. dissertation, Carnegie Mellon
University, Pittsburgh.

Roberts, I, (in press) Language change and learnability. In
S. Bertolo (Ed.), Parametric Linguistics and
Learnability: a Self Contained Tutorial for Linguists,
Cambridge University Press

Sakas, W.G. (in prep) A Dynamic Analysis of the Structural
Triggers Learner. Unpublished ms., CUNY Graduate
Center

Sakas, W.G. and Fodor, J.D. (in press) The Structural
Triggers Learner. . In S. Bertolo (Ed.), Parametric
Linguistics and Learnability: a Self Contained Tutorial
Jor Linguists, Cambridge University Press

Valian, V. (1990) Logical and psychological constraints on
the acquisition of syntax. In L. Frazier and J. de Villiers
(eds.) Language Processing and Language Acquisition
Kluwer, Dordrecht.

Waner, S. and Costenoble, S. R. (1996) Finite
Mathematics Applied to the Real World, HarperCollins,
New York.

	cogsci_1998_917-922

