
UC Davis
UC Davis Previously Published Works

Title
Speech-related dorsal motor cortex activity does not interfere with iBCI cursor control.

Permalink
https://escholarship.org/uc/item/4tc7r5ss

Journal
Journal of neural engineering, 17(1)

ISSN
1741-2560

Authors
Stavisky, Sergey D
Willett, Francis R
Avansino, Donald T
et al.

Publication Date
2020-02-01

DOI
10.1088/1741-2552/ab5b72
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4tc7r5ss
https://escholarship.org/uc/item/4tc7r5ss#author
https://escholarship.org
http://www.cdlib.org/


Speech-related dorsal motor cortex activity does not interfere 
with iBCI cursor control

Sergey D. Stavisky1,2,10,*, Francis R. Willett1,2, Donald T. Avansino1, Leigh R 
Hochberg3,4,5,6, Krishna V. Shenoy#2,7,8,9,10, Jaimie M. Henderson#1,10

1Department of Neurosurgery, Stanford University, Stanford, CA, USA.

2Department of Electrical Engineering, Stanford University, Stanford, CA, USA.

3VA RR&D Center for Neurorestoration and Neurotechnology, Rehabilitation R&D Service, 
Providence VA Medical Center, Providence, RI, USA.

4School of Engineering and Carney Institute for Brain Science, Brown University, Providence, RI, 
USA.

5Department of Neurology, Harvard Medical School, Boston, MA, USA.

6Center for Neurotechnology and Neurorecovery, Dept. of Neurology, Massachusetts General 
Hospital, Boston, MA, USA.

7Department of Bioengineering, Stanford University, Stanford, CA, USA.

8Department of Neurobiology, Stanford University, Stanford, CA, USA.

9Howard Hughes Medical Institute at Stanford University, Stanford, CA, USA.

10Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA.

# These authors contributed equally to this work.

Abstract

Objective.—Speech-related neural modulation was recently reported in “arm/hand” area of 

human dorsal motor cortex that is used as a signal source for intracortical brain-computer 

interfaces (iBCIs). This raises the concern that speech-related modulation might deleteriously 

affect the decoding of arm movement intentions, for instance by affecting velocity command 

outputs. This study sought to clarify whether or not speaking would interfere with ongoing iBCI 

use.
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Approach.—A participant in the BrainGate2 iBCI clinical trial used an iBCI to control a 

computer cursor, spoke short words in a stand-alone speech task, and spoke short words during 

ongoing iBCI use. We examined neural activity in all three behaviors and compared iBCI 

performance with and without concurrent speech.

Main results.—Dorsal motor cortex firing rates modulated strongly during stand-alone speech, 

but this activity was largely attenuated when speaking occurred during iBCI cursor control using 

attempted arm movements. “Decoder-potent” projections of the attenuated speech-related neural 

activity were small, explaining why cursor task performance was similar between iBCI use with 

and without concurrent speaking.

Significance.—These findings indicate that speaking does not directly interfere with iBCIs that 

decode attempted arm movements. This suggests that patients who are able to speak will be able to 

use motor cortical-driven computer interfaces or prostheses without needing to forgo speaking 

while using these devices.

Introduction

One application of intracortical brain-computer interfaces (iBCI) is to restore movement and 

communication for people with paralysis by decoding the neural correlates of attempted arm 

and hand movements (e.g., Brandman et al., 2017; Slutzky, 2019). Most existing pre-clinical 

[3-11] and clinical [12-18] iBCI systems record neural signals from the “arm/hand area” of 

dorsal motor cortex. An important consideration for these systems is whether other cognitive 

processes may modulate the same neural population whose activity is being decoded 

(translated into movement commands by an algorithm, see [19]). If so, activity unrelated to 

the user’s movement intentions could “mask” or add to the underlying movement intention 

signal, thereby acting as a nuisance variable that deleteriously affects the decoder output and 

thus reduces iBCI performance.

We recently reported that neurons in dorsal motor cortex modulate during speaking and 

movement of the mouth, lips, and tongue [20,21]. On the one hand, this speech-related 

activity presents an opportunity for efforts to build BCIs to restore lost speech [2,22]. But on 

the other hand, this finding raises an immediate practical concern for iBCI applications such 

as controlling a prosthetic device with attempted arm and hand movements: does this 

speech-related activity interfere with ongoing iBCI use, for example by “leaking out” via the 

decoder so that whenever the person tries to speak, an unintentional command is sent to the 

BCI-driven effector? If this were the case, it would reduce the clinical utility of iBCI 

systems, since having to stay silent while using a brain-driven computer interface or 

prosthetic arm would be a substantial limitation. There is some anecdotal evidence that 

people can talk while using their iBCI from the supplementary videos and media coverage 

accompanying [12,14] and our own observations during [16]. However, to the best of our 

knowledge this question has never been directly examined, which is not surprising given that 

there was previously little reason to suspect that there was speech-related activity in dorsal 

motor cortex.

Here we specifically tested for speech-related interference while a BrainGate2 participant 

performed an iBCI task in which he used arm movement imagery to move a computer cursor 

Stavisky et al. Page 2

J Neural Eng. Author manuscript; available in PMC 2021 July 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



to a target in a 2D workspace. We used a task design in which the participant was randomly 

presented with an auditory prompt during ongoing cursor control. Depending on each 

block’s condition, the participant was instructed either to say a short word after hearing the 

prompt, or to not speak when hearing the prompt. We also compared speech-evoked 

responses during this ongoing iBCI task to responses when speaking words during a stand-

alone audio-cued speaking task. We found that speech-related neural modulation was greatly 

reduced during ongoing BCI use compared to stand-alone speaking, and that the speech-

related firing rate changes had minimal effect on decoder output when speaking during BCI 

use. Consistent with this, we did not observe reduced cursor task performance during the 

speak-during-BCI condition.

Methods

Participant and approvals

This research was conducted within the BrainGate2 Neural Interface System pilot clinical 

trial (ClinicalTrials.gov Identifier: NCT00912041), whose overall purpose is to collect 

preliminary safety information and demonstrate proof of feasibility that an iBCI can help 

people with tetraplegia communicate and control external devices. Permission for the trial 

was granted by the U.S. Food and Drug Administration under an Investigational Device 

Exemption (Caution: investigational device. Limited by federal law to investigational use). 

The study was also approved by the Institutional Review Boards of Stanford University 

Medical Center (protocol #20804), Brown University (#0809992560), and Partners 

HealthCare and Massachusetts General Hospital (#2011P001036).

One participant (‘T5’) performed research sessions specific to this study. T5 is male, right-

handed, and 65 years old at the time of the study. He was diagnosed with C4 AIS-C spinal 

cord injury eleven years prior to these research sessions. T5 retained the ability to weakly 

flex his left elbow and fingers and has some slight and inconsistent residual movement of 

both the upper and lower extremities. He is able to speak and move his head. T5 gave 

informed consent for the research and publications resulting from the research, including 

consent to publish audiovisual recordings.

Behavioral tasks

We compared data from a stand-alone speaking task and two variants of a BCI Radial 8 

Target Task that had randomly occurring audio prompts. Depending on the block, these 

audio prompts instructed the participant to either speak a word (which was specified to him 

before the start of the block), or to say nothing. We examined specific time epochs within 

the data from these tasks to isolate neural activity and/or cursor kinematics across a variety 

of different behavioral contexts: stand-alone speaking (figures 1 and 2); speaking in response 

to an audio prompt during ongoing BCI control (figures 1 and 2); BCI cursor trials without 

any audio prompts or speaking (figures 1-3); and BCI cursor control following an audio 

prompt either with or without subsequent speaking (figure 3). During all tasks, the 

participant was comfortably seated in his wheelchair while facing a computer monitor and 

microphone, as illustrated in figure 1a.
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Stand-Alone Speaking Task: This audio-cued speaking task was based on the words 

speaking task from [21], except that here we used a subset (five) of the words arbitrarily 

chosen from the ten words in that previous study to increase the number of repetitions per 

word condition. A custom program written in MATLAB (The Mathworks) generated audio 

prompts on each trial. These consisted of two beeps to alert the participant that the trial was 

starting, followed after 0.4 seconds by the cued word being spoken by the computer. Then, 

after a delay of 0.8 seconds, two clicks were played to serve as the go cue for the participant 

to speak back this cued word. The inter-trial interval was 2.2 seconds. On ‘silence’ trials, no 

word was prompted, and the participant was instructed to speak nothing back in response. 

Words were pseudorandomly interleaved in sequences consisting of one repetition of each 

word (and one silence trial). The participant was instructed to look at the center of the 

(blank) screen in front of him during the task and refrain from any other movements or 

speech during the task.

Two blocks each consisting of 17 repetitions of each of the five pseudorandomly interleaved 

words were collected on each of the two research sessions. We did not analyze the rare trials 

where the participant missed a word, misspoke, or if the trial was interrupted by loud noise 

in the environment. On the first session, the number of trials for each speaking condition 

were: silence (34), seal (33), shot (34), more (33), bat (34), beet (34). On the second session, 

the trial counts were: silence (34), seal (34), shot (34), more (34), bat (33) beet (34).

BCI Radial 8 Target Task: The core of this task was a standard BCI cursor-to-target 

acquisition task in which the participant controlled the velocity of a computer cursor with 

decoded neural activity [23]. A trial was successful if the participant kept the center of the 

circular cursor (45 pixels diameter) inside a circular target (100 pixels diameter) for a 

contiguous 400 ms before a 10 second trial time out elapsed. The participant was instructed 

to acquire the target as quickly as possible. The target location alternated between the center 

of the workspace and a radial target at one of eight equally spaced locations that were 409 

pixels from the workspace center. The overall workspace was by 1920 pixels wide by 1080 

pixels tall (59.8 × 33.6 cm at a distance of approximately 73 cm from the participant). Each 

block was 5 minutes long.

We asked the participant not to move his head during all BCI cursor tasks. Otherwise, head 

movement-related neural modulation might occur during the task [24] and become utilized 

by the cursor velocity decoder (due to correlations in head movement and target direction). 

If so, then head movements that might co-occur with speaking could also affect the cursor 

velocity decoder in a way that is unrelated to a neural overlap between attempted arm 

movements and speech. Specifically, an OptiTrack V120:Trio camera system mapped the 

vertical (coronal) plane position of a headband worn by the participant onto to an additional 

on-screen “head cursor”, which was a different color from the BCI-controlled cursor. The 

participant was instructed to keep the head cursor within 80 pixels of the screen center, and 

could not acquire targets if the head-tracking cursor was outside of this boundary. 

Furthermore, a trial was immediately failed if the head-tracking cursor’s speed exceeded 270 

pixels / second. The participant was already familiar with this “head still” BCI protocol from 

previous research sessions (not part of this study) and was successfully able to keep his head 

still while performing the BCI task.
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The novel element of the BCI task in this study was the addition of an audible speaking 

prompt at random times during the Radial 8 Target Task. This prompt consisted of a pair of 

go clicks (like in the Stand-Alone Speaking Task) delivered every 4 to 10 seconds (clipped 

exponential distribution with a mean interval of 7 seconds) during the Radial 8 Task block. 

The “speech prompt” in figure 3d refers to the start of the second click. At the start of each 

BCI task block, the participant was told to either say a specific word when he heard the 

audio prompt (a ‘BCI with speaking block’), or to say nothing (a ‘BCI silent block’). We 

refer to trials within these blocks that had an audio prompt as ‘prompted verbal’ and 

‘prompted silent’ trials, respectively. The order of these block types was counter-balanced 

within the session in a ‘ABAB’ sequence on the first session (A = BCI with speaking, B = 

BCI silent) and a ‘ABBA, BAAB, …’ sequence on the second session. This task was 

designed to identify whether the act of speaking interfered with BCI cursor control, while 

reducing the potential effects of perception of, and distraction by, the prompts. Specifically, 

the participant was instructed to say the same word in response to the prompt throughout a 

given BCI with speaking block. We used a fixed pre-instructed word and a simple click 

prompt (rather than audio of the word) in order to minimize the perceptual and cognitive 

burden of the prompted speaking element of this task. We tried to match the prompts’ 

distraction effects across conditions by presenting the same click prompts during the BCI 

silent blocks, with presentation times drawn from the same probability distribution. We 

changed the instructed word between blocks in order to measure neural responses during 

speaking a variety of words, despite using the same word within each block. During the first 

session, the words that the participant was instructed to speak in response to the BCI with 

speaking prompts were “beet” and “bot”, in that order across blocks. During the second 

session, the words were “seal”, “more”, “bat”, “shot”, and “beet”.

The participant also performed one more block of the Radial 8 Target Task during which he 

was asked to speak out loud a story of his choosing while using the BCI cursor to acquire 

targets. There were no audio prompts during this ‘storytelling’ block. In contrast to the 

prompted speaking during the other blocks, this story was self-generated; it was not pre-

rehearsed or read out loud from a script. Thus, there was also an additional cognitive task 

element of generating the story in addition to the motoric element of continuous speaking.

As part of this study, we asked the participant about his subjective experience when speaking 

while using the BCI. At the start of the first research session and after the second research 

session, we asked the participant whether he thought speaking made it harder to control the 

BCI cursor. We also asked an open-ended “how did that block feel?” after each block.

Neural and audio recording

T5 had two 4.2 mm x 4.2 mm 96-electrode (1.5 mm long) Utah arrays (Blackrock 

Microsystems) neurosurgically placed in the dorsal ‘hand knob’ area of his left motor cortex 

28 months prior to this study. Array locations are shown overlaid on the participant’s MRI-

derived brain anatomy in figure 1a. The naming scheme for electrodes in figure 1 is <array 

#>.<electrode #> where array 1 is the more lateral array and the electrode numbers (ranging 

from 1 to 96) follow the manufacturer’s electrode numbering scheme. Neural signals 

(electrodes’ voltages with respect to a reference wire) were recorded from the arrays using 
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the NeuroPort™ system (Blackrock Microsystems) and analog filtered from 0.3 Hz to 7.5 

kHz. The signals were then digitized at 30 kHz and sent to the experiment control computers 

for storage and also real-time processing to implement the BCI. This real-time BCI system 

was implemented in custom Simulink Realtime software.

To extract action potentials (spikes), the signal was first common average re-referenced 

within each array (i.e., at each time sample, we subtracted from each electrode the mean 

voltage across all 96 electrodes of that array), and then filtered with a 250 Hz asymmetric 

FIR high pass filter designed to extract spike-band activity [25]. A threshold crossing spike 

was detected when the voltage crossed a threshold of −4.5 × root mean square (RMS) 

voltage. In keeping with standard iBCI practice [14,16,17,26,27], we did not spike sort 

(assign threshold crossings to specific single neurons). For analysis and visualization, spike 

trains were smoothed with a Gaussian kernel with σ = 25 ms.

Audio, including the participant’s voice and task-related sounds played by the experiment 

control computers, were recorded by the microphone (Shure SM-58) and pre-amplified ~60 

dB (ART Tube MP Studio microphone pre-amplifier). This audio signal was then recorded 

by the electrophysiology data acquisition system via an analog input port and digitized at 30 

ksps. Each speaking event’s sound onset time (‘speech’ events in figures 1 and 2) was 

manually labeled from visual and auditory inspection of the recorded audio data. For the 

silence condition, there was not a sound onset time; however, for several analyses (the 

speech-aligned firing rates in figure 1b and speech-aligned neural push in figure 2b,c) we 

wanted to compare neural activity during the overt speaking conditions to a comparable time 

period from the silence condition. We did this by assigning a “faux” sound onset time to 

each silent trial equal to the median sound onset time (relative to the audio prompt time) 

across the overt speaking conditions from that dataset.

BCI cursor control

The participant controlled the 2D velocity of the on-screen cursor with a Recalibrated 

Feedback Intention-Trained Kalman Filter (ReFIT-KF) as previously described in [8,16,23]. 

Decoder calibration began with the participant watching automated movements of the cursor 

to targets (Radial 8 Target Task) while instructed to attempt to move his arm as if he were 

controlling the cursor. This provided an initial set of neural and velocity data that were used 

to seed an initial velocity Kalman filter decoder. This decoder was then used to control the 

cursor in a subsequent Radial 8 Target Task block.

Successful trials from this closed-loop BCI block were then used to fit a new “recalibrated” 

decoder. These kinematics underwent two adjustments prior to being used as training data to 

putatively better match them to the user’s underlying movement intentions [8]. First, 

velocities during cursor movements were rotated to point towards the target (regardless of 

the actual instantaneous cursor velocity). Second, velocity was set to 0 while the cursor was 

over the target. In our second research session, we performed an additional re-calibration 

from the closed-loop block performed using this second decoder because a velocity bias was 

observed during that block. There were no audio speaking prompts during these initial 

decoder calibration blocks; those were only included for the main task from which all the 

analyzed data come. To improve the consistency of the Kalman filter’s dynamics across 
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decoder fits and facilitate reproducibility, we used a fixed smoothing and gain during the 

Kalman filter fitting (both from open-loop data and from closed-loop data) as described in 

[28]. Specifically, we used smoothing α = 0.94 and gain β = 500 pixels/s.

Due to within-day non-stationarities in neural recordings [29], iBCI decoder performance 

can be sustained by occasionally re-calibrating the decoder from recently collected data 

[16,30]. We therefore performed several decoder recalibrations during the longer second 

research session; orange ticks in figure 3a indicate when a new decoder was used. These re-

calibrations used the previous two blocks as training data, i.e., one BCI with speaking block 

and one BCI silent block. Our reasoning for including one block of each task condition 

when recalibrating the decoder was that, if there were context-dependent differences 

between these two conditions, possible model mismatch due to recalibrating from just one 

condition (e.g., only refitting from BCI with speaking blocks) would unfairly penalize 

subsequent performance during the other condition (e.g., this would potentially penalize BCI 

with silence blocks).

Once fit, the time-bin-by-time-bin operation of this decoder can be described in the standard 

steady-state Kalman filter form [31,32]:

v(t) = M1vt‐1 + M2yt (1)

where v(t) is a 2 × 1 vector of horizontal and vertical dimension velocities at time step t, yt is 

a 192 × 1 vector of each electrode’s firing rates in a 15 ms bin (after subtracting a static 

baseline offset rate), M1 is a 2 × 2 diagonal matrix that applies temporal smoothing to the 

velocity [28], and M2 is a 2 × 192 matrix that maps firing rates to changes in velocity by 

assigning each electrode a preferred direction such that increases in that electrode’s firing 

rate tend to “push” the velocity more in this direction.

We use this factorization of the decoder to compute instantaneous “neural push” [33,34], 

which is a 2 × 1 vector calculated by multiplying firing rates yt by M2. This vector indicates 

the direct contribution of neural activity at that moment in time on velocity in this time step 

(note that the neural activity at a given time also has a subsequent lingering effect on cursor 

velocity due to the temporal smoothing introduced by M1). We chose to examine neural 

push at a given time, rather than the cursor velocity, because neural push is a more sensitive 

(less temporally smoothed) measure of transient neural changes due to, e.g., interference 

from speaking. To present the neural push at a more intuitive scale, we divide it by (1- α), 

where α = 0.94. This has the effect of scaling the neural push so that indicates how fast the 

neural activity would push the cursor (in units of pixels/second) if there were no smoothing 

applied. During actual BCI operation, the neural push magnitude is smaller, but it is 

integrated by M1 across decoder time steps.

Measuring task-related firing rate changes

We trial-averaged firing rates across trials of a given condition (for example, cursor 

movements towards a particular target, or speaking a particular word) aligned to either the 

time when the BCI task target appeared (‘target on’) or speaking sound onset time 

(‘speech’). These firing rates are shown in figure 1b. Note that since the speech prompts 
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occurred at random times during the Radial 8 Target Task, the cursor task-related firing rate 

changes that were also occurring during speaking should average away in speech-aligned 

firing rates, leaving the modulation related to the speaking behavior.

To examine speech-related modulation at the neural ensemble level, we measured the 

differences between population firing rates during speaking each word and during the 

silence condition within the same behavioral context (i.e., speaking alone or speaking during 

BCI use). To do so, we essentially (with several additional technical improvements described 

below) took the norm of the firing rate vector difference when speaking the word and when 

not speaking (silence condition), ∥yword − ysilence∥, where each y is an E-dimensional vector 

of electrodes’ firing rates, trial-averaged for that condition and time-averaged from 1 s 

before to 1 s after speech onset (or faux speech, in the case of silence).

The additional steps were as follows. First, we did not include very low signal-to-noise 

electrodes whose firing rate did not exceed 1 spike/second in either the speaking alone or 

speaking during BCI contexts. Second, after calculating a given condition’ firing rates (e.g., 

firing rates across all trials where the participant said “seal” in the speaking alone context), 

we subtracted a “baseline” firing rate from it, where baseline was a time window from 500 

ms before the audio prompt until the audio prompt, from these same trials. The motivation 

for this was to account for and offset potential neural recording non-stationarity [29] 

between blocks in the speaking during BCI conditions (recall that the participant was 

instructed to speak the same word, or remain silent, for the duration of a 5 minute BCI 

block). Without this baseline subtraction, even a small firing rate drift between the BCI 

silent blocks and a given word’s BCI with speaking block would appear as a speech-related 

population firing rate change, even if there was no actual change in firing rate when the 

participant started to speak. This concern still applies despite having multiple BCI silent 

blocks over the course of each research session, since these silence trials still all come from 

a different span of time than each word’s trials. There should be less need for baseline 

subtraction in the speaking alone conditions, where all five words (plus silence) were 

interleaved within blocks (and thus recording drifts should affect all words and silence 

conditions similarly). For consistency, however, we also applied baseline subtraction to the 

speaking alone conditions.

Third, when calculating the magnitude of a population firing rate vector difference, we used 

an unbiased measurement of the norm of vector differences [24,35]. This was done to avoid 

the problem that, since a vector norm is always positive, ∥yword − ysilence∥ is biased upwards, 

especially when firing rates are calculated from a small number of trials or when the firing 

rate differences are small (to illustrate this problem, consider that the population firing rate 

difference between two sets of trials drawn from identical distributions will always be 

positive due to the presence of noise, despite the true difference between the firing rate 

vectors being zero). Specifically, given N1 trials from condition 1, and N2 trials from 

condition 2, we can calculate an unbiased estimate of the squared vector norm of the 

difference in the two conditions’ mean firing rates by averaging over all combinations of 

leave-one-trial-from-each-condition-out sample estimates of differences in means:
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D = 1
N1

1
N2

∑i = 1
N1 ∑j = 1

N2 y1
i − y2

j T ⋅ y1
{1:N1} ∕ i − y2

{1:N2} ∕ j
(2)

where y1
i  and y2

j are single trial firing rate vectors from condition 1 and condition 2, 

respectively, and y1
{1:N1} ∕ i

 and y2
{1:N2} ∕ j

 are trial-averaged firing rate vectors from all the 

other trials of condition 1 and condition 2, respectively. The key property of this algorithm is 

that the dot product is taken between firing rates computed from completely non-

overlapping sets of trials. Unlike a standard squared distance, this D can be negative. To 

convert this to a distance while preserving the sign, we then take d = sign(D) ∣ D ∣ .

This calculation is almost identical to a standard Euclidean vector norm of ∥y1 − y2∥ if firing 

rates are calculated from large numbers of trials and the two conditions’ firing rates differ 

substantially. However, it provides a less biased estimate of the population firing rate 

distance when there are fewer trials or if the true difference between the two conditions’ 

population firing rates is close to 0. In our case, since the firing rate differences when 

speaking words during BCI use and silence are small, using this unbiased metric was 

important to avoid overestimating the degree of speech-related modulation during BCI use.

Finally, we divided this unbiased vector norm d by E (the number of included electrodes) 

so that the final metric was at a more intuitive “single-electrode” scale (i.e., the firing rate 

change magnitude that would need to be observed on each electrode if all electrodes 

contributed equally to the overall population vector norm).

To compare the aggregate population firing rate changes when speaking alone versus 

speaking during BCI use (figure 1c), we treated the (unbiased) population firing rate 

difference norm when speaking each word (compared to silence) during a given behavioral 

context (speaking alone or speaking during BCI), from a given dataset, as one dataset-

condition datum.

Measuring the effect of neural modulation on decoder output

To quantify how neural population firing rate changes affected the decoded velocity (figure 

2), we used the neural push metric described above. Neural data recorded during the BCI 

Radial 8 Target Task were projected into the decoder that was actually in operation during 

that time (this applies to both the BCI without speaking, and the speaking during BCI use 

behavioral contexts). Neural data from the Stand-Alone Speaking Task were projected into 

the first decoder used for that session’s BCI tasks with prompted speaking or prompted 

silence (that is, the decoder used in the first four blocks shown for each session in figure 3a.)

We examined changes in neural push relative to a baseline neural push prior to the behavior 

we were interested in. The baseline epoch for the neural push aligned to BCI target 

presentation was from 100 ms pre-target onset until target onset. The baseline epoch for the 

neural push aligned to speech onset was from 500 ms before the audio prompt until the 

audio prompt. Subtracting trial-averaged baseline neural push from the neural push aligned 

to each trial’s event of interest helps account for the fact that neural push may be non-zero 
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even before a given behavior begins (e.g., at the start of a cursor task trial or before 

speaking) because of decoder output biases that can crop up due to neural non-stationarity. 

In the case of speech-aligned neural push during ongoing BCI use, trial-averaged neural 

push may be non-zero due to asymmetry in the underlying cursor task being performed. 

Baseline subtraction is particularly important for the stand-alone speaking data condition, 

since these data were recorded at a different time during the research session with respect to 

when the decoder’s training data were collected. The traces in figure 2 show the vector norm 

(a scalar value at each time point) of this baseline-subtracted neural push, which in this 

cursor task is a two-dimensional vector. To avoid over-estimating the neural push magnitude 

if the true neural push is close to 0, we used the unbiased norm technique described in the 

previous section to calculate the neural push vector norm. In this case, single-trial neural 

pushes comprised one distribution, and the [0, 0]T was the second distribution.

Measuring BCI performance

Our primary BCI Radial 8 Target Task performance measure was time to target, defined as 

the time between target onset and when the cursor entered the target prior to successful 

acquisition. Time to target did not include the last 400 ms target hold time used to acquire 

the target, but it did include any previous (unsuccessful) target hold times in which the 

cursor left the target before the requisite 400 ms. Time to target is only defined for 

successful trials (> 98% of trials in these sessions). We also excluded the trial immediately 

after a failure, since its starting cursor position was not the previous target and thus could be 

very close to the current target, which would invalidate the time to target measurement. In 

the figures, we use standard conventions for the meaning of stars to denote significant 

differences: * p < 0.05, ** p < 0.01, *** < 0.001.

We wanted to be able to compare neural push error angles (figure 3c) and cursor speeds 

(figure 3d) of prompted silent and prompted verbal trials to what happened in non-prompted 

trials. We therefore generated faux speech prompts in each non-prompted trial by declaring a 

faux prompt at a random time within that trial (drawn from a uniform distribution). This 

allowed us to calculate faux speech prompt-aligned error angles and cursor speeds for no 

prompt trials (gray traces in figure 3c,d).

Results

We studied the interaction between speaking and performing a target acquisition task using 

an iBCI-driven cursor. Participant T5 was enrolled in the BrainGate2 iBCI pilot clinical trial 

and had two 96-electrode Utah arrays chronically placed in his left dorsal motor cortex 

approximately 28 months prior to this study. T5 participated in two research sessions during 

which, on the same day, he performed a stand-alone speaking task and used a ReFIT-Kalman 

filter [16,23] velocity decoder to perform a BCI cursor control task with or without 

concurrent speaking (Figure 1a). The motor imagery that the participant used for controlling 

the cursor was attempting to move his right (contralateral) hand in a horizontal plane as if 

holding a joystick (or an automobile gearshift) from above.
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Speech-related neural modulation is minimal during attempted arm movements

The key observation motivating this study is that the same neural population that is used to 

control the iBCI is also active during speaking. Figure 1b presents three example electrodes’ 

trial-averaged firing rates during the three studied behavioral contexts. The left column 

shows the familiar result that dorsal motor cortex modulated when the participant moved the 

cursor via attempted arm movements, and that firing rates were tuned to target direction 

[12]. Critically, the center column shows that these same electrodes, on the same day, also 

strongly responded when the participant spoke short words. This result is consistent with our 

recent report of speech-related modulation in this participant [21] and raises the question of 

whether such speech-related activity will interfere with decoding velocity intentions. Note 

that the three example electrodes shown were specifically chosen because they exhibited a 

variety of strong speech-related modulation patterns.

The right column shows a novel observation: the speech-related modulation was largely 

attenuated when the participant spoke while performing the BCI cursor task. We quantified 

speech-related neural response magnitudes at the population level by taking the difference 

between the ensemble firing rates during speaking each word and during the silence 

condition (see Methods). Figure 1c compares this population modulation metric for stand-

alone speech and speaking during BCI. As suggested by the example electrodes, across the 

population of electrodes and all words from both datasets, modulation was significantly 

smaller when speaking during BCI use (1.85 ± 0.25 Hz, mean ± s.d.) compared to when 

speaking alone (6.40 ± 0.83 Hz; p < 0.001, rank-sum test). This substantial attenuation 

already suggests that perhaps speaking would not interfere with ongoing iBCI use. In the 

next sections, we will more thoroughly test this prediction.

Speaking during iBCI use minimally affects decoder output

The previous section reported speech-related firing rate modulation across electrodes. 

However, not all firing rate changes are the same in terms of how they affect the BCI 

decoder. In theory, even modest firing rate changes could potentially have an outsized effect 

on the BCI if they were well-aligned with the neural decoder’s readout dimensions. We 

therefore specifically looked at how these speech-related firing rate changes affected the 

decoded velocity output. To do so, we projected the firing rate changes described in the 

previous section into the 2D decoder-potent neural subspace and quantified the moment-by-

moment change in the magnitude of this 2D ‘neural push’ relative to a baseline period (see 

Methods).

To give a sense of scale for the neural push change associated with performing the BCI task, 

figure 2a shows neural push magnitude changes following Radial 8 target onset for trials 

without any speaking or speaking prompts. Unsurprisingly, the neural push rapidly increased 

after the target was presented (because the participant started moving the cursor towards the 

target) and then decreased shortly thereafter (as the participant slowed down the cursor to 

acquire the target). We next compared these Radial 8 Target Task-related neural push 

changes to the neural push changes that can be attributed to speaking alone and to speaking 

during BCI use. Although no decoder was actually used during the Stand-Alone Speaking 

Task, firing rates recorded during that behavior can similarly be projected through a BCI 
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decoder from the same research session. Figure 2b shows how these stand-alone speech-

aligned firing rate changes would have affected the decoder had it been active. Figure 2c 

shows how the speech-aligned firing rate changes during BCI use actually did change neural 

push, based on the decoder that was active during that behavior. Comparing these neural 

push measurements reveals that speech-aligned neural push changes were much smaller than 

BCI task-aligned neural push changes, but speaking did slightly affect neural push as 

compared to the silent conditions (black traces).

We summarized each condition’s neural push by taking the time-averaged (mean across the 

epochs shown in figure 2a-c) neural push change; figure 2d aggregates across all conditions 

in both datasets. For movements to the BCI targets, this aggregate neural push change was 

450 ± 121 pixels/s (mean ± s.d. across the 8 targets × 2 datasets = 16 dataset-conditions). 

Speaking during BCI use caused neural push changes that were only 8.0% of this magnitude 

(36 ± 34 pixels/s across 5 words × 2 datasets = 10 dataset-conditions). Stand-alone speaking 

would have caused a larger (but still small compared to BCI task-related modulation) neural 

push change: 137 ± 17 pixels/s across 10 dataset-conditions. This suggests that speaking 

without concurrent arm movement imagery would have a modest effect on the BCI (if the 

decoder were active), but — crucially — that the effect of speaking during ongoing BCI use 
on decoder output was very small.

Prompted speaking did not reduce iBCI cursor task performance

We next examined the Radial 8 Target Task data to determine what effect the small speech-

related neural push changes described in the previous section had on cursor task 

performance. As shown in figure 3a, the task was performed as a sequence of blocks during 

which the participant either was instructed to speak when he heard the audio prompt (blue 

background), or he was instructed to say nothing when he heard the audio prompt (gray 

background). We used this task design, rather than simply omitting the audio prompt in the 

BCI silent blocks, to better equalize the distraction and additional cognitive demands of 

hearing a prompt.

We first compared performance at the broad resolution of dividing trials based on their 

behavioral instruction (i.e., speak versus don’t speak in response to the audio prompt). 

Median time to target during BCI with speaking was 1.77 seconds (2.07 ± 1.08 s mean ± 

s.d.). This performance was slightly but significantly (p = 0.017, rank-sum test) better than 

during BCI without speaking: the BCI silent median time to target was 1.86 s (2.20 ± 1.10 s 

mean ± s.d.). The somewhat counter-intuitive result that BCI without speaking condition 

trials were on average slightly slower may be attributable to the audio prompt being more 

distracting or cognitively burdensome in this condition because the participant had to 

override a default impulse to speak in response to the prompt (i.e., the task had an element of 

inhibition [36]).

We next evaluated performance at a medium resolution by comparing trials that either: 1) 

did not have an audio prompt and did not follow a trial with an audio prompt (‘no prompt’); 

2) had an audio prompt or followed a trial with an audio prompt in a BCI silent block 

(‘prompted silent’); or 3) had an audio prompt or followed a trial with an audio prompt in a 

BCI with speaking block (‘prompted verbal’). Our reasoning for treating both a prompted 
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trial and the subsequent trial as ‘prompted’ for this analysis was because in many cases the 

verbal speaking response started (or continued) into the subsequent trial; even if it did not, 

the speaking, recovery from speaking, or distraction due to the prompt may well have 

extended into the subsequent trial. We thus conservatively treated both trials as 

“compromised” for the purpose of this analysis. Figure 3b shows the distributions of times 

to target for these three trial types. Times to target were significantly longer for both 

prompted trial types (prompted silent: 2.06 s median, 2.39 ± 1.19 s mean ± s.d.; prompted 

verbal: 1.93 s median, 2.29 ± 1.22 s mean ± s.d.) as compared to the no prompt trials (1.66 s 

median, 1.92 ± 0.91 s mean ± s.d., p << 0.001 for both comparisons, rank-sum test). 

However, times to target were not significantly different between the prompted verbal and 

prompted silent trials (p = 0.11). This indicates that the presence of an audio prompt 

modestly interfered with the cursor task (~20% longer times to target), but not in a way that 

was dependent on actual speaking. This would be consistent with the randomly-occurring 

audio prompt briefly distracting the participant.

We then zoomed in to compare these trials’ performance at a millisecond-by-millisecond 

resolution. We calculated the neural push error angle throughout each trial, i.e., the angular 

error between each time point’s neural push vector (essentially, what intended velocity was 

decoded from that moment’s neural activity) and the vector that pointed straight from the 

cursor to the center of the target. Figure 3c shows trial-averaged neural push error angle 

aligned to the audio speaking prompt for prompted silent (pink) and prompted verbal (red) 

trials. There was little difference between prompted silent and prompted verbal error angles, 

except for a brief increase in the prompted verbal trials’ error angles at ~0.9 s after the 

speech prompt. For comparison, we also generated faux speech prompt-aligned error angles 

for no prompt trials (gray trace) by randomly assigning these trials prompt times.

We also performed a similar analysis for the instantaneous cursor speed (i.e., how fast the 

cursor moved during these BCI trials, aligned to the audio speaking prompt), shown in figure 

3d. This revealed that in comparison to no prompt trials, cursor movements during both 

prompted verbal and prompted silent trials slowed down after the speech prompt. This is 

consistent with both of these conditions having longer times to target than no prompt trials. 

We did not observe significant differences in the prompted silent and prompted verbal cursor 

speeds. Together, these kinematics analyses are consistent with the previously described 

trial-wise and block-wise times to target analyses. They indicate that having to actually 

speak in the prompted verbal condition did not interfere with iBCI use more than just 

hearing a prompt which did not require a speaking response.

iBCI use during continuous, spontaneous speaking

Lastly, we wanted to demonstrate that the BCI cursor could be controlled while the user 

speaks spontaneously, rather than in response to a prompt. Using an iBCI while also 

conversing is likely to be a typical scenario for these systems’ eventual real-world use. To 

approximate this, at the end of the second day of the study we asked T5 to perform one more 

‘storytelling’ block of the Radial 8 Target Task while telling the experimenters a story of his 

choice. The Supplementary Movie shows him performing the task while at the same time 

telling us about a recent adventure of his. This block’s performance was significantly worse 
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than during the preceding BCI silent block (median time to target of 3.35 s vs. 2.73 s, p = 

0.0010), which is not surprising given the larger cognitive load of sustained, unrehearsed 

storytelling. Nonetheless, this result demonstrates that the participant could use the iBCI 

despite nearly continuous speech.

Participant’s description of speaking while using the iBCI

After the first session’s first pair of BCI with versus BCI without speaking blocks, the 

participant reported that he did not feel any difference between the two conditions in terms 

of his ability to control the cursor. After the first pair of blocks on the second session, he 

reported that it was “distracting” to speak while moving the cursor, but this was “not 

insurmountable”. When asked to rate the degree of distraction from 0 to 10, he described it 

as a 5. We also asked T5 if he thought that speaking interfered with his ability to control the 

cursor both at the start of this study, and after the conclusion of the second session. Both 

times, T5 emphatically answered that it did not.

After the spontaneous speaking block, the participant reported that the storytelling and 

cursor control felt like two separate tasks, and that keeping an eye on the movement of the 

cursor did not take as much concentration as creating a narrative. He also reported that there 

were a few times when he had trouble acquiring a target and had to stop thinking about his 

narration.

Discussion

We tested whether the presence of speech-related activity in arm/hand area of motor cortex 

[21] would interfere with iBCI use based on attempted arm movements, and found that it did 

not. This adds to a growing body of work showing that velocity decoding is robust to other 

processes reflected in dorsal motor cortical activity such as visual feedback [34,37], but not 

necessarily to proprioceptive feedback [34], activity related to object interactions [38], or 

other concurrent motor tasks [10] (at least without additional training). Here, this robustness 

stems from the observation that speech-related modulation in dorsal motor cortex, which 

was previously only reported during stand-alone speaking [21], is markedly reduced when it 

occurs concurrently with iBCI cursor control. This “robustness-through-attenuation” result is 

a notably different from recent decoding results showing “robustness-through-

orthogonality”: that is, previous studies found that neural variability due to visual feedback 

[37], day-to-day signal changes [39], and across-task differences [40] was substantial but did 

not interfere with decoding movements because this activity could be sequestered in 

decoder-null neural dimensions.

Attenuation of speech-related activity during attempted arm movements is consistent with a 

recent report that the arm contralateral to the recorded motor cortical area is the “dominant” 

effector which suppresses concurrent activity related to attempted movements of the 

ipsilateral arm, the legs, or the head [24]. The larger question of why this attenuation 

happens, and what function speech-related activity in dorsal motor cortex serves, remains 

unanswered. One possibility is that the speech-related activity reflects a coordination signal 

that is received by dorsal motor cortex from other areas that generate orofacial movements, 

and that this activity is masked or gated when concurrently generating arm movements. 
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Another possibility is that dorsal motor cortex is only available to be recruited as an 

“auxiliary” computational resource to support movements of other body parts, such as the 

speech articulators, when it is not generating arm movements. Yet another possibility is that 

the brain has learned to intentionally attenuate speech-related activity (possibly over many 

months of prior BCI use) because it otherwise would have interfered with cursor control. 

Future studies could test this last hypothesis by examining speech-related neural activity 

during concurrent “open-loop” attempted arm movements (i.e., when the participant is not 

provided any sensory feedback or read-out of these movements’ neural correlates) during a 

BCI-naïve participant’s initial research sessions.

The attenuation of speech-related activity during concurrent attempted arm movements is 

advantageous for robustly decoding these arm movements, but this phenomenon also has a 

downside: speech information becomes largely unavailable for simultaneously driving 

speech and arm iBCIs. Thus, while dorsal motor cortex may potentially contribute useful 

signals for decoding attempted speech [20], BCIs for simultaneously restoring speech and 

arm movements will require additional signal sources, such as from ventral cortical areas 

known to have strong speech-related modulation [41-43].

There are several limitations to this study that should temper over-generalizing these 

interpretations. First, the results are from a single participant. Second, we tested for speech-

related interference during a 2D cursor control task; while we predict that this result will 

extend to higher degree-of-freedom arm decoding, this remains to be confirmed. That said, 

our finding that speaking does not interfere with iBCI use is consistent with previous 

anecdotal reports from other participants [12], including participants controlling robotic 

arms (Collinger et al., 2013 and the NBC interview with Nathan Copeland fist-bumping his 

robot arm with President Obama while simultanously talking to him)a. Third, we did 

observe somewhat slower cursor task performance during simultaneous storytelling. We 

attribute this to this storytelling block’s higher cognitive demands (rather than direct speech-

related decoder interference) due to the participant’s self-report that it was difficult to 

generate a continuous narrative, and the lack of observed iBCI interference during the 

cognitively less demanding prompted single word speaking. However, our data cannot rule 

out there being less attenuation of speech-related activity during continuous speech and/or 

that this activity is more decoder-potent. Future studies could test this by measuring BCI 

performance while participants speak a well-rehearsed continuous passage, and by making 

repeated measurements of the same continuous speech with and without concurrent 

attempted arm movements. Fourth, here we examined activity in dorsal motor cortex. There 

are ongoing efforts to decode arm movement intentions from other cortical areas (e.g., 

parietal cortex [26]), and it remains to be seen whether these areas also modulate during 

speaking and, if so, whether this could interfere with BCI performance.

We observed much more speech-related neural activity when the participant spoke while not 

engaged in the iBCI task, and that this activity had decoder-potent components. This raises a 

concern that if an iBCI prosthesis is on and actively controllable while its user is not paying 

attention to it, speaking might cause unintended movement of e.g., a robot arm. Such 

ahttps://www.nbcnews.com/health/health-news/brain-chip-helps-paralyzed-man-feel-his-fingers-n665881
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unintentional iBCI output may be ameliorated by a “gating” state decoder that identifies 

when the user is or is not trying to make arm movements [44].

In conclusion, we found that speaking does not interfere with ongoing use of a cursor iBCI 

because speech-related modulation is greatly reduced during attempted arm movements. 

This biological phenomenon is fortuitous from an iBCI design perspective, since it suggests 

that patients will be able to speak freely while controlling motor cortically-driven prostheses 

even without deliberate engineering of the decoder to be robust to speech-related activity.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Speech-related neural modulation in dorsal motor cortex is much weaker when occurring 

during ongoing BCI cursor control.

(a) Task setup. We recorded speaking data and neural activity from a participant with two 

intracortical 96-electrode arrays implanted in the ‘hand knob’ area of motor cortex during 

BCI cursor control, during speaking, and during speaking while using the BCI.

(b) Threshold crossing spike firing rates (mean ± s.e.) are shown for three example 

electrodes (rows) across three different behavioral contexts: 1) BCI cursor movement trials 

without any speaking (left column); 2) speaking alone (middle column); and 3) speaking at 

random times during ongoing BCI cursor control (right column). Cursor position traces from 

the corresponding trials are shown above the BCI column (one color per target). Trial-

averaged acoustic spectrograms for one example word (“bat”) are shown above each 

speaking column. The acoustic spectrogram’s horizontal axis spans 100 ms before to 500 ms 

after acoustic onset, and its vertical axis spans 100 Hz to 10,000 Hz. Examples are from 

dataset T5.2018.12.17.

(c) Summary of population firing rate changes (speaking minus silence, time-averaged over 

the 2 s epoch shown) when speaking alone (green) and when speaking during BCI use 

(blue). Each spoken word condition contributes one datum from each of the two datasets. 

Bars show the mean across all the dataset-conditions within each behavior.
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Figure 2. 
Speaking during ongoing BCI use has very little effect on cursor velocity decoder output.

(a) Mean ‘neural push’ changes, i.e. the decoder-potent projection of firing rates that 

generated the cursor velocity, when making BCI cursor movements to each outward target 

(colors are the same as in figure 1b). Neural push traces shown in panels a, b, and c are from 

dataset T5.2018.12.17.

(b) Neural push changes that would have occurred due to firing rate changes when speaking 

each of the five words, or silence (black), during stand-alone speech blocks, if the velocity 

decoder had been active.

(c) Neural push changes aligned to speaking each of the five words, plus silence, when 

speaking occurred during the BCI cursor task.

(d) Summary of neural push changes across the Radial 8 targets (orange) and word speaking 

conditions (green and blue) in both datasets. Silence conditions are shown separately as 

black markers (these lie very close to 0). Each dataset-condition contributes one datum 

based on its mean neural push change in the epoch shown with horizontal brackets in panels 

a - c. Bars show the mean across all the dataset-conditions within each behavior.
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Figure 3. 
Speaking during ongoing BCI use does not reduce cursor task performance.

(a) Timeline of all BCI comparison blocks across two research sessions. Blue background 

denotes blocks in which the participant was instructed to speak after hearing an audio 

prompt; gray background denotes blocks with an instruction to not speak when hearing the 

prompt. Each dot shows one trial’s time to target. Trials during which a prompt was played 

are shown in red (if during a speaking block) or pink (if during a silent block). Horizontal 

bars show the median time to target of each block. Arrows on the right show the median 

across all trials of each instruction type. Orange ticks along the abscissa show when the 

decoder was recalibrated.

(b) Box-and-whisker plots of times to target for ‘no cue’ trials that did not have an audio 

prompt, ‘prompted silent’ trials during a BCI silent block, and ‘prompted verbal’ trials 

during a BCI with speaking block. For each trial type, the center white line shows the 

distribution median, the thick (box) portion spans the 25th to 75th percentiles, and the thin 

lines (whiskers) extend another 1.5 times the box range. All remaining outlier points are 

shown as dots. Only the no prompt distribution was significantly different from that of the 

other two trial types (p < 0.001, rank-sum test).

(c) Mean ± s.e. instantaneous absolute value cursor error angle aligned to the audio prompt 

that indicated when to speak (red), or not to speak (pink). As illustrated in the left side 

schematic, error angle is the angular difference between the instantaneous neural push and 

the vector pointing from the cursor to the target. 1 ms time bins in which there was a 

significant difference between the prompted silent and prompted verbal conditions are 

marked with a black tick above the traces (p < 0.01, rank-sum test). For comparison, no 

prompt trials are shown in gray (aligned to faux prompt times). Data are aggregated across 

both datasets.
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(d) Mean ± s.e. instantaneous cursor speeds for each trial type, aligned to the audio prompt, 

presented similarly to panel c.
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