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Advancements in machine learning (ML) algorithms, data acquisition platforms, and

high-end computer architectures have fueled an unprecedented industrial automation. An ML

algorithm captures the dynamics of a task by learning an abstract model from domain-specific

data. Once the model is trained by the ML algorithm, it can perform the underlying task with

relatively high accuracy. This thesis is specifically focused on Deep Neural Networks (DNNs),

a modern class of ML models that have shown promising performance in various applications.

Thanks to DNNs, the breadth of automation has been expanded to tasks that were formerly too

complex to be performed by computers; nowadays DNNs establish the foundation of applications

such as voice recognition, medical image analysis, face authentication, to name a few.
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Despite DNNs’ benefits, their deployment in real-world applications may be circumscribed

by several factors. First, DNNs are computationally complex and their efficient execution

on resource-constrained edge devices is a critical challenge. Second, users of DNN-based

applications are often required to expose their data to the service provider, which may violate their

privacy. Third, DNN models may fail to function correctly in the presence of malicious attackers.

Having the aforementioned challenges in mind, it is a paramount challenge to design DNN-based

systems that are efficient to execute, ensure users’ privacy, and are robust to malicious attacks.

This dissertation provides holistic customization techniques that pave the way for efficient,

private, and robust DNN inference. The key contributions of the thesis are as follows:

• (Efficiency): Development of encoded DNNs, a new family of memory-efficient neural

networks. The thesis author’s contributions provide customization techniques that enable

incorporation of nonlinear encoding to the computation flow of neural networks. An end-

to-end framework is introduced to facilitate encoding, bitwidth customization, fine-tuning,

and implementation of neural networks on FPGA platforms.

• (Efficiency): Introducing the concept of lookup-table based execution of encoded neural

networks. The proposed method replaces floating-point multiplications with look-up table

search. A memory-based hardware architecture is then proposed to execute the lookup-

based multiplications and accelerate encoded DNN inference.

• (Privacy): Establishing customized solutions for oblivious inference, where a client holds

a data sample and a server holds a DNN model. After running the oblivious inference

protocol, the client receives the inference result without revealing her input to the server.

This thesis proposes automated customization solutions to speed up the oblivious inference

while maintaining a high inference accuracy.

• (Robustness): Development of solutions for online detection of neural Trojan triggers,

a class of malicious attacks that cause a DNN to perform faulty inferences. The thesis

xix



proposes a novel methodology that enhances robustness to Trojan attacks by leveraging

dictionary learning and sparse approximation.
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Chapter 1

Introduction

A DNN training algorithm extracts information related to a specific attribute from a

massive corpus of data. During training, the extracted information is abstracted into the model.

The trained model can then be used to automate the underlying task, e.g., a DNN can be trained

to perform voice recognition, pose estimation, medical diagnosis, financial data analysis, etc. In

real-world applications, domain-specific customization of DNNs is necessary prior to deployment.

Particularly, the customization should satisfy three important properties explained below.

• (Efficiency): Early DNNs were developed to run on server-grade Graphic Processing Units

(GPUs), which have a relatively high compute capacity and power consumption. However,

many embedded applications require low power execution on devices with limited compute

capacity. Therefore, customization techniques that can reduce the computational complexity

and power consumption of DNNs are necessary in embedded settings.

• (Privacy): DNNs were originally designed for plaintext inference wherein the input to

the neural network would be revealed to the model owner. A new line of research allows

performing inference on (unintelligible) encrypted data but it incurs significant computation

and communication overheads. Customization techniques that reduce the overhead of

secure computation are crucial for practical privacy-preserving inference.
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• (Robustness): Recent Trojan attacks show that DNNs are subject to failure when the input

data and the model are poisoned. Customization techniques are of paramount importance

for enhancing robustness to malicious Trojan attacks.

This dissertation addresses the above challenges in part by developing domain-specific

customization techniques. The remainder of this chapter summarizes the research contributions

made by the author in each category.

1.1 Efficiency

The massive computational complexity and memory footprint of DNNs hinders their

efficient execution on resource-limited devices. Previous work demonstrates a significant re-

dundancy in neural network parameters [13], suggesting that the underlying operations can be

simplified with minimal loss of inference accuracy. Inspired by this fact, this dissertation proposes

end-to-end customization techniques along with prototype hardware accelerators for efficient

DNN inference. The thesis author’s work in this category is summarized as follows.

1.1.1 Weight and activation encoding in DNNs

One major contributor to the inefficiency of DNN inference is its immense memory

footprint. In high level, performing DNN inference on a hardware platform requires transferring

data from the storage unit to the compute unit, performing the computations, and writing the

output back to the memory. In practice, the data transfer causes a significant delay and power

consumption when performing neural network inference.

To mitigate the data transfer bottleneck, Chapter 3 proposes the encoded neural network

as a memory efficient DNN realization. The result of the research is an end-to-end framework,

dubbed EncoDeep, that facilitates encoding, bitwidth customization, fine-tuning, and implemen-

tation of neural networks on FPGA platforms. EncoDeep incorporates nonlinear encoding to the
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computation flow of neural networks to save memory. In comparison to the raw full-precision

activation values, the encoded features demand a significantly smaller storage capacity; The small

memory footprint of EncoDeep allows one to perform data transfers using on-chip streaming

buffers inside an FPGA without frequent accesses to the off-chip DRAM. A fully-automated opti-

mization algorithm is also developed to determine the flexible encoding bitwidths across network

layers. EncoDeep full-stack framework comprises of a compiler which takes a high-level Python

description of an arbitrary neural network. The compiler then instantiates the corresponding

elements from EncoDeep Hardware library for FPGA implementation. Proof-of-concept evalua-

tions demonstrate an average of 4.65× throughput improvement compared to stand-alone weight

encoding for small-scale DNNs, and an average of 3.6× throughput improvement compared to

contemporary FPGA accelerators for large-scale DNN inference.

1.1.2 Lookup-table based multiplication in DNNs

The computational complexity of neural network inference is mainly due to the matrix

multiplications. Chapter 4 presents LookNN, a methodology to replace floating-point multiplica-

tions with look-up table search to reduce the runtime and power consumption of multiplications

within the computing unit. To this end, the weight parameters of a pre-trained neural network are

encoded, such that the model’s accuracy is minimally affected. This step adapts the original model

into a format compatible with lookup-based multiplication. Next, enhanced general purpose

processors are proposed for searching look-up tables: each processing element in a GPU can

be augmented with a small associative memory, enabling it to bypass redundant computations.

Simulations on AMD Southern Island GPU architecture show that LookNN results in 2.2×

energy saving and 2.5× speedup running four different neural network applications with zero loss

of accuracy. For the same four applications, if we tolerate an accuracy drop of less than 0.2%,

LookNN can achieve an average of 3× energy improvement and 2.6× speedup compared to the

traditional GPU architecture.
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1.2 Privacy

Machine-learning-as-a-service (MLaaS) is a rapidly growing business model wherein a

service provider holds a trained DNN model, and clients query the DNN with their data to perform

inference. In many MLaaS applications, the data owned by the users contains sensitive information

that should be kept private. This thesis introduces holistic DNN customization techniques that

enable privacy-preserving inference, a.k.a. oblivious inference, with unprecedented efficiency.

The results of the author’s research are summarized in the following sections.

1.2.1 Customizing quantization and clustering for secure DNN inference

Fixed-point quantization is one of the main avenues that researchers have followed for

optimizing plaintext DNN inference. However, existing quantization schemes cannot be directly

optimize privacy-preserving (ciphertext) execution of DNNs. Chapter 5 presents the author’s

research in the development of DNN customization techniques that utilize quantization and

encoding for efficient privacy-preserving DNN inference. The objective of DNN customization

here is to speedup the secure inference while maintaining a high accuracy. This objective can be

achieved through domain-specific low-bit quantization and weight encoding schemes that enable

efficient ciphertext computations. The result of the research is a framework, called COINN, that

shows an unprecedented level of efficiency in oblivious inference. The framework achieves a

runtime speedup of 3× to 7× over the state-of-the-art and is scalable to run complex DNNs with

over 100 layers.

1.2.2 Customizing binary neural networks for secure DNN inference

Chapter 6 explores the application of Binary Neural Networks (BNN) in oblivious infer-

ence, making two main contributions to the field. First, light-weight cryptographic protocols

are designed to exploit the unique characteristics of BNNs towards development of efficient
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oblivious inference protocols. Second, a single-shot training process is developed to dynamically

explore the runtime-accuracy tradeoff of BNNs for oblivious inference. While previous works

trained multiple BNNs with different computational complexities (which is cumbersome due to

the slow convergence of BNNs), the proposed techniques train a single BNN that can perform

inference under different computational budgets. Compared to the contemporary state-of-the-art

in oblivious inference of non-binary DNNs, the proposed method reaches 2× faster inference

at the same accuracy. Compared to XONN, the state-of-the-art in oblivious inference of binary

networks, the method achieves between 2× and 11× faster inference while obtaining higher

accuracy.

1.3 Customized Solutions to Assure DNN Robustness against

Trojan Attacks

Chapter 7 proposes an end-to-end framework, named CleaNN, for online detection of

Trojans in embedded DNN applications. In a Trojan attack, the attacker injects a backdoor in

the DNN during training by poisoning some percentage of the training data with a Trojan trigger.

In the absence of the trigger, the resulting DNN has a high inference accuracy on the benign

data. When the trigger is applied to the data, the DNN makes unexpected, incorrect decisions that

might endanger the safety of the underlying system.

The author’s proposed lightweight mitigation methodology can detect Trojaned samples

without the need of labeled data or model fine-tuning. It also does not make prior assumptions

about the trigger or the attack algorithm. The method works by learning a dictionary over benign

data to characterize its statistics. By applying sparse approximations via the learned dictionary,

the Trojan triggers can be identified and cleared from infected samples.
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Chapter 2

Background

This chapter summarizes the necessary technical background. Section 2.1 outlines neural

networks and their components. Basic concepts in secure function evaluation are described in

Section 2.2.

2.1 Neural Networks

A neural network is composed of a stack of layers, where the output of each layer

serves as the input of one or several subsequent layers. In contemporary DNNs, the layers

can be categorized as linear and nonlinear. The linear layers considered in this thesis include

convolution (CONV), fully-connected (FC), batch normalization (BN), and average pooling (AP).

The nonlinear layers studied in this thesis are rectified linear unit (ReLU) and max pooling (MP).

Below we briefly explain each layer.

Convolution. A (CONV) layer receives a 3-way input tensor X ∈ Rc×d1×d1 and outputs

a 3-way output tensor Y ∈ Rm×d2×d2 . Each d2 × d2 channel in the output is computed by

convolving a c× k× k kernel tensor through the input tensor and adding a bias term b. Repeating

the convolution with m different kernels results in the complete set of m channels in the output.
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The collection of all kernels is called the weight tensor W ∈ Rm×c×k×k and the collection of all

additive terms is called the bias vector b ∈ Rm. The CONV layer can be equivalently represented

as a matrix-multiplication followed by bias addition Y =W ·X +b. Here, W ∈ Rm×n is achieved

by reshaping the original 4-way tensor into a 2D matrix. Each column of X ∈ Rn×l represents

the c× k× k features at a certain window of the input tensor. Each element of the output Y

is computed via a vector dot product (VDP) and the total number of VDPs required for the

matrix-multiplication is m× l.

Fully-Connected. A fully-connected (FC) layer converts a vector x ∈ Rn to another

vector y =W ×x+b. Here, W ∈ Rm×n and b ∈ Rm are called the weight and bias, respectively.

Batch Normalization. The outputs of CONV and FC layers are normalized via batch

normalization (BN), such that the features have controlled mean and standard deviations. At

the training time, the BN layer converts a feature x to y = γ
x−E[x]√
var[x]+ε

+ b, where γ and b are

trainable parameters and ε is a small constant value to avoid division by zero. E[x] and var[x] are

the mean and variance of features which are computed over batches of training data. At the test

time, the mean and variance are replaced with constant values obtained from moving averages

during training. Therefore, the test time computation can be simplified as y = αx+β , where

α = γ√
var[x]+ε

and β = b− γE[x]√
var[x]+ε

.

Pooling. Pooling layers reduce the dimensionality of feature-maps by taking the average

(AP) or maximum (MP) of k× k windows in the input. Assuming the k× k windows are non-

overlapping, a pooling layer reduces the data dimensionality from c×d1×d1 to c× d1
k ×

d1
k .

ReLU. A ReLU layer truncates negative values to zero.

2.2 Secure Function Evaluation

Secure function evaluation allows two parties to compute the output of a function that

takes inputs from both of them, without revealing the secret input from either party to the other.
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Following the convention in the literature, this thesis refers to the involved parties as Alice and

Bob. Several key concepts of secure function evaluation are explained below.

Secure Function Evaluation Protocol. A Secure Function Evaluation (SFE) protocol

is a set of rules specifying the messages communicated between Alice and Bob. By following

these rules, they jointly evaluate a function f (xA,xB) that takes the xA from Alice and xB from

Bob without disclosing any information about Alice’s data to Bob and vice versa. Depending on

protocol agreements, the result of the computation can be exposed to both parties, only one of

them, or neither of them.

Additive Secret Sharing (AS) is a method for distributing a secret x between Alice and

Bob such that Alice holds JxKA = x+ r and Bob holds JxKB = −r, where r is a random value.

Individually, both JxKA and JxKB are random values, hence, Alice or Bob cannot independently de-

cipher the original message x. Only by combining JxKA and JxKB can one recover the actual secret

as x = JxKA + JxKB. There exist standard SFE protocols to perform addition and multiplication

on secret-shared data such that the result is also shared between the two parties. As we show in

this thesis, these protocols can be used in oblivious inference to ensure that neither the input nor

the output of a linear DNN layer is revealed to the involved parties. Curious readers are referred

to [14] for more details about secret sharing.

Oblivious Transfer (OT) is a protocol between two parties – a sender (Bob) who has

two messages (µ0,µ1), and a receiver (Alice) who has a selection bit i ∈ {0,1} [15]. Through

OT, Alice obtains the intended message µi, without revealing the selection bit i to Bob. Alice

does not learn the other message µ1−i. OT requires public key cryptography, which is costly in

general. In the following, we introduce more efficient methods for OT computation.

OT extension enables extending a constant number of ‘base OTs’ to a large number of

OTs through cheaper symmetric key cryptography [16]. The first step in OT-extension is called

Random OT (ROT) [17]. In ROT, Alice provides the selection bit i and Bob does not provide any

input. After ROT execution, Bob receives two random 128-bit keys (k0,k1) and Alice receives ki.
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The final step of OT-extension is as follows: Bob computes {v0,v1}= {µ0⊕H(k0),µ1⊕H(k1)},

where the ⊕ operator denotes bit-wise XOR and H(k) is a cryptographically-secure random

number generator [18] with k as the seed. Bob transmits {v0,v1} to Alice, who computes

µi = vi⊕H(ki).

Garbled Circuit (GC) is an SFE protocol that can be used for evaluation of an arbitrary

function (linear or non-linear). In GC, Alice (the garbler) and Bob (the evaluator) securely

compute the output of a function f (xA,xB) with secret inputs from Alice and Bob, respectively.

The function f (·, ·) is represented via a Boolean circuit known to both parties. By evaluating the

Boolean circuit gate by gate, the two parties are able to securely compute f . Curious readers

are invited to read [19–21] for more details about the protocol and its efficient variants. The

representation of a b-bit private scalar can be converted from GC to AS and vice versa by executing

a b-bit addition through GC [22]. GC is less efficient than AS for computing multiplication and

addition, however it is the most efficient protocol to date that is able to securely evaluate generic

non-linear functions. Additionally, operations such as bit shift and XOR can be performed inn

GC with zero amortized cost (without communication between Alice and Bob).
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Chapter 3

Weight and activation encoding in DNNs

Deep Neural Networks (DNNs) are being widely developed for various machine learning

applications, many of which are required to run on embedded devices. In the realm of embedded

DNNs, real-time execution under severe power limitations is hard to satisfy [23, 24]. Contempo-

rary research has focused on the FPGA-based acceleration of DNNs [25–28]. However, FPGAs

are inherently limited in terms of on-chip memory capacity. Thus, the high-storage requirement

of DNN models hinders an efficient and low power execution on FPGAs.

To reduce the computational complexity and memory requirement of DNNs, several pre-

processing algorithms have been proposed. The existing methods generally convert conventional

DNNs into compact representations that are better suited for execution on embedded devices.

Examples of such compacting methods include quantization [29, 30], binarization [26, 31], tensor

decomposition [32], parameter pruning [33], and compression with nonlinear encoding [34, 35].

A higher compression rate might not always translate to better hardware performance as the

platform constraints could interfere with the intended compaction methodology [36].

This chapter specifically focuses on nonlinear encoding and provides solutions to tackle

the challenges associated with optimizing physical performance. Encoding network parameters

is rather beneficial as it reduces the memory footprint, i.e., the main source of delay and power
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Figure 3.1: Relative memory footprint of weights and activations for various DNNs, evaluated
on 10 samples of ImageNet.

consumption in FPGA accelerators. To devise a practical solution for implementing encoded

DNNs, we simultaneously identify and address four critical issues.

DNN memory footprint is imposed by either weights or feature-maps. Figure 3.1 shows

the relative memory requirements in several popular DNN models. As can be seen, the memory

footprint of activations is notable; however, contemporary research mainly targets the (static)

DNN weights for nonlinear quantization [34,35,37]. Developing online mechanisms for activation

encoding can significantly reduce the memory footprint of DNN models. However, nonlinear

quantization destabilizes DNN training by adding non-differentiable elements to the model.

Therefore, novel computation routines must be developed to approximate gradients for DNN

fine-tuning. Additionally, specifying the encoding bitwidth across all DNN layers by handcrafted

try-and-error is exhaustive and generally sub-optimal. Hence, automated and intelligent solutions

for bitwidth optimization are highly preferable. Finally, designing accelerators that are customized

per application/hardware is cumbersome. Thus, easy-to-use tools are needed to ensure low, non-

recurring engineering costs.

To tackle the aforementioned challenges, we introduce EncoDeep, a unified framework

that facilitates encoding, training, bitwidth customization, and automated implementation of

encoded DNNs on FPGA platforms. EncoDeep software stack allows users to automatically

configure the encoding bitwidth across all DNN layers and retrain the encoded DNN. The

hardware library of EncoDeep provides a set of configurable DNN layers that can be instantiated

to compose a fully-functional DNN. In summary, the contributions of this chapter are listed as
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follows:

• Introducing a novel methodology for the (online) encoding of DNN activations. We

establish the gradient computation routines required to fine-tune encoded DNNs, enabling

restoration of DNN accuracy after encoding.

• Introducing an automated algorithm for customizing per-layer encoding bitwidths. Inspired

by reinforcement learning, we establish an action-reward-state system to find a bitwidth

configuration that minimally affects DNN accuracy while maximally reducing memory

footprint.

• Establishing a hardware library for the bit-flexible implementation of customized encoded

DNN layers. Activation encoding lowers memory footprint and facilitates the use of

streaming buffers for inter-layer feature transmission.

• Providing an API for fast and easy hardware implementation of encoded DNNs. Developers

describe the DNN as high-level Python code which is then automatically converted to

Vivado_HLS.

• Performing extensive evaluations on various datasets and DNN architectures. On MNIST,

SVHN, and CIFAR-10, EncoDeep demonstrates an average of 4.65× throughput improve-

ment compared to stand-alone weight encoding. To uncover the benefits of encoding,

we compare EncoDeep with six fixed-point FPGA accelerators on ImageNet, showing

an average of 3.6× and 2.54× improvement in throughput and performance-per-watt,

respectively.

3.1 Overview and insights

EncoDeep design flow is composed of an interlinked optimization scheme where algorith-

mic DNN compaction methods and hardware-level customization are performed in sync. In this
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section, we describe EncoDeep insights in high-level and look at the main components of our

framework.

3.1.1 Streaming-based On-chip Execution

Traditional DNN accelerators store the weights and activations (features) of layers in the

off-chip DRAM since commodity FPGAs are often limited in terms of on-chip memory capacity.

Figure 3.2 (top) demonstrates the computation flow of DNNs in such settings. Alternatively, the

weights and computed activations could be stored and accessed within the FPGA design using

streaming buffers as depicted in the bottom of Figure 3.2. The benefits of the latter approach are

three-fold: (i) it avoids the power-hungry and high-latency access to off-chip DRAM. (ii) The

computation engines responsible for each DNN layer can be customized to comply with the

pertinent layer. (iii) The streaming buffers allow pipelining for the computation engines to

increase throughput. Although on-chip execution of DNNs is beneficial in many aspects, the

memory requirement for weights and activations of DNN layers is often beyond the (limited)

capacity of commodity FPGAs. To address this, EncoDeep employs nonlinear quantization to

reduce memory footprint such that the weights/activations can be accommodated within FPGA

block-RAMs.

3.1.2 Memory Compression

Quantization allows a reduction in memory footprint by approximating numerical values.

To perform quantization, a finite set of best representatives (a.k.a. bins) are selected and each

value is approximated with the closest bin. Perhaps the most popular quantization is fixed-point

approximation. Figure 3.3-a depicts the bins for an unsigned fixed-point quantization. In this

setting, quantization bins are fixed to certain points (e.g., {0.00,0.25,0.50,0.75}), regardless

of data distribution. Alternatively, in nonlinear quantization, the bins are carefully selected to
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Figure 3.2: The workflow of traditional vs. streaming-based DNN inference. The top dia-
gram shows the conventional approach where all resources are allocated to one computational
engine and layer input/outputs are continuously read/written from/to off-chip memory. The
bottom diagram presents a streaming-based approach where each layer is allocated a different
computational engine and communications with off-chip memory are limited to the first/last
layer.

best represent the data as shown in Figure 3.3-b. In this example, both fixed-point and nonlinear

quantizations require the same number of bits to represent the (approximated) data: each real-

valued signal can be represented with 2 bits when there are 4 quantization bins. However, the

approximation error associated with the nonlinear scheme is drastically lower.

For a fixed nonlinear quantization bitwidth, the approximation error increases as the

standard deviation σ of the data increases. Nevertheless, this error can be compensated by

increasing the number of quantization bits; Figure 3.4 shows that for a large enough number of

bits (b > 6 in this example), the error converges to zero. DNNs inherently have a low standard

deviation due to specific measures taken during training to ensure convergence. In particular,

to avoid exploding gradient values and promote a smooth convergence, contemporary DNNs

comprise batch normalization which normalizes layer activation values. Moreover, to prevent

over-fitting and drastic neuron transitions, weight regularization is used during training to suppress

large weights. We empirically demonstrate this property in Figure 3.5 by plotting the σ range

across DNN layers for all our benchmarks. Such small σ range allows low-error estimation of

DNN parameters/activations with very few bits.
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(a) Fixed-point (b) Nonlinear

Figure 3.3: Histogram of data samples and the quantization bins in fixed-point and nonlinear
quantization. In this example, there are 4 quantization bins and scalars are encoded with
Log2(4) = 2 bits.

Figure 3.4: Nonlinear quantization error versus bitwidth for two Gaussian data distributions
with σ = 1 and σ = 5.

3.2 Related Work

To enable ubiquitous deployment of DNNs, several recent research efforts have focused

on DNN acceleration [26, 35, 38–47]. In a parallel track, designing efficient DNN graphs and

architectural optimization has gained attraction from the community [4, 48–51]. EncoDeep

bridges the gap between these two research tracks by incorporating algorithm-hardware co-

design. As neural networks are memory-intensive, devising methods to decrease the memory

footprint can significantly enhance accelerator performance in terms of throughput and power

consumption. Perhaps the most popular method for neural network compression is network

pruning, where network parameters with insignificant contributions to the model’s accuracy are
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Figure 3.5: Standard Deviation (σ ) range for activations (left) and weights (right) across DNN
layers. Here, the black dot represents the mean σ for each benchmark.

removed. Many researchers have developed valuable work in DNN compression with pruning

using either structured [52–59] or non-structured pruning [60]. Hardware accelerators have also

been proposed to perform fast and efficient inference using pruned neural networks, e.g., [61,62].

The focus of our work, however, is another attractive solution for neural network compression:

inference with few-bit encoded values per weight/neuron. In practice, one might employ both

pruning and encoding to achieve better compression results [34]. However, to better discuss the

contributions of this chapter, in our experiments we focus solely on the encoding technique.

Several methods for training DNNs with few bits have been proposed in [29, 63–69].

QNN [29] was perhaps the first work to suggest extreme neural network quantization with binary

(∈ {±1}) parameters and activations. Following their work, many researchers have proposed

low-bit DNNs with improved accuracy. Authors of XNOR-Net [66] suggest computing the

average absolute value of each input vector to the convolution operation in the forward pass. They

show that multiplying this average value by the corresponding XNOR-Popcount result improves

the inference accuracy. WRPN [64] shows that scaling layer widths uniformly can deliver more

accurate low-bit DNNs. One immediate shortcoming of this approach is the quadratic increase in

the memory and computational complexity as the scaling factor grows. ABC-Nets [67] proposes

multi-bit binary approximation of weights and activations of DNNs. Their method shows great

accuracy improvement at the expense of training every bitwidth configuration from scratch.

HBNN [69] proposes to incorporate multi-level binarization while enabling heterogeneous level
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selection across layers. Although this approach achieves high memory efficiency, it still has

limited accuracy due to binary approximation.

Instead of using strict binary values, as proposed by the above works, our proposal uses

low-bit non-linear encodings which allows high-precision arithmetics with a low memory footprint.

By leveraging non-linear encoding, we can scale down layer widths (as opposed to WRPN [64])

to match the memory of a wide binary neural network while still enjoying higher accuracy.

Compared to ABC-Nets’ multiple rounds of training from scratch, our experimental results show

that the one-time post-training approach of EncoDeep can extract better (heterogeneous) bitwidth

configurations with higher accuracy. Additionally, while the above works mainly focus on

developing theoretical memory improvements, EncoDeep adopts hardware-algorithm co-design

to show practical performance boost and memory reduction on hardware.

To create more hardware-friendly binary DNNs, ReBNet [26] proposes co-designing a

DNN with residual binary approximation and an FPGA accelerator. LUTNet [68] takes a step

forward and directly incorporates hardware characteristics such as the LUT structure of FPGAs

into the designed activation function. These methodologies improve the hardware efficiency

of BNNs, yet their accuracy is bounded. Similar to the above work, EncoDeep incorporates

DNN-hardware co-design. However, unlike the above works, EncoDeep specifically configures

the bitwidths across DNN layers by finding the optimal accuracy-memory Pareto front. This

customization allows EncoDeep to achieve higher accuracy by using flexible (heterogeneous)

bitwidths across DNN layers. Such heterogeneity is also specifically supported by EncoDeep

modular hardware design and the accompanying compiler.

DoReFa-Net [63] incorporates specific training procedures to enable fixed-point quan-

tization for both weights and activations. HWGQ [65] mentions that low-bit approximation of

activations is more difficult than weights. The authors also note that fixed-point quantization with

uniformly spaced quantization bins does not deliver the minimum approximation error. Thus,

during the training phase, the authors propose to approximate the distribution of activation units
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via a half-way Gaussian prior and find non-uniform quantization bins accordingly. In our work,

we show that it is possible to create a non-uniform quantizer after the DNN is trained, which

has several direct benefits: first, EncoDeep does not impose extra overhead on the original DNN

training and therefore training convergence speed is not altered. Second, EncoDeep does not

need to assume a Gaussian prior on the activation distribution and can be applied to arbitrary

distributions. Third, EncoDeep can efficiently tune the number of encoding bits across layers

without training every configuration from scratch.

Nonlinear encoding allows for fixed-point arithmetics accompanied by a low storage

requirement. Perhaps the closest method to our proposal is a stand-alone weight encoding, with

no activation encoding, originally proposed in [34, 35, 37]. Weight encoding significantly reduces

the memory footprint of model parameters but the activation units (especially in convolution

layers) still require a large capacity of memory. To address this challenge, we extend the encoding

to the activations of neural networks and introduce training routines for the corresponding encoded

activations. In addition, prior work utilizes hand-crafted or rule-based heuristics to determine

the encoding bitwidth. Such manual methods are generally sub-optimal and incur a drastic

engineering cost. To address this issue, we propose an automated cross-layer bitwidth selection

algorithm that aims to capture the accuracy/memory trade-off.

In a concurrent track, designing automated and easy-to-use tools for FPGA implementation

of DNNs has been the focus of contemporary research [25,70–74]. These works aim to maximize

the throughput of fixed/floating-point DNN inference by distributing FPGA resources among

parallel computing engines. Although accurate, fixed-point DNNs are generally memory intensive,

where excessive access to off-chip memory becomes a design bottleneck. To alleviate this

problem, authors of [26, 31] propose to perform inference solely using the on-chip memory and

utilizing streaming buffers to realize inter-layer data transfers. These frameworks facilitate the

design process of DNNs by providing configurable template functions in high-level synthesis

language. However, [26, 31] are only compatible with binary DNNs and do not support fixed-
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point arithmetics. By incorporating activation encoding into DNN computational flow, EncoDeep

hardware simultaneously enjoys the benefits of on-chip streaming buffers and high accuracy

arithmetics. EncoDeep hardware stack supports flexible bitwidths, allowing the implementation

of customized encoded DNNs.

Figure 3.6: The global flow of EncoDeep framework. User provides a high-level Python
description of a pre-trained DNN to the software stack, which is responsible for weight/activation
encoding, layer-specific bitwidth configuration, and model fine-tuning. Our compiler converts
the Python code into a hardware description. The hardware stack then uses a customized library
for FPGA synthesis.

3.2.1 Global Flow

Figure 3.6 depicts the global flow of EncoDeep framework. EncoDeep is composed

of three interlinked design units, namely the Software Stack (also referred to as the Encoding

Engine), the Compiler, and the Hardware Stack. EncoDeep aims at alleviating the complications

of DNN implementation on FPGAs by incorporating an automated design stack that separates

users from the details of hardware design and optimization. We implement an end-to-end

automated framework that eliminates all hand-optimizations and delivers a customized accelerator

implementation for various DNN architectures and FPGA platforms.

EncoDeep leverages a novel and fully automated learning algorithm to output a maximally

efficient DNN architecture in terms of memory footprint while adhering to the accuracy constraints
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provided by the user. The key insight of EncoDeep is capturing the trade-off between the

classification accuracy and memory footprint of model parameters and feature maps (activations).

We use the popular neural network development API, PyTorch, to describe the DNNs in the

software stack. To implement the inference engines on FPGA, we choose Vivado High-Level

Synthesis (HLS) which enables faster development as well as portability. To fill the bridge

between the software and the hardware stacks, we develop a compiler unit in Python. Below, we

elaborate more on the incorporated design units.

Software Stack. The software stack is responsible for weight/activation encoding,

layer-specific bitwidth configuration, and model fine-tuning. This step analyses the input DNN

and applies nonlinear quantization (encoding) to layer weights/activations. EncoDeep encoding

scheme reduces memory footprint at the cost of a small reduction in inference accuracy. We

devise an automated algorithm to determine the number of encoding bins in each layer for the

weights and activations such that the memory footprint is maximally reduced and/or the accuracy

is minimally affected. The following steps are performed sequentially in the software stack:

• Activation Encoding. This step takes as input a pre-trained DNN described in Pytorch

format and generates a network with encoded activations.

• Weight Encoding. This step takes the DNN from the activation encoding step as input and

generates a network with encoded weights and activations.

Both the activation and weight encoding steps consist of three tasks: (i) network profiling where

the accuracy-memory trade-off is captured by calculating the correlation between accuracy loss

and memory footprint reduction (Section 3.3.3). (ii) Bitwidth selection where the bitwidth of

encoded activations/weights is customized based on the user-defined accuracy/memory budget

primitives (Section 3.3.3). The encoded activations/weights are then inserted in the DNN graph to

replace the full-precision values (Section 3.3.1). (iii) Model re-training where the encoded DNN

is fine-tuned to improve classification accuracy (Section 3.3.2). The output of the EncoDeep
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software stack is an encoded architecture and the trained encoded network’s parameters.

Compiler. To ensure ease-of-use and design automation, we design a customized compiler.

This unit takes as input the high-level DNN graph description in PyTorch format and converts it to

C++ code (as used in the Vivado HLS tool). EncoDeep compiler produces a configuration file that

specifies the customized encoding bitwidths for the weights and feature maps of different DNN

layers. The network description in C++ together with the configuration file enable instantiation

of core layer template modules. The compiler further converts the trained encoded network’s

parameter into a format ready to be loaded to the on-chip memory of the FPGA upon execution.

Hardware Stack. The hardware description of the DNN is rendered using Vivado_HLS,

which is a standard high-level-synthesis tool that enables faster development as well as portability.

EncoDeep accelerator enjoys full-precision calculations while maintaining low memory footprint

using the encoded values. We provide a library of template modules that can realize different

DNN functionalities. An arbitrary architecture can be described by instantiating the correspond-

ing core layer templates in a network description file. Each template module has customized

configurable primitives such as the number of input/output neurons of the layer, the bitwidth of

the weights/activations, and the parallelism factors for execution. The output of the hardware

stack is a bitfile that can be used to efficiently execute the desired DNN on the FPGA. We will

elaborate more on the hardware in Section 3.4.

3.3 EncoDeep Software Stack

In this section, we elaborate on the utilized concepts for non-linear encoding of DNN pa-

rameters/activations. Section 3.3.1 explains EncoDeep weight/activation encoding. Our gradient

computation for encoded network training is formulated in Section 3.3.2. Finally, our automated

bitwidth selection routine is explained in Section 3.3.3.
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Figure 3.7: Illustration of EncoDeep weight encoding. left: original matrix W , middle: approxi-
mated matrix W̃ , right: encoded matrix Wenc along with the codebook.

3.3.1 Encoding Scheme

Our encoding scheme aims to estimate the parameters of a DNN layer with a subset of

representatives, i.e., the codebook. In the rest of this section, we delineate EncoDeep encoding

method for DNN weights/activations.

Weight Encoding.

Let us denote the weight parameters in a certain DNN layer as W . In order to encode

W , we first find an approximation W̃ ≈W such that the elements of W̃ are restricted to a finite

set of real-values, ~c = {c[1], . . . ,c[K]}, i.e., the codebook. The encoded weight matrix is then

constructed by replacing all elements with indices of the corresponding codebook values. We

denote the encoded W̃ as Wenc. Figure 3.7 illustrates this approximation for a 4× 4 matrix W

using a codebook of K = 2 elements.

To approximate W̃ , we use the well-known K-means clustering [34]. While K-means can

effectively solve the aforementioned problem for a fixed codebook size, specifying the codebook

sizes in different layers of a network is a challenge yet to be solved. Specifically, different layers

require different codebook sizes to capture the statistical properties of their parameters. To tackle

this, EncoDeep proposes an automated bitwidth selection algorithm explained in Section 3.3.3.

Note that weight encoding is performed only once in an offline pre-processing step. The per-layer

encoded weights and codebooks are then stored in binary files to be loaded in the FPGA memory.

Activation Encoding. EncoDeep activation encoding is performed in two phases: (i) of-

fline phase performed in the software stack, where the layer codebooks are generated using the
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K-means algorithm. (ii) Online phase performed during inference where each feature is encoded

by its closest codebook value.

Offline Encoding. Algorithm 1 summarizes our methodology for computing DNN

activation codebooks. First, a subsampled data set, {~xn}N
n=1, is used to generate the layer feature-

maps, which we denote by~y l . Next,~y l is flattened into an array,~a l . For an arbitrary activation

function, the K-means clustering is applied on all values of ~a l . For the especial case of ReLU

activations, since the ReLU non-linearity produces many 0-valued outputs, we only perform

K-means on non-zero elements of ~a l to reduce the K-means clustering runtime. The (Kl−1)

cluster centers along with the appended 0 value form the codebook for the lth layer.

Using a subsampled dataset for finding the cluster centers enables for a fast and efficient

search over the space of possible codebook sizes, i.e., encoding bitwidths (see Section 3.3.3).

To ensure that the obtained cluster values are truly compatible with the distribution of layer

feature-maps, we later fine-tune the cluster center values via customized gradient operations

explained in Section 3.3.2.

Online Encoding. Online encoding is performed during FPGA execution. The value of a

feature y is compared with the elements of the corresponding layer’s codebook~c l
act to compute

the encoding as yenc = argmin(|y−~c l
act |). This is implemented by a linear search on a small

memory block containing the codebook values (Section 3.4.1).

3.3.2 Training of Encoded Networks

Encoding weights/parameters often results in a drop in accuracy. To compensate for

such accuracy loss, the codebook entries are fine-tuned after encoding using a customized back-

propagation scheme. In this section, we explain the details for fine-tuning encoded neural networks

via Stochastic Gradient Descent (SGD) [75]. For weights, the averaged gradient method [34, 37]

is applied. For activations, we develop new gradient computation methods.
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Algorithm 1 Offline Activation Encoding
Inputs:

input samples: {~xn}N
n=1

per-layer codebook sizes: {Kl}L
l=1

Output:
per-layer codebooks for activations: {~c l

act}L
l=1

1: for l = 1, ..., L do
2: ~y l ← DNNl({~xn}N

n=1)
3: ~a l ← f latten(~y l)
4: ~a l ← nonZeros(~a l)
5: ~c l

act ← KMeans(~a l,Kl−1)
6: ~c l

act ←{0,~c l
act}

7: end for
8: return {~c l

act}L
l=1

Feature encoding can be viewed as a non-linear transformation, f (y) = y∗, where y∗ and

y represent the approximated and original values, respectively. As depicted in Figure 3.8, the

non-linear encoding function is made up of multiple step functions, rendering it non-differentiable.

Given the gradient of the loss function with respect to the encoded values, ∇y∗ =
∂L
∂y∗ , we aim

to compute the partial derivatives with respect to the non-encoded values (∇y =
∂L
∂y ) and the

derivatives with respect to the codebook (~∇c =
∂L
∂c ).

Computing ∇y. Given the partial derivative ∇y∗ , the gradient ∇y can be obtained by

applying the chain rule:

∇y =
∂L

∂y
=

∂L

∂y∗
× ∂y∗

∂y
. (3.1)

This formulation, however, is not stable since the function f (·) is non-differentiable. To address

this issue, we propose to approximate the derivative of f (·) as:

∂ f (y)
∂y

=


1 i f c[1]< y < c[K]

0 otherwise
, (3.2)

where c[1] and c[K] are the smallest and largest codebook values, respectively. During forward

propagation, y∗ is computed as shown in Figure 3.8-left, whereas the backward propagation
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Figure 3.8: Example encoding non-linearity with a codebook of K = 4 elements. (Left) Non-
linear function applied in the forward propagation. (Right) Smooth approximation of encoding
used in backward propagation for gradient computation.

assumes the smooth function in Figure 3.8-right.

Computing ∇c. Given a scalar gradient element ∇y∗ , the gradient with respect to c[k] is

computed as:

~∇c[k] = I(c[k],y∗)×∇y∗, (3.3)

with I(a,b) = 1 if a = b and zero otherwise (identity operator). Given a vector of features~y∗ and

the corresponding vector of gradients ~∇y∗ , the derivative is:

~∇c[k] = ∑
j

I(c[k],~y∗[ j])×~∇y∗[ j]. (3.4)

Using the partial derivatives, standard back-propagation algorithms can fine-tune DNN

parameters. We incorporate the customized gradient computation routines into EncoDeep software

stack to support fine-tuning for encoded DNNs. As shown in the evaluations, the fine-tuning

incurs negligible overhead compared to original training.

3.3.3 Automated Bitwidth Selection

Modern DNNs are composed of many layers with high dimensional input/output parameter

space. In order to successfully reduce the memory footprint of such networks while minimally
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affecting the classification accuracy, one is required to customize the memory compression rate

on a per-layer basis. EncoDeep automated bitwidth selection aims to adjust the encoding bitwidth

(determined by the codebook size) for each layer such that the network’s overall memory footprint

is minimized while adhering to the user-provided accuracy constraint. To this end, an efficient

algorithm is desired that can search the space of possible bitwidth configurations for the optimal

solution.

Recent advances in Reinforcement Learning (RL) provide a powerful automated tool for

effective search. In high-level, RL approaches traverse a series of states s by taking subsequent

actions a = π(s) based on a policy function π(·). Here, π(·) corresponds to a probability

distribution over actions given states. Applying an action a at state s triggers a state transition

s→ s′ and results in a reward r(a,s) from the environment. In the training phase of RL, the goal

is to find a series of actions that return the best discounted sum of future rewards. This is achieved

by tuning the policy π(·) to incorporate the long-term return (reward) in the action-selection

process. During RL training, the policy model is learned over a series of episodes {E1,E2, . . .};

each episode consists of all transitions form the initial state to the final state, given the policy

π(·):

Ei : s1
πi(s1)−−−→ s2

πi(s2)−−−→ . . .
πi(sN−1)−−−−−→ sN .

Training the RL policy can generally be time-consuming as it requires many training

episodes and evaluations. To overcome this challenge, we propose an algorithm inspired by RL

that does not learn probabilistic policies and relies solely on immediate rewards. Our method

comprises only one episode where the path from the initial state to the end state is traversed

deterministically by choosing greedy actions:

Egreedy : s1→ s2→ ··· → sN .

In this context, greedy actions are those with the maximum immediate reward when
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transitioning from state si to the next state si+1. By incorporating immediate rewards, EncoDeep

can solve the multi-objective optimization problem at hand in a fraction of pure RL optimization

time. Similar to RL, we define a state-action-reward system where the state is the encoding

bitwidth in DNN layers at the current iteration of the algorithm. In the beginning, all layers are

encoded with a maximum bitwidth (e.g, 4 bits for a 16-element codebook). The action-space

for each state s, corresponds to all permissible actions that can be taken from that state. Each

action chooses a layer l and reduces the corresponding bitwidth bl to b ∈ {1,2, . . . ,bl−1}. The

action-space thus encloses all bitwidth configurations where only a single layer’s bitwidth differs

from that in state s. The reward for each action is formulated as follows:

r(a,s) =
mem(s)−mem(s

′
)

acc(s)−acc(s′)
, (3.5)

where a is the action, s is the current state, s
′
is the state after taking action a, mem(·) and acc(·)

denote the total memory footprint and accuracy at a given state, respectively. The accuracy is

computed by evaluating the (encoded) network on a validation dataset and the total memory for

encoded weights is formulated as:

mem(weights) =
L

∑
l=1

size(W l)×Log2(Kl)+Kl×b f ix, (3.6)

where the size(·) operator returns the number of elements, Kl is the weight codebook size

corresponding to the l-th layer, and b f ix is the fixed-point bitwidth of each codebook element.

With Y l being the output feature map of the l-th layer, the total memory footprint for the activations

of the neural network is computed as:

mem(acts) =
L

∑
l=1

size(Y l)×Log2(Kl)+Kl×b f ix, (3.7)

Taking an action in a given step will decrease both memory footprint and accuracy. Hence,
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the reward function is always positive. At each state, all actions in the action-space are evaluated

and the one with maximum reward is chosen. Such a greedy approach is particularly beneficial for

the problem statement at hand, i.e., bitwidth configuration, as the value of each state transition can

be independently evaluated without relying on the end state and the long-term return. Compared

to pure RL, which includes many episodes of policy training, our greedy approach renders

drastically lower computation time. Moreover, EncoDeep is able to extract the memory-accuracy

Pareto curve with only one state traversal (episode). Rather, in conventional RL settings, policy

training must be repeated once for each target memory, further increasing runtime.

Algorithm 2 Automated Bitwidth Customization
Inputs:

maximum bitwidth: B
minimum accuracy threshold: θ

DNN model: D
Output:

list of bitwidth configurations {cfg1,cfg2, . . .} that render the optimal accuracy-memory
tradeoff.

1: cfg←{b1 = B, . . . ,bL = B}
2: AllConfigs←{cfg}
3: A = Acc(D|b1, . . . ,bL)
4: M = Mem(D|b1, . . . ,bL)
5: while A > θ do
6: for l = 1, . . . ,L do
7: for b = 1, . . . ,bl−1 do
8: A(l,b) = Acc(D|{b1, . . . ,bl = b, . . . ,bL})
9: M(l,b) = Mem(D|{b1, . . . ,bl = b, . . . ,bL})

10: reward(l,b) = M−M(l,b)
A−A(l,b)

11: end for
12: end for
13: {l,b}← argmaxl,b reward(l,b)
14: cfg←{b1, . . . ,bl = b, . . . ,bL}
15: A = Acc(D|cfg})
16: M = Mem(D|cfg})
17: AllConfigs←{AllConfigs,cfg}
18: end while
19: return AllConfigs
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We visualize EncoDeep search method in Figure 3.9. Here, we use an example 2-layer

neural network that is initialized to 3-bit encodings for both layers. At state 0, there are 4 possible

actions, each of which has a certain reward that can be computed using Equation 3.5. At this state,

the second action renders the maximum reward and therefore the next state’s encoding bitwidths

are selected as 3 for the first layer and 1 for the second. This process continues until either the

accuracy drops below the user-defined threshold or all layers are encoded with 1-bit values.

Figure 3.9: Automated bitwidth selection for a 2-layer perceptron.

Note that, after choosing the optimal action at each step of the algorithm, all actions

resulting in a memory footprint higher than the new state are eliminated from the search space.

This enables a diminishing search cost per iteration of the bitwidth selection method. We also

emphasize that the iterative bitwidth selection algorithm does not perform any re-training of

the DNN in between the steps. As a result, the (offline) computational overhead of bitwidth

customization is drastically smaller than that of RL techniques.

The pseudo-code for the EncoDeep automated bitwidth customization is presented in

Algorithm 2. The inputs are the starting encoding bitwidth B for all layers, a minimum threshold

θ for the classification accuracy, and a pre-trained DNN model D. The algorithm then gradually

decreases the bitwidths, one layer at a time. The algorithm outputs a set of configurations

that specify per-layer bitwidths. These configurations capture the tradeoff between memory

and accuracy: the first configuration has the highest memory and accuracy whereas the last

configuration has the lowest.
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3.4 EncoDeep Hardware Stack

EncoDeep inference kernel adopts a streaming-based architecture that facilitates pipelining

and overlays the computational overhead of subsequent layers to increase overall throughput and

minimize latency. Figure 3.10 presents such pipelined execution for a 3-layer DNN.

Figure 3.10: Pipelined execution of layer computations in a streaming-based architecture
increases throughput.

Our accelerator is specifically designed to accommodate low-bitwidth encoded networks

while supporting full-precision computations. Figure 3.11 compares the computational flow

of EncoDeep with conventional fixed-point accelerators. In the conventional design (top), a

convolution (CONV) or Fully-Connected (FC) layer receives the inputs and weight parameters

in fixed-point format. Each layer starts the computation as soon as its preceding layer starts

generating output. The streaming buffers and the weight memory should thus accommodate high

bitwidth full-precision values (e.g., 32 bits in Figure 3.11). In practice, due to the low capacity of

the on-chip memory in off-the-shelf FPGA platforms and the high number of parameters/features

in state-of-the-art DNNs, it is not feasible to accommodate all weights and/or streaming buffers

inside the FPGA. In response to this issue, we propose the encoded DNN data flow presented

in the bottom schematic of Figure 3.11. Here, the weights are stored in the encoded format to

save memory. The computed outputs of each layer are also encoded before being sent through the

streaming buffer to enable use of low-capacity buffers. The CONV and FC layers of the DNN are

therefore equipped with encoder and decoder modules.

EncoDeep is equipped with a hardware library described in high-level synthesis language

that allows FPGA implementation of encoded DNNs. Our hardware library consists of the
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Figure 3.11: Computational flow of a conventional DNN (top) and our proposed DNN with
encoded weights and activations (bottom).

essential building blocks to implement encoded DNN layers (e.g, convolution, max-pooling, etc.).

Each layer-type is implemented as a template function with certain computing engines that are

customized to the specifications of the pertinent layer such as the input/output dimensions. By

means of this tailoring, EncoDeep exploits the benefits of FPGA reconfigurability and delivers a

bit-flexible design.

To ensure portability and efficiency, we chose an open-source framework [31], i.e., FINN,

from Xilinx as the base of our hardware accelerator. The FINN library was originally intended

for the execution of binary neural networks and cannot be used for encoded DNNs as is. We

thus extend the library to support customized streaming buffers that can accommodate flexible

bitwidths rather than binary values across layers. We further design a data scheduling unit,

dubbed the Sliding Window Unit, that reorders and populates layer input buffers in accordance

with the underlying bitwidth. We implement new processing engines that support operations

on encoded parameters/weights and fixed-point Multiply-Accumulate (MAC) operations, which

replace the XnorPopCount operations required in BNNs [31]. Using our proposed encoding

scheme, EncoDeep enjoys the benefits of on-chip buffering and high-precision MACs.

Figure 3.12 depicts the flow diagram of the EncoDeep accelerator for implementing an
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encoded DNN on FPGA. The Sliding Window Unit (SWU) reorders the convolution layer input

feature-maps to generate appropriate streaming buffers for the Matrix-Vector-Activation Unit

(MVAU). The MVAU is the core computational module of CONV and FC layers which performs the

matrix-vector multiplication, activation, and batch normalization. The Max-Pooling Unit (MPU)

performs max-pooling over the feature-maps. In the following, we discuss the core modules in

EncoDeep Hardware.

Figure 3.12: EncoDeep accelerator schematic for encoded DNN inference. SWU reorders the
input buffer; MVAU and MPU perform core computations and max-pooling, respectively.

3.4.1 Matrix-Vector-Activation Unit (MVAU)

The MVAU in EncoDeep hardware library is instantiated in convolution (CONV) and fully-

connected (FC) layers to generate output features using the corresponding layer’s specifications.

Figure 3.13 illustrates the MVAU computational flow. This module performs three core tasks

required in state-of-the-art DNNs, namely matrix-vector multiplication, batch normalization,

and applying non-linear activation. Internally, the MVAU is composed of an array of Processing

Engines (PEs) which accept a shared lane of SIMD inputs in parallel. In addition, EncoDeep MVAU

has customized encoding/decoding cores for processing the outputs, inputs, and weights.

Matrix-Vector Multiplication. The main operations performed in linear DNN layers

can be represented as a series of matrix-vector multiplications. The matrix-vector multiplication

core in EncoDeep MVAU offers two levels of parallelism to facilitate throughput control across
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Figure 3.13: (Top) Computational flow of EncoDeep MVAU. This unit performs matrix-vector
multiplication, batch normalization, and a non-linear activation. To increase throughput, the
core computations in the MVAU are distributed across parallel PEs. The MVAU is further equipped
with an input decoder, an output encoder, and several weight decoders (one per-PE) to comply
with EncoDeep encoded DNNs. (Bottom) Internal configuration of a PE. Each PE performs
parallel MAC operations over SIMD operands.

DNN layers.

• Layer output generation is distributed among several PEs working in parallel. In this setting,

each PE is responsible for generating the output of multiple feature-map channels (neurons) in a

CONV (FC) layer. For instance, in a CONV layer with 64 output channels and 16 PEs, each PE is

responsible for computing 4 output channels.

• Each PE operates in single-instruction-multiple-data (SIMD) mode: MACs in a PE are parallelized

across SIMD lanes.

The MAC operations in EncoDeep are performed in fixed-point on decoded input/weight

values, implemented using DSP slices. The per-layer encoded weight matrix is stored in the

on-chip memory of the FPGA and is partitioned among all PEs within the pertinent layer. This

partitioning allows all PEs to simultaneously access their share of weights. Note that the computa-
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tions performed inside each PE are independent of those performed in the neighbor PEs. Thus,

there is no need for inter-PE communication.

Decoder Modules. The encoded features/weights of EncoDeep are converted into the

equivalent fixed-point format before being used in matrix-vector multiplication. Each layer in the

encoded DNN contains two decoding codebooks corresponding to the inputs (activations) and

weights. This functionality is implemented by a memory containing all cluster centers (codebook

values) stored in fixed-point format (e.g, 32 bits). For an encoded value yenc ∈ {1, . . . ,K} the

corresponding fixed-point approximation y∗ can be obtained by feeding yenc as the address of

a memory block storing the cluster centers {c1, . . . ,cK}. Note that the cluster centers incur a

negligible memory footprint since K is small.

The decoder modules are implemented via register files, rather than SRAM blocks. This

design choice allows for simultaneous decoding of SIMD inputs, in parallel. To achieve maximum

efficiency, the input decoder is implemented inside the MVAU. This enables us to share the decoded

inputs among all PEs within one MVAU. Unlike inputs which are shared among PEs, the weights

for each PE are different. Therefore, to facilitate parallelism, each PE owns a copy of the

corresponding weight decoder (codebook). Upon execution of multiply-accumulate operations,

the replicated codebooks can be accessed in parallel to decode weights. The replication of weight

codebook across PEs incurs a negligible memory overhead which is a reasonable cost for the

throughput and performance gains obtained.

Equation 3.8 shows the overall weight memory saving for an arbitrary DNN layer, after

wight encoding. Here, N denotes the number of weights, b f ix is the number of bits used to

represent the fixed-point values, and K is the codebook size. As shown in the experiments

(Section 3.5), K takes a value equal to or smaller than 64 while N is in the order of 106. As

such, (b f ix×K×PE)� (b f ix×N) and the denominator in Equation 3.8 remains smaller than
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the numerator.

memory(W )

memory(~c)+memory(Wenc)
=

b f ix×N
b f ix×K×PE +Log2(K)×N

(3.8)

Encoder Module. The encoding module compares the distance of each computed feature

y to all elements of the codebook (i.e., |y− c[1]|, . . . , |y− c[K]|) and outputs the index of the

closest element as the encoded value:

yenc = argmin
i
|y− c[i]| , i ∈ {1, . . . ,K} (3.9)

The encoded value is then sent through the output streaming buffer to be processed by the next

layer. Most contemporary DNNs use ReLU activation. The encoder module inherently implements

ReLU functionality when the first codebook value is set to 0. To implement other activation

functions, we keep the encoding functionality of Equation 3.9 and merge the activation function

into the next layer’s input decoder. In other words, the input decoder of the next layer stores

Act(c[i]) rather than c[i] with Act(·) being the desired activation function. This modification is

performed offline when the codebook values are loaded to FPGA memory.

Processing Element (PE). Figure 3.13-bottom shows the hardware architecture of a PE

inside the MVAU. Each PE is responsible for performing MAC operations on SIMD parallel input

lanes. To this end, each PE is equipped with SIMD×MULT units implemented using DSP slices.

Each MULT performs one fixed-point multiplication on b f ix-bit values. The multiplication results

are then accumulated in a register (Accumulator in Figure 3.13) in fixed-point format. The

decoded inputs required for performing MAC are registered in the MVAU and provided to all PEs.

Alternatively, the decoded weights are generated within each PE. The low-bit (encoded) weights

are stored in an SRAM block, which is partitioned to allow SIMD parallel read operations via the

weight decoder. To perform decoding, each PE comprises a weight decoder (codebook) that is

implemented using a register file. Once decoded, the weights are written into SIMD registers for
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parallel MULT. For each PE, the size of the local memory is:

MemoryPE ≈ (K +2SIMD)×b f ix︸ ︷︷ ︸
register

+

SRAM block︷ ︸︸ ︷
N× log2(K) (3.10)

where N is the number of encoded weights in the SRAM block of each PE and K is the weight

codebook size.

At each point of the computation, a control logic keeps track of the matrix-multiplication

indices and generates address signals to the encoded weights memory block accordingly. When-

ever computations of one neuron are finished, i.e., when one vector-dot-product is completed, the

control logic resets the accumulator and activates batch normalization on the computed output.

Applying batch normalization to the output of the accumulator y is equivalent to computing

y← γy+β . Here, γ and β represent the scaling factor and bias, respectively, which are constants

learned during DNN training. These values are extracted by the EncoDeep compiler from the

trained encoded DNN and stored (in fixed-point format) on registers within each PE. Note that the

memory requirement of these parameters is drastically lower than that of the weight matrices; thus,

EncoDeep stores these parameters in the raw (non-quantized) format. After batch normalization,

the output is ready to be encoded and sent to the next DNN layer through the streaming buffer.

3.4.2 Sliding Window Unit (SWU)

The convolutional layers of a DNN compute the dot product between a window of the

layer input and the CONV weight kernel. The window slides over the input image to produce

individual elements of the output feature-map. The SWU in EncoDeep hardware simulates the

sliding window operation by reordering the values in the layer input image buffer. The input

image values are then grouped in chunks of SIMD words to be sent to the MVAU sequentially for

processing.
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3.4.3 Max-pooling Unit (MPU)

EncoDeep software stack outputs a sorted list of codebook values for the output encoding:

higher values are mapped to larger encodings. This sorting is particularly useful since comparison

over encoded values becomes equivalent to comparison over the original fixed-point values;

therefore, EncoDeep performs the max-pooling operation on low-bitwidth encoded values rather

than the full-precision cluster centers. This approach provides two benefits: (i) the memory

overhead of the buffers in the MPU is considerably reduced. (ii) The logic cost of comparison

between low-bitwidth encoded values is significantly smaller than the full-precision counterpart.

3.5 Experiments

To evaluate EncoDeep effectiveness, we perform proof-of-concept experiments on four

different classification benchmarks, namely, MNIST, CIFAR-10, SVHN, and ImageNet. Ta-

ble 3.1 summarizes the DNN architectures used in our evaluations. EncoDeep software stack

is implemented in Pytorch and the hardware stack is realized in Vivado_HLS design suite. All

hardware resource utilizations are gathered after performing place-and-route via Vivado Design

Suite 2017.2. Throughput values are reported from Vivado_HLS 2017.2.

3.5.1 EncoDeep Automated Bitwidth Selection

We showcase our bitwidth selection algorithm using the VGG7 architecture trained

on CIFAR-10 dataset. Our customization algorithm provides a set of configurations, each of

which renders a certain memory footprint and accuracy. The first step of EncoDeep bitwidth

customization is to encode the activations while the weights are kept at full-precision. Initially,

the activations are encoded with 4 and 6 bits in CONV and FC layers, respectively. We then

utilize our customization algorithm in Section 3.3.3 to extract the activation bitwidths. As the

algorithm proceeds, both total memory footprint and DNN accuracy are decreased. The obtained
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accuracy/memory trade-off is shown in Figure 3.14-a.

Table 3.1: Benchmarked DNNs for evaluating EncoDeep effectiveness. CONV layers are

represented as 〈input− channels〉 〈kernel size〉−−−−−−−→
stride

〈out put− channels〉.

LeNet [76]
(MNIST)

VGG7 [26]
(CIFAR10 & SVHN)

AlexNet [77]
(ImageNet)

ResNet-18 [78]
(ImageNet)

CONV +BN +ReLU 1 5×5−−−−→
stride 1

16 [3 3×3−−−−→
stride 1

32] ×2 3 11×11−−−−→
stride 4

64 3 7×7−−−−→
stride 2

64

Pooling MP (2×2)
stride 2

MP (2×2)
stride 2

MP (2×2)
stride 2

MP (3×3)
stride 2

CONV +BN +ReLU 16 3×3−−−−→
stride 1

32 [32 3×3−−−−→
stride 1

64] ×2 64 5×5−−−−→
stride 2

192 [64 3×3−−−−→
stride 1

64] ×4

Pooling MP (2×2)
stride 2

MP (2×2)
stride 2

MP (2×2)
stride 2 -

CONV +BN +ReLU - [64 3×3−−→ 128] ×2 192 3×3−−−−→
stride 1

384 [64 3×3−−→ 128] ×4

CONV +BN +ReLU - - 384 3×3−−−−→
stride 1

256 [128 3×3−−→ 256] ×4

CONV +BN +ReLU - - 256 3×3−−−−→
stride 1

256 [256 3×3−−→ 512] ×4

Pooling - -
MP (2×2)

stride 2
AP (7×7)

Classifier
FC (256)
FC (10)
softmax

FC (256)
FC (256)
FC (10)
softmax

FC (2048)
FC (4096)
FC (1000)
softmax

FC (1000)
softmax

We use a small portion of the training data1, dubbed the validation set, to compute the

accuracy during the iterative bitwidth customization algorithm. We empirically observed that the

accuracy measured on the validation set is correlated with the accuracy measured on the entire

test set. Therefore, the validation accuracy can be leveraged as a suitable, low-cost, proxy for

test accuracy during bitwidth configuration. The validation set is small enough to be cached

into the GPU memory to ensure fast evaluations. Note that we do not retrain the model in

between iterations to ensure fast customization. To illustrate the effect of retraining, we also

plot the accuracy of each extracted bitwidth configuration after 1 and 10 epochs of fine-tuning in

Figure 3.14-a. It can be seen that the accuracy is retrieved for most of the configurations even

after 1 epoch, which is a fairly short post processing time compared to the original (floating-point)

training which takes ∼ 200 epochs.

11000 samples for all benchmarks.
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(a) (b)

Figure 3.14: Memory and accuracy trade-off for (a) activations and (b) weights of VGG-7 on
CIFAR-10 dataset.

In the next step of our customization, one of the configurations for activation bitwidths

(the ? mark on Figure 3.14-a) is selected and fine-tuned to recover accuracy. We then proceed to

the weight encoding step with initial 6-bit encoding for all layers. During this customization stage,

activation bitwidths remain unchanged and only the weight bitwidths are configured. Similar to

activation encoding, we obtain the accuracy/memory curves in Figure 3.14-b. In what follows,

we evaluate EncoDeep automated bitwidth customization from two perspectives: (i) quality of

the end result, i.e., the obtained bitwidth configuration. (ii) Search efficiency/performance of our

heuristic algorithm.

Evaluation of EncoDeep Bitwidth Configurations. We apply bitwidth customization to

weights and activations of various benchmarked DNNs and select several bitwidth configurations.

Table 3.2 compares the total memory (activation+weights) and test accuracy between the original

full-precision models and selected encoded DNNs. EncoDeep achieves 14.56×memory reduction

with 0.026% accuracy loss for MNIST, 7.34× memory reduction with 0.37% accuracy loss for

SVHN, and 6.85× memory reduction with 0.91% accuracy loss for CIFAR-10. On ImageNet,

EncoDeep reduces the model size by 7.9× and 6.6× with 0.43% and 0.8% drop in top-1 accuracy

for AlexNet and ResNet18, respectively.

To investigate whether the solution found by the heuristic method is the absolute best, one

needs to perform brute-force evaluation of all bitwidth configurations. Nevertheless, brute-force
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Table 3.2: Comparison of full-precision networks with EncoDeep models with flexible bitwidths
across layers.

Full-Precision
(FP32)

EncoDeep
Configurations

MNIST
Memory (×105) 50.67 3.48 2.17 1.89

Test Accuracy (%) 99.28 99.02 98.69 98.31

SVHN
Memory (×106) 12.34 1.67 1.21 0.65

Test Accuracy (%) 97.67 97.30 97.15 95.07

CIFAR-10
Memory (×106) 12.34 1.80 1.20 1.02

Test Accuracy (%) 89.05 88.14 87.01 85.06
Full-Precision

(FP32)
Quantized

(INT8)
EncoDeep

Configurations

Im
ag

eN
et AlexNet

Memory (×108) 11.14 2.78 1.41 0.53
Test Accuracy (%) 56.3 55.18 55.87 53.21

ResNet18
Memory (×107) 44.76 11.19 6.78 4.45

Test Accuracy (%) 69.70 68.97 68.90 65.40

evaluation is only viable for small networks as the bitwidth search-space grows exponentially

in the number of network layers. In particular, for encoding an L-layer network with weight

and activation bits in the range of [1,Bw] and [1,Ba], respectively, a total number of BL
w×BL

a

evaluations is required. Here, we evaluate the effectiveness of our heuristic on a small-scale

bitwidth optimization problem. We perform brute-force search on the activation bitwidths of

the VGG7 network for CIFAR-10 dataset and summarize the results in Figure 3.15. For this

experiment L = 8 and Ba = 4, resulting in a total of 216 evaluations (shown with blue points)

which takes ∼ 18 hours on an NVIDIA TITAN Xp GPU. As can be seen, the obtained activation

bitwidths (shown with red points), lie on the memory-accuracy Pareto front, indicating that the

heuristic successfully eliminates the non-optimal solutions and finds near-optimal configurations.

Due to the excessive runtime of brute-force search, especially for more complex bench-

marks, we provide comparisons with prior art to evaluate the quality of our obtained bitwidths.

Table 3.3 summarizes the comparison of EncoDeep configurations with prior methods for training

low-bit DNNs in terms of memory, accuracy, and fine-tuning time. Each of our reported architec-

tures and their corresponding bitwidths in Table 3.3 are chosen specifically to match the accuracy

40



Table 3.3: Comparison of EncoDeep with state-of-the-art low-bit DNNs. Our per-layer bitwidths
are shown in Figure 3.16. We normalize the memory footprint of previous works to that of
EncoDeep: lower memory and higher accuracy are desirable.

Baselines Architecture Test Accuracy (%) Memory Epochs Bitwidth
Weight Act

QNN [29]
MLP

99.04 193× 1000 1 1
ReBNet3 [26] 98.25 1.76× 200 1 2

EncoDeep LeNet-I 99.02 1.84× 10×2∗ flexible

M
N

IS
T

EncoDeep LeNet-II 98.31 1 10×2 flexible
QNN [29]†

VGG7
89.85 5.4× 500 1 1

ReBNet3 [26]‡ 86.98 1.65× 200 1 3
EncoDeep VGG7-I 88.14 1.32× 10×2 flexible

C
IF

A
R

-1
0

EncoDeep VGG7-II 87.01 1 10×2 flexible
ReBNet3 [26]‡

VGG7
97.00 1.62× 50 1 3

QNN [29]‡ 97.2 2.15× 200 1 1

SV
H

N

EncoDeep VGG7-III 97.15 1 10×2 flexible
ReLeQ [79] AlexNet 56.82 2.01× - flexible 32

Im
ag

eN
et

EncoDeep∗∗ AlexNet-I 55.87 1 0.25×2 flexible
HWGQ [65]

AlexNet

52.70 1.17× 68 1 2
HBNN [69] 52.00 2.32× - flexible
PQTS [80] 51.60 2.32× - 2 2
QNN [29] 51.03 1.17× - 1 2

DoReFaNet [63] 49.80 1.17× 45 1 2
WRPN [64]‡ 48.30 4.61× - 1 1

XNORNet [66] 44.20 1.15× 18 1 1
ReBNet3 [26] 41.43 1.17× 100 1 3
EncoDeep∗∗ AlexNet-II 53.21 1 0.25×2 flexible

ABC-Net [67]
ResNet18

65.00 1.57× - 5 5
ABC-Net [67] 62.50 1.05× - 3 5

EncoDeep ResNet18-I 65.40 1 0.25×2 flexible

∗ Fine-tuning for 10 epochs post-activation and 10 epochs post-weight encoding.
† This baseline has 4× more neurons per layer than ours.
‡ This baseline has 2× more neurons per layer than ours.
∗∗ Our architecture has 2× less neurons in the output of the first fully-connected layer (see Table 3.1)
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Figure 3.15: Memory-accuracy Pareto curve obtained by brute-force evaluation of bitwidth
configurations for VGG7 on CIFAR-10 benchmark. EncoDeep generates near-optimal bitwidths
by finding configurations that lie close to the non-dominated Pareto front.

and/or memory footprint of the prior art. We visualize the benchmarked per-layer bitwidths for

each evaluated EncoDeep DNN in Figure 3.16. The memory efficiency of EncoDeep can be

attributed to the following main reasons:

1. Looking at the bitwidth configurations of Figure 3.16, EncoDeep automatically chooses

to have lower bitwidths for weights of fully-connected layers and activations of early

convolutional layers. Doing so helps in minimizing the overall memory footprint since

such layers have more contribution to the DNN memory.

2. To compensate for the drop in the inference accuracy, prior work in low-bit DNN inference

increases the number of neurons/channels per DNN layer [64]. In contrast, we show that

by adjusting the arithmetic encoding bitwidth, one can achieve comparable accuracy with

even fewer neurons per layer. For our AlexNet benchmark, for instance, we use 2× less

neurons in the output of the first fully-connected layer compared to the original architecture

(see Table 3.1). EncoDeep reduces the memory of AlexNet benchmark using this method,

but preserves the accuracy by using non-linear encoding with flexible bitwidths.

It is worth mentioning that, unlike existing low-bit DNNs that train the whole network

from scratch, EncoDeep extracts several near-optimal bitwidth configurations for a pre-trained

DNN in one-shot execution. The benefits of this approach are three-fold: (i) EncoDeep eliminates
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the drastic cost of training from scratch per bitwidth configuration. Using our fine-tuning method

explained in Section 3.3.2, model accuracy is retrieved after a few epochs, e.g., as low as 0.25

epochs for ImageNet. (ii) EncoDeep accuracy/memory to be tuned by picking different bitwidth

configurations across layers. (iii) EncoDeep customization can be readily applied to publicly

available pre-trained models.

Figure 3.16: Per-layer encoding bits for evaluated DNNs.

Evaluation of EncoDeep Search Algorithm. While various hyperparameter optimiza-

tion methods, e.g., RL or genetic algorithms, can potentially deliver similar end results, what

distinguishes these approaches is the number of evaluations required to obtain the final result.

This, in turn, directly affects the algorithm runtime. In this Section, we compare EncoDeep search

with existing methods in discrete combinatorial optimization in terms of the quality of end results

and the search efficiency (runtime).

Comparison with Q-learning. Recall from Section 3.3.3 that one of the main differ-

ences between pure RL-based methods and our search algorithm lies in pursuing reward-based

immediate returns in EncoDeep rather than the traditional long-term returns. Our goal in this part

of the evaluation is to show how the immediate-reward optimization of EncoDeep compares to

pursuing long-term rewards in pure RL. Optimizing a long-term reward can potentially lead to

better end results in RL tasks. Due to the nature of our problem, however, an immediate reward is

beneficial as the value of each state transition can be independently evaluated without relying on

the end state. More specifically, the immediate reward can be leveraged to assess the optimality
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Figure 3.17: Comparison of the acquired accuracy and memory as well as the number of
evaluations between a Q-learning approach and EncoDeep (?), upon convergence.

of each intermediate state without the need for traversing all states to the end. For a concrete

comparison, we have implemented Q-learning [81] as an RL baseline with long-term rewards for

comparison. We set the Q-learning reward for state s as follows:

r(s) =


mem(s)−mem(s0)

acc(s)−acc(s0)
i f |mem(s)−θ |< tolerance

0 otherwise
(3.11)

where θ is the target memory and s0 is the initial state with all bitwidths set to B. An episode

is finished when a state’s memory drops below θ . We apply Q-learning on the activations

of the VGG-7 model trained on CIFAR-10. In this experiment, we set θ to 0.5 to achieve

∼ 50% memory reduction compared to the initial DNN. We set the tolerance to 0.05 so that any

bitwidth configurations resulting in a memory ∈ [45%−55%] is given a reward during Q-learning.

Figure 3.17 compares EncoDeep with Q-learning. The horizontal axis shows the number of model

evaluations, i.e., number of DNN inference accuracy computations. The vertical axis shows the

maximum accuracy seen so far for configurations with a memory in the range [0.45-0.55]. The ?

represents the configuration with comparable memory, found by EncoDeep.

Compared to Q-Learning, EncoDeep achieves slightly higher accuracy and lower memory

while requiring fewer number of DNN evaluations. This is due to the fact that EncoDeep is
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policy-free and only consists of one greedy state-transition episode by relying on immediate

rewards. Note that for each target memory and accuracy, policy training, as in Q-learning, must

be repeated from scratch with a different threshold θ (see Equation 3.11) to extract the optimal

bitwidth configuration. In contrast, EncoDeep extracts the entire memory-accuracy Pareto curve

with only one state traversal (episode). This provides adaptability by allowing users to pick their

desired bitwidth configuration based on various accuracy-memory constraints, without need for

re-running the entire algorithm.

Comparison with Genetic Algorithms. Another important baseline for combinatorial

optimization is genetic algorithms (GA). Carefully designed GA is shown to deliver similar end

results to RL-based methods in various tasks [82]. For comparison, we use the optimization

framework in [48], which is a generic tool for compressing DNNs with GA, as a new baseline.

Figure 3.18 shows the reward2 of the genetic population across GA iterations with an accuracy

threshold of 85% and a genetic population size of 50. As can be seen, GA gradually and

iteratively evolves the configurations to increase the average reward in the population, i.e., lower

memory and higher accuracy. The red point on Figure 3.18 corresponds to the best solution

found by GA, which takes 1234 evaluations to find a model with 50% of the original memory

and 85.6% inference accuracy. For a similar target memory and accuracy, EncoDeep achieves

50.2% memory and 85.2% accuracy via only 236 evaluations. We attribute this improvement in

number of evaluations to the single-episode greedy execution of EncoDeep, which is specifically

designed to find the optimal configuration with very few iterations.

In summary, EncoDeep has the following benefits compared to genetic algorithms:

(1) The success of GA relies heavily on careful design of the underlying score function

used in the evaluation step. Besides, multiple design choices and hyperparameters, e.g., mutation

and crossover rates, affect the optimization performance. Hand-tuning such parameters remains a

standing challenge that further hinders the GA design process. EncoDeep does not include extra

2Please refer to [48] for details about the utilized reward function for the GA.
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Figure 3.18: Genetic evolution for bitwidth customization of VGG-7 on CIFAR-10. The reward
on the vertical axis measures bitwidth optimality by combining accuracy and memory (see [48]
for details). Each point on the plot represents an individual in GA. points with black color have
an accuracy higher than the accuracy threshold θ = 85%.

design hyperparameters and allows for easy automation.

(2) To obtain a trade-off between accuracy and memory, one needs to run GA multiple

times with different target accuracies in the reward function. Therefore, extracting the memory-

accuracy tradeoff using GA incurs a high timing overhead. In contrast, EncoDeep extracts all

points lying close to the Pareto front in a single run.

Overhead of Customization and Re-training. We summarize the total runtime of

EncoDeep bitwidth configuration and the break-down of different steps for all our benchmarks in

Figure 3.19. Runtime values are gathered using a machine with a single NVIDIA Titan Xp GPU

and an Intel Xeon-E5 CPU. As seen, the overhead of (offline) clustering at the pre-processing

stage (EN-A and EN-W) is negligible compared to other steps. The bulk of runtime is due to

running Algorithm 2 on activations (CU-A) and weights (CU-W), and retraining the customized

models (RT-U and RT-W). Nevertheless, EncoDeep takes only ∼ 254 minutes to customize our

most complex benchmark (ResNet 18), whereas training the original ResNet-18 model on the

same machine takes over a day (∼ 1800 minutes). EncoDeep customization incurs only 14%

of the training time even for this many-layer network. Note that the evaluations in EncoDeep

customization steps (CU-A and CU-W) can be distributed across multiple GPUs to further decrease
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runtime.

Figure 3.19: Total time and break-down of EncoDeep optimization runtime for the evaluated
benchmarks. Here, EN-A and EN-W represent (offline) activation and weight encoding. CU-
A and CU-W denote bitwidth customization for activations and weights. RT-A and RT-W
correspond to the re-training time after activation and weight encoding.

It is worth mentioning that EncoDeep customization step is much faster than pure rein-

forcement learning-based approaches. ReLeQ [79] is an example RL-based method that trains

an LSTM model using gradient computation while our method does not include any RL model

training and is thus much faster in terms of runtime (e.g., ReLeQ has 600 episodes3 for LeNet

while our method requires only a single episode with 22 iterations to achieve similar results).

3.5.2 EncoDeep Hardware Implementation

In this section, we evaluate EncoDeep hardware accelerator. We implement one architec-

ture per dataset from Figure 3.16, namely, LeNet-I for MNIST, VGG7-I for CIFAR10, VGG7-III

for SVHN, and AlexNet for ImageNet. Table 3.4 summarizes the evaluation platforms for each

DNN architecture.

Importance of Activation Encoding. We start the analysis by studying the advantages

of activation encoding, from the hardware perspective, versus solely encoding the weights as

3unknown number of evaluations per episode
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Table 3.4: Platform details in terms of block-RAM (BRAM), DSP, flip-flop (FF), and look-up
table (LUT) resources.

Application Platform BRAM DSP FF LUT
ImageNet Virtex VCU108 3456 768 1075200 537600
CIFAR-10 & SVHN Zynq ZC702 280 220 106400 53200
MNIST Spartan XC7S50 120 150 65200 32600

proposed in [34]. Note that [34] also applies pruning and Huffman encoding which are the main

contributors to the compression rate. Since these methods are orthogonal to our approach, we do

not utilize them in EncoDeep to focus on the analysis of encoding itself. We compare two versions

of encoded DNNs: one with encoded weights and fixed-point activations as proposed in [34],

and another with both weights and activations encoded as suggested in EncoDeep. For each

dataset, we separately optimize the per-layer parallelism factors SIMD and PE for both encoded

and fixed-point DNNs to obtain maximum possible throughput. Table 3.5 summarizes resource

utilization and throughput for each of the designs.

Overall, the realization of EncoDeep methodology achieves higher throughput while

requiring a lower number of resources compared to a weight-only encoding approach [34]. The

benefits become more prominent for architectures with higher complexity since the memory

implication of activations is higher in complex networks. As seen for MNIST, CIFAR-10, and

SVHN benchmarks, EncoDeep activation encoding improves the throughput by 1.1×, 6.2×, and

6.66×, respectively. Advantages of activation encoding are most significant for AlexNet: model

memory with fixed-point activations is so large that it cannot fit in the FPGA block-RAM capacity,

rendering the design infeasible within platform constraints. We compare EncoDeep with existing

fixed-point accelerators that use off-chip memory in the following.

Comparison with Fixed-point Accelerators. We perform a comparison between En-

coDeep and prior work in Table 3.6. Specifically, we consider AlexNet with customized encoding

as in Figure 3.16, which corresponds to hardware results of Table 3.5. The reported results include

performance, either in terms of throughput (frames per second) or latency. Since the existing
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Table 3.5: Summary of hardware resource utilization and performance. EncoDeep presents our
model with encoded weights and activations whereas DNNfix denotes a network with encoded
weights and (8-bit) Fixed-point activations.

Resource Utilization Latency
(ms)BRAM DSP∗ FF LUT

MNIST
EncoDeep 33 53 15223 9992 0.39

DNNfix 93 53 25884 12048 0.43
Ratio 2.82× 1× 1.7× 1.2× 1.1×

CIFAR-10
EncoDeep 197 111 53953 31632 3.58

DNNfix 181 35 68255 28433 22.21
Ratio 0.92× 0.32× 1.26× 0.9× 6.2×

SVHN
EncoDeep 146 111 42748 28393 3.39

DNNfix 143 35 67944 27934 22.59
Ratio 0.98× 0.32× 1.59× 0.98× 6.66×

ImageNet
EncoDeep 3336 308 159663 82791 25.05

DNNfix Exceeds Platform Constraints

∗25×18 DSB array.

frameworks utilize various FPGA platforms, it is crucial to take into account the instantiated com-

putational capacity4 and power consumption. Therefore, we compare the frameworks by means

of performance-per-resource and performance-per-Watt. EncoDeep achieves higher normalized

performance compared to the prior art. This is a direct result of using on-chip memory instead

of the off-chip DRAM for feature transfer among DNN layers. The streaming buffers of our

design allow EncoDeep to better utilize the arithmetic units by overlapping the execution of DNN

layers, achieving a higher performance-per-resource. EncoDeep power advantage over existing

accelerators is also rooted in the elimination of power-hungry DRAM access.

Execution Overhead of Encoding/Decoding. We study the runtime implication of

online activation encoding by measuring the number of clock cycles required for different stages

of EncoDeep MVAU engine. Figure 3.20 demonstrates the runtime break-down for each of the

evaluated architectures. For a conventional non-encoded network, the MVAU would only perform

4the computational capacity is defined as CAP = DSP×Arr, where Arr is the array size per DSP, e.g., 18×25
for Xilinx Virtex platforms.
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Table 3.6: Comparison of Alexnet implementation between EncoDeep and existing fixed-point
(FXD) and floating-point (FLT) DNN accelerators. To account for platform variations, we
compare the throughput (images-per-second) and 1

Latency metrics normalized by computation
capacity (CAP). We also compare performance-per-Watt to reflect power efficiency.

Criterion [70] [25] [71] [72] [73] [74] EncoDeep
Precision FLT FXD FXD FXD FXD FXD Flexible
Acc(%) - 55.41 52.4 56.5 - 54.27 53.2
FPGA 690T∗ GSD8† 690T∗ 690T∗ AX115‡ ZU9§ VCU108∗

Freq(MHz) 100 120 150 100 200 300 152
DSP∗∗ 3177 1504 14400 2872 2688 442 308

Img/sec
/CAP 0.55× 1 0.88× 2.33× 1.42× 0.49× 3.03×
/Watt 3.14× 1 1.82× 5.00× 1.36× - 4.54×

1
Latency

/CAP - 1 0.05× 0.15× - - 3.03×
/Watt - 1 0.10× 0.32× - - 4.54×

∗Virtex †Stratix-V ‡Arria10 §Zynq
∗∗DSP array size is 25×18 for Xilinx and 18×18 for Altera/Intel FPGAs.

Figure 3.20: Runtime breakdown of EncoDeep accelerator.

Vector-Dot-Product (VDP) operations. As can be seen, for EncoDeep encoded models, the majority

of clock cycles in MVAU execution still belong to VDP computation while the encoding/decoding

overhead is small.

3.6 Conclusion

This chapter proposes a novel nonlinear quantization scheme to reduce the memory

footprint of intermediate activations in convolutional neural networks’ computation flow. The

encoding compresses the activations and allows on-chip execution of the underlying FPGA
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accelerator without communicating the computed features with the off-chip DRAM. To ensure

non-recurring engineering costs, an automated algorithm is proposed to configure the encoding

bitwidth across layers of an arbitrary neural network. EncoDeep open-source API enables

developers to convert high-level Pytorch description of a neural network into hardware modules

without getting involved with the details of the design. We hope the provided API can advance

research on reconfigurable DNN inference.
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Chapter 4

Lookup-table based multiplication in

DNNs

Arithmetic instructions on floating-point operands are executed in hardware via floating-

point units (FPUs), which consume a lot of energy. In this chapter, we propose an alternative

hardware architecture that computes multiplications using lookup tables. We then create LookNN

as an end-to-end DNN that incorporates the aforsaid architecture. For each neuron, we store all

possible input combinations and the corresponding outputs in a look-up table as illustrated in

Figure 4.1. In order to make this implementation practical, we make sure that the operands (x,y)

come from two finite sets in a pre-processing step. During execution, instead of utilizing the

inefficient FPU, the neuron searches the look-up table to retrieve the pre-stored multiplication

result.

To implement the lookup tables, we use associative memory architectures, which are

shown promising in improving the performance and energy efficiency of parallel processors [83,

84]. An associative memory can implement a look-up table that returns the search result in a

single cycle. In this chapter, we design associative memories to reduce the execution time and

power consumption of an AMD Southern Island GPU. Each processing element of the enhanced
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Figure 4.1: Implementation of multiplier with look-up table. Each neuron of LookNN has
one such look-up table. The input operands are ensured to come from finite sets, {x1,x2} and
{y1,y2}, which are pre-stored in the two input tables. Pairwise multiplications, xi× y j, are
pre-stored in the output table.

GPU has access to a small associative memory, enabling it to realize efficient look-up table search.

In summary, the main contributions of this chapter are as follows:

• We propose LookNN, a methodology to replace DNN multiplications with look-up table

search.

• We provide theoretical analysis of LookNN’s error, and summarize the design guidelines

that are achieved based on the analysis.

• We design associative memory blocks to reduce the power and execution time of FPUs in

AMD Southern Island GPU. The enhanced GPU can realize efficient look-up table search.

Our evaluations on four DNN applications demonstrate an average of 2.5× speedup and

2.2× energy improvement without reducing the inference accuracy.

4.1 Related Work

Fixed-point quantization of DNNs is investigated in previous work [85], and the extreme

quantization case is proposed in [86], which utilize trained binary parameters to avoid multiplica-

tion. Despite the effectiveness of quantization, many applications require floating-point precision

since iterative training algorithms often update the parameters using gradients whose values are

too small to compared to the error caused by quantization [87]. LookNN is similar to [86] in
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that it customizes the model during the training to reduce the additive error, and is different in

utilizing floating-point values rather than fixed-point or binary values.

Model compression is another direction that has been investigated to optimize inference.

Han et al. [34] train sparse models with shared weights to compress the model. LookNN trains

shared weights with a different approach. The shared weights in our model are subjective to

a single neuron, making it possible to achieve higher accuracy with fewer shared weights per

neuron. The compressed parameters of [34] can be used to realize ASIC/FPGA accelerators [88].

However, compression does not help with execution on general purpose processors, in which case

the compressed parameters should be decompressed into the original parameters.

Dimensionality reduction is investigated for efficient execution of DNNs [89]. Their

method is orthogonal to LookNN; Our framework can receive pre-trained DNNs and further

reduce their power consummation and execution time.

This chapter targets GPU implementation of lookNN using associative memory. Asso-

ciative memory in a form of look-up table has been shown a great opportunity to improve the

execution time and energy consumption of parallel processors [84, 90]. Arnau et al. [84] utilize

associative memories beside GPU floating-point units to enable error-free execution. Ternary

content addressable memory (TCAM) is part of the associative memory that can search its con-

tents in a single cycle. Recently, efficient TCAMs have been designed using high density and low

leakage power non-volatile memories (NVMs) such as Spin Transfer Torque RAMs (STT-RAMs),

ReRAM and Ferro electric RAMs (FeRAMs) [91–93]. Approximate associative memories using

voltage overscaling and long time precharging are proposed to reduce FPU computations [90,94].

However, in all previous work, computations rely on the FPUs and the computation efficiency is

bounded by the processor’s pipeline stage. To the best of our knowledge, LookNN is the first

floating-point implementation on DNNs that completely avoids using FPUs for multiplication.
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4.2 LookNN Framework

The global flow of our methodology is presented in Figure 4.2. The user defines the

error tolerance, hardware constraints, the training data, and the baseline DNN. Based on this

information, the customization unit modifies the baseline DNN and maps it into LookNN. The

customization unit encompasses three major operations: weight clustering, error estimation, and

weight retraining. Throughout this chapter, we use the terms “clustered weights” and “shared

weights” interchangeably. We use the term “customization” to denote error adjustment. Using

Customization Unit
clustered  
weights

err< ε
no

clustering 

retraining
retrained  
weights

clustered 
weights

err
error estimation 

weightsstart

yes

User-defined Parameters
 NN parameters hardware constraints error tolerance (ε)labeled data

lookup table Initialization

executable LookNN

Execution Unit

enhanced GPU

associative memory
core 1

associative memory
core N

Figure 4.2: Global flow of LookNN. The user assigns hardware constraints such as the look-up
table size in the underlying hardware. The customization unit runs a greedy algorithm to adapt
the DNN to LookNN. The execution unit maps LookNN to the enhanced GPU and initiates the
associative memories with proper values.

our proposed recursive greedy algorithm described in section 4.2.1, the customization unit trains

a DNN based on the hardware constraints (i.e. look-up table size) provided by the user. The

algorithm has the following minimization objective:

min
W

(∆e) s.t. U(W ) = Nclusters, ∆e = eLookNN− ebaseline (4.1)
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Where ∆e is the additive error, eLookNN and ebaseline are the ratio of misclassified validation

examples using LookNN and the baseline DNN respectively, U(W ) is the number of distinct

values in each row of the weight matrices, and Nclusters is a pre-specified parameter provided by

the user. Nclusters directly translates to the power consumption and runtime in the execution phase.

After customization, the execution unit exploits the enhanced GPU to implement LookNN.

Each GPU core has access to an associative memory whose energy consumption and runtime

depend on the look-up tables’ size. The associative memories are initialized with the multiplication

operands and their pairwise multiplication results. DNN customization and associative memory

initialization are done once and their overhead is amortized across all future executions.

4.2.1 LookNN Customization Unit

Consider the look-up table in Figure 4.1. In LookNN, the first input table stores Nq rows

representing the values that the preceding layer’s neurons could possibly take. The second input

table stores the neuron’s incoming weights, W l
i:, denoting a row of the 2-D matrix, W l .

Algorithm 3 presents a pseudo code for the customization phase. It iterates a loop

consisting of three major operations: weight clustering, error estimation, and weight retraining.

Below we describe each operation in detail.

weight clustering: Lines 2 through 6 of Algorithm 3 perform weight clustering. Each

row of the matrix W l is partitioned into Nclusters clusters; The elements of the row are replaced

by their closest centroids. The objective of clustering is to minimize the within cluster sum of

squares (WCSS):

min
ci1,...,ciNclusters

(WCSS =
Nclusters

∑
k=1

∑
W l

i j∈cik

||W l
i j− cik||2) (4.2)

where C = {ci1,ci2, ...,ciNclusters} are the cluster centroids. We use K-means algorithm for cluster-

ing. Before clustering, the weights’ values are scattered (Figure 4.3a) and the look-up table is
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Algorithm 3 LookNN Customization Algorithm
inputs:

pre-trained weights and biases: {(W i,bi)}Nlayers
i=1

number of clusters: Nclusters
labeled data: (xtrain,ytrain), (xvalid,yvalid)
inference error tolerance: ε

maximum number of training epochs: max_iter
outputs:

LookNN clustered weights and biases: {(W i,bi)}Nlayers
i=1

validation inference error: eLookNN

1: for iteration = 1 . . .max_iter do
2: for l = 1 . . .Nlayers do
3: for i = 1 . . .nl−1 do
4: W l

i:← Kmeans(W l
i:, Nclusters)

5: end for
6: end for
7: eLookNN ← error({(W i,bi)}Nlayers

i=1 , xvalid, yvalid)
8: if (eLookNN < ε) then
9: return W 1...Nlayers , b1...Nlayers, eLookNN

10: end if
11: retrain(W 1...Nlayers, b1...Nlayers , xtrain, ytrain)
12: end for
13: return W 1...Nlayers, b1...Nlayers, eLookNN

large. After clustering, the number of rows in the look-up table is significantly decreased (Figure

4.3b).

weight retraining: Weight clustering is often accompanied by some degree of additive

error, ∆e = eLookNN− ebaseline, to compensate for which we retrain the DNN for a pre-specified

number of epochs (line 11 of Algorithm 3). After retraining, the algorithm loops back to line 2

to cluster the retrained weights. Figure 4.4 depicts an example LookNN’s additive error and the

average WCSS of the weights. A retrained matrix is likely to exhibit less WCSS; Therefore, the

error is reduced in subsequent iterations.

error estimation: The error estimation module computes the misclassification error,

eLookNN , over the validation data set (line 7 of Algorithm 3). This module simply computes the

cross-validation error of LookNN with its clustered weights and quantized neurons. We use
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Figure 4.3: The distribution of a neuron’s input weights. (a) The look-up table should maintain
561 rows. (b) The table should maintain Nclusters = 4 rows.
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Figure 4.4: (a) The within cluster sum of squares (WCSS) is decreased in subsequent iterations.
(b) The loss of accuracy is also decreased due to the reduction of the WCSS.

K-means to apply nonlinear quantization to the input layer, whereas hidden layers are quantized

linearly.

4.2.2 LookNN Error Analysis

LookNN’s additive error has two reasons: neuron quantization and weight clustering.

We model the effect of both operations as additive Gaussian noise N(η ,δ ) with mean η and

variance δ . Consider an n×m weight matrix W multiplied by an m×1 input vector a. We assume

that clustering replaces each connection Wi j with Wi j +Ni j(0,δw) and quantization replaces

each neuron a j with a j +N(0,δa). For simplicity, We also assume that the Gaussian noises are
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independent.

Consider a neuron computing a dot-product of the form <Wi:,a >. LookNN adds noise

to the dot-product operands, resulting in the following noisy output:

zi−noisy =
m

∑
j=1

(Wi j +N(0,δw))× (a j +N(0,δa)) = zi−original +Ni (4.3)

where zi−noisy is the noisy dot-product in LookNN, zi−original is the actual dot-product in the

baseline DNN and Ni is additive noise. The additive noise can be approximated as:

Ni ≈
m

∑
j=1

Wi j×N(0,δa)+
m

∑
j=1

a j×N(0,δw) (4.4)

Ni is a linear sum of independent Gaussian random variables with zero means; Therefore, it is a

Gaussian random variable N(0,δi). The variance δi is obtained using equation 4.5:

δi =
m

∑
j=1
||Wi j||2×δa +

m

∑
j=1
||a j||2×δw (4.5)

The expected value of δi is:

E(δi) = m× (E(||Wi j||2)×δa +E(||a j||2)×δw) (4.6)

δi denotes the variance of the quantization noise, δa, for the next hidden layer’s neurons; Therefore,

the noise over the next layers can be characterized in a similar manner. In fact, the noise propagates

from the input layer through the output layer. The variance of the noise in the output layer is

correlated with LookNN’s error. High variance is interpreted as high probability of changing the

actual DNN’s outputs. Equation 4.6 might not be perfectly exact for the general case, but it brings

useful insights that we took into account for devising the customization process:

• The terms “δw” and “δa” suggest that minimizing the WCSS is effective for error reduction
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(see equation 4.2). The WCSS directly translates to “δw” of all layers and “δa” of the first

layer.

• The expected value is proportional to “m”, the number of input neurons in the preceding

layer. Hence, matrices with higher number of elements per row require more shared values

to reduce the WCSS.

• The term “E(||Wi j||2)” demonstrates the importance of training regularized matrices. This

can be achieved by applying Dropout [95] or adding a weight decay to the training mini-

mization objective [96].

4.2.3 LookNN Execution Unit

Computing each neuron is assigned to one of the GPU streaming cores. Each core

maintains an associative memory depicted in Figure 4.5. We use crossbar memristor, an access-

free transistor memristive memory, to design both the TCAM and the crossbar memory. Prior

to the execution, the first TCAM is initialized with Nq quantized values of the preceding layer.

The second TCAM is initialized with Nclusters shared weights. The crossbar memory holds

Nq×Nclusters pairwise multiplication outputs. During execution, for a pair of input operands, the

two TCAMs are searched in parallel, the address decoder generates the proper address, and the

multiplication result is fetched from the crossbar memory. Below we discuss the memory blocks

in detail.

TCAM: Figure 4.5b illustrates the TCAM architecture. We design the TCAM using

non-volatile memories. The values are stored on cells based on the NVM resistance state. Low

and high resistances denote Logics 1 and 0 respectively. Before each search operation, the match

lines (MLs) in all rows are pre-charged to Vdd voltage. During the search operation, a buffer

distributes the input data among all rows. All MLs will discharge except the TCAM row matching

the input data. The sense amplifier samples MLs at each clock cycle to identify the hit rows.
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Figure 4.5: (a) LookNN hardware for memory-based computation. Nq and Nclusters determine
the number of active rows in the TCAMs. (b) The structure of multistage TCAM.

Mutli-Stage TCAM: In order to reduce TCAM’s power consumption, we reduce its

switching activity by splitting it into multiple stages. Figure 4.5b presents an N-stage TCAM.

The first stage searches through 1/N of the data. The MLs of the subsequent stages are selectively

pre-charged based on the hit rows of their preceding stages, resulting in significant energy saving.

Dividing the TCAM into more stages reduces its energy consumption, but results in increased

delay. Table 4.1 shows the trade-off for a table with Nq = 16 and Nclusters = 16. To choose the

number of stages, we consider the energy-delay product (EDP) which is minimized using 4 stages.

Crossbar Memory: Compared to the two TCAMs, the crossbar memory consumes

lower energy. It occupies negligible area since we implement it in three dimensional (3D)
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Table 4.1: Block size impact on energy consumption and search delay of LookNN (Nq = 16,
Nclusters = 16, bit−width = 32)

16-stage 8-stage 4-stage 8-stage 1-stage
Energy(fJ) 208 266 447 834 1307
Delay(ns) 0.80 0.58 0.28 0.17 0.11

EDP(J.s)×10−24 167 156 128 148 150
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Figure 4.6: TCAM and crossbar memory cells are implemented over CMOS FPU.

architecture [97]. The crossbar memory is implemented over the CMOS FPU, resulting in zero

area overhead. Figure 4.6 shows the structure of TCAM and crossbar memory cells.

Associative Memory Configurations: LookNN can exchange accuracy for performance

and energy efficiency. Increasing Nq and Nclusters improves LookNN’s accuracy at the cost of

increase in energy consumption and execution time. The energy consumption of a look-up table

search is characterized as:

E = ET (Nq)+ET (Nclusters)+EC(Nq×Nclusters) (4.7)

where ET and EC denote the energy consumption of TCAM and crossbar memory respectively.

The execution time depends on the largest TCAM size, max(Nq,Nclusters), since the two TCAMs

are searched in parallel. Table 4.2 shows LookNN search energy and delay in different associative

memory configurations storing different numbers of patterns. Energy and delay are normalized to
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Figure 4.7: Additive error of LookNN running four applications. The horizontal axis is the
number of shared weights per neuron. The vertical axis represents ∆e = eLookNN−ebaseline. Each
curve corresponds to a different neuron quantization.

those of CMOS-based FPU multipliers. As the results show, all these configurations outperform

FPU computation in both energy and delay. Our customization unit can adapt LookNN to any of

these configurations.

Table 4.2: LookNN normalized energy and delay in each configuration

config1 config2 config3 config4 config5 config6
(Nq,Nclusters) (16,2) (16,4) (16,8) (16,16) (32,16) (64,16)

Energy 0.03 0.04 0.05 0.07 0.12 0.26
Delay 0.12 0.13 0.15 0.18 0.23 0.34

Scalability: In large-scale DNN, each streaming core is responsible for execution of

multiple neurons. In such scenarios, we share each streaming core among multiple neurons of

the same layer. The first TCAM does not need to be changed. The second TCAM should be
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extended with new weights. The crossbar memory should also be extended with new output

values. For instance, config1 of Table 4.2 can be extended to (Nq,Nclusters) = (16,16), allowing

the associative memory to be shared among 8 neurons, each of which searches 2 rows of the

second TCAM. The increase in the search energy is negligible since the number of searched rows

is the same as the associative memory before being extended. The delay is neither affected since

it depends on max(Nq,Nclusters).

4.3 Experimental Results

4.3.1 Experimental Setup

We integrate LookNN on the AMD Southern Island GPU, Radeon HD 7970 device

including 2048 streaming cores. We perform circuit level simulations on HSPICE simulator

using 45-nm TSMC technology. We use multi2sim, a cycle accurate CPU-GPU simulator for

architecture simulation [98] and change the GPU kernel code to enable memory pre-loading and

runtime simulation. We use Synopsys Design Compiler [99] to calculate the energy consumption

of the 6-stage balanced FPUs in GPU architecture in 45-nm ASIC flow. DNN applications are

realized using OpenCL, an industry-standard programming model for heterogeneous computing.

We use the Scikit-learn library [100] for Kmeans and Nearest Neighbour Search. Tensorflow [101]

is used to realize the DNN in the customization unit. We evaluate LookNN on four applications

described below.

Voice Recognition: Many mobile applications require online processing of vocal data.

We evaluate lookNN with the Isolet dataset [102] which consists of speech collected from 150

speakers. The goal of this task is to classify the vocal signal to one of the 26 English letters.

Hyperspectral Imaging: Hyperspectral imaging involves classification of different ob-

jects based on the reflectance spectra. The objective of this classification task is to recognize 9

different materials on the earth [103].
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Human Activity Recognition: For this data set, the objective is to recognize human

activity based on 3-axial linear acceleration and 3-axial angular velocity that have been captured

at a constant rate of 50Hz [104].

MNIST: MNIST is a popular machine learning data set including images of handwritten

digits [105]. The objective is to classify an input picture to one of the ten digits {0 . . . 9}.

4.3.2 LookNN Evaluation
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Figure 4.8: Normalized energy consumption and execution time of LookNN in different
configurations for four DNN applications. The baseline DNN is run on traditional GPU.
LookNN is deployed on the enhanced GPU.

For each of the four data sets, we compare the baseline DNN and its corresponding

LookNN. The baseline utilizes the FPUs of the GPU wherase LookNN exploits the associative

memory. Specifically, we compare them in terms of accuracy, running time and energy consump-

tion. Stochastic gradient descent with momentum [106] is used for training. The momentum is

set to 0.1, the learning rate is set to 0.001, and a batch size of 10 is used. Dropout [95] with drop

rate of 0.5 is applied to hidden layers to avoid over-fitting. All data sets are normalized prior to
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the training, such that the features have 0 mean and standard deviation of 1. Table 4.3 presents the

baseline DNN Topologies and their error rates running four applications. The activation functions

are set to “Rectified Linear Unit” clamped at 6. A “Softmax” function is applied to the output

layer.

Table 4.3: Baseline DNN and their error running four applications

Application Network Topology ebaseline(%)
(l0, l1, l2, l3)

Voice Recognition 617, 500, 500, 26 4.4
Hyper-spectral Imaging 200, 500, 500, 9 6.6

Human Activity Recognition 561, 500, 500, 12 3.4
MNIST 784, 500, 500, 10 2.4

The additive error, ∆e = eLookNN−Ebaseline, for different (Nq,Nclusters) configurations is

depicted in Figure 4.7. It is clear that increasing Nq and Nclusters results in reduced error. Note that

for some configurations the error is negative (e.g. Voice recognition with (Nq,Nclusters)= (32,16)),

meaning that LookNN can achieve a lower error rate than the baseline; This happens due

to the approximate nature of the baseline DNN. For a fixed Nq, the error reduction exhibits

diminishing return with respect to Nclusters. Therefore, both of the parameters (Nq,Nclusters)

should be considered for error adjustment.

For each application, Table 4.4 summarizes the additive error using selected LookNN

configurations, each of which results in a different execution time and energy consumption. We

report zero additive error for a negative ∆e. A LookNN configuration can result in different error

rates for different applications. This is due to the fact that some applications require precise

numerical computations (e.g. Hyperspectral Imaging) while others can tolerate more numerical

inaccuracy (e.g. MNIST).

Figure 4.8 depicts the energy consumption and execution time of LookNN normalized to

those of the baseline DNN. In both experiments, the overhead of data movement is accounted

for. In order to get a zero ∆e, our design requires to use associative memories at least in config6

which results in an average of 2.2× energy improvement and 2.5× speedup compared to the
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conventional AMD GPU architecture. In addition, our enhanced GPU achieves 3× energy

improvement and 2.6× speedup if we tolerate an additive error of less than 0.2%. The trade-

off is much more sensible if we solely consider the cost of multiplication, which is the main

focus of this chapter. For instance, compared to multiplication via FPU, LookNN achieves 33×

energy improvement and 8.3× runtime improvement at Config1, while achieving 3.8× energy

improvement and 3× runtime improvement at Config6 (see Table4.2).

Table 4.4: Additive error in different LookNN configurations

config1 config2 config3 config4 config5 config6
(Nq,Nclusters) (16,2) (16,4) (16,8) (16,16) (32,16) (64,16)

Voice Recognition ∆e 4.2% 1.3 % 0.4% 0.4% 0% 0%
Hyperspectral Imaging ∆e 21% 11.4 % 7.8% 7.2% 0.2% 0%

Human Activity Recognition ∆e 3.1% 0.25 % 0.2% 0% 0% 0%
MNIST ∆e 3% 0.6 % 0% 0% 0% 0%

4.4 Conclusion

We propose LookNN, a simplified DNN that replaces multiplications with look-up table

search, resulting in significant improvement in execution time and power consumption. Prior to

converting DNNs to LookNN, our customization unit can adjust DNNs such that their accuracy is

retained after converting to LookNN. The main advantage of LookNN over previous simplified

models is that it enjoys floating-point parameters which is indeed necessary for many applications.

LookNN can be deployed on either general purpose processors or FPGA/ASIC accelerators.

Recently, associative memories have been used to enhance processors to bypass redundant

computations. We employ one such enhanced GPU to evaluate LookNN. Our evaluations

demonstrate an average of 2.2× energy improvement and 2.5× speedup with zero addtive error.

LookNN can also be leveraged to exchange accuracy for efficiency; In our evaluations, LookNN

achieves an average of 3× energy improvement and 2.6× speedup with an additive error rate of

less than 0.2%.
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Chapter 5

Customizing quantization and clustering

for secure DNN inference

There is an increasing surge in cloud-based inference services that employ deep learning

models. In this setting, the server trains and holds the DNN model and clients query the model

to perform inference on their data. One major shortcoming of such service is the leakage of

clients’ private data to the server, which can hinder commercialization in certain applications.

For instance, in medical diagnosis [107], clients would need to expose their “plaintext” health

information to the server, which violates patient privacy regulations such as HIPAA [108].

One attractive option for ensuring clients’ content privacy is the use of modern crypto-

graphic protocols as they provide provable security guarantees [1, 5, 6, 109–116]. Let f (θ ,x) be

the inference result on client’s input x using server’s parameters θ . By executing cryptographically-

secure operations, client and server can jointly compute f (θ ,x) without revealing x to the server

or θ to the client. We refer to this process as oblivious inference in the remainder of the thesis.

Unlike plaintext inference, oblivious inference protects the privacy of both parties. The chal-

lenge, however, is the excessive computation and/or communication overhead associated with

privacy-preserving computation. For example, the contemporary state-of-the-art for performing
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oblivious inference on a single CIFAR-10 image requires exchange of ∼ 3.4 GB of data and takes

∼ 10 seconds [4].

Early research on oblivious inference mostly focused on developing protocols for inference

of a given DNN model, without making major modifications to the model itself [1, 5, 6, 109–116].

Recently, a body of work has explored modifying the DNN architecture such that the resulting

model is more amenable to secure computation [2–4, 117]. The gained efficiency in the prior

work comes at the cost of reduction in the inference accuracy. This chapter presents COINN,

a provably secure framework for oblivious inference. The result of the thesis author’s research

provides novel customization techniques that enable the design of efficient, secure, and accurate

oblivious inference. The contributions discussed in this chapter are outlined as follows:

Customizing DNN quantization for oblivious inference.. The execution cost of oblivi-

ous inference relies heavily on the numerical precision (bitwidth) of the underlying operations.

Therefore, applying fixed-point quantization to DNN weights and activations can boost the

performance of oblivious inference while maintaining the inference accuracy. The challenge is

that off-the-shelf quantization techniques are not directly applicable for ciphertext (oblivious)

execution as they are developed for plaintext DNN inference. More specifically, operations such

as full-precision accumulation, rounding, and scaling incur a negligible cost in plaintext inference

but the same operations are extremely costly in ciphertext inference. The thesis author’s research

in this chapter provides customization techniques to avoid such costly ciphertext operations while

enjoying the efficiency benefits gained by quantization.

Customizing factored matrix multiplication for oblivious inference.. Recall from

Chapter 3 that DNN weights can be encoded to improve the efficiency of plaintext inference.

This chapter explores the benefit of weight encoding in oblivious inference. Specifically, matrix

multiplication with encoded weights can be rendered via factored dot product operations, where

the majority of multiplication operations are replaced with conditional additions. Through this

replacement, COINN achieves significant performance boosts in oblivious inference of CONV
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Figure 5.1: Accuracy and secure inference runtime of a 7-layer DNN on CIFAR-10 dataset
using prior work: Gazelle [1], Delphi [2], SafeNet [3], XONN [4], Autoprivacy [5], and
CrypTFlow2 [6]. The ? symbol represents COINN.

and FC layers.

Automated parameter selection for oblivious inference.. To fully exploit the benefits

of quantization and factored matrix multiplication, the aforementioned optimization techniques

should be customized per layer, such that efficiency and accuracy are simultaneously satisfied.

COINN provides an automated parameter selection module based on Genetic algorithms [48] to

determine the heterogeneous quantization and encoding parameters across a given DNN’s layers.

As a result, as shown in Figure 5.1, COINN is able to achieve a higher accuracy with a lower

execution time compared to all contemporary work in oblivious inference.

5.1 Notations

Throughout this chapter, we represent scalars with lowercase x, vectors with bold lower-

case x, 2-dimensional matrices with uppercase X , and higher order tensors with bold uppercase

letters X. Element selection is denoted by brackets x[i] and x〈i〉 denotes the i-th bit of scalar x. 0

denotes a vector/matrix/tensor with all the entries set to 0. We denote the computational security

parameter with κ and set it to 128 following common standard [1, 6, 116].
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5.2 Related Work

In this section, we review the related work that employ similar settings as ours, i.e.,

cryptographically secure two-party protocols where the server owns the model and the client owns

the input. There are two classes of techniques: Homomorphic Encryption (HE) [118], which is

heavy on computation and Multi-Party Computation (MPC) techniques such as Garbled Circuits

(GC) [20] and Arithmetic Sharing (AS) [14], which are heavy on communication.

CryptoNets [119] is perhaps the pioneer of 2-party oblivious inference. More efficient

variants and compilers have since been proposed for optimized DNN inference [109–114]. HE-

based methods such as [119] allow outsourcing the majority of the computations to the more

capable party, i.e., the server. However, frameworks that are entirely based on HE replace the

nonlinear activations with HE-friendly polynomial approximations, resulting in reduced inference

accuracy. Oblivious inference based on GC has also been proposed [115] which provides better

accuracy but suffers from long run times due to the large communication cost of multiplications in

GC. To mitigate this, XONN [4] presents a GC-based framework for Binarized Neural Networks

(BNN) where all multiplications are replaced with cost-free XNOR operations. Nevertheless, the

binary weights and activations in a BNN have an adverse effect on the inference accuracy.

At present, most efficient secure inference engines employ a hybrid approach –using

the most efficient cryptographic primitive for a particular layer. MiniONN [116] employs a

combination of AS, GC, and HE. Follow-up works Gazelle [1] and Delphi [2], support efficient

HE-based linear operations along with GC-based nonlinear functions, and perform secure protocol

conversion when necessary [1, 116]. Subsequent works [4, 120] have pointed out security

vulnerabilities in HE-based methods, safeguarding against which would result in increased

runtime. CrypTFlow2 [6] proposes a hybrid protocol that supports both HE and AS-based linear

layers and has custom protocols for secure comparison (used in ReLU and MP) which incur less

communication at the cost of higher number of communication rounds compared to GC.
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A parallel line of work in oblivious inference focuses on applying optimizations to reduce

the secure execution cost of previously proposed security protocols. The contributions in this

domain can be categorized in two separate directions: (1) adjusting the parameters for the secure

protocol, and (2) changing the DNN architecture for improved secure execution. In the first

category, recent work [5,121] adjust the HE parameters for hybrid HE-GC protocols, i.e., Gazelle

and Delphi, to reduce the secure execution cost. The methods in the second category [2, 3, 117]

reduce the number of ReLU activations throughout the network to reduce the GC communication

and runtime in hybrid HE/AS and GC protocols.

Perhaps the most related model-adjustment techniques to COINN are the quantization

in [122, 123]. These works have two major differences with COINN quantization. Firstly,

they simply use homogeneous bitwidths for all DNN weights/activations. We show that by

solving the challenging problem of heterogeneous bitwidth selection, secure execution cost can

be significantly lowered without hurting model accuracy. Secondly, the aforesaid works use the

available quantization schemes optimized for the plaintext domain [124, 125], while COINN

develops a new cipher domain optimized quantization scheme that replaces costly quantization

operations with variants that incur a negligible GC cost.

COINN bridges the gap between protocol design and ML model adjustment to optimize

the ciphertext execution of both linear and non-linear operations. Compared to works that only

optimize the cryptographic protocols [1, 6, 116], the contributions of our work lie in designing

security-aware low-bit quantization and introduction of factored multiplication and its accompany-

ing custom secure execution protocol. Compared to works that optimize the ML model [2–5,117],

our model adjustment techniques are scalable to many-layer architectures trained for complex

tasks such as ImageNet. Additionally, COINN quantization and factored multiplication together

with our automated parameter configurator achieve a better accuracy-runtime tradeoff compared

to prior model adjustment methods such as modifying ReLU layers [2, 3, 117].
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Figure 5.2: The server and client use a secure function evaluation (SFE) protocol to perform
oblivious inference. At the end of the protocol, client learns y = f (θ ,x) without learning server’s
parameters θ or revealing x to server.

5.3 Scenario and Threat Model

Figure 5.2 presents the scenario in oblivious inference. The neural network architecture

f is known by both server and client. The server holds the set of trained parameters, i.e.,

θ = {θ 1, . . . ,θ L}, and the client holds the input query to the neural network, i.e., x. The two

parties engage in a secure function evaluation protocol, where the client learns the inference result

y = f (θ ,x). Similar to prior work, we consider the honest-but-curious scenario [1–6,116,117]. In

this threat model, the two parties follow the protocol that they agree upon to compute the output,

yet they may try to learn about the other party’s data as much as they can. As such, the protocol

should guarantee the following requirements:

• x or f (θ ,x) are not revealed to the server.

• θ is not revealed to the client.

• Client and server do not learn intermediate activations.

5.4 COINN Methodology

Figure 5.3 depicts the overall flow of the COINN framework. The model owner performs

plaintext model customization, which requires quantization, clustering (encoding), and automated

parameter configuration. Once the model is customized in plaintext, the optimized layers are
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Figure 5.3: Overview of COINN. The plaintext model customization is only performed once
per DNN and provides the optimized network for COINN secure inference.

converted into executable that run the oblivious inference. The linear and nonlinear layers

of COINN are executed in AS and GC, respectively. The thesis author’s contributions lie in

the plaintext model customization, which is explained in details in this thesis. The ciphertext

execution modules were not implemented by the thesis author, yet we will briefly cover them for

completeness.

5.4.1 Ciphertext-aware Quantization

Most contemporary ML libraries utilize 32-bit floating-point format (FP32) for data

representation. In practice, the extremely high computational cost and complex circuits make

FP32 unsuitable for secure computation. Quantization addresses the aforesaid shortcomings by

representing data in the integer format with a lower number of bits. Figure 5.4 demonstrates

how FP32 values can be converted to low-bit integers through quantization. Let us denote the

signed integer format with b bits by INT-b. The mapping of an FP32 parameter x f to its INT-b

representation xq is computed as:

xq = round(s · x f ), s =
2b−1

2 × max(|x f |)
(5.1)

where s is called the scaling factor and max(|x f |) denotes the maximum range that parameter x f

can take. In a linear layer with FP32 inputs X f , weight parameters Wf , and bias b f , the output
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can be approximated using quantized values as:

Yf =Wf ·X f +b f ≈
1

swsx
(Wq ·Xq +

swsx

sb
bq) (5.2)

where sx, sw, and sb denote the quantization scales for the input, layer weights, and the bias,

respectively. The quantized version of Yf is calculated using the corresponding scale sy as follows:

Yq = round
(

sy

swsx
(Wq ·Xq +

swsx

sb
bq)

)
(5.3)

Yq is the quantized output of the linear layer which serves as the input of the next layer in a

quantized DNN. While evaluating Eq. 5.3 is straightforward in plaintext, multiplication by the

quantization scales s = sy
swsx

and round(·) incur significant costs in ciphertext. In what follows,

we first introduce our highly efficient counterparts for these operations designed to minimize the

secure execution cost. We then explain how we manage overflow in the low-bit regime.

Figure 5.4: Quantizing FP32 values for INT-b representation.

Optimizing Scaling. In our framework, the matrix-multiplication Wq.Xq as well as the

addition with the bias vector are computed efficiently via AS. Scaling the result by s = sy
swsx

in AS

would increases the overall multiplicative depth for computing s(Wq ·Xq +b), increasing the AS

computation bitwidth, thereby sacrificing the overall efficiency. To avoid bit-extending the matrix-

multiplication operands, we separate scaling and evaluate it using GC ciphers. In this scenario,

for scaling a b-bit number with a scale containing b′ nonzero bits, the GC communication cost

would be 2b(b′−1)κ . Instead, we enforce the scale values to be powers of 2, which allows us to
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implement the previously costly scale operation with ∼zero cost logical shifts in GC. We do this

by replacing the original formula in Eq. 5.1 with Eq. 5.4, and fine-tuning the DNN to adjust the

quantization and preserve inference accuracy.

s = 2

⌈
log2

2b−1
2 × max(|x f |)

⌉
(5.4)

Rounding Workaround. Let us consider an n-bit integer value, right shifted by n−b bits

through the scaling step to obtain a fixed-point value with b bits integer and (n−b) bits fraction.

Rounding operation in GC works by adding the MSB of the fraction with the b-bit integer. The

GC cost is therefore equal to 2b×κ , which is quite significant considering it has to be repeated

for all output elements across all DNN layers. To eliminate this cost, we replace round(·) with

the floor operation b·c in our plaintext DNNs and fine-tune the model weights to adjust to this

modification. Since flooring is equivalent to removing all fraction bits, it incurs no GC cost. To

adapt the model weights to this modification, we use the original training data to fine-tune the

model. This is done by applying flooring during the forward pass and straight-through gradients

during the backward pass.

Overflow Management. Performing matrix-multiplication requires repeatedly updating

an accumulator y := y+w[i]x[i]. An imminent challenge when moving to the low-bit quantized

regime is the occurrence of overflow in the accumulator. To avoid overflows, existing ML

libraries for quantization perform accumulations using high-precision data representations, e.g.,

y is INT-32 while x and w are low-bit. In secure execution, high-precision accumulators are

extremely costly. Therefore, we augment the underlying ML library with a new custom operation

that simulates DNN execution with low-bit accumulators and directly models the occurrence of

overflows. Eq. 5.5 presents our overflow simulation, which models the loss of MSB bits in case
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of overflow for an INT-b accumulator.

over f low(x)
x>0

=


x mod 2b, (x mod 2b)< 2b−1

x mod 2b−2b, otherwise

over f low(x)
x<0

=


x mod 2b, (x mod 2b)≥−2b−1

x mod 2b +2b, otherwise

(5.5)

Here, mod represents the modulo operation and x mod 2b checks for the occurrence of an overflow.

In the forward pass (during DNN inference or training), the above operation is applied on all

layer outputs to account for the occurrence of overflow according to the secure execution bitwidth.

By leveraging the proposed overflow simulation, we accurately measure the secure execution

accuracy in the presence of (occasional) overflows. Building upon our customized overflow

simulation, we provide an automated strategy that finds the best allocation of bitwidths across

DNN layers to minimize accuracy degradation, as will be discussed in Section 5.4.3.

Fine-tuning.. We further develop an overflow-aware training scheme which enables us

to adjust the model parameters such that the adverse effect of overflow on inference accuracy

is minimized. Since overflow simulation involves non-differentiable operations, we devise an

approximate gradient for this function to allow fine-tuning of our quantized models. Let x be a

scalar value, x denote its value after overflow, and ∇x be the gradient of the training loss function

with respect to x. We compute the gradient with respect to x as follows:

∇x =


∇x i f x = x

0 otherwise
(5.6)
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5.4.2 Factored Matrix-Multiplication

Matrix-multiplication accounts for the bulk of computations in DNN inference, which

leads to a high communication cost in AS. Our goal in this section is to reduce this cost via

factored matrix-multiplication, which replaces the majority of costly multiplications with cheaper

conditional additions. Below, we introduce the building blocks of factored matrix-multiplication

and explain our method in detail.

Consider a matrix-multiplication of the form Y =W ·X , where Y ∈ RM×L, W ∈ RM×N ,

and X ∈ RN×L. This operation can be broken down into M×L VDPs, where each VDP operates

on vectors of length N, w ∈ RN and x ∈ RN , corresponding to a row of W and a column of X ,

respectively. Each VDP therefore requires N multiplications and N additions. We propose the

factored VDP as the core operation in factored matrix-multiplication. We start with the definitions

of the unique space and the encoded representation of vectors involved in VDP.

Definition 1. The unique space of w∈RN is the set c = {c1, . . . ,cV} such that w[i]∈ c (∀ i∈ [N]).

We refer to V as the unique size of w.

Definition 2. Given a vector w ∈ RN and its unique space c = {c1, . . . ,cV}, the encoded repre-

sentation of w is a vector of integer indices w̃ ∈ [V ]N such that w[i] = c[w̃[i]].

Knowing the unique space c and the encoded representation w̃, the factored VDP can be

computed via V multiplications and N +V additions: we first compute N conditional additions,

each of which adds an input element to one of V accumulators based on its code:

s[v] = ∑
x∈Sv

x, Sv = {x[i] | w̃[i] = v} (5.7)

Next, a VDP is computed between the accumulated values and the unique space of w, i.e.,

VDP(x,w) = VDP(s,c). The benefits of factored multiplication are most substantial when

V << N1. In general, V can be as large as 2b, where b is the quantization bitwidth of w. Even
1N is in the order of 100-10000
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after quantizing w with lower bitwidths, V can be quite large, e.g., V = 64 for 6-bit weights.

To decrease V , we approximate apply weight encoding as described in Chapter 3 (3.3.1). The

resulting encoded weights will have a unique space equal to the encoding codebook.

It is worth noting that the value of V directly affects the tradeoff between the DNN

inference accuracy and the secure execution cost. Higher V values achieve higher accuracy but

also incur higher secure execution cost. It is a great challenge to determine the per-layer V values

and balance this trade-off such that the DNN is executed accurately and efficiently. To address

this challenge, we provide an automated algorithm that specifies V for each linear layer in a

desired DNN as will be discussed in Section 5.4.3. Once the codebook size is specified per layer,

the model is finetuned to enhance the inference accuracy. The gradient of the loss function with

respect to the weights and codebook values is obtained based on the same methodology explained

in Chapter 3, (Section 3.3.2).

5.4.3 Automated Parameter Configuration

The quantization bitwidths and the unique spaces across different layers are not inde-

pendent and they collectively determine the model accuracy as well as the secure execution

cost. COINN is equipped with an automated parameter configurator that searches for the op-

timum number of quantization bits and weight clusters across DNN layers such that: (1) the

secure execution cost is minimized and (2) a user-defined constraint on inference accuracy is

met. COINN configurator initially reduces the optimization space, and then uses our customized

optimizer and score function to find the optimal DNN. The configurator performs the above

process separately for quantization and matrix factorization. Below we explain each component

of COINN configurator in detail.

Optimization Space Reduction. For quantization, the bitwidths for the input (binp),

weights (bw), and the activation (bacc) should be configured at each linear layer. Finding the

optimal quantized DNN is therefore equivalent to searching over a parameter space containing
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B3L different network configurations where L and B denote the number of linear layers and the

maximum bitwidth budget2, respectively. Finding the best parameter configuration in such a large

space is very time-consuming and the final obtained DNN configuration is often sub-optimal.

We observe that many of the bitwidth configurations in this search-space violate the user-defined

accuracy constraint. Therefore, prior to finding the optimal bitwidths, we first identify and

eliminate the invalid bitwidth configurations from the search space.

This process is performed on a per-layer basis: for each linear layer in the network, we

discard the subset of its corresponding quantization bitwidths that violate the accuracy constraint.

In doing so, we keep the remaining layers in full-precision format. Note that such per-layer

analysis allows us to shrink the original search space but does not determine the optimal bitwidth

configuration across all layers. This is due to the fact that the per-layer analysis does not reflect the

effect of inter-layer correlations on inference accuracy when all DNN layers are simultaneously

quantized. We therefore devise an optimizer to search the reduced parameter space obtained from

the per-layer analysis to find the optimal bitwidth configuration across all layers.

Figure 5.5: (left) Inference accuracy versus the input and weight bits of a CONV layer in an
example DNN. (right) 3D visualization of the layer’s valid bitwidth configurations.

Figure 5.5-(left) demonstrates the model accuracy versus the input and weight bitwidths

for one layer of an example DNN when the activation bit is set to the maximum value (bacc = 16).

As seen, due to the occurrence of overflow, many of the configurations fall below the accuracy

constraint plane. Using this intuition, we construct a 3D mesh of valid bitwidth configurations
2In our experiments we set B = 16.
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that comply with the accuracy constraint for each layer as shown in Figure 5.5-(right). Each node

corresponds to a tuple (binp,bw,bacc) and its neighbors are nodes with a maximum bit distance of

1. As seen in this example, the search space for one layer is reduced to ∼ 1
8 , which provides a lot

of saving for the overall DNN, i.e., ∼ (1
8)

L . Our optimizer then traverses this mesh to find the

optimal DNN configuration.

For clustering, the per-layer configuration comprises only one parameter, i.e., the unique

size V , which undergoes a similar process for identifying the valid optimization space.

Optimizer. We develop a novel genetic algorithm [126] with customized graph operations

to traverse our constructed mesh of valid configurations and find the optimal quantized/clustered

DNN. Our genetic algorithm operates on a population of individuals where each individual

corresponds to a candidate DNN configuration. Optimization is performed iteratively and the

population is gradually evolved to obtain better DNN configurations that have higher accuracy

and/or lower secure execution cost. At each iteration, all members of the current population

are evaluated in terms of the secure execution cost and the inference accuracy. We utilize a

customized score function to combine these two (conflicting) metrics and assign a measure of

optimality to each individual. We then perform a random selection from the population where

individuals with higher scores have higher chances of being selected. Each selected individual

is then randomly tweaked by moving along the configuration mesh to adjacent neighbor nodes.

This is equivalent to performing small-scale changes in the model architecture to explore new

(unseen) configurations and find the optimal DNN.

Score Function. The objective of parameter optimization for secure inference is to

minimize the secure execution cost while enforcing the inference accuracy to be higher than

a user-defined threshold (constraint). The objective of this constrained optimization can be

embedded into a single score function that absorbs both accuracy and secure execution cost.

Let us denote the DNN configuration (quantization/clustering parameters) as p ∈ Rd and the

corresponding accuracy and secure execution cost as A (p) and C (p), respectively. For a given
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DNN configuration, the secure execution cost C (p) is the cumulative per-layer costs calculated

using Table 5.1 and the accuracy A (p) is measured on a held out validation dataset. We adapt

the score function from ML-customization literature [48], which use fractions and an exponential

penalty function [127] to enforce the inference accuracy constraint. Our score function is defined

as:

S (p) =
Cmax−C (p)

ξ (A (p))
, (5.8)

where Cmax is the execution cost of the reference DNN prior to optimization. The numerator

of the score function encourages minimization of the ciphertext execution cost C (p) and the

denominator ξ (·) enforces a strict lower bound (threshold) for the accuracy using exponential

penalty methods [127, 128] as follows:

ξ (A (p)) =


Amax−A (p) A (p)> Amin

Amax−A (p)+ eA (p)−Amin otherwise
(5.9)

where Amax is the accuracy of the reference point DNN. As seen, ξ (·) puts a linear penalty on

points with a high accuracy but exponentially increases the penalty when the accuracy drops

below the lower bound Amin. As we show in our experiments, this score function ensures that our

genetic algorithm finds a DNN configuration that has significantly lower ciphertext cost compared

to the baseline (plaintext) model with comparable accuracy.

5.5 Oblivious Inference

In this section we provide a high-level view of COINN fast and efficient oblivious DNN

inference. Figure 5.6 illustrates operations in plaintext DNN execution and their realization in

ciphertext domain. In what follows, we describe how each DNN layer is securely computed in

COINN in more detail.
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Figure 5.6: Plaintext DNN layers and their equivalent ciphertext realization.

Convolution/Fully-Connected. The CONV/FC operation is performed via our efficient

AS-based matrix-multiplication method over secret shared data that is sign-extended to match

the bitwidth of the accumulator bacc. Based on the optimal unique size allocated to each layer’s

weights by the model configurator, our API automatically performs the pertinent secure matrix-

multiplication via regular of factored operations, to maximize efficiency.

Batch Normalization. Recall that BN operates on the output of its preceding CONV layer,

i.e., Y ∈ RM×L, It multiplies each row by αi and adds βi to the result. A Naive implementation

of the BN would treat this layer independently which incurs a non-negligible secure execution

cost. Instead, we fuse the BN operation into the preceding CONV layer so that the combination of

CONV +BN can be realized via a single matrix-multiplication. The i-th row of Y is originally

computed in the preceding CONV layer as Yi =Wi ·X +bi. Application of BN on this row vector

renders:
BN(Yi) = αiYi +βi

= αi(Wi ·X +bi)+βi

= αiWi ·X +αibi +βi

(5.10)

We thus remove the BN layer and set the preceding CONV’s weight matrix rows to αiWi and bias

values to αibi +βi.
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Average Pooling. Average pooling works by computing the sum over k× k windows of

convolution outputs and dividing the summation result by k2. Similar to fusion of BN with CONV,

we can avoid division by k2 by simply dividing the weight and bias of the preceding layer by k2,

and computing the sum instead of average values in the pooling layer. In our setting, we perform

average pool layers in AS as summation is free in his protocol.

Scaling, ReLU, and Max-Pooling. Once the linear operations are computed in AS, we

convert the data back to the GC domain to make it amenable for nonlinear operations such

as ReLU and MP. After conversion to GC, the bacc-bit streams are scaled down to bi+1
inp bits,

where bi+1
inp is the number of input bits for the i+1-th linear layer. The two parties then run the

required GC protocols to compute the pooling and ReLU operations. To prepare the resulting

ciphertext values with bi+1
inp bits for linear operations, COINN securely converts the GC data to

AS representation, where the integers are sign-extended to match the bitwidth of the accumulator

in the CONV/FC layers bacc.

The (amortized) communication cost associated with each of the layers explained above

is shown is Table 5.1. The automated design customization tool (Section 5.4.3) incorporates these

costs inside the genetic algorithm score to search for the optimal configuration across the layers.

Table 5.1: COINN secure execution cost for core operations in a DNN. Here, κ is the security
parameter that is set to 128.

Operation indim→ outdim Ciphertext Cost Parameters
Mal-Mult
(regular) Xx×l

Wm×n−−−→ Ym×l O
(
mnlb(b+1)

)
b: accumulator bitwidth

Mat-Mult
(factored) Xx×l

Wm×n−−−→ Ym×l O
(
mvlb(n+b+1)

) b: accumulator bitwidth
v: unique size of W

MaxPool Xc×d1×d1
k×k−−→ Yc×d2×d2 O

(
4κcd2d2(k2−1)b

) b: next layer input bitwidth
k: pooling window size

ReLU Xc×d1×d1
>0−→ Yc×d1×d1 O

(
2κcd1d1b

) b: next layer input bitwidth
κ: security parameter (=128)

AS→ GC Xc×d1×d1 −→ Yc×d1×d1 O
(
5κcd1d1b

) b: accumulator bitwidth
κ: security parameter (=128)

GC→ AS Xc×d1×d1 −→ Yc×d1×d1 O
(
3κcd1d1b

) b: next layer input bitwidth
κ: security parameter (=128)
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5.6 Experiments

In this section, we empirically evaluate the performance of COINN in various settings.

We perform a detailed study of the efficiency gains achieved by each of COINN optimizations,

namely, quantization, clustering, and end-to-end parameter configuration, in Section 5.6.1. Next,

we provide a side-by-side comparison of COINN with recent works in Section 5.6.2, in terms of

the ciphertext execution time, showing 4.7×–36.8× faster inference on contemporary DNNs in

LAN setting. We further show that COINN achieves better performance compared to prior work

in the high-latency setting.

Evaluation Setup. We use the PyTorch library for training the FP32 DNNs and develop

our security-aware quantization, clustering, and automated parameter configuration with PyTorch

backend for easy utilization by the community. Our ciphertext execution uses OT, and CS-PRNG

implementations from EMP-toolkit [129] and GC implementation from TinyGarble2 [130]. For

fast matrix-multiplication, we utilize the Intel intrinsic instructions and represent matrices with

the Eigen library [131].

Table 5.2: COINN benchmarks.

Model Layers Acc MACs Params
MiniONN [116] 6 CONV, 1 FC, 2 MP, 6 ReLU 88.3 6.1e7 1.6e5
ResNet32 31 CONV, 1 FC, 1 AP, 31 ReLU 68.7 6.9e7 4.7e5
ResNet110 109 CONV, 1 FC, 1 AP, 109 ReLU 94.1 2.5e8 1.7e6
ResNet50 49 CONV, 1 FC, 1, MP, 1 AP, 49 ReLU 76.1 4.1e9 2.5e6

We run our ciphertext evaluations using 4 threads on machines with 2.2 GHz Intel Xeon

CPU and 16 GB RAM. For runtime measurements, we consider two real-world network settings,

namely LAN with a throughput of 1.25 GBps, round trip time of 0.25ms, and WAN with a

throughput of 125 MBps, round trip time of 100ms. We simulate the network settings via Linux

Traffic Control3.

3https://man7.org/linux/man-pages/man8/tc.8.html
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Benchmarks. We perform evaluations on the CIFAR-10, CIFAR-100, and ImageNet

classification benchmarks. The number of classes in these datasets is 10, 100, and 1000, respec-

tively. Table 5.2 presents details of our benchmarked DNNs along with their FP32 accuracy. We

evaluate the 7-layer network from MiniONN [132] and ResNet110 on CIFAR-10, ResNet32 on

CIFAR-100, and ResNet50 on ImageNet dataset. Our DNN benchmarks cover a wide range of

parameter sizes (0.5M to 23M) and number of MAC operations (60M to 4B) commonly observed

in real-world models.

Accuracy Measurement. Throughout the evaluations, we report the secure model accu-

racy, which is measured efficiently (and correctly) by simulating ciphertext operations in PyTorch.

The correctness is validated by matching all DNN layers’ activations in secure inference with

those from PyTorch on randomly selected inputs.

5.6.1 Evaluation of COINN Optimizations

In this section, we provide a breakdown of the savings in secure execution cost as a result

of COINN’s model adjustment methods.

Low-Bit Heterogeneous Quantization. We illustrate the benefits of our quantization

scheme in reducing the secure communication cost, while maintaining accuracy, for a large scale

real-world DNN – ResNet32. Figure 5.7 presents the communication cost and accuracy of secure

execution as a function of the bitwidth. The numerical labels on the horizontal axis represent

homogeneous quantization (equal bitwidths across all layers), where each label is binp = bw with

bacc set to 2binp +1. The label 16 represents the configuration implemented in prior works [2, 6]

which we use as a baseline. Figure 5.7 shows that while reducing the bitwidth in the homogeneous

setting results in a linear reduction of ciphertext communication, it also results in a significant

drop in accuracy.

To mitigate the undesireable accuracy drop of homogeneous quantization, our automated

parameter configurator finds a heterogeneous allocation of per-layer bitwidths that simultaneously
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Figure 5.7: Effect of quantization bitwidth on communication cost (bars) and accuracy (curve).
The numbers on the horizontal axis show the bitwidth for homogeneous quantization of
weights/inputs across all layers. Label Q represents the heterogeneous bitwidths found by
COINN.

ensures high accuracy and low communication cost. The rightmost label, Q in Figure 5.7,

represents the COINN optimized model with heterogeneous quantization bitwidths across layers.

This optimal set of bitwidths results in a communication cost equivalent to the 6-bit homogeneous

model and achieves an accuracy comparable to the 16-bit baseline. Such optimization of per-layer

bitwidths is made possible via our secure computation-aware quantization which accurately

simulates the effect of low-bit quantization in ciphertext. This allows us to explore the trade-off

between communication cost and model accuracy. We present the heterogeneous bitwidths found

by COINN configurator for ResNet32 in Figure 5.8-a.

Factored Matrix-Multiplication. Figure 5.7 shows that the bulk of total communication

cost in a quantized model corresponds to linear operations. We now showcase how COINN further

reduces this cost via factored matrix-multiplication. Figure 5.10 presents the communication cost

and accuracy as a function of the number of unique elements in each layer’s weight matrices V .

The label Q represents our model with heterogeneous quantization bitwidths from Figure 5.7.

The numeric labels to its left represent models with a uniform selection of V across all layers.

Such naïve selection results in accuracy degradation, particularly for small V . Our automated

parameter configurator finds a heterogeneous allocation of V across DNN layers that balances the

tradeoff between inference accuracy and ciphertext communication. The result is an optimal DNN

represented with the label Q+C that reduces the secure communication cost of the quantized
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Figure 5.8: Heterogeneous parameters across ResNet-32 layers found by COINN configurator.
(a) Quantization bitwidths. (b) Number of clusters V .

Figure 5.9: Communication for baseline and COINN optimized models, where Q represents
quantized model and Q+C further applies clustering to enable factored multiplication.

model by 1.4× while maintaining the original model accuracy. We present the heterogeneous

number of per-layer clusters found by our configurator for this benchmark in Figure 5.8-b.

Holistic Optimization. Figure 5.9 presents the reduction in communication cost achieved

by applying COINN automated quantization and clustering on all benchmarks. As our base-

line design, we adopt the bitwidths from prior work [2], i.e., 16-bit inputs/weights and 32-bit

activations, and perform regular matrix-multiplication. For COINN results, we first find het-

erogeneous quantization configurations using our genetic algorithm and fine-tune the model to

regain accuracy. We show the optimized quantized model via Q on Figure 5.9. Next, we use

our automated parameter configurator to find the weight clusters for each layer and fine-tune the
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Figure 5.10: Effect of factored multiplication on inference accuracy and communication cost of
linear operations. The label Q on the horizontal axis shows the baseline quantized DNN. The
numbers to its left represent the homogeneous V used to cluster all layer weights. The label
Q+C stands for the heterogeneous V configuration found by COINN.

resulting model once more to obtain the DNN labeled Q+C. The linear operations in the Q and

Q+C settings are performed via regular and factored Matrix-Multiplication, respectively. As

seen, by finding the best set of heterogeneous bitwidths across DNN layers, COINN successfully

reduces the secure communication for linear and nonlinear layers by 3.9×–4.3× and 1.9×–2.2×,

respectively. By optimizing the weight clusters, we further push the efficiency gains on linear

layers to 4.8×–8.1×.

Table 5.3 provides the total runtime and communication cost of our baseline, Q, and

Q+C configurations in both LAN and WAN settings. The evaluation verifies the effect of our

optimization on the runtime: applying Q+C reduces the baseline runtime by 2.6×–3.9× and

2.3×–4.2× in LAN and WAN settings, respectively.

5.6.2 Comparison with Prior Work

In this section, we compare COINN amortized runtime with the prior art in oblivious

inference.. In Table 5.4, we report the performance of COINN along with four contemporary

works, namely, XONN [4] with extremely low-bit (binary) weights/activations, Delphi [2] with a

hybrid HE-GC protocol, SafeNet [3] which perform ML optimization for Delphi’s secure protocol,

and CrypTFlow2 [6] which is the current state-of-the-art in oblivious inference. For a fair and
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Table 5.3: Evaluation of COINN in LAN and WAN settings. Q and C denote quantization and
clustering, respectively.

Model Comm. (GB) LAN Time (s) WAN Time (s)
Base Q Q+C Base Q Q+C Base Q Q+C

MiniONN 8.7 2.3 1.0 4.85 1.9 1.45 74.6 26.5 18.5
Res32 10.4 2.4 1.9 9.8 3.8 3.68 143.9 67.1 62.9
Res110 37.6 9.7 6.8 36.0 14.2 14.0 518.1 242.8 226.0
Res50 583.1 148.0 122.0 571.46 165.3 145.7 4994 1420.4 1189.7

accurate comparison, we re-run the open-source codes provided by Delphi4 and CrypTFlow25 to

obtain runtime/communication measurements on our machines. For the remaining works [3, 4],

we directly report the numbers from the original papers since no public code was available.

Table 5.4 shows COINN achieves 4.7×–36.8× faster ciphertext execution in the LAN

setting compared to prior work. Even though in the high latency setting the benefit margins

are smaller, COINN still outperforms the best methods to date. This is achieved by optimizing

both non-linear and linear computations/communications through quantization and factored

multiplication. Furthermore, COINN achieves 0.6%– 4.7% higher accuracy with 23.1×–36.8×

faster secure runtime compared to prior crypto/ML co-optimization work, namely [2–4].

Evaluation on Large-scale Benchmarks. To fully demonstrate the efficacy and scala-

bility of COINN model adjustment techniques and custom secure protocols, we evaluate two

exceptionally complex DNNs, namely, ResNet110 on CIFAR-10 and ResNet50 on ImageNet

datasets. The first benchmark, i.e., ResNet110, is challenging due to the extremely high di-

mensionality of the parameter configuration space: there are 330 bitwidths and 110 clustering

parameters that require per-layer adjustment. The second benchmark, i.e., ResNet50, is the largest

DNN ever studied in the secure computation domain with over 4 Billion scalar multiplications

and additions.

In Table 5.4, we present the runtime for the large scale networks and compare our

4https://github.com/mc2-project/delphi
5https://github.com/mpc-msri/EzPC/tree/master/SCI

91

https://github.com/mc2-project/delphi
https://github.com/mpc-msri/EzPC/tree/master/SCI


Table 5.4: Performance comparison of COINN with best prior work. “Improv.” shows the
improvement in total runtime. CTF2 refers to CrypTFlow2 [6].

LAN WAN Acc.
Runtime (s) Improv. Runtime (s) Improv. (%)

M
in

iO
N

N

XONN 33.5 23.1× - - 83.0
Delphi 49.9 34.4× 59.8 3.2× 82.9
SafeNet 53.4 36.8× - - 85.1
CTF2 (HE) 20.8 14.4× 55.4 3.0× 86.0
CTF2 (OT) 11.9 8.2× 108.2 5.8× 86.0
COINN 1.45 1× 18.5 1× 87.6

R
es

32

Delphi 88.8 24.0× 145.9 2.3× 65.7
SafeNet 128.0 34.6× - - 67.5
CTF2 (HE) 32.6 8.8× 136.9 2.2× 68.0
CTF2 (OT) 18.7 5.1× 176.7 2.8× 68.0
COINN 3.7 1× 62.9 1× 68.1

R
es

11
0 CTF2 (HE) 110.3 7.8× 448.2 2.0× 94.1

CTF2 (OT) 65.4 4.7× 579.3 2.6× 94.1
COINN 14.0 1× 226.0 1× 93.4

R
es

50

CTF2 (HE) 893.2 6.1× 1463.3 1.2× 76.1
CTF2 (OT) 1139.8 7.8× 4241.8 3.6× 76.1
COINN 145.7 1× 1189.7 1× 73.9

results with the state-of-the-art CrypTFlow2. In the LAN setting, COINN achieves 4.7×–7.8×

and 6.1×–7.8× runtime improvement compared to CrypTFlow2’s OT-based and HE-based

implementations, respectively. In the WAN setting, COINN achieves 2.6×–3.6× and 1.2×–2×

runtime improvement compared to CrypTFlow2’s OT-based and HE-based implementations,

respectively. It is worth noting that the relatively lower improvement margin achieved by COINN

in one specific setting (1.2× for ResNet50, WAN, HE) is due to the heavy imbalance of the cost

towards linear layers in this particular benchmark.

5.7 Conclusion

We present COINN, an oblivious DNN inference framework that outperforms state

of the art in both accuracy and efficiency. Through a unique combination of complimentary
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optimizations in ML and crypto domains, COINN brings us one step closer to real life deployment

of contemporary DNNs in the privacy-preserving setting. The enhanced performance of COINN

roots in three innovations, namely, ciphertext-aware quantization, enhanced data reuse, and

automated parameter configuration. Our contributions in the plaintext are accompanied by

efficient custom cryptographic protocols. We performed rigorous empirical analysis on every step

of our optimization process to demonstrate their effect on reducing the secure communication

and oblivious inference runtime. Our evaluations on practical DNN benchmarks showed an

end-to-end runtime speedup of 1.2×– 14.4× over the best prior work.
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Chapter 6

Customizing binary neural networks for

secure DNN inference

In this chapter, we study BNN as a candidate for fast and scalable oblivious inference.

We show that a BNN has several unique characteristics that allow translating its computations to

simple and efficient cryptographic protocols.

The benefits of employing BNNs for oblivious inference were first noted by XONN [4].

Despite achieving significant runtime improvement compared to non-binary DNN inference,

there are opportunities provided by BNNs that have not been leveraged by XONN. Part of the

inefficiency of XONN is due to the usage of a single secure computation protocol as a blackbox

for all neural network layers after the input layer. In this work, we introduce a new hybrid

approach where the underlying secure computation protocol is customized to each layer, such that

the total execution cost for oblivious inference on all layers is minimized. We design a composite

custom secure execution protocol, specifically optimized for BNN operations, using standard

security primitives. Our protocol significantly improves the efficiency of XONN as we show in

our experiments.

One standing challenge in oblivious inference is finding architectures that are both accurate
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Figure 6.1: Accuracy and runtime of our oblivious BNN inference, compared with contemporary
research that have the same server-client scenario setting as us (two-party, honest but curious).
Among these, XONN [4] evaluates BNNs, whereas Cryptflow2 [6], Delphi [2], SafeNet [3], and
AutoPrivacy [5] evaluate non-binary models.

and amenable to secure computation. Since BNNs suffer from long training time and poor

convergence, searching for such architectures could be quite inefficient. We address the search

inefficiency challenge by training a single BNN that can operate under different computational

budgets. Our adaptive BNN offers a tradeoff between accuracy and inference time, without

requiring to train separate models. Figure 6.1 presents the tradeoff achieved by our flexible BNN

on the 7-layer VGG network trained on CIFAR-10. With the combined power of our custom

oblivious inference protocols and adaptive BNN training schemes, our method outperforms prior

art both in terms of accuracy and runtime. Our solution is ∼ 2× faster than Cryptflow2 [6], the

state-of-the-art non-binary DNN inference framework, and 2× to 11× faster than XONN, the

previous oblivious BNN inference framework.

6.1 Cryptographically Secure BNN Inference

BNNs were originally introduced to minimize memory footprint and computation over-

head of plaintext inference. In this section, we provide insights on why BNNs are also useful for

very efficient and fast oblivious inference.

The first favorable property of BNNs is enforcing the weights to +1 or -1. With this
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Figure 6.2: Illustration of plaintext inference (top) and our proposed equivalent oblivious
inference (bottom). We denote linear layers by CONV and FC, Batch-Normalization by BN,
Binary Activation by BA, and Max-Pooling by MP. Here, X i, and Y i, and θ i are the input, output,
and weight/bias parameters of the linear layer, respectively. η i denotes BN parameters, and Ŷ is
the output of binary activation.

restriction, multiplying a feature x by a weight w is equivalent to computing either +x or −x.

This simple property becomes useful when computing vector dot products of the form ∑
N
i=1 wixi,

which can be computed via N conditional additions/subtractions. We show in Section 6.1.1 that

conditional summations can be computed using OT and AS, both of which are known to be very

efficient and light-weight cryptographic tools.

In oblivious inference, nonlinear operations are evaluated through heavy cryptographic

primitives such as GC, resulting in large runtime and communication overheads. The large

communication cost of GC is directly related to the bit-widths of GC inputs. The second

advantage of BNNs is their 1-bit hidden layer feature representation, which significantly reduces

the GC evaluation cost when compared to non-binary features. In Section 6.1.2, we expand on

low-bit nonlinear operations and their efficient GC evaluation.

This section provides a high-level outline of the necessary terminologies in secure function

evaluation between a client and a server. Following the convention in secure computation literature,

we refer to server and client as Alice and Bob, respectively.

We present the overall flow for oblivious BNN inference in Figure 6.2. The inputs and

outputs of all layers are in AS format, e.g., server and client have JY iKA and JY iKB rather than Y i.

To obliviously evaluate linear layers (CONV or FC), we propose a novel custom protocol for
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binary matrix multiplication that directly works on AS data. We merge batch normalization (BN),

binary activation (BA), and max-pooling (MP) into a single nonlinear function f (·). To securely

evaluate f (JY iKA,JY iKB), three consecutive steps should be taken:

1. Securely translating the input from AS to GC. This step prepares the data to be processed

by GC.

2. Computing the nonlinear layer through GC protocol.

3. Securely translating the result of the GC protocol to AS. This step prepares the data to be

processed in the following linear layer.

Using this hybrid approach, we achieve a significantly faster oblivious inference compared to the

state-of-the-art [4].

6.1.1 Linear Layers

Fully-connected and convolutional layers require computing Y =WX , with weight matrix

W and input X . In secure matrix multiplication, the input is secret shared between the server and

the client, i.e., X = JXKA + JXKB. Bob (the client) has JXKB whereas Alice (the server) has the

weight W and JXKA
1. The matrix multiplication is computed as follows:

W (JXKA + JXKB) =W JXKA +W JXKB (6.1)

Alice can compute W JXKA locally and only W JXKB needs secure evaluation. After evaluating

Y =WX ,

• Alice gets JY KA but does not learn JXKB or JY KB.

• Bob gets JY KB but does not learn W or JY KA.

1 At the first layer, only client has the input share, hence JXKA = 0
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The above computation is performed in in two phases: (1) the setup phase, shown in

Algorithm 5, where Alice and Bob perform ROTs. Note that the setup phase only depends on

the weight matrix which remains unchanged over a large number of inferences. Therefore this

phase is performed only once and the cost is amortized among all future oblivious inferences.

(2) the inference phase, shown in Algorithm 5, which is performed separately for each inference.

Initially, Alice sets her output share to W JXKA (line 1) and Bob sets his share to zero (line 2). Next,

they obliviously evaluate W JXKB one row at a time in the outer loop of Algorithm 5 (lines 3-15).

Specifically, the m-th iteration of the outer loop evaluates the m-th row of the output as:

yn = JynKA + JynKB =
N

∑
n=1

W [m,n]X [n, :]

The inner loop of Algorithm 5 (lines 6-12) computes the above summation by running OT for

n ∈ [N]. After each OT invocation, Alice receives either µ0 = r− JX [n, :]KB or µ1 = r+ JX [n, :]KB

depending on the selection bit. It is easy to see that µi (known by Alice) and −r (known by Bob)

are the arithmetic shares of W [m,n]JX [n, :]KB.

Algorithm 4 One-time setup for secure matrix-multiplication.
Input:

from Alice W ∈ {−1,+1}M×N

Output:
to Alice KA ∈ ZM×N

to Bob {K0
B ∈ ZM×N ,K1

B ∈ ZM×N}
Remark:

KA[m,n] =

{
K0

B[m,n] i f W [m,n] =−1
K1

B[m,n] i f W [m,n] = 1

1: for m ∈ [M] do
2: for n ∈ [N] do Alice and Bob engage in ROT where:
3: • Alice inputs i = W [m,n]+1

2
4: • Alice receives KA[m,n]
5: • Bob receives {K0

B[m,n],K1
B[m,n]}

6: end for
7: end for
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Algorithm 5 Secure binary matrix multiplication.
Input:

from Alice W ∈ {−1,+1}M×N

from Alice KA ∈ ZM×N

from Alice JXKA ∈ ZN×L

from Bob K0
B ∈ ZM×N

from Bob K1
B ∈ ZM×N

from Bob JXKB ∈ ZN×L

Output:
to Alice JY KA ∈ ZM×L

to Bob JY KB ∈ ZM×L

Remark:
j is the number of inferences so far
JY KA + JY KB =W (JXKA + JXKB)

1: Alice locally sets JY KA =W JXKA ∈ ZM×L

2: Bob locally sets JY KB = 0 ∈ ZM×L

3: for m ∈ [M] do
4: Alice locally sets JyKA = JY (m, :)KA
5: Bob locally sets JyKB = JY (m, :)KB
6: for n ∈ [N] do
7: Bob generates random vector r ∈ ZL

8: Bob computes:

{
v0 = H( j,K0

B[m,n])⊕ (r− JX [n, :]KB)

v1 = H( j,K1
B[m,n])⊕ (r+ JX [n, :]KB)

9: Bob sends v0,v1 to Alice
10: Knowing i = W [m,n]+1

2 , Alice computes: µi = H( j,KA[m,n])⊕ vi
11: Alice locally updates JyKA = JyKA +µi
12: Bob locally updates JyKB = JyKB− r
13: end for
14: Alice locally updates JY (m, :)KA = JyKA
15: Bob locally updates JY (m, :)KB = JyKB
16: end for
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6.1.2 Nonlinear Layers

In this section, we outline and leverage characteristics of BNNs for oblivious inference of

nonlinear layers. The cascade of batch normalization (BN) and binary activation (BA) takes input

feature y and returns ŷ = sign(αy+β ) = sign(y+ β

α
), where α and β are the BN parameters.

Since both α and β belong to the server, the parameter η = β

α
can be computed offline. The

GC evaluation of BN and BA only entails adding η to y and computing the sign of the result,

which can be evaluated by relatively low GC cost [133]. Moreover, binary Max-Pooling can be

efficiently evaluated at the bit-level. Taking the maximum in a window of binarized scalars is

equivalent to performing logical OR among the values, which is also efficient in GC [133].

Algorithm 6 presents our efficient protocol for oblivious evaluation of nonlinear layers in

BNNs, which levereges the insights discussed above. Our protocol receives secret-shared data

JY KA and batch-normalization parameter values η = β

α
from the server, as well as JY KB from the

client. It then computes Ŷ by applying batch normalization, binary activation, and max-pooling

on Y . Upon completion of the protocol, server and client receive JŶ KA and JŶ KB, respectively,

which they use to evaluate the proceeding layer.

6.1.3 Communication Cost

Table 6.1: Communication Cost for different stages of our oblivious inference protocols. Here,
b is the bitwidth for arithmetic sharing2. κ is a security parameter, and its standard value is
128 in recent literature. For max-pooling, w is the window size. In cases where max-pooling is
applied, the dimensionality is reduced from L to L′ ≈ L

w2 .

Stage Underlying Operation Communication (bits)
Mat-Mult Y ←W (JXKA + JXKB) NbML
BN+BA Ŷ ← sign(JY KA +η + JY KB) 5κbML
MP Ŷ ← maxpoolw×w(Ŷ ) 2(w2−1)κML′

SS JŶ KA← Ŷ +R 3κbML′

Recall that each layer execution is done via SFE protocol, where the two involved parties
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Algorithm 6 Protocol for secure non-linear operations.
Input:

from Alice JY KA
from Alice η

from Bob JY KB
Output:

to Alice JŶ KA
to Bob JŶ KB

Remark:
JŶ KA + JŶ KB = f (JY KA + JY KB +η)
f (·) denotes BN, BA, and optional MP.

1: Alice locally computes JY KA +η

2: Bob locally generates random tensor R
3: Alice and Bob engage in GC where:
4: • Alice inputs JY KA +η

5: • Bob inputs JY KB and R
6: • GC computes: F =R+ f (JY KA+η+JY KB)
7: • GC returns F only to Alice
8: Alice sets JŶ KA = F
9: Bob sets JŶ KB =−R

cooperatively compute output shares of their own. During the protocol, each party may perform

certain computation, storage, or random data generation internally on their own device. In privacy-

preserving computation, these type of local processes are deemed as free operations. In practice,

the runtime of the process is dominated by the exchange of messages between the two parties, not

the internal computations. In our protocols (Algorithms 5& 6), message exchanges occur during

OT or GC invocations. We provide the communication cost of our protocols in Table 6.1. By

plugging in the parameters of this table, one can compute the total execution cost for oblivious

inference of a given BNN architecture. As we show in our experiments, the communication cost

is closely tied with the runtime of our protocols.

2To ensure correctness, b should be set to dLog(N)+1e. In practice, software libraries only support multipliers
of 8. Hence, we set b to the smallest multiplier of 8 bigger than or equal to dLog(N)+1e.
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6.2 Training Adaptive BNNs

One of the primary challenges of BNNs is to ensure inference accuracy comparable to

the non-binarized model. Since the introduction of BNNs, there have been tremendous efforts

to improve inference accuracy by increasing the number of channels per convolution layer [64],

increasing the number of computation bits [26], or introducing new connections and nonlinear

layers [134, 135], to name a few. In this chapter, we improve the accuracy of the base BNN by

multiplying its width, e.g., by training an architecture with twice as many neurons at each layer.

In practice, specifying the appropriate width for a BNN architecture requires exploring models

with various widths, which can be quite time-consuming and cumbersome. Each model with a

certain width should be trained and stored separately. What aggravates the problem is that BNNs

suffer from convergence issues unless the data augmentation and training hyperparameters are

carefully selected [136].

A related field of research is training dynamic DNNs [137], with the goal of providing

flexibility at inference time. In this realm, we find Slimmable Networks [138] quite compatible to

our problem setting and adapt them to BNNs. Our goal is to train a single network with certain

maximum width, say 4× the base network, in a way that the model can still deliver acceptable

accuracy at lower widths, e.g., 1× or 2× the base network. Once this model is trained, it can

operate under any of the selected widths, thus, providing a tradeoff between accuracy and runtime.

Slimmable BNNs Definition. Let us denote the base BNN as M1 and represent BNNs

with s× higher width at each layer with Ms. Our goal is to train Ms1 ⊂Ms2 ⊂Msn for a number of

widths {si}n
i=1. The weights of Msi are a subset of the weights of Msi+1 . Therefore, having Msn

we can configure it to operate as any Msi for i≤ n.

Training Slimmable BNNs. For a given minibatch X , each subset model computes the

output as Ỹsi = Msi(X), resulting in {Ỹs1, . . . ,Ỹsn} computed by Ms1 . . .Msn . The ground-truth label

Y is then used to compute the cumulative loss function as ∑
n
i=1 L (Y,Ỹsi), where L (·, ·) represents
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cross-entropy. The BNN weights are then updated using the standard gradient approximation rule

suggested in [139].

6.3 Evaluations

Standard Benchmarks. We perform our evaluation on several networks trained on the

CIFAR-10 dataset, shown in Table 6.2. The BC1 network has been evaluated by the majority

oblivious inference papers [1–6, 116, 140, 141]. Other models are evaluated by XONN [4], the

state-of-the-art for oblivious inference of binary networks. For brevity, we omit details about

layer-wise configurations and refer curious readers to [4] for further information.

Table 6.2: Summary of the trained binary network architectures evaluated on the CIFAR-10
dataset.

Arch. Previous Papers Description

BC1
[116], [140], [141], [1], [4],

[2], [6], [3], [5] 7 CONV, 2 MP, 1 FC

BC2 [4] 9 CONV, 3 MP, 1 FC
BC3 [4] 9 CONV, 3 MP, 1 FC
BC4 [4] 11 CONV, 3 MP, 1 FC

Training. For all benchmarks, we use standard backpropagation algorithm proposed

by [139] to train our binary networks. We split the CIFAR10 dataset to 45k training examples,

5k validation examples, and 10k testing examples, and train each architecture for 300 epochs.

We use Adam optimizer with initial learning rate of 0.001, and the learning rate is multiplied

by 0.1 after 101, 142, 184 and 220 epochs. The batch size is set to 128 across all CIFAR10

training experiments. The training data is augmented by zero padding the images to 40×40, and

randomly cropping a 32×32 window from each zero-padded image.

Evaluation Setup. The training codes are implemented in Python using the Pytorch

Library. We use a single Nvidia Titan Xp GPU to train all benchmarks. We design a library

for oblivious inference in C++. For implementation of OT and GC, we use the standard emp-
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Figure 6.3: CIFAR-10 test accuracy of each architecture at different widths. Our Adaptive BNN
trains a single network that can operate at all widths, whereas previous work (XONN) trains a
separate BNN per width.

toolkit [129] library. To run oblivious inference, we translate the model description and trained

parameters from Pytorch to the equivalent description in our C++ library. For measurements, we

run our oblivious inference code on a computer with 2.2 GHz Intel Xeon CPU and 16 GB RAM.

For runtime measurements, we consider two real-world network settings, namely LAN with a

throughput of 1.25 GBps, round trip time of 0.25ms, and WAN with a throughput of 20 MBps,

round trip time of 50ms. Reported runtimes do not include the setup time.

6.3.1 Evaluating Flexible BNNs

Let us start by evaluating our adaptive BNN training. We train slimmable networks with

maximum 4× width of the base models presented in Table 6.2. During training, we re-iterate

through subsets of widths {1×,1.5×, . . . ,4×} and perform gradient updates as explained in
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Figure 6.4: Runtime and communication cost of each architecture at different widths.
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Section 6.2.

Figure 6.3 presents the test accuracy of each network at different widths. We also report the

accuracy of independetly trained networks reported by XONN. The test accuracy of a particular

base BNN architecture can be improved by increasing its width. Our adaptive networks obtain

better accuracy than independently trained BNNs at each width. Once the adaptive network is

trained, the server can provide oblivious inference service to clients, which we discuss in the

following section.

6.3.2 Oblivious Inference

Recall that the runtime of oblivious inference is dominated by data exchange between

client and server. We compare the communication cost and runtime of our custom protocol

with XONN’s GC implementation in Figure 6.4. The horizontal axis in each figure presents the

network width. The left and right vertical axes respectively show the runtime (in seconds) and

communication (in Giga-Bytes). The figure shows that for all the benchmarks, the runtime and

communication of our method are significantly smaller than XONN. As seen, increasing the

network width results in higher communication and runtime, which is the cost we pay for higher

inference accuracy.
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Figure 6.5: Improvements in LAN runtime and communication compared to XONN. Our
protocols achieve 2× to 11× in runtime and 4× to 11× communication reduction.
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Figure 6.6: Breakdown of communication cost at linear and nonlinear layers for BC2 network.
Our protocol significantly reduces XONN’s GC-based linear layer cost, with a slight increase in
nonlinear layer cost.

Figure 6.5 summarizes the performance boost achieved by our protocols, i.e., 2× to 11×

lower runtime and 4× to 11× lower communication compared to XONN. The enhancement is

more significant at higher widths, which shows the scalability for our method. To illustrate the

reason behind our protocol’s better performance, we focus our attention to the BC2 network at

width 2.5, and show the breakdown of its communication cost in Figure 6.6. For the XONN

protocol, most of the cost is from linear operations, which we reduce from 2.16GB to 0.15GB.

In nonlinear layers, our cost is slightly more that XONN’s, i.e., 0.25GB versus 0.09GB, which

is due to the extra cost of conversion between AS and GC. Overall, the total communication is

reduced from 2.25GB to 0.4GB compared to XONN.

Comparison to Non-binary Models. Among the architectures presented in Table 6.2,

BC1 has been commonly evaluated in contemporary oblivious inference research. In Figure 6.1

we compare the performance of our method to the best-performing earlier work on this benchmark.

The vertical and horizontal axes in the figure represent test accuracy and runtime, hence, points to

the top-left corner are more desirable. Our method achieves a better accuracy/runtime tradeoff

than all contemporary work while providing flexibility. Compared to Cryptflow2 (the most recent

oblivious inference framework at the time of writing the thesis), our method achieves ∼ 2× faster

inference at the same accuracy.

Evaluation in Wide Area Network (WAN). So far we reported our runtimes for the

setting where client and server are connected via LAN, which is the most common assumption
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Figure 6.7: Inference runtime in WAN setting with∼ 20 MBps bandwidth and∼ 50 ms network
delay.

among prior work. We now extend our evaluation to the WAN setting, where the bandwidth

is ∼ 20MBps and the delay is ∼ 50ms. The aforesaid bandwidth and delay correspond to

the connection speed between two AWS instances located in “US-West-LA-1a” and “US-East-

2a”. Runtimes are reported in Figure 6.7, showing varying inference time from 13 to 367

seconds depending on architecture and width. The results show the great potential of BNNs for

commercial use. Indeed, the delay introduced by oblivious inference might not be tolerable in

many applications that require real-time response, e.g., Amazon Alexa. However, there exist

many applications where guaranteeing privacy is much more crucial than runtime, and several

seconds or even minutes of delay can be tolerated. We evaluate two such applications in the

following section.

6.3.3 Evaluation on Private Tasks

In this section, we study the application of oblivious inference in face authentication and

medical data analysis. Both applications involve sensitive features that the client wishes to keep

secret: revealing medical data is against the HIPPA [108] regulation, and facial features can be

used by malicious hackers to authenticate into the client’s personal accounts. Since we do not have

access to real private data, our best choice is to simulate these tasks using similar datasets that are

publicly available to the research community. We evaluate our method on FaceScrub [142, 143]
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Figure 6.8: examples of input samples and labels from each dataset. For training, we resize
Facescrub and Malaria cell images to 50×50 and 32×32, respectively.

and Malaria Cell Infection [144] as representatives for face authentication and medical diagnosis,

respectively.

Figure 6.8 shows example samples from each dataset. We were able to download∼ 57,000

images from the links provided by FaceScrub authors, of which we use 45000 for training, 6000

for validation, and 6000 for testing. The Malaria dataset is split to ∼ 24800 samples for training,

∼ 1300 for evaluation, and ∼ 1300 for testing. We train the BC2 architecture at width 3 and

1 on FaceScrub and Malaria. The accuracy and performance results in the WAN setting are

summarized in Table 6.3. Our model reaches 70.2.1% inference accuracy on FaceScrub and

94.7% accuracy on Malaria infection detection. The networks incur runtimes of 1-3 and 10-30

seconds in LAN and WAN settings, showing great potential for practical deployment. Note that

in a commercial application the network architecture can be selected more carefully and more

training data can be collected to achieve a better accuracy and runtime.

Table 6.3: Example BNNs trained for face recognition and medical application. We use the BC2
architecture at width 3 and 1 for FaceScrub and Malaria, respectively. Runtimes are measured in
the WAN setting.

Task Classes Accuracy Comm. Runetime (s)
LAN WAN

FaceScrub 530 70.8% 404 MBs 2.2 32.2
Malaria 2 94.7% 80.5 MBs 0.7 11.5
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6.4 Conclusion

This chapter studies the application of binary neural networks in oblivious inference,

where a server provides a privacy-preserving inference service to clients. Using this service,

clients can run the neural network owned by the server, without revealing their data to the

server or learning the parameters of the model. We explore favorable characteristics of BNNs

that make them amenable to oblivious inference, and design custom cryptographic protocols to

leverage these characteristics. In contrast to XONN [4], which uses GC to evaluate both linear

and non-linear layers, we use GC only for nonlinear layers. We present a custom protocol for

linear layers using OT and AS, which leads to 2× to 11× performance improvement compared

to XONN. We also address the problem of low inference accuracy by training adaptive BNNs,

where a single model is trained to be evaluated under different computational budgets. Finally,

we extend our evaluations to computer vision tasks that perform inference on private data, i.e.,

face authentication and medical data analysis.
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Chapter 7

Customized Solutions to Assure DNN

Robustness against Trojan Attacks

Training DNN models often requires access to massive volumes of domain-specific data

and high-end hardware platforms. To reduce development expenses, it is common to outsource

the data acquisition and training phase of DNNs to third party vendors. Unfortunately, such

outsourcing may make the trained DNNs vulnerable to malicious attacks. A malicious third party

vendor may perform a neural Trojan attack and endanger the safety of the underlying system.

This chapter proposes novel custom defense mechanisms against these Trojan attacks.

In a Trojan attack, the attacker tampers with the training phase. He selects a portion of the

training data, applies a trigger to the samples, and changes the underlying ground-truth labels to a

target label. Figure 7.1 illustrates examples of Neural Trojans. If the modified data and labels are

included in the training data, the resulting model shows two properties at test phase: (1) if the

Trojan trigger is applied to the input data, the DNN model will misclassify it to the target label.

(2) In the absence of the trigger, the DNN model will perform normally, i.e., it will have a high

accuracy on benign data.

Automated identification of the Trojan trigger is particularly challenging since the un-
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Figure 7.1: Example Trojans: (a) BadNets [7] with a sticky note and TrojanNN [8] with
(b) square and (c) watermark triggers.

derlying Trojan trigger can be arbitrary. In this chapter, we propose CleaNN, a trigger detection

scheme built upon concepts from sparse recovery and dictionary learning. The research outlined

in this chapter makes the following specific contributions:

7.1 Related Work

7.1.1 Trojan Attacks

Throughout this chapter, we focus on Trojan attacks on DNN classifiers. Below, we

overview state-of-the-art attack algorithms.

I BadNets. Authors of BadNets [7] propose adding the Trojan trigger into a random

subset of training samples and labeling them as the attack target class. The DNN is then trained

on the poisoned dataset. The shape of the Trojan trigger can be arbitrarily chosen by the attacker,

e.g., a sticky note on a stop sign as shown in Figure 7.1-a. Thus, BadNets are considered a viable

physical attack.

I TrojanNN. More recently, TrojanNN [8] assumes the attacker does not have access to

the training data but can modify the DNN weights. The attack first selects one or few neurons in

one of the hidden layers, then extracts the Trojan trigger in the input domain to activate the target

neurons. The DNN weights are then modified such that the model predicts the attacker’s target

class whenever the selected neurons fire. Unlike BadNets, the triggers generated by TrojanNN,

e.g., the square and watermark patterns in Figure 7.1-c,d, are not similar to natural images.
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However, TrojanNN is a viable attack algorithm in the digital domain; Notably, most Trojan

mitigation methods are less successful in identifying the complex triggers of TrojanNN [10, 145].

7.1.2 Existing Defense Strategies

I Robust Training and Fine-tuning. One plausible threat model assumes that the client

has access to the training dataset but is unaware of the existing Trojans. Robust learning methods

aim at identifying malicious samples during training [146–148]. For an already infected DNN,

authors of [149] perform pruning to remove the embedded Trojans at the cost of clean accuracy

degradation. We assume a more constrained attack model where the victim does not have any

access to the training dataset. Additionally, CleaNN does not rely on expensive model retraining

to establish the defense.

I Trigger Extraction. Several methods inspect the DNN model for existence of a

backdoor attack by reverse engineering the trigger. Neural Cleanse [145] provides a method for

extracting Trojan triggers without access to the training dataset. Follow up work improves the

search overhead [10] and reverse engineered trigger quality [150]. Though effective for simple

Trojan patterns, their performance drops when reverse engineering more complex triggers, e.g.,

those created by TrojanNN [8]. Our method is different than the above works in that, instead

of reverse engineering the trigger, we study the statistics of sparse representations from benign

samples and detect abnormal (outlier) triggers during inference. This allows CleaNN to identify

complex Trojan triggers without prior knowledge about the attack algorithm. Additionally,

CleaNN does not involve expensive reverse engineering and can be executed in real-time on

embedded hardware.

I Data and Model Inspection. Perhaps the closest method to CleaNN are those that

check the input samples to identify the presence of Trojan triggers. Authors of [151] query

the infected model and use activation clustering on hidden layers to detect Trojans. Similarly,

NIC [152] compares incoming samples against the benign and Trojan latent features to detect
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adversaries. These method require access to the labeled contaminated training dataset, which may

not viable in real-world settings. CleaNN, in contrast, does not require access to the training data

or infected data samples to construct the defense.

Sentinet [12] extract critical regions from input data using gradient information obtained

by back propagation. Februus [11] takes a similar approach along with utilizing GANs to inpaint

Trojan triggers with the caveat that the number of data samples required for GAN training is

large. STRIP [153] runs the model multiple times on each image with intentional injected noise

to identify Trojans. While the above works show high detection accuracy, their computational

burden of multiple forward/backward propagations is prohibitive for embedded applications.

CleaNN achieves a better detection accuracy with low computational complexity and sample

count, making it amenable for real-time deployment in embedded systems.
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Figure 7.2: High-level overview of CleaNN Trojan detection methodology. CleaNN detects
both digital and physical attacks using a pair of input and latent feature analyzers.

7.2 CleaNN Methodology

The overall flow of CleaNN is presented in Figure 7.2. Samples pass through a DCT

analyzer at the input and a feature analyzer at an intermediate DNN layer. The DCT analyzer

identifies regions of the input image with irregular patterns through sparse recovery in the
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frequency domain of the image. The feature analyzer identifies Trojan patterns that bypass the

DCT analyzer. Aggregating the decisions of the two modules enables CleaNN to identify a wide

range of digital and physical Trojan triggers.

7.2.1 Threat Model

Our threat model consists of an attacker who trains the DNN model and a client who

receives the model from the attacker. The client does not have access to the training data and

labels, but has some test data that is unlabeled. The client is not aware if the model is infected,

nor she has any information about possible Trojan trigger shapes and/or patterns. The client

constructs the defense using a small corpus of unlabeled data. In our experiments, the number of

client’s data points is less that 1% of the original training samples.

7.2.2 Sparse Recovery

Sparse coding aims to efficiently represent a corpus of data using an over-complete

dictionary. Given a matrix of (n) data observations X ∈ Rl×n, the goal of sparse coding is to find

a dictionary of normalized base vectors D ∈ Rl×m together with the sparse representation matrix

V ∈ Rm×n, such that both ||X−D ·V || is minimized and V is sparse enough. The objective can

be formalized into the following optimization problem:

min
D,V

fD(X) = min
D,V
‖X−D.V‖2 + γ‖V‖0 (7.1)

where the γ constant controls the sparsity of the codes representation V .

I Data. The data matrix X is obtained from benign data (without Trojan triggers). At

the input of the DNN, each column of matrix X is the frequency content of a P×P patch

(Section 7.2.3). At the latent domain, the each column of X represents a vectorized feature map

that has undergone dimensionality reduction via singular value decomposition (SVD). In sparse
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Figure 7.3: Illustration of sparse reconstruction for regular data (green circle) and out-of-
distribution samples (red circle).

recovery, an over-complete dictionary refers to the case where m >> l. Applying SVD reduces

the data dimensionality l, which in turn reduces the number of columns required in D. We set the

SVD rank such that at least 90% of the singular value energy is captured.

I Dictionary Learning. In sparse coding, the goal is to find a dictionary D that minimizes

the expectation of the error, i.e., min
D

Ex∼X [ fD(x)]. We use column selection-based sparse

decomposition [154] to obtain the dictionary that best represents the benign data. The algorithm

initializes a few columns of D with random data samples, then iteratively appends to the dictionary

one column at a time until a certain number of culumns are appended to D.

I Reconstruction. We use orthogonal matching pursuit (OMP) [155] for sparse coding.

Given a learned dictionary D, the goal of sparse recovery is to convert a data sample~x into the

coded representation~v. Algorithm 7 summarizes the steps in OMP. The output of the algorithm is

the reconstructed version ~̃x. The reconstruction error is then computed as ||~x−~̃x||F where || · ||F

denotes the Frobenius norm.

Running the OMP algorithm on benign data results in a low reconstruction error. Con-

versely, out-of-distribution Trojan samples show a high reconstruction error since the dictionary

D does not capture their statistics. This effect is illustrated in Figure 7.3 in a 2D space, where the

arrows ~d1 and ~d2 represent dictionary columns and blue dots represent the data distribution. The

green and red points show benign and Trojan samples, which have low and high reconstruction

errors, respectively.
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Algorithm 7 OMP algorithm
Inputs: Dictionary D ∈ Rl×m, input sample~x ∈ Rl , number of non-zero coefficients for sparse
recovery (λ ).
Output: reconstruction ~̃x ∈ Rl .

1: ~r0←~x . residual error:~r0 ∈ Rl

2: D∗← /0 . empty dictionary subset
3: for i = 0, . . . ,(λ −1) do
4: ~p = |D ·~ri| . projection vector: ~p ∈ Rm

5: j = argmax ~p
6: D∗← D∗∪D[:, j] . update dictionary subset
7: ~v← argmin ‖ri−D∗ ·~v‖2
8: ~ri+1←~ri−D∗ ·~v . update residual error
9: end for

10: return D∗ ·~v

7.2.3 DCT extraction

The discrete cosine transform (DCT) is a way of representing visual data in the frequency

domain. For a P×P image patch x ∈ RP×P, the DCT content F ∈ RP×P is defined as follows:

Fu,v =Cu,v

P−1

∑
i=0

P−1

∑
j=0

xi, j cos
[

u π

P

(
i+

1
2

)]
cos
[

v π

P

(
j+

1
2

)]
(7.2)

where xi, j is the input at location (i, j) and Cu,v is a constant. The DCT content can be converted

into a vector by following a zigzag pattern [156]. The elements in the resulting vector are sorted

from low to high frequency content.

In natural images, low-frequency elements generally have a relatively higher magnitude

than the high-frequency DCT components. In digital Trojan patches, however, the high-frequency

content are unexpectedly large as shown in Figure 7.4. This behaviour can be identified as an

anomaly by sparse recovery: given a dictionary build upon benign (natural) images, Trojan

patterns with irregular DCT content will show a high reconstruction error.

Based on the above intuition, we build a DCT analyzer that extracts the frequency content

from P×P patches of the input image. We obtain the dictionary by passing benign data through

the DCT extractor module. The obtained dictionary will reconstruct benign and Trojan regions of
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DCT Component #

Figure 7.4: Average magnitude of DCT components for Trojan samples, normalized by benign
data, shown in the three RGB channels. Trojans contain abnormally larger amounts of high-
frequency components (highlighted regions).

the input image with low and high error, respectively, allowing CleaNN to automatically identify

digital Trojan triggers.

7.2.4 Outlier Detection

As discussed in Section 7.2.2, we leverage the disparity between the reconstruction error

of benign and Trojan samples after undergoing sparse recovery to detect Trojans. Towards this

goal, we first extract the statistical properties of the reconstruction error across benign samples.

The out-of-distribution samples, i.e., outliers, are then marked as Torjan. In order to model out

of distribution samples, we utilize a multivariate extension of Chebyshev’s inequality [157].

Consider a random variable X ∈ R1×d and let {~xi}N
i=1 denote a set of observed samples drawn

from PX . Based on the N observations, we calculate the empirical mean ~µ and the covariance Σ

as follows:

~µ =
1
N

N

∑
i=1

~xi , Σ =
1

N−1

N

∑
i=1

(~xi−~µ)(~xi−~µ)T (7.3)

The Chebyshev’s inequality provides an upper bound on the probability of samples lying

outside ellipsoids of the form (~x−~µ)Σ−1(~x−~µ)T = ε2. Let us denote the distance of each
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sample from the distribution by:

dist(~x) = (~x−~µ)Σ−1(~x−~µ)T (7.4)

The Chebyshev’s inequality can then be formally written as:

P(dist ≥ ε
2)≤ min

{
1,

d(N2−1+Nε2)

N2ε2

}
(7.5)

The above inequality implies that one can categorize samples satisfying large enough values of

ε as out-of-distribution, i.e., outlier. Based on this intuition, we measure the empirical mean

and covariance in Eq. (7.3) on a held-out dataset of benign samples and use the Chebyshev’s

inequality to characterize Trojaned data that do not belong to the benign probability distribution.

The right-hand side of Eq. (7.5) provides the probability of a benign sample being categorized as

outlier or Trojan. For large-enough values of N (N→ ∞), this probability tends to min
{

1, d
ε2

}
.

Figure 7.5-a, b illustrates example Trojan data together with the corresponding reconstruc-

tion error heat maps. As seen, the Trojan trigger patterns have relatively larger reconstruction

error compared to the rest of the image. Figure 7.5-c visualizes the output of the outlier detection.

Here, we generate a binary mask where the values of 0 and 1 correspond to in-distribution and

outlier labels, respectively. As seen, parts of the input image that are covered with the Trojan

trigger are correctly distinguished from benign regions.

I Tuning the parameter ε . We provide a systematic way to tune the parameter ε for

outlier detection, based on the user-defined constraints on Trojan defense performance. An

incoming sample I ∈ Rd×K×K is labeled as Trojan if at least one of its enclosing components

Ik ∈ Rd is categorized as an outlier based on Eq. (7.5). The probability of an image being
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Figure 7.5: (a) Example Trojan data with watermark and square triggers [8], (b) reconstruction
error heatmap, and (c) output mask from the outlier detection module.

categorized as Trojan is therefore:

PI(Tro jan) = 1−
K×K

∏
k=1

PIk(Benign) (7.6)

When examining the outlier detection scheme on benign samples, the left-hand side

of Eq. (7.6) is equivalent to the False Positive Rate (FPR), i.e., the probability of a benign

image being mistaken for a Trojan. Eq. (7.5) provides that for benign samples PIk(Benign|Ik ∈

Benign)≥ 1− d
ε2 . The FPR is thus upper-bounded by:

FPR = PI(Tro jan|I ∈ Benign)≤ 1−
(

1− d
ε2

)K×K
(7.7)

We can therefore determine the parameter ε based on the desired application-specific FPR denoted

by FPRtarget :

sup
ε

FPR = 1−
(

1− d
ε2

)K×K
≤ FPRtarget (7.8)

⇒ d
ε2 ≤ 1− K×K

√
1−FPRtarget (7.9)
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where d
ε2 is the per-patch FPR, i.e., PIk(Tro jan|Ik ∈ Benign).

I Reducing FPR with Morphological Transforms. As seen in Figure 7.5, certain

benign elements in the samples might be marked as Trojan, thus increasing the FPR. To reduce

such patterns, we utilize two operations from morphological image processing, namely, erosion

and dilation, implemented as convolution layers. Erosion emphasizes contiguous regions in the

input mask and removes small, disjoint regions. Once erosion is applied, binary dilation restores

high-density non-zero regions in the original input mask. Figure 7.6-a demonstrates the obtained

binary mask from the outlier detection where the benign regions mistaken for being Trojan are

marked with red boxes around them. Figure 7.6-b shows how erosion successfully removes the

false alarms and Figure 7.6-c demonstrates how dilation restores the original shape of the binary

mask in Trojan regions.

Figure 7.6: (a) Binary Trojan mask with the red rectangles indicating False alarms. (b) Output
mask obtained after applying 2D binary erosion. (c) Output mask after restoring the high-
concentration Trojan regions with 2D binary dilation.

7.2.5 Decision Aggregation

Figure 7.7 illustrates the decision flowchart for CleaNN Trojan detection. As shown, a

successful Trojan attack needs to satisfy two conditions: (1) both the DCT and feature analyzers

mistakenly mark the sample as benign, and (2) the victim model classifies the sample in the target

Trojan class. For each Trojan sample xt
i , the attack success Si is computed as:

Si = (1−dDA(xt
i))(1−dFA(xt

i))(M (xt
i)==ct) (7.10)
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where dDA(·) and dFA(·) denote the decision of the DCT and feature analyzer modules, respec-

tively, with the value of 1 meaning the Trojan has been detected. Here, M (·) represents the

classification decision made by the victim model and ct is the Trojan attack target class. The

overall attack success rate (ASR) is the expectation of S over Trojan samples (xt ∼X t). Since

the three terms in Eq. (7.10) are independent, we can write ASR as:

ASR = EX t (1−dDA)×EX t (1−dFA)×EX t (M (xt
i)==ct) (7.11)

DCT 
Analyzer

Feature
Analyzer

Detected
Trojan?

Detected
Trojan?

Yes
Yes

No No

Discard 
Sample

Classify 
Sample

Sample

Figure 7.7: Decision flowchart for Trojan detection in CleaNN.

The first and second terms in the equation above are quantified using the True Positive

detection rate (TPR). In this context, TPR measures the ratio of Trojan samples that are correctly

identified by the defense. Let us denote the TPR for the DCT and feature analyziers with T PRDA

and T PRFA, respectively. Eq. (7.11) can then be equivalently written as:

ASR = (1−T PRDA)(1−T PRFA)×
1
N

N

∑
i=1

(M (xt
i)==ct) (7.12)

Similarly, the classification accuracy on benign samples ACC−C can be written in terms

of the FPR of the DCT and feature analyzers:

ACC−C = (1−FPRDA)(1−FPRFA)×
1
N

N

∑
i=1

(M (xi)==ci) (7.13)

where ci denotes the correct class for the i−th sample.

122



7.3 Experiments

We evaluate CleaNN on three visual classification datasets of varying size and complexity,

namely, MNIST [105] for handwritten digits, GTSRB [158] for road signs, and VGGFace [159]

for face data. The number of classes for each dataset is 10, 43, and 2622, respectively. We

corroborate CleaNN effectiveness against variations of two available state-of-the-art Neural

Trojan attacks. In what follows, we provide detailed performance analysis and comparisons with

prior work.

7.3.1 Attack Configuration

Throughout the experiments, we consider input-agnostic Trojans where adding the trigger

to any image causes misclassification to the attack target class. Table 7.1 summarizes the evaluated

benchmarks along with their corresponding Trojan attacks and triggers.

I BadNets. We implement the BadNets [7] attack with various triggers as an example

of a realistic physical attacks. The injected Trojans include a white square and a Firefox logo

placed at the bottom right corner of the input image. We embed the backdoor by injecting ∼ 10%

poisoned data samples during training.

I TrojanNN. We evaluate CleaNN against TrojanNN [8] as a digital attack with complex

triggers. The attack is implemented using the open-source models shared by TrojanNN authors1.

We perform experiments with two variants of TrojanNN triggers, namely, square and watermark,

crafted for the VGGFace dataset.

7.3.2 Detection Performance

We apply CleaNN Trojan mitigation at the input and latent space of infected DNNs. To

create the defense, we separate 500, 430, and 2622 clean samples from MNIST, GTSRB, and

1https://github.com/PurduePAML/TrojanNN
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Table 7.1: Evaluated datasets and attack algorithms.

Dataset Input Size Architecture Attack Trigger
MNIST 1x28x28 2CONV, 2MP, 2FC BadNets square

GTSRB 3x32x32 6CONV, 3MP, 2FC BadNets
square
Firefox

VGGFace 3x224x224 13CONV, 5MP, 3FC TrojanNN
square

watermark

VGGFace test sets, respectively. The aforementioned size for the benign dataset corresponds to

1% of the training data size for MNIST and GTSRB and 0.1% VGGFace training data. Such

low data size requirements provide a competitive advantage for CleaNN defense in real-world

scenarios. We summarize other defense parameters for our evaluated benchmarks in Table 7.2.

These parameters are selected to maintain a high classification accuracy over the benign data.

Table 7.2: Parameters of CleaNN modules for various datasets. P: DCT windows size, l: feature
size for sparse recovery, m : number of dictionary columns for sparse recovery, λ : sparsity
parameter in sparse recovery, ε2: distance threshold for outlier detection.

Dataset Trigger Input Analyzer Feature Analyzer
P l m λ ε2 l m λ ε2

MNIST Square 4 48 1000 5 5×10−4 279 500 80 2×10−3

GTSRB Square
4 48 1000 5 5×10−4 85 420

80 3×10−3

FireFox 50 1×10−2

VGGFace Square
8 192 1000 5

5×10−4
520 2622

80 1×10−4

Watermark 8×10−4 80 1×10−4

We evaluate CleaNN Trojan resiliency on physical and digital attacks in Table 7.3. Specif-

ically, under “Defended Model”, we evaluate the drop in clean data accuracy (ACC↓), the attack

success rate (ASR), and Trojan ground-truth label recovery (TGR). In addition to our results,

we include prior art performance in terms of the above-mentioned criteria. On MNIST, CleaNN

achieves 0% ASR, with only 0.1% drop in clean data accuracy, outperforming the prior art. For

GTSRB, CleaNN achieves an ASR of 0% and a lower drop of accuracy compared to all prior

work, except for Deep Inspect, which suffers from a much higher ASR of 8.8%.

On digital attacks, CleaNN achieves 0.0% ASR with only 0.8% and 2.0% degradation
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of accuracy for square and watermark shapes. The watermark trigger covers a large area of the

input image, obstructing the critical features. As such, while CleaNN detects the Trojan with

high success, it shows a lower TGR compared to our other triggers. Note that Neural Cleanse and

Deep Inspect perform DNN training on synthetic datasets achieved with model inversion [160].

As a result, their post-defense accuracy is not directly comparable with CleaNN, which does not

perform DNN retraining. We emphasize that while such retraining contributes to accuracy, it may

not be feasible in real-world applications.

Table 7.3: Evaluation of CleaNN on various physical and digital attacks. Comparisons with
state-of-the-art prior works, i.e., Neural Cleanse(NC) [9], Deep Inspect (DI) [10], Februus [11],
and SentiNet [12] are provided where applicable.

Dataset Trigger Work Retrain Infected Model Defended Model
ACC-C ASR ACC↓ ASR TGR

MNIST
(Physical
Attack)

Square
(4×4)

NC yes 98.5 99.9 0.8 0.6 NA
DI yes 98.8 100.0 0.7 8.8 NA

CleaNN no 99.3 100.0 0.1 0.0 98.7

GTSRB
(Physical
Attack)

Square
(4×4)

NC yes 96.5 97.4 3.6 0.1 NA
DI yes 96.1 98.9 -1.0 8.8 NA

Februus yes∗ 96.8 100 1.2 0.0 96.5
CleaNN no 96.5 99.4 0.0 0.0 94.7

Firefox
(6×6)

CleaNN no 92.6 99.8 0.4 1.7 83.5

VGGFACE
(Digital
Attack)

Square
(59×59)

NC yes 70.8 99.9 -8.4 3.7 NA
DI yes 70.8 99.9 0.7 9.7 NA

SentiNet‡ no NA 96.5 NA 0.8 NA
CleaNN no 74.9 93.52 0.8 0.0 70.1

Watermark
NC yes 71.4 97.60 -7.4 0.0 NA
DI yes 71.4 97.60 0.5 8.9 NA

CleaNN no 74.9 58.6 2.0 0.0 41.38

∗ Februus performs GAN training. † SentiNet reports results on LFW [161] dataset.

I Sensitivity to Trigger Size. We perform experiments on the GTSRB dataset with a

square Trojan trigger and change the trigger size such that it covers between ∼ 0.4% to ∼ 14%

of the input image area. The size range is chosen to ensure that the corresponding triggers are

viable in real settings and provide a high ASR. We summarize the obtained results in Figure 7.8.
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CleaNN significantly reduces the ASR while enabling recovery of ground-truth labels with a high

accuracy across all trigger sizes. This is expected since CleaNN does not rely on the trigger size

to construct the defense. For average sized Trojans, CleaNN successfully detects the existence of

triggers and reduces the ASR to less than 1%. For larger trigger sizes, the TGR is relatively lower

since the Trojan occludes the main objects in the image.

Figure 7.8: Analysis of CleaNN sensitivity to Trojan trigger size.

I Offline Preprocessing Overhead. The preparation of CleaNN defensive modules

consists of the following steps:

• DCT extraction and dictionary leaning on benign inputs.

• Computing ~µ and Σ in Eq. (7.3) for input outlier detection.

• Computing SVD and dictionary learning at latent feature maps.

• Computing ~µ and Σ for latent outlier detection.

In practice, the above computation incurs negligible runtime compared to DNN training. We

implement the above steps in PyTorch and measure the runtime on an NVIDIA TITAN Xp GPU.

For our GTSRB benchmark, the above operations require 0.06, 0.19, 10.47, and 0.1 seconds,

respectively. The defense construction time is therefore ∼ 11 seconds which is ∼ 1.8% of the

time required to train the victim DNN on this benchmark. For the more complex VGGFace

dataset, the above operations require 1.05, 0.54, 48.3, and 1.2 seconds, respectively, resulting in

a total of ∼ 51 seconds for defense preparation.
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7.4 Conclusion

This chapter presents CleaNN, an end-to-end framework for online accelerated defense

against Neural Trojans. The proposed defense strategy offers several intriguing properties: (1) The

defense construction is entirely unsupervised and sample efficient, i.e., it does not require any

labeled data and is established using a small clean dataset. (2) It is the first work to recover the

original label of Trojan data without need for any fine-tuning or model training. (3) CleaNN

provides theoretical bounds on the false positive rate. We consider a challenging threat model

where the attacker can use Trojan triggers with arbitrary shapes and patterns while no knowledge

about the attack is available to the client. CleaNN light-weight defense and realistic threat model

makes it an attractive candidate for practical deployment. Our extensive evaluations corroborate

CleaNN’s competitive advantage in terms of attack resiliency.
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