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 This study contributes to three branches of literature:  index number theory, the 

modeling of environmental production technologies, and index decomposition analysis.  

The first part of the study begins by analyzing a previous adjustment made to a popular 

graph space index, which is used to compute input-output efficiency scores, and shows 

that this adjustment fails to correct two serious flaws it was intended to rectify – 

satisfaction of an indication and weak monotonicity condition.  The failure arises at the 

boundary of output space when zeros arise frequently in the data.  We propose an 

alternative formulation to correct for these deficiencies and implement the proposed 

modification in two different empirical applications. 

Next, we identify a conceptual flaw regarding tradeoffs between inputs, outputs, 

and pollutants when one production relation is used to model the joint production of 

pollution-generating technologies.  We propose a superior modeling tactic to correct for 



 vii 

the tradeoff implications when using only one implicit production relation.  Using 

multiple production relations to capture intended and unintended production, and 

defining the reduced form technology as the intersection between these two production 

sets, we introduce the “by-production” technology.  This novel formulation has direct 

implications on DEA estimation, which we derive and utilize in an application of 

efficiency measurement. Moreover, we show that constructing efficiency scores for “by-

production” technologies isn’t straight forward.  We distinguish between efficiency in 

intended and unintended production, show that some traditional indexes are not 

appropriate for applications involving “by-production” technologies, and propose a 

modification of a previous index that has superior properties and decomposes into 

productive and environmental efficiency. 

Lastly, this study applies the by-production modeling tactic developed earlier to 

reconsider index decomposition results previously derived under different assumptions 

regarding the nature of pollution-generating technologies.  The application examines 

factors related to variations in electric power plant emissions through an index 

decomposition analysis and shows, in general, that previous results derived using the 

more primitive technological assumption of weak disposability and null-jointness are 

incongruent with the results derived under by-production.  We conclude the final portion 

of the study by analyzing energy firm responses to the 1990 Amendment to the Clean Air 

Act. 
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Preface 
 

 

 This dissertation was born from three branches of literature from the 

interdisciplinary fields of operations research, environmental economics, and productivity 

analysis.  More specifically, this dissertation makes contributions utilizing results from 

index number theory, the modeling of environmental production technologies, and index 

decomposition analysis.  Throughout the dissertation, the word “we” is used, not because 

some chapters are attributed to multiple authorship, but because the dissertation functions 

not only as an exercise in theory and application, but also as an exploratory discussion 

between the author(s) and the reader. 

Chapter 1 begins with its foundations in the index number literature with 

applications in productivity analysis.  Namely, we analyze Fare, Grosskopf, and Lovell’s 

[1985] (FGL) adjustment to the coordinate-wise, graph space, “Russell” measure of 

technical efficiency, which is used to compute efficiency scores across both input and 

output space.  We show first, that this adjustment fails to correct two serious flaws it was 

intended to rectify at the boundary of output space – satisfaction of indication and weak 

monotonicity conditions.  While FGL’s modification works for input oriented models, the 

failure of the proposed modification arises at the boundary of output space when zeros 

arise frequently in the data. 

We propose three methods for altering FGL’s modification to satisfy the desirable 

indication and monotonicity properties, and implement one of the proposed modifications, 

an epsilon perturbation of the technology, in two different empirical applications: the first, 

an output efficiency exercise using a carefully constructed, synthetic data set; the second, 



 xii 

an application of the modification to measure a high frequency data set where zeros occur 

frequently in the defined output space – measuring Babe Ruth’s 1923 season relative 

batting performance. 

Chapter 2 begins with a discussion of past tactics used to model the joint 

production of output when some of these outputs are undesirable to the public.  We then 

discuss how the previous studies, which typically treated pollution as an input or as a 

weakly disposable, null-joint output, impose on themselves a conceptual flaw regarding 

tradeoffs between inputs, outputs, and pollutants when only a single implicit production 

relation is used to model the joint production of pollution-generating technologies.  A 

superior modeling tactic is proposed to correct for the tradeoff implications when using 

only one implicit production relation. 

Using multiple production relations to capture intended and unintended 

production, the reduced form technology is defined as the intersection between the 

intended production set and nature’s residual generation mechanism, which treats 

pollution as an output satisfying “costly disposability.”  We introduce the term “by-

production” technology to refer to such technologies that are modeled accordingly with 

both multiple production relations, and satisfaction of the costly disposability condition.  

This novel formulation has direct implications on DEA estimation of by-production 

technologies, which we derive and utilize in an application of efficiency measurement.  

Using a data set of polluting firms, we show that constructing efficiency scores for “by-

production” technologies isn’t straight forward, and that in general, it is important to 

distinguish between efficiency in intended production and efficiency in unintended 
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production.  The importance is further elicited since in our sample since there is a very 

strong negative correlation between efficiency scores of intended production and 

unintended production.  This implies that firms in general, face a tradeoff between 

operating efficiently in terms of intended output expansions and unintended pollutant 

reductions:  firms that tend to be efficient in intended production tend not to be efficient 

by environmental criteria and vice versa.  Moreover, we show that some popular indexes, 

the directional distance function (DDF) and hyperbolic indexes , which are frequently 

applied in the productivity analysis literature, are not appropriate for applications 

involving “by-production” technologies.  We propose a modification of the FGL index 

from Chapter 1 that has superior properties relative to its somewhat more traditional 

predecessors, and tractably decomposes into productive and environmental efficiency as 

to allow policy makers and researchers alike to distinguish between these two notions of 

efficiency. 

Finally, Chapter 3 applies the by-production modeling tactic developed in the 

previous chapter in reconsideration of an index decomposition analysis conducted by 

Pasurka [2006], who analyzed factors associated with emissions reductions of sulfur 

dioxide and nitrogen oxides from coal-fired, electric power plants by treating pollutants 

as weakly disposable, null-joint outputs.  Sulfur dioxide and nitrogen oxides are primarily 

responsible for causing acid rain deposition in the environment.  The reconsideration, 

assumes that the technology satisfies by-production, as introduced in Chapter 2, and 

shows, in general, that previous results derived using the standard technological 

assumption of weak disposability and null-jointness are significantly different than when 
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by-production is assumed.  Results are computed using output oriented hyperbolic and 

coordinate-wise distance functions and we report the results of the index decomposition 

using notions of both efficiency in intended production and efficiency in unintended 

production.  Chapter 3 concludes the final portion of the study by analyzing energy firm 

responses during 1985-1995 to the 1990 Amendment to the Clean Air Act Amendment.  

Evidence is suggestive of firms responding almost immediately in preparation to binding 

emissions reductions, despite the fact that active compliance isn’t required until 1995. 

Chapter 4 contains some concluding remarks to summarize the results of these 

studies and discusses future prospective research applications spawned from this 

dissertation. 
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Abstract: In an influential paper, Fare and Lovell [1978] proposed an (input based)

technical efficiency index designed to correct two fundamental inadequacies of the

Debreu-Farrell index: its failure to satisfy (1) indication (the index is equal to 1 if

and only if the input bundle is technically efficient) and (2) weak monotonicity (an

increase in any one input quantity cannot increase the value of the index). Fare,

Lovell, and Grosskopf [1985] extended the index to measure efficiency measurement

in the full space of input and output quantities. Unfortunately, this index fails to

satisfy not only indication and monotonicity at the boundary (of output space), but

also weak monotonicity. We show, however, that a simple modification of the index

corrects these flaws. To demonstrate the tractability of our proposal, we apply it to

baseball batting performance, in which zero outputs occur frequently.

I. Introduction.

In an influential paper, Färe and Lovell [1978] proposed an (input based) technical

efficiency index designed to correct two fundamental inadequacies of the Farrell [1956]

index: its failure to satisfy (1) indication (the index is equal to 1 if and only if the input

bundle is technically efficient in the sense of Koopmans [1951]) and (2) monotonicity

(an increase in any one input quantity lowers the value of the index). In sharp

contrast to the (maximal) radial-contraction construction of Farrell, the Färe-Lovell
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(FL) index is essentially a (maximal) average of coordinate-wise contractions of input

quantities, with an adjustment to correct for potential violations of both indication

and monotonicity at the boundary of input space. As it turns out the FL index also

fails to satisfy monotonicity, but it does satisfy indication and weak monotonicity (an

increase in any one input or a decrease in any one output can not increase the value

of the index).1

In recent years, much more emphasis has been placed on technical efficiency mea-

surement in the full space of input and output quantities—often referred to as “graph

space”—as opposed to efficiency measurement in input (or output) space alone. A

prominent index in graph space, proposed by Färe, Grosskopf, and Lovell [1985], is a

straightforward extension of the FL index. It is a (maximal) average of coordinate-

wise expansions of outputs and contractions of inputs, with an adjustment to correct

for potential violations of indication and monotonicity at the boundary of graph space.

Variations of this Färe-Grosskopf-Lovell (FGL) index have played a prominent role in

the operations-research literature in recent years (see, e.g., Cooper, Seiford, Tone, and

Zhu [2007] and the references therein). These indexes are commonly referred to as

“slacks-based measures” (and, for obscure historical reasons, as “Russell measures”).

In this paper, we show that the the FGL adjustment to correct for problems at

1 See Russell [1985].
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the boundary of graph space fails to do the job. In particular, the FGL index does not

distinguish between efficient and inefficient points on the boundary of output space.

Furthermore, an increase in an output quantity starting at an inefficient boundary

output vector can lower the value of the FGL index. The FGL index, therefore,

satisfies neither indication nor weak monotonicity.

In our view, this is a serious flaw, leaving the FGL index with no attractive

properties whenever zero values of output quantities may occur. Of course, a zero

output quantity would be highly improbable if there were a single output, but the

FGL measure is designed to accommodate multiple outputs. Since a multiple-output

firm might not produce some types of outputs, zeros in production vectors can be

sensible choices and may arise naturally in empirical work for several reasons. A

panel data application of agricultural firms may contain zeros in output space owing

to seasonal crop rotation: outputs are only produced during specific growing seasons

and thus appear as zeros during off seasons. Another situation where problems may

arise because of zero output values is in the comparison of relative efficiencies of firms

that produce separate, but non-disjoint sets of outputs. For example one firm may

produce goods A, B and C, while the other produces only goods B, C, and D. A third

example where zero outputs may appear is in the use of panel data with a rolling-

window DEA analysis, as in the examination of the efficiency of maintenance units in

4



the U.S. Air Force by Charnes, Clark, Cooper, and Golany [1984]. While their data

base contains no zero outputs, it is likely that zeros would occur if the frequency of

data acquisition were to increase in a rolling-window or panel application.

The flaw in the FGL index is attributable to the boundary adjustment that cannot

distinguish between efficient and inefficient production vectors when some output

quantities are zero. We show, however, that a simple modification of the FGL index—

in particular, a modification of the correction factor at the boundary—corrects these

flaws, restoring the indication and weak-monotonicity properties.2

To demonstrate the tractability of our proposal, we study an example in which

zero outputs occur frequently. We measure a baseball player’s batting performance

by counting his singles, doubles, triples, and home runs during each game. If we

measure these outputs for an entire season, zeros are likely to be rare, since most

players produce all four types of hits over the course of an entire season. By increasing

the frequency of observations to a per-game basis, we ensure that zero outputs are

common. Thus, while our empirical application is intended primarily to illustrate the

practicality of our approach, it also contributes modestly to the DEA literature on

efficiency of baseball players (e.g., Anderson and Sharp [1997] and Mazur [1995]).

The paper unfolds as follows: Section II lays out the framework of our analysis

2 Our modification is not needed to maintain indication and weak monotonicity of the input-based

FL index at the boundary of input space.
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and defines efficiency indexes and the indication and monotonicity axioms. Section III

shows that the FGL index violates indication and weak monotonicity at the boundary.

Section IV introduces our modified FGL index and proves that it satisfies indication

and weak monotonicity. Section V discusses the implementation of the modified FGL,

and Section VI illustrates the practicality of the concept by applying it to two data

sets, one synthetic and the other an actual data set on baseball performance. Section

VII concludes.

II. Efficiency Indexes and Axioms.

The 〈input, output〉 production vector 〈x, y〉 ∈ Rn+m
+ is constrained to lie in

a technology set T ⊂ Rn+m
+ . Denote the origin of this space by

〈

0[n], 0[m]
〉

and

the unit vector by
〈

1[n], 1[m]
〉

. The input requirement set for output y is L(y) =

{

x ∈ Rn
+ | 〈x, y〉 ∈ T

}

, and the output possibility set for input x is P (x) =
{

y ∈

Rm
+ | 〈x, y〉 ∈ T

}

.

We consider the collection of non-empty, closed technology sets that satisfy the

following conditions:3,4

3 All but free disposability of these conditions are necessary to guarantee that our efficiency indexes

are well defined. Free disposability could be dispensed with (theoretically); the only change that

would be needed in what follows would be to redefine the inefficiency indexes on the free-disposal

hull of T , T + (Rn
+ ×−R

m
+ ), rather than on T itself (as in Russell [1987] for input-based efficiency

indexes).
4 Vector notation: x̄ ≥ x if x̄i ≥ xi for all i; x̄ > x if x̄i ≥ xi for all i and x̄ 6= x; and x̄ ≫ x if

x̄i > xi for all i.
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(i) 〈x, y〉 ∈ T and 〈x̄,−ȳ〉 > 〈x,−y〉 implies 〈x̄, ȳ〉 ∈ T (free disposability of inputs
and outputs),

(ii) y > 0[m] =⇒ 〈0[n], y〉 /∈ T (no free lunch), and

(iii) P (x) is non-empty and bounded for all x ∈ Rn
+.

Denote by T the set of non-empty, closed technologies satisfying these conditions.

A production vector 〈x, y〉 ∈ T is technologically efficient if 〈x,−y〉 > 〈x̄,−ȳ〉

implies 〈x̄, ȳ〉 /∈ T ; denote the efficient subset of T by Eff(T ). An efficiency index is

a mapping, E : Ξ → (0, 1], with image E(x, y, T ), where

Ξ =
{

〈x, y, T 〉 ∈ T × T | 〈x, y〉 ∈ T ∧ x 6= 0[n]
}

. (2.1)

Färe, Grosskopf, and Lovell [1985] proposed a “graph” efficiency index on the

full space of inputs and outputs. This index is an extension of the Färe-Lovell index

7



defined in the input space. We formulate their index as follows:5

EFGL(x, y, T ) = min
α,β

{

∑

i δ(xi)αi +
∑

j δ(yj)βj
∑

i δ(xi) +
∑

j δ(yj)

∣

∣

∣
〈α, β〉 ∈ Ω(x, y, T )

}

, (2.2)

where

Ω(x, y, T ) =
{

〈α, β〉
∣

∣ 〈 α⊗ x, y ⊘ β〉 ∈ T ∧ 0[n] ≤ α ≤ 1[n] ∧ 0[m] ≪ β ≤ 1[m]
}

,

(2.3)

α⊗ x = 〈α1x1, . . . , αnxn〉, y ⊘ β = 〈y1/β1, . . . , ym/βm〉, and

δ(z) =
{

1 if z > 0
0 if z = 0

(2.4)

for α = 〈α1, . . . , αn〉 and β = 〈β1, . . . , βm〉.

5 FGL order coordinates so that the first k input quantities and first l output quantities are positive

and then minimize only over the sum of these k+l coordinates, all of which have positive values. Our

characterization does not require a permutation of the coordinates whenever a production vector (or

a technology) is changed.

For the sake of symmetry, we weight each input-contraction factor by δ(xi), i = 1, . . . n, but the

index would be unaffected by omitting these weights, since the value of αi at the minimum is zero

if xi = 0.

In the initial specification of the FGL index (page 154), α is restricted to be strictly positive,

in which case their minimization problem has no solution if, for some i, xi > 0 and the minimum

value of αi is zero; this case is illustrated in Figure 2, where x′ would be contracted to x̂. In their

characterization of the domain of the index (page 153), however, they restrict α to be non-negative.

We choose the latter formulation to ensure that the index is well-defined on the domain, which

includes input and output quantities with zero values.

Note that we are able to use the min operator instead of inf even though the constraint set

Ω(x, y, T ) is not closed because, using inf,
∗
βj = 0 only if δ(yj) = 0, in which case βj does not appear

in the objective function in (2.2).
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The use of the indicator function δ is a fundamentally important aspect of their

formulation, aimed at correcting serious problems at the boundary. If 〈x, y〉 ≫ 0[n+m]

so that
∑

i δ(xi) +
∑

j δ(yj) = n + m, the objective function in (2.2) is a simple

average of the proportional, coordinate-wise, input-contraction and output-expansion

factors. If
∑

i δ(xi) +
∑

j δ(yj) < n + m, the objective function is a simple average

of proportional, coordinate-wise, input-contraction and output-expansion factors for

positive input and output quantities, in which case inputs and outputs with zero

quantity values are simply ignored in the efficiency calculation.

The axioms relevant to our analysis are as follows:6

Indication of Efficiency (I): For all 〈x, y, T 〉 ∈ Ξ, E(x, y, T ) = 1 if and only if

〈x, y〉 ∈ Eff(T ).

Weak Monotonicity (WM): For all pairs 〈x, y, T 〉 ∈ Ξ and 〈x̄, ȳ, T 〉 ∈ Ξ satisfying

〈x̄,−ȳ〉 > 〈x,−y〉, E(x̄, ȳ, T ) ≤ E(x, y, T ).

III. The Failure of the Färe-Grosskopf-Lovell Index on the Boundary.

The inability of the FGL Index to satisfy the indication and weak monotonicity

axioms is demonstrated by the simple example with m = 2 displayed in Figure 1. As-

sume that 〈x, y′′〉 is efficient with x≫ 0 and note that 〈x, yo〉 is inefficient. Calculate

6 Neither of the indexes we consider satisfies the stronger property of (strict) monotonicity. Nor

does either satisfy continuity. See Russell and Schworm [2011] for details.
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the FGL Index at 〈x, yo〉 as follows:

EFGL(x, yo, T ) = min
α,β

{ ∑n
i=1 αi + β1

n + 1

∣

∣

∣
〈α, β〉 ∈ Ω(x, yo, T )

}

(3.1)

where

Ω(x, yo, T ) =
{

〈1[n], 1, βo
2〉

∣

∣ 0 < βo
2 ≤ 1

}

. (3.2)

The objective function is simplified since δ(xi) = 1 for all i = 1, . . . , n, δ(yo
1) = 1, and

δ(yo
2) = 0. The constraint set is reduced to the line between 〈1[n], 1, 0〉 and 〈1[n], 1, 1〉.

Since βo
2 does not affect the objective function, all points in Ω(x, yo, T ) are minimizing

vectors and the efficiency index is

EFGL(x, yo, T ) =
n+ 1

n+ 1
= 1. (3.3)

Therefore, indication (I) is violated.

Next consider a point like y′ in Figure 1 and note that

EFGL(x, y′, T ) =
n+ 1 +

∗
β2

n+ 2
< 1, (3.4)

where
∗
β2 = y′2/y

′′

2 < 1. Therefore, y0 < y′ and EFGL(x, yo, T ) = 1, so that (WM) is

violated.

We summarize with the following theorem:

Theorem 1: EFGL violates (I) and (WM).

10



y1

y2

P (x)
y′′

yo

y′

ȳ

ŷ

ỹ

ye

Figure 1: P(x) with Efficient and Inefficient Boundary Point

While the above example places the output vector at a “corner” of the production

possibility set, the violation of weak monotonicity occurs for any feasible production

vector in this diagram with a zero value of y2. To see this, consider the points ŷ and

ỹ in Figure 1. So long as the slope of the frontier segment [yey′′] is low enough (so

that y′′ is the reference point for ỹ), the FGL efficiency index values (again assuming
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efficiency in input space) is given by

EFGL(x, ỹ, T ) =
n+ ŷ1/y

o
1 + ỹ2/y

′′

2

n+ 2
. (3.5)

The last term in the numerator of (3.5) can be made arbitrarily close to zero by

shifting the cusp y′′ vertically until the following inequality is established

EFGL(x, ỹ, T ) =
n + ŷ1/y

o
1 + ỹ2/y

′′

2

n + 2
<
n+ ŷ1/y

o
1

n+ 1
= EFGL(x, ŷ, T ). (3.6)

This inequality shows that weak monotonicity is violated.

The example suggests that the problem is caused by the boundary adjustment

when some element of the output vector is zero. Eliminating this adjustment for

output and defining the objective function for a modified FGL Index by7

∑

i δ(xi)αi +
∑

j βj
∑

i δ(xi) +m
(3.7)

would ensure that the index is less than one at 〈x, yo〉. This alteration, however,

would fail at the point ye in Figure 1 where 〈x, ye〉 an efficient point. In this case,

the boundary adjustment is needed to ensure that EFGL(x, ye, T ) = 1.

The difficulty with the FGL Index is that it is unable to distinguish between

inefficient boundary points like y0 and efficient boundary points like ye in Figure 1.

In the next section, we propose a modification that allows this distinction.

7 And replacing min with inf.
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A natural question is whether an analogous problem arises for inputs on the

boundary that would also affect the (input oriented) Färe-Lovell Index, defined as

follows:

EFL(x, y, T ) = min
α

{ ∑

i δ(xi)αi
∑

i δ(xi)

∣

∣

∣
〈α⊗ x, y〉 ∈ T ∧ 0[n] ≤ α ≤ 1[n]

}

. (3.8)

Figure 2 displays an example in which x̂ is efficient but the simple average of

minimal contraction factors is 1/2; on the other hand, EFL(x̂, y, T ) = 1. Therefore,

the boundary adjustment works correctly for input vectors with zero components.

These examples show that boundary points for inputs and outputs require differ-

ent treatments if an index is to satisfy the indication and weak monotonicity axioms.

Any input vector can be contracted by each component (with zero elements remain-

ing unchanged) until an efficient point is reached. An output vector cannot always

be expanded until an efficient point is reached, because the zero elements remain

unchanged.8

IV. The Modified Färe-Grosskopf-Lovell Index.

To eliminate these boundary problems for the FGL index, we need to enable the

index to distinguish between the two boundary points, y0 and ye, in Figure 1. First

8 These output boundary problems also arise for the FGL output-oriented index formulated by

Färe, Grosskopf, and Lovell [1985, pp. 148–149] (and further analyzed by Färe, Grosskopf, and

Lovell [1994, pp. 115–118]).
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x1

x2

L(y)

x̂ x′

Figure 2: L(y) with Efficient Boundary Point

define ǫj ∈ Rm
+ as the vector with the jth coordinate equal to ǫ ∈ R++ and all other

coordinates equal to zero. For inputs, we use the indicator for interior points δ(xi)

as defined in (2.4). For outputs, we use indicators for interior points or inefficient

boundary points:

ψj(x, y, T ) =

{

1 if yj > 0 or
[

yj = 0 ∧ 〈x, y + ǫj〉 ∈ T for some ǫ > 0
]

0 if yj = 0 ∧ 〈x, y + ǫj〉 /∈ T for all ǫ > 0
(4.1)

14



for j = 1, . . . , m.

The indicator functions for output variables are output specific and are enhanced

to distinguish between efficient and inefficient zero values for output variables. This

modification requires that the output indicator functions, ψj , j = 1, . . .m, depend

on technologies and all input and output quantities rather than on yj alone. Define

the modified Färe-Grosskopf-Lovell index as follows:9

ĒFGL(x, y, T ) = inf
α,β

{

∑

i δ(xi)αi +
∑

j ψj(x, y, T )βj
∑

i δ(xi) +
∑

j ψj(x, y, T )

∣

∣

∣
〈α, β〉 ∈ Ω(x, y, T )

}

, (4.2)

where Ω is defined in (2.3). Let 〈
∗
α,

∗
β〉 be values of 〈α, β〉 that yield the infimum of

the objective function in (4.2) and note that
∗
βj is an arbitrary selection from (0, 1] if

ψj(x, y, T ) = 0.10

Let us begin by seeing how the modified index works for the example in Figure

1. For the inefficient point 〈x, yo〉 in Figure 1, ψ2(x, y
o, T ) = 1 and

∗
β2 = 0, so that

the infimum is

ĒFGL(x, y0, T ) =
n+ 1 + 0

n+ 1 + 1
< 1, (4.3)

and indication is no longer violated. Also, note that ψ2(x, y
′, T ) = 1 and β2 = y′2/y

′′

2 <

9 Note that we must use the infimum here, because ψj(x, y, T ) can be non-zero when yj = 0.
10 And, of course, in this formulation

∗
αi is an arbitrary selection from [0,1] if δ(xi) = 0. Note that,

in addition to this arbitrariness, the “solution” values for αi or βj not associated with zero values

of xi or yj need not be unique, since there can be ties in the optimization problem.
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1, so that

ĒFGL(x, y′, T ) =
n+ 1 + β2

n+ 1 + 1
>
n+ 1

n+ 2
= ĒFGL(x, y0, T ) (4.4)

and weak monotonicity is satisfied for the change from yo to y′.

For the efficient point 〈x, ye〉 in Figure 1, ψ1(x, y
e, T ) = 0 and 〈

∗
α,

∗
β〉 = 〈1[n], β1, 1〉

for any β1 ∈ (0, 1], so that

ĒFGL(x, ye, T ) =
n + 0 + 1

n + 0 + 1
= 1, (4.5)

and indication is satisfied. As there is no feasible variation in ye
1 alone, there is no

violation of weak monotonicity.

Now, we turn to the general result.

Theorem 2: ĒFGL satisfies (I) and (WM).

We begin with a lemma regarding the indicator functions.

Lemma 1: If 〈x, y〉 ∈ T , 〈x̄, ȳ〉 ∈ T , and 〈x,−y〉 < 〈x̄,−ȳ〉, then (i) δ(xi) ≤ δ(x̄i)

for all i = 1, . . . , n and (ii) ψj(x, y, T ) ≤ ψj(x̄, ȳ, T ) for all j = 1, . . . , m.

Proof: As (i) is obvious, we need only prove (ii). It suffices to consider two cases:

(a) x < x̄ (and y = ȳ) and (b) y > ȳ (and x = x̄).

In case (a), x < x̄ and free disposability imply P (x) ⊆ P (x̄). Since y = ȳ by

assumption, ψj(x, y, T ) 6= ψj(x̄, ȳ, T ) for some j only if yj = ȳj = 0, y + ǫj /∈ P (x)
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y1

y2

y0P (x)

P (x̄)

Figure 3: ψ2(x, y) < ψ2(x̄, y)

for all ǫ > 0, and y + ǫj ∈ P (x̄) for some ǫ > 0 (refer to definition (4.1)). Figure 3

displays this situation. In this case, ψj(x, y, T ) = 0 and ψj(x̄, ȳ, T ) = 1 so that the

inequality in (ii) is satisfied.

In case (b), it suffices to establish the result for an arbitrary coordinate; suppose,

therefore, that yj′ > ȳj′ for some j′ and that yj = ȳj for all j 6= j′. Suppose that

17



ψj′(x, y, T ) 6= ψj′(x̄, ȳ, T ). Then yj′ > 0 and ȳj′ = 0 (refer again to definition (4.1)).

It follows from 〈x, y〉 ∈ T that 〈x̄, ȳ + ǫj
′

〉 ∈ T , where ǫ = yj′ − ȳj′ . Thus, in fact,

ψj′(x, y, T ) = ψj′(x̄, ȳ, T ) = 1.

Consider now ψj(x, y, T ) where j 6= j′. Since yj = ȳj by assumption, either yj > 0

and ȳj > 0, in which case ψj(x, y, T ) = ψj(x, ȳ, T ) = 1 or yj = ȳj = 0. In the latter

case, ψj(x, y, T ) > ψj(x̄, ȳ, T ) only if 〈x, y+ǫj〉 ∈ T for some ǫ > 0 and 〈x, ȳ+ǫj〉 /∈ T

for all ǫ > 0, in which case ψj(x, y, T ) = 1 and ψj(x, ȳ, T ) = 0. Writing out these

vectors more explicitly (assuming, without loss of generality, that 1 < j < j′ < m),

we have, for some ǫ > 0,

〈y1, . . . , 0j + ǫ, . . . , yj′, . . . , ym〉 ∈ P (x) (4.6)

and

〈y1, . . . , 0j + ǫ, . . . , ȳj′ , . . . , ym〉 /∈ P (x) (4.7)

where 0j is the placeholder for the zero value of yj = ȳj . But since yj′ > ȳj′ , this

violates free disposability.

We now prove the theorem.

Proof of Theorem:

(i) Indication.
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To show that ĒFGL satisfies (I), suppose first that ĒFGL(x, y, T ) < 1. There are

three (nonexclusive) possibilities: (a) there exists at least one i′ with δ(xi) = 1 and

0 ≤
∗
αi′ < 1; (b) there exists at least one j′ with ψj′(x, y, T ) = 1 and 0 <

∗
βj′ < 1;

and (c) there exists at least one j′ with ψj′(x, y, T ) = 1 and
∗
βj′ = 0.

Case (a) implies that there is a vector x̄ =
∗
α ⊗ x with x̄ < x and 〈x̄, y〉 ∈ T .

Case (b) implies that either there is a vector ȳ = y ⊘
∗
β with ȳ > y and 〈x, ȳ〉 ∈ T .

In both cases, 〈x, y〉 is inefficient. Case (c) implies that there exists a vector ȳ, with

ȳj′ > yj′ = 0 for some j′ and ȳj = yj for all j 6= j′, satisfying 〈x, ȳ〉 ∈ T , so that

〈x, y〉 is inefficient.

Now suppose that 〈x, y〉 is inefficient in T , implying the existence of a vector

〈x̄, ȳ〉 ∈ T satisfying 〈x̄,−ȳ〉 < 〈x,−y〉. There are again three (nonexclusive) pos-

sibilities: (a) there exists at least one i′ such that 0 ≤ x̄i′ < xi′ ; (b) there exists

at least one j′ such that 0 < yj′ < ȳj′ ; or (c) there exists at least one j′ such that

0 = yj′ < ȳj′ .

In cases (a) and (b), there exists a vector 〈α, β〉 ∈ Ω(x, y, T ) with αi′ <
∗
αi′ ≤

1 in case (a) and βj′ <
∗
βj′ ≤ 1 in case (b); moreover, δ(x̄i′) = δ(xi′) = 1 in

case (a) and ψj′(x̄, ȳ, T ) = ψj′(x, y, T ) = 1 in case (b), so that, ceterus paribus,

∑

i δ(xi) +
∑

j ψj(x, y, T ) =
∑

i δ(x̄i) +
∑

j ψj(x̄, ȳ, T ) in either case. In case (c), we

have
∗
βj′ = 0 and ψj′(x, y, T ) = 1. In each case, we obtain ĒFGL(x, y, T ) < 1.
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(ii) Weak Monotonicity.

Consider two production vectors satisfying 〈x̄,−ȳ〉 > 〈x,−y〉, which implies

Ω(x, y, T ) ⊂ Ω(x̄, ȳ, T ). (4.8)

This implies that

ĒFGL(x, y, T ) = inf
α,β

{

∑

i δ(xi)αi +
∑

j ψj(x, y, T )βj
∑

i δ(xi) +
∑

j ψj(x, y, T )

∣

∣

∣
〈α, β〉 ∈ Ω(x, y, T )

}

≥ inf
α,β

{

∑

i δ(xi)αi +
∑

j ψj(x, y, T )βj
∑

i δ(xi) +
∑

j ψj(x, y, T )

∣

∣

∣
〈α, β〉 ∈ Ω(x̄, ȳ, T )

}

.

(4.9)

(Note that, while the constraints in these two optimization problem differ, the objec-

tive functions are identical.) Our task now is to show that replacing the weights in the

right-hand-side (RHS) optimization problem, δ(xi), i = 1, . . . n, and ψj(x, y, T ), j =

1, . . . , m, with δ(x̄i), i = 1, . . . n, and ψj(x̄, ȳ, T ), j = 1, . . . , m, does not affect the

inequality. To this end, denote the solution to the RHS optimization problem by

〈ᾱ, β̄〉.

By Lemma 1, xi′ < x̄i′ and δ(xi′) 6= δ(x̄i′) imply δ(xi′) = 0 and δ(x̄i′) = 1, hence

xi′ = 0 and x̄i′ > 0, in which case replacing δ(xi′) with δ(x̄i′) replaces zeros in both

the numerator and denominator with αi′ in the numerator and 1 in the denominator.

Clearly, 〈ᾱ, β̄〉 remains feasible in the new optimization problem, so that the infimum

is at least as small as before the substitution.11

11 In fact, it will be lower, since the zeros in the optimal values of the numerator and denominator

will be replaced by a zero in the numerator and a 1 in the denominator.
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By Lemma 1, ψj′(x, y, T ) 6= ψj′(x̄, ȳ, T ) implies ψj′(x, y, T ) = 0 and ψj′(x̄, ȳ, T ) =

1. From the definition of ψj′ , this implies that yj′ = 0 and either (i) ȳj′ > 0 or (ii)

ȳj′ = 0 and there exists an ǫ such that 〈x̄, ȳ + ǫj
′

〉 ∈ T . Alternative (i) is ruled

out, since y > ȳ by assumption. Under alternative (ii), replacing ψj′(x, y, T ) with

ψj′(x̄, ȳ, T ) replace zeros in the numerator and denominator of the RHS objective

function with βj′ and 1 in the numerator and denominator, respectively. Again,

〈ᾱ, β̄〉 remains feasible in the new optimization problem, so that the infimum is at

least as small as before the substitution.

This completes the proof.

V. Empirical Implementation.

Implementation of the modified FGL index is not straightforward, since the func-

tions ψj , j = 1, . . . , m, depend on infinitesimal comparisons, the constraint set is not

closed, and the use of the infimum is salient (as the minimum does not always exist).

In this section, we discuss possible solutions to these problems and suggest methods

for calculating ĒFGL(x, y, T ).

If the technology is known, then a frequently employed method of dealing with

zero inputs or outputs can be used: simply replace the zeros with small positive

numbers. Since the FGL index handles zero elements of the input vector correctly,
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we need only perturb the output vector.

Consider 〈x, y〉 ∈ T with some elements of the input and output vectors possibly

zero. Define yǫ by replacing all zero components of y with a small number ǫ > 0 and

consider the perturbed production vector 〈x, yǫ〉, which may or may not be feasible.

Define the functions ψǫ
j for j = 1, . . . , m as follows:

ψǫ
j(x, y, T ) =

{

1 if yj > 0 or
[

yj = 0 ∧ 〈x, y + ǫj〉 ∈ T
]

0 if yj = 0 ∧ 〈x, y + ǫj〉 /∈ T
(5.1)

Then replace ĒFGL with a modification Ēǫ
FGL defined by

Ēǫ
FGL(x, y, T ) = min

α,β

{

∑

i δ(xi)αi +
∑

j ψ
ǫ
j(x, y, T )βj

∑

i δ(xi) +
∑

j ψ
ǫ
j(x, y, T )

∣

∣

∣
〈α, β〉 ∈ Ω(x, yǫ, T )

}

(5.2)

which is well defined, since the minimum is attained at
∗
β ≫ 0[m].

The formulation in (5.2) provides a good approximation for small ǫ only if Ēǫ
FGL is

continuous at the boundary of output space for sequences approaching the boundary

from the interior. Although Russell and Schworm [2011] have shown that the FGL

index itself is not in general continuous in input or output quantities, we can show

that Ēǫ
FGL converges to ĒFGL at the boundary for the restricted paths yǫ → y as

ǫ→ 0.

For any 〈x, y, T 〉 define the reference point 〈x̄, ȳ by x̄ =
∗
α ⊗ x and ȳ = y ⊘

∗
β .
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Then we can reformulate (5.2) as

Ēǫ
FGL(x, y, T ) = min

α,ȳ

{

∑

i δ(xi)αi +
∑

j ψ
ǫ
j(x, y, T )yǫ

j/ȳj
∑

i δ(xi) +
∑

j ψ
ǫ
j(x, y, T )

∣

∣

∣
〈α, β〉 ∈ Ω(x, yǫ, T )

}

.

(5.3)

From this formulation, it is clear that Ēǫ
FGL(x, y, T ) → ĒFGL(x, y, T ) as ǫ→ 0.

If the technology is known and convex, we can sketch a alternative method for

calculating ψj(x, y, T ). If yj > 0, set ψj(x, y, T ) = 1. If yj = 0, calculate the shadow

prices for 〈x, y〉. If the shadow price of the jth output is positive for any shadow price

vector supporting 〈x, y〉, set ψj(x, y, T ) = 0. Otherwise, set ψj(x, y, T ) = 1. If the

technology is not convex, shadow prices may not exist and it is necessary to compute

ψj(x, y, T ) directly by checking feasibility of small changes in output as above.

If the technology is not known, it is necessary to use the data to estimate the tech-

nology. We sketch here a method of calculating—or at least approximating arbitrarily

closely—the modified FLG index using DEA methods.

Assume we have data on inputs and outputs forD decision making units (DMUs):

〈xd, yd〉, d = 1, . . . , D. Define Id
+ = {i | xd

i > 0} and Jd
+ = {j | yd

j > 0}.

The original FGL index for a specific DMU, d′, is calculated by first running the
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following program:12

min
α,β,λ

∑

i∈Id′

+

αi +
∑

j∈Jd′

+

βj s.t.

αix
d′

i ≥

D
∑

d=1

λd x
d
i ∧ 0 ≤ αi ≤ 1 ∀ i ∈ Id′

+ ,

yd′

j /βj ≤
D

∑

d=1

λd y
d
j ∧ 0 < βj ≤ 1 ∀ j ∈ Jd′

+ ,

λd ≥ 0, d = 1, . . . , D.

(5.4)

Let A be the solution to this program. Then

EFGL =
A

S
(

xd′ , yd′
) , (5.5)

where

S(xd′, yd′) =
∑

i

δ
(

xd′

i

)

+
∑

j

δj

(

yd′

j

)

= |Id′

+ | + |Jd′

+ |. (5.6)

The proposed method of calculating the data-based, modified FGL index has

three steps:

Step 1 distinguishes between zero values of outputs with
∗
βj = 1 and those with

∗
βj < 1 (i.e., between efficient points with zero outputs and inefficient points with

12 As noted above, the minimum is well defined (no attempt to divide by zero): since yd′

j is non-zero

and the output constraint set is bounded, the solution value for each βj will be non-zero.
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zero outputs). For a selected DMU, d′, solve

min
α,β,λ

∑

i∈Id′

+

αi +
m

∑

j=1

βj s.t.

αix
d′

i ≥

D
∑

d=1

λd x
d
i ∧ 0 ≤ αi ≤ 1 ∀ i ∈ Id′

+ ,

(

yǫ
j

)d′
/βj ≤

D
∑

d=1

λd

(

yǫ
j

)d
∧, 0 < βj ≤ 1, j = 1, . . . , m,

λd ≥ 0, d = 1, . . . , D.

(5.7)

Denote the minimizing values of β in (5.7) by
∗
β and set Jd′

ǫ =
{

j | yj = 0 ∧
∗
βj <

1
}

. Jd′
ǫ is the set of zero output coordinates belonging to inefficient production vectors

(since j ∈ Jd′
ǫ implies that yǫ

j/
∗
βj ∈ T for

∗
βj < 1).

Step 2 calculates the minimal value of the numerator of the objective function

under the constraint that βj = 0 for all zero outputs that are coordinate-wise

inefficient. Solve

min
α,β,λ

∑

i∈Id′

+

αi +
∑

j /∈Jd′
ǫ

βj s.t.

αix
d′

i ≥

D
∑

d=1

λd x
d
i ∧ 0 ≤ αi ≤ 1 ∀ i ∈ Id′

+ ,

(yǫ
j)

d′/βj ≤

D
∑

d=1

λd

(

yǫ
j

)d
, ∧ 0 < βj ≤ 1 ∀j /∈ Jd′

ǫ ,

λd ≥ 0, d = 1, . . . , D.

(5.8)

Step 3 generates the value of the index by dividing the the value function in (5.8)

by the sum of the coordinates with positive values of input or output quantities
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plus the number of outputs with zero values that are coordinate-wise inefficient.

Denote the solution to (5.8) by A. The (approximate) modified FGL index is

then given by

Eǫ
FGL =

A

|Id′
+ | + |Jd′

+ | + |Jd′
ǫ |
. (5.9)

This algorithm could yield some values that are only approximately correct (if

zero output values exist), owing largely to the use of the ǫ perturbation of the data.

In fact, the method could treat a point with zero output values as efficient if y were, in

some sense, less than ǫ below the frontier. But such a point would be approximately

efficient. Moreover the chance of such incorrect identification of efficient points is

extremely remote if ǫ is chosen small enough.

VI. Empirical Example.

In this section, we employ two data sets to illustrate the practicality of our pro-

posed approach to implementing the modified FGL. The first, a synthetic data set

with two inputs and two outputs, illustrates the practical restoration of the indica-

tion and monotonicity properties at the boundary of output space. The second is

an actual data base on an athlete’s relative (self) performance over the course of a

season.

The synthetic data base contains 10 observations on the two outputs and two
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inputs. Because the problems with the FGL index arise only at the boundary of

output space, we set input quantities to unity, allowing us to represent the technology

in output space. The output data and efficiency scores of the two indexes are displayed

in Table 1, and the production possibility set (the DEA hull in output space) is

depicted in Figure 4.

Table 1: ĒFLG versus EFGL for the Synthetic Data

Observation y1 y2 EFGL(x, y, T ) ĒFGL(x, y, T )

1 0 6 1 .81

2 3 6 1 1

3 4 5 1 1

4 5 4 1 1

5 9 0 1 1

6 0 3 .67 .50

7 1 5 .77 .77

8 3 4 .88 .88

9 5 3 .94 .94

10 5 0 .70 .54

As required by theory, the two indexes agree at all points except inefficient points

containing a zero value (observations 1, 6, and 10). Observation 1 is identified as

output efficient by the original FGL index, whereas the modified index corrects for

inefficiency at this boundary point. Observation 5 is properly identified as an output-

efficient point despite the zero value of output 2.

As discussed in the Introduction, zero outputs may arise naturally in empirical
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Figure 4: The Technology for the Synthetic Data

work for several reasons. To impose a demanding test on our proposed modification

of the FGL index, we select a problem with frequent observations with zeros in the

outputs. In particular, we measure a baseball player’s batting performance in each

game by counting the singles, doubles, triples, and home runs during the game.

Mazur [1995] evaluates players’ relative efficiencies by utilizing a zero-dimensional

input space and a three-dimensional output space composed of a player’s batting

average, runs batted in (RBIs), and home runs. Many baseball statisticians, however,
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have rejected this formulation, because RBI’s are a function of the number of players

on base during an at-bat, which may be unrelated to a particular batter’s performance.

Anderson and Sharp [1997] utilize the composite batter index (CBI) as a perfor-

mance measure of a baseball players batting prowess. They adopt plate appearances—

the number of at bats plus the number of walks—as the one-dimensional input. The

five outputs are walks, singles, doubles, triples, and home runs. Their analysis, how-

ever, uses inputs and outputs aggregated over an entire season, in which case zero

values in output space are unlikely.

We proceed in a fashion similar to Anderson and Sharp [1997], adopting a mod-

ification of their CBI. We drop from the output space the number of walks a player

accumulates and look only at active hit performance, singles, doubles, triples, and

home runs, since walks are mainly a function of the pitcher’s performance, not the

batter’s. Specifically, we track the batting performance of Babe Ruth, one of history’s

most renowned baseball figures, on a per-game basis, using both the FGL and the

modified FGL for the 1923 season with the New York Yankees.

We are unaware of any studies that use such a high-frequency statistic as batting

performance on a per game basis. The flexibility of the modified FGL index in

handling zeros in the output data allows us to increase the frequency at which we are

able to calculate relative efficiencies. The data used can be found at http://baseball-
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reference.com. We track the performance of Babe Ruth over the duration of the 1923

regular season, in which he won the MVP award. The season consisted of 152 games

total, and we treat Babe Ruth’s performance in each game as a separate DMU to

assess performance relative to his performance in other games played during that

season.13

We compute, for each of the 152 games, the original FGL index and the modified

FGL index numerically, by solving the non-linear programs laid out in the previous

section using a combination of active-set, trust-region, and line-search algorithms.14

The results are depicted in Figure 5, where solid dots reflect the standard FGL scores

and circles reflect the modified FGL scores. The lines connecting these scores for each

game illustrate the gaps between the two scores. As can be seen from this figure, the

correction for inefficient boundary points with zero outputs by the modified FGL index

is large. Moreover, the Spearman rank and Pearson product moments between the

FGL and the modified FGL indexes for this exercise are 0.7073 and 0.7102 respectively.

Thus, the modified FGL index, by adjusting for inefficient boundary points, also

significantly alters the relative rankings of performance across games.

VII. Conclusion.

13 As pointed out by a referee, a more ambitious analysis would take account of the fact that the

production set T would vary across baseball parks, time of day, etc. As our main purpose here is to

illustrate the practicability of our approach, we leave such refinements to sabremetric specialists.
14 The programming codes are available at http://economics.ucr.edu/people/russell/index.html.
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Figure 5: ĒFLG versus EFGL

Satisfaction of the indication condition is the principal (putative) advantage of

the FGL index (as well as related “slacks based” indexes that contract inputs and

expand outputs in coordinate-wise directions) over indexes that contract inputs and

expand outputs in a radial or arbitrary direction—e.g., the hyperbolic index (Färe,

Grosskopf, and Lovell [1985]), the Briec [1997] index, and the directional-distance

index (Luenberger [1992], Chung, Färe, and Grosskopf [2000], and Färe and Grosskopf

[2000]). Failure to satisfy indication at the boundary is therefore a serious inadequacy

of the FGL index, as is the failure to satisfy weak monotonicity, which is satisfied by

31



the radial and directional indexes. We therefore believe that the modification of the

FGL index we propose to restore indication and weak monotonicity is essential. In

addition, we provide some illustrative empirical evidence, using baseball performance

data, that the modified index can be practicably implemented and can yield results

that are markedly different from those generated by the original FGL index.
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Abstract

We argue analytically that many commonly used models of pollution-generating tech-

nologies, which treat pollution as a freely disposable input or as a weakly dispos-

able and null-joint output, may generate unacceptable implications for the trade-

offs among inputs, outputs, and pollution. We show that the correct trade-offs in

production are best captured if a pollution generating technology is modeled as an

intersection of an intended-production technology of the firm and nature’s residual-

generation set. The former satisfies standard disposability properties, while the lat-

ter violates free-disposability of pollution and pollution-causing goods. As a result,

the intersection—which we call a by-production technology—violates standard free-

disposability of pollution and pollution-causing goods. Employing data envelopment

analysis on an electric-power-plant database, we illustrate shortcomings, under by-

production, of two popular efficiency indexes: the hyperbolic and directional-distance-

function indexes. We propose and implement an alternative index with superior prop-

erties. Under by-production, most efficiency indexes are decomposable into intended-

production and environmental efficiency indexes.

Journal of Economic Literature Classification Number: D20, D24, D62, Q50

Keywords: pollution-generating technologies, free disposability, weak disposability,

data envelopment analysis, environmental and technical efficiency measurement.
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1. Introduction.

Our reading of the environmental economics literature reveals three broad features of

pollution that economists aim to capture. First, the generation of pollution/residuals

seems to proceed hand-in-hand with the processes of consumption and production.

Second, the residuals so generated require the use of the assimilative capacity of

the environment for their disposal. Third, the generation of the residuals and the

consequent use of environmental resources for their disposal generate external effects

on both consumers and producers and hence the need for policies to regulate the

generation of pollution.

In this paper, we confine ourselves to addressing the first feature alone.1 In

particular, we focus on pollution generated by firms. We distinguish between outputs

that firms intend to produce and outputs that unintentionally (incidentally) get gen-

erated by firms when they engage in the production of intended outputs. Pollution is

such an unintended output. We are mainly concerned with studying the specification

of technology sets that best captures the link between production of outputs intended

by firms and the generation of pollution.

It is reasonable to say that, in the case of pollution generated by firms, there

are some specific aspects about the process of transformation of inputs into intended

outputs (e.g., the use of certain inputs such as coal or the production of certain

1 See Murty [2010a] for a general equilibrium study of the second feature in the light of the first
feature.
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outputs such as varieties of cheese that release a strong odor) that trigger additional

reactions in nature and (abstracting from abatement activities) inevitably result in

the generation of pollution as a by-product. In this paper, we refer to these natural

reactions, which occur alongside intended production by firms, as by-production of

pollution.

In the case of technologies exhibiting by-production, we observe an inevitability

of a certain minimal amount of the incidental output (the by-product), given the

quantities of certain inputs and/or certain intended outputs. Inefficiencies in produc-

tion could generate more than this minimal amount of the unintended output. At the

same time, in such technologies, we also observe the usual menu of maximal possible

vectors of intended outputs, given an input vector. Such a menu generally reflects the

negative tradeoffs in the production of intended outputs when inputs are held fixed,

as production of each of these commodities is costly in terms of the inputs used.

Inefficiencies in intended production may imply that less than this maximal amount

may get produced. An increase in the amounts of the inputs used increases the menu

of intended output vectors that are technologically feasible. At the same time, it

increases the minimal amount of the unintended output that can be generated.2

The above underscores two crucial points to note about pollution-generating

technologies:

2 E.g., a greater amount of usage of coal increases the quantity of both smoke and electricity
generated.
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(i) technologies of pollution-generating firms do not satisfy free disposability of by-

products such as pollution (pollution cannot be disposed of below the minimal

level described above if inputs and intended outputs are held fixed) and

(ii) in such technologies there is a mutual interdependence between changes in inputs,

intended outputs, and pollution—an interdependence that we will argue is more

a correlation than a causation.

In most of the existing literature, the standard building block employed in

constructing pollution-generating technologies is the positive correlation between in-

tended and unintended outputs that is usually observed in such technologies. This

literature attributes this observed positive correlation to abatement activities by firms

rather than directly to the phenomenon of by-production. Abatement activities of

firms involve a diversion of resources (inputs) to mitigate or clean up the pollution

they produce. In this paper, we model abatement activities as outputs of the firm.

Examples are end-of-pipe treatment plants (that treat and clean water to remove

the pollutant) and production of outputs like scrubbers (which reduce sulphur emis-

sions).3 The production of these abatement activities is hence costly, given fixed

amounts of resources: the more resources are diverted to abatement activities, the

less they are available for producing intended outputs. Hence, an increase in the level

3 We abstract from long-run abatement options of development, purchase, and installation of new
technologies that generate less pollution. See e.g., Barbera and McConnell [1998], where abatement
activities include both a purchase of abatement capital and a diversion of some amounts of the usual
inputs of a firm towards running of the abatement capital.
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of abatement activities leads concomitantly to both lower residual generation and

lower production of intended output.

In this literature, however, abatement activities are not usually explicitly mod-

eled as another set of outputs produced by firms.4 Rather, what is proposed is a

“reduced form” of the technology in the space of inputs, by-products, and intended

outputs. Special assumptions are made to allow the technology to exhibit a positive

correlation between by-products and intended outputs, which is implicitly explained

by abatement options open to firms. At the same time, it is also assumed that the

technology satisfies the standard disposability assumptions with respect to all inputs

and intended outputs. The approaches taken in the literature to model the positive

correlation include: (a) treating pollution as a standard input (technology satisfies

input free disposability with respect to pollution),5 or (b) treating pollution as an

output but with the technology satisfying the assumptions of weak disposability and

null-jointness with respect to intended and unintended outputs.6 In empirical works,

both parametric and non-parametric specifications of such technologies are often em-

ployed for measuring technical efficiency, marginal abatement cost, productivity, and

growth when economic units also produce incidental outputs like pollution. Both

4 For an exception, see Barbera and McConnell [1998].
5 See, e.g., Baumol and Oates [1988], Cropper and Oates [1992], Reinhard, Lovell, and Thijhssen

[1999], and Reinhard, Lovell, and Geert [2000].
6 See Section 4 for formal definitions of these concepts.
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Data Envelopment Analysis (DEA)7 and econometric approaches are employed in

this literature.8

We propose a model of pollution-generating technologies that captures the salient

features (i) and (ii) of the phenomenon of by-production identified above. Our model

of technology, also called a by-production technology, is obtained as a composition

of two technologies: an intended-production technology and a residual-generation

technology. The former is a standard technology that describes how inputs are trans-

formed into intended outputs in production. The latter reflects nature’s residual

generation mechanism, which is a relationship between pollution (an output) and

commodities that cause pollution. Thus, if we assume that it is some inputs (e.g.,

coal) that cause pollution, then an increase in the use of these inputs results (under

standard assumptions) in an increase in intended outputs (say electricity). At the

same time, such an increase in the use of these inputs causes also an increase in pollu-

tion via nature’s residual generating technology. Thus, even without any reference to

explicit abatement efforts by firms, the model generates a positive correlation between

pollution generation and intended outputs.

7 See Färe, Grosskopf, and Lovell [1994] for a basic description of DEA and Fried, Lovell, and
Schmidt [2008] for surveys of more recent developments.

8 For measurement issues based on parametric specifications of a technology that treats by-
products as outputs and employs weak disposability and null jointness see, e.g., Pittman [1983],
Färe, Grosskopf, Noh, and Yaisawarng [1993], Coggins and Swinton [1994], Hailu and Veeman
[1999], Murty and Kumar [2002, 2003], and Murty, Kumar, and Paul [2006]. For non-parametric
set-theoretic approaches under similar assumptions on the technology see, e.g., Färe, Grosskopf,
and Pasurka [1986], Färe, Grosskopf, Lovell, and Pasurka [1989], Färe, Grosskopf, Noh, and Weber
[2005], and Boyd and McClelland [1999]. See Zhou and Poh [2008] for a comprehensive survey of
over a hundred papers employing this approach to the modeling of pollution-generating technologies.
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We show that abatement options available to firms can also be explicitly fac-

tored into our model. When they are available, they form a part of both the intended

production technology (as their production is also costly in terms of resources/inputs

of the firm) and the residual generation mechanism (as they mitigate residual gen-

eration). Moreover, we show that the presence of abatement options implies that

data generated by pollution-generating technologies can violate the null-jointness as-

sumption that is often made in the literature, i.e., positive levels of intended output

may be consistent with zero levels of pollution. The weak-disposability restriction

on pollution-generating technologies does not preclude regions of negative correlation

between intended and unintended outputs.9 On the other hand, in the by-production

technology we formulate, no such regions of negative correlations will be observed.

The intended production technology satisfies standard free-disposability proper-

ties with respect to inputs and intended outputs and is assumed to be independent of

the level of pollution. As in Murty [2010a], the nature’s residual generating technology

treats pollution as an output that satisfies a new assumption of “costly disposability”

and violates standard disposability properties with respect to goods that result in

(affect) pollution generation. As a result, the by-production technology, which is an

intersection of the intended production technology and nature’s residual generating

technology, violates standard disposability with respect to goods that cause (affect)

pollution generation and exhibits costly disposability with respect to pollution. In

9 A fact already noted in the literature cited in Footnote 8 above.
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these ways, our proposed by-production approach, is different from the standard input

and output approaches to modeling pollution-generating technologies.

We show how our by-production technology can be constructed using DEA meth-

ods as the intersection of two DEA technologies, one for intended production and one

for residual generation, and discuss the calculation of efficiency of individual firms

using these methods. With the help of a simple example we show that the sets

of (weakly) efficient points obtained from the weak-disposability approach usually

employed in the DEA literature and the new by-production approach are generally

different (the former will be a larger set of points than the latter). In the context

of by-production, the conventional (in)efficiency indexes decompose nicely into an

intended-output efficiency index and an environmental efficiency index. We use our

example to show that the common indexes employed in this literature, the hyper-

bolic index and the directional-distance-function index, are seriously flawed when

the technology satisfies by-production. In particular, standard indexes tend to over-

state efficiency. We then propose an alternative index, a modification of an index

proposed by Färe, Grosskopf, and Lovell [1985], for measurement of efficiency for

by-production technologies. This index corrects for the flaws in the hyperbolic and

directional-distance-function indexes. A comparison of the values of this index with

those of the hyperbolic and directional-distance-function indexes, using a data base

for electric power firms, confirms our arguments about the inadequacies of the latter.
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In Section 2, we show that a single implicit relation between outputs and inputs

is not rich enough to capture, simultaneously, all the trade-offs between commodities

that are implied by the phenomenon of by-production. In Section 3, we propose a

model of a pollution-generating technology based on multiple production relations

in which these inconsistencies in trade-offs are resolved. This is true regardless of

whether or not abatement options are open to firms. Multiple production relations

are required to distinguish between intended production by firms and nature’s resid-

ual generation mechanism. In Section 4, we use a numerical example to show how

by-production technologies can be constructed by DEA methods. Section 5 discusses

issues related to efficiency measurement under by-production. In Section 6, we carry

out an empirical analysis of efficiency measurement using an empirical data base. In

Section 7, we extend our DEA formulation of a by-production technology to incorpo-

rate abatement efforts of firms. We conclude with Section 8.

2. Single-equation representation of pollution-generating technologies.

We show that a single implicit relation between outputs and inputs is not rich enough

to capture, simultaneously, all the trade-offs between commodities that are implied

by the phenomenon of by-production.
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2.1. The case without abatement output.

The vectors of input quantities (indexed by i = 1, . . . , n), intended-output quan-

tities (indexed by j = 1, . . . ,m), and incidental-output quantities (indexed by k =

1, . . . ,m′), are given, respectively, by y ∈ Rm
+ , z ∈ Rm′

+ , and x ∈ Rn
+.

Suppose pollution is caused by the use of certain inputs like coal or because of the

production of certain intended outputs like cheese. Suppose also that the firm does

not participate in any abatement activity to reduce the pollution that it generates. A

single-equation formulation of such a pollution-generating technology, an extension of

the standard functional representation of a multiple-output technology, is as follows:

T =
{
〈x, y, z〉 ∈ Rn+m+m′

+

∣∣ f(x, y, z) ≤ 0
}
,

where f is differentiable, with derivatives with respect to inputs and intended outputs

given by10

(a) fi(x, y, z) ≤ 0, i = 1, . . . , n,

(b) fj(x, y, z) ≥ 0, j = 1, . . . ,m.

(2.1)

The constraints (a) and (b) are standard differential restrictions to impose “free

disposability” of, respectively, inputs and intended outputs:11

〈x, y, z〉 ∈ T ∧ x̄ ≥ x =⇒ 〈x̄, y, z〉 ∈ T (2.2)

and

〈x, y, z〉 ∈ T ∧ ȳ ≤ y =⇒ 〈x, ȳ, z〉 ∈ T. (2.3)

10 Subscripts on f indicate partial differentiation with respect to the indicated variable.
11 The symbol ∧ stands for “and”.
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To capture the fact that pollution is an output of the production process for which

disposal is not free, Murty [2010a] introduces and formalizes an assumption that is

the polar opposite of free output disposability with respect to the unintended outputs:

〈x, y, z〉 ∈ T ∧ z̄ ≥ z =⇒ 〈x, y, z̄〉 ∈ T. (2.4)

Following Murty [2010a], we refer to this property as “costly disposability” of residu-

als.12 Costly disposability implies the possibility of inefficiencies in the generation of

pollution (e.g., if a given level of coal generates some level of smoke, then inefficiency

in the use of coal may imply that this level of coal can also generate a greater amount

of pollution. The differential restrictions required to impose costly disposability on

T are

fk(x, y, z) ≤ 0, k = 1, . . . ,m′. (2.5)

Quantity vectors satisfying f(x, y, z) = 0 are points on the frontier of the tech-

nology.13 Those satisfying f(x, y, z) < 0 are inefficient: more intended output could

be produced with given quantities of inputs and pollution; less pollution could be gen-

erated with given intended output and input quantities; and smaller input quantities

could be used to produce the given output quantities, given the pollution level.

12 At this stage, though the assumption that the technology satisfies costly disposability of pol-
lution seems similar to the assumption that it also satisfies input free disposability with respect
to pollution, two differences between these assumptions and their implications will become clear
later: (1) in our by-production approach this assumption is satisfied by nature’s residual generation
mechanism and not by the intended production technology and (2) the nature’s residual generation
mechanism treats pollution as an output of production and not as an input.
13 We adopt the following convention in this paper: A point 〈x, y, z〉 ∈ T lies on the frontier of T

(or is a weakly efficient point of T ) if there exists no other point 〈x̄, ȳ, z̄〉 ∈ T with x̄i < xi for all i,
ȳj > yj for all j, and z̄k < zk for all k. A point 〈x, y, z〉 ∈ T lies on the efficient frontier of T (or is
an efficient point of T ) if there exists no other point 〈x̄, ȳ, z̄〉 ∈ T with x̄ ≤ x, ȳ ≥ y, and z̄ ≤ z.
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Assume, in this section and without loss of generality, that m′ = 1. Suppose

fk(x̂, ŷ, ẑ) < 0 for some 〈x̂, ŷ, ẑ〉 satisfying f(x̂, ŷ, ẑ) = 0. Then, from the implicit

function theorem, there exist neighborhoods U ⊆ Rm+n
+ and V ⊆ R+ around 〈x̂, ŷ〉 ∈

Rn+m
+ and ẑ ∈ R+ and a function14 ζ : U → V such that

ẑ = ζ(x̂, ŷ) (2.6)

and

f
(
x, y, ζ(x, y)

)
= 0. (2.7)

The trade-off between each intended output j and unintended output k (with inputs

and all other outputs held fixed) implied by the implicit function theorem is

∂ζ(x, y)

∂yj
= −

fj(x, y, z)

fk(x, y, z)
≥ 0, j = 1, . . . ,m. (2.8)

The trade-off between each input i and unintended output k (with intended outputs

and all other inputs held fixed) is

∂ζ(x, y)

∂xi
= − fi(x, y, z)

fk(x, y, z)
≤ 0, i = 1, . . . , n. (2.9)

Noting that all these trade-offs are evaluated at points in the technology set that

are weakly technically efficient (that is, f(x, y, z) = 0), the foregoing formulation of

a pollution-generating technology seems to be inconsistent with the phenomenon of

by-production for the following reasons:

14 See the appendix for a statement of the implicit function theorem.
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(a) The existence of the function ζ satisfying (2.8) as a strict inequality

implies that there exists a rich menu (a manifold) of (weakly) technically

efficient 〈y, z〉 combinations, with varying levels of z, that are possible with

holding all inputs fixed. If pollution is generated by input usage, this menu is

contrary to phenomenon of by-production, since by-production implies that

at fixed levels of inputs (e.g., coal), there is only one (weakly) technically

efficient (minimal) level of pollution.15

(b) Furthermore, if pollution is generated by inputs such as coal, as is

very often the case, the non-positive trade-offs between pollution generation

and these inputs (derived by holding the levels of intended outputs fixed),

apparent in (2.9), are inconsistent with by-production, as by-production

implies that this trade-off should be non-negative.

How should one interpret the trade-offs observed under single equation mod-

eling of pollution-generating technologies when one abstracts from abatement op-

tions? As discussed above, these trade-offs are not reflective of the phenomenon of

by-production. Rather, the non-negative trade-offs observed in (2.8) between each in-

tended output and pollution and the non-positive trade-offs observed in (2.9) between

each input and pollution suggest that this approach treats pollution like any other in-

put in production: first, increases in its level, holding all other inputs fixed, increases

15 If pollution is caused by some intended outputs (e.g., strong odor from some varieties of cheese
produced by a dairy) and (2.9) holds as a strict inequality, then it implies that there exists a rich
menu of (weakly) technically efficient 〈x, z〉 combinations, with varying levels of z, that are possible
with given levels of all intended outputs. Such a menu is inconsistent with by-production.
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intended outputs and, second, pollution is a substitute for all other inputs in intended

production—the same level of intended outputs can be produced by decreasing other

inputs and increasing pollution. This also does not seem to be intuitively correct: it

is not a correct description of the role pollution plays in intended production.

2.2. The case with abatement output.

Consider the case where the technology of a pollution-generating firm is defined

by a single restriction on all inputs and outputs, including the abatement output:

T =
{
〈x, y, z, ya〉 ∈ Rn+m+m′+1

+

∣∣ f(x, y, z, ya) ≤ 0
}
. (2.10)

We assume that

fa(x, y, z, y
a) ≥ 0. (2.11)

This restriction captures the fact that the abatement output is also freely disposable:

〈x, y, z, ya〉 ∈ T ∧ ȳa ≤ ya =⇒ 〈x, y, z, ȳa〉 ∈ T, (2.12)

so that producing it is costly in terms of input usage, implying a non-positive trade-off

between it and the other intended outputs. In that case, the implicit function theo-

rem can again be invoked to show that the trade-off between the abatement output

and pollution, evaluated in a neighborhood of a (weakly) technically efficient point

〈x̂, ŷ, ẑ, ŷa〉 ∈ Rn+m+m′+1
+ such that f(x̂, ŷ, ẑ, ŷa) = 0 and fk(x̂, ŷ, ẑ, ŷa) < 0, is

∂ζ(x, y, ya)

∂ya
= −fa(x, y, z, ya)

fk(x, y, z, ya)
≥ 0 (2.13)
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whenever f(x, y, z, ya) = 0, contradicting the fact that abatement output is produced

by firms to mitigate, and not to enhance, pollution.

3. A by-production approach to modeling pollution.

Given the above analysis, a sound foundation must be identified for introducing

multiple production relations to adequately capture the features of by-production. We

feel that the resolution to the problem lies in early work of Frisch [1965] on production

theory, in which he envisaged situations where the correct functional representation

of a production technology may require more than one implicit functional relation

between inputs and outputs. More recently, Førsund [2009] explores these ideas of

Frisch. We build on the works of Frisch and Førsund and show that the phenomenon of

by-production requires distinguishing explicitly the by-product-generating mechanism

from the production relation that describes the production of intended commodities.

We show that when this is done the inconsistencies among trade-offs elucidated in

Section 2 get resolved.

3.1. A by-production approach: the case without abatement.

In this sub-section, we abstract from explicit abatement efforts. The production

of the intended output sets a residual-generation mechanism in motion, leading to the

generation of the by-product. To fix our ideas on the salient aspects of by-production

and to simplify notation, we continue to assume, without loss of generality, that
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m′ = 1 and that the pollution is generated by usage of a single input (such an input

could be coal), say input ı.16 Denote the input quantity vector purged of the quantity

of input ı by x1. Specify the technology as

T = T1 ∩ T2, (3.1)

where

T1 =
{
〈x1, xı, y, z〉 ∈ Rn+m+1

+

∣∣ f(x1, xı, y) ≤ 0
}
, (3.2)

T2 =
{
〈x1, xı, y, z〉 ∈ Rn+m+1

+

∣∣ z ≥ g(xı)
}
, (3.3)

and f and g are continuously differentiable functions. The set T1 is a standard tech-

nology set, reflecting the ways in which the inputs can be transformed into intended

outputs. The standard free disposability properties (2.3) and (2.4) can be imposed

on this set by assuming that f satisfies

fi(x, y) ≤ 0, i = 1, . . . , n, and

fj(x, y) ≥ 0, j = 1, . . . ,m.

(3.4)

Note that (3.2) imposes no constraint on z, that is, it is implicitly assumed that the

by-product does not affect the production of intended outputs.17

The set T2 reflects nature’s residual-generation mechanism. T2 treats pollution

as an output and satisfies costly disposability with respect to pollution as defined in

16 The analysis can easily be extended to the case where pollution (such as a strong odour) is also
caused by the production of an intended output (such as cheese). See Murty [2010b].
17 This could be generalized, of course, allowing pollution to have an effect on intended production

as well; e.g., smoke could adversely affect the productivity of labor engaged in producing intended
outputs. See Murty [2010b] for a generalization.

52



(2.4), with the function g defining the minimal level of pollution that gets generated

for given level of xı.
18 The derivative of g satisfies

g′(xı) ≥ 0. (3.5)

The condition in (3.5) capture the fact that the efficient (minimal) level of pollution

rises with the increase in the usage of input ı. This means, however, that T2 violates

standard free disposability of input ı. In fact it satisfies the polar opposite condition

in this good:

〈x1, xı, y, z〉 ∈ T2 ∧ z̄ ≥ z ∧ x̄ı ≤ xı =⇒ 〈x1, x̄ı, y, z̄〉 ∈ T2. (3.6)

This implies that if a given level of coal generates some amount of pollution, then

inefficiencies in residual generation may imply that lower amounts of the coal input

can also generate the same level of pollution if the firm operates more efficiently.

It is easy to infer the disposability properties of T from the disposability proper-

ties of the intended production technology T1 and the residual generation mechanism

T2

Theorem 1: T satisfies free disposability with respect to all intended outputs and

non-pollution-causing inputs. It, however, violates free disposability with respect to the

pollution-causing input ı. It satisfies costly disposability with respect to the quantity

of pollution z.

18 Costly disposability, as defined in (2.4), could be considered to be too extreme. It implies that
an infinite amount of pollution can be generated by given amount of input ı. In general, there
may also be an upper bound for the generation of the unintended output. See Murty [2010b] for a
generalization.
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The technology violates standard disposability conditions with respect to the

quantity of the pollution-causing input xı because, while T1 satisfies standard free-

disposability conditions in xı, T2 satisfies the polar opposite conditions with respect

to this input.

Quantity vectors 〈x, y, z〉 ∈ T that satisfy f(x, y) = 0 and z = g(xı) are the

weakly efficient points of T . If a quantity vector in 〈x, y, z〉 ∈ T is such that f(x, y) <

0, then it is technologically possible to decrease the levels of the non-pollution-causing

inputs without changing the production levels of the remaining goods. If a quantity

vector in 〈x, y, z〉 ∈ T is such that z > g(xı), then it is technologically possible to

decrease the level of pollution without changing the production levels of all other

goods.

To sign the trade-offs between pollution and a (non-pollution-causing) intended

output j at a weakly efficient point of T , we invoke the implicit function theorem.

Let 〈x̂, ŷ, ẑ〉 be a weakly efficient point of T . Then

f(x̂, ŷ) = 0

ẑ − g(x̂ı) = 0.

(3.7)

Denote y−j to be the vector obtained by purging the jth element from the vector y.

Suppose that fj(x̂, ŷ) 6= 0 and gı(x̂ı) 6= 0. Then the matrix

[
fj(x̂, ŷ) fı(x̂, ŷ)

0 −gı(x̂ı)

]
(3.8)
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has full row rank. By the implicit function theorem, there exists a neighborhood

U around 〈x̂1, ŷ−j , ẑ〉 in Rn+m−1
+ , a neighborhood V around 〈x̂ı, ŷj〉 in R2

+, and

continuously differentiable mappings ψj : U → ψj(U) and h : U → h(U) with images

yj = ψj(x1, y−j , z)

xı = h(x1, y−j , z)

(3.9)

such that
〈
h(x1, y−j , z), ψj(x1, y−j , z)

〉
∈ V and

f(x1, h(x1, y−j , z), ψj(x1, y−j , z), y−j) = 0

z − g(h(x1, y−j , z)) = 0.

(3.10)

In that case, assuming that g′(xı) > 0, the trade-off between yj and z is19

∂ψj(x1, y−j , z)

∂z
= −

fı
(
x, y
)
hk(x

1, y−j , z)

fj(x, y)
≥ 0. (3.11)

How should one interpret this non-negative “trade-off” between yj? Starting at a

weakly efficient point in a local neighborhood of 〈x̂, ŷ, ẑ〉 ∈ T , an increase in z is

attributable, because of the by-production phenomenon inherent in T2, to an increase

in xı (as hk(x
1, y−j , z) > 0). Under the conventional assumptions on intended pro-

duction in (3.4), the trade-off between the pollution-generating input ı and intended

output j is

− fı(x, y)

fj(x, y)
≥ 0, (3.12)

hence, the increase in xı implies an increase in yj . The “trade-off” in (3.11), thus,

reflects a non-negative correlation between the residual and an intended output via

19 Note, as we have assumed a single unintended output, hk(x1, y−j , z) is the derivative of the
function h with respect to z. Note also that h is the inverse of g, i.e., h(x1, y−j , z) = g−1(z), so
that, if z = g(xı) and g′(xı) > 0, then hk(x1, y−j , z) = 1/g′(xı) > 0.
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xı, because a change in xı affects both yj (non-negatively in intended production)

and z (positively with respect to residual generation).

To summarize, the non-negative “trade-off” between an intended and an un-

intended output in the reduced form model is explained by (a) the phenomenon of

by-production, which relates the use of inputs such as ı to the by-product, and (b)

the non-negative marginal product of input ı in producing intended outputs like j.

3.2. A by-production approach: incorporating abatement activities.

We again keep the analysis simple by sticking to a single abatement output

(as well as a single unintended output). On the other hand, we make the model

more general to allow the possibility of input substitutability in the generation of

the by-product.20 We do so by partitioning the vector of all n inputs into n1 non-

residual-generating inputs and n2 residual-generating inputs. Denote the respective

input quantity vectors by x1 and x2. Let ya denote the level of the firm’s abatement

activities, which are also costly in terms of the input resources of the firm. With-

out loss of generality, we assume that the intended outputs do not cause pollution.

Similarly to the previous section, we specify the technology as T = T1 ∩ T2, where

T1 =
{
〈x1, x2, y, z, ya〉 ∈ Rn+m+2

∣∣ f(x1, x2, y, ya) ≤ 0
}

T2 =
{
〈x1, x2, y, z, ya〉 ∈ Rn+m+2

∣∣ z ≥ g(x2, ya)
}
.

(3.13)

T reflects both the transformation of inputs into intended outputs and abatement

output (as indicated by the definition of T1) and the use of the abatement output by

20 For example, substituting a cleaner variety of coal for a less pure variety or vice-versa.
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the firm to control the by-production of the residual that results from use of pollution-

generating inputs in producing intended outputs (as indicated by the definition of T2

in (3.13)). We confine ourselves again to a local analysis and posit the following signs

of the partial derivatives at a weakly efficient point 〈ŷ, ŷa, x̂1, x̂2, ẑ〉 of T :

fj(x̂
1, x̂2, ŷ, ŷa) ≥ 0, j = 1, . . .m,

fa(x̂
1, x̂2, ŷ, ŷa) > 0,

fi(x̂
1, x̂2, ŷ, ŷa) ≤ 0, i = 1, . . . n,

ga(x̂
2, ŷa) < 0,

gı(x̂
2, ŷa) ≥ 0 for all ı = n1 + 1, . . . , n,

gı(x̂
2, ŷa) > 0 for some ı = n1 + 1, . . . , n.

(3.14)

It is easy to see that (3.13) and (3.14) imply that T1 satisfies standard free dispos-

ability conditions for inputs, abatement output, and intended outputs. In addition,

there is a negative (or at least non-positive) trade-off between standard outputs and

the abatement output and a positive (or a non-negative) trade-off between each in-

tended output and the inputs in intended production.

With respect to residual generation, (3.13) and (3.14) imply that T2 satisfies

costly disposability for the unintended output and a condition that is the polar op-

posite of standard input and output free disposability for the abatement output and

non-pollution-generating inputs:

〈x1, x2, y, z, ya〉 ∈ T2 ∧ z̄ ≥ z ∧ x̄2 ≤ x2 ∧ ȳa ≥ ya =⇒ 〈x1, x̄2, y, z̄, ȳa〉 ∈ T2. (3.15)
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We call (3.15) “costly disposability of pollution, abatement output, and inputs that

generate pollution.”21 The trade-offs between z and each of the pollution-generating

input quantities x2
ı implied by (3.14) are non-negative and that between z and abate-

ment output ya is negative. Thus, the sign of ga captures the mitigating effect abate-

ment has on residual generation and the sign of gı captures the increase in pollution

attributable to the increase in inputs causing pollution.

It is easy to infer the disposability properties of T from the above characteristics

of T1 and T2:

Theorem 2: T satisfies free disposability with respect to all intended outputs and

non-pollution-causing inputs. It, however, violates free disposability with respect to

each of the pollution-causing inputs and the abatement output. It satisfies costly dis-

posability with respect to pollution.

Let the inequalities in (3.14) hold. We now sign the trade-off between z and an

intended output yj at a weakly efficient point of T . As in the previous section, we

do so by employing the implicit function theorem. Let 〈x̂1, x̂2, ŷ, ẑ, ŷa〉 be a weakly

efficient point of T . Then

f(x̂1, x̂2, ŷ, ŷa) = 0

ẑ − g(x̂2, ŷa) = 0.

(3.16)

21 This assumption reflects the inefficiencies in the production of pollution: if given levels of coal
and abatement activities generate some amount of pollution, then inefficiencies in the use of coal
or abatement activities imply that a lower amount of the coal input or a higher level of abatement
activities could generate the same level of pollution if the firm were to operate more efficiently.
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Let fj(x̂
1, x̂2, ŷ, ŷa) 6= 0 and ga(x̂

2, ya) 6= 0. Then the matrix

[
fj(x̂

1, x̂2, ŷ, ŷa) fa(x̂
1, x̂2, ŷ, ŷa)

0 −ga(x̂2, ŷa)

]
(3.17)

is full-row ranked. The implicit function theorem implies that there exists a neigh-

borhood U around 〈x̂, ŷ−j , ẑ〉 in Rn+m
+ , a neighborhood V around 〈ŷj , ŷa〉 in R2

+, and

continuously differentiable mappings ψj : U → ψj(U) and h : U → h(U) with images

yj = ψj(x, y−j , z)

ya = h(x, y−j , z) = g−1(z, x2)

(3.18)

such that
〈
ψj(x, y−j , z), h(x, y−j , z)

〉
∈ V and

f(x, ψj(y−j , z), y−j , h(x, y−j , z)) = 0

z − g(x2, h(x, y−j , z)) = 0.

(3.19)

In that case, the trade-off between yj and z is

∂ψj(x, y−j , z)

∂z
= −

fa
(
x, y, ya

)
hk(x, y

−j , z)

fj(x, y, ya)
≥ 0. (3.20)

As in the previous section, this non-negative trade-off between an intended output

and pollution at a weakly efficient point of T reflects a correlation between these

commodities; in this case, this correlation is effected by abatement effort of the firm

to mitigate by-production of pollution.22 Precisely, holding the levels of all inputs

(including pollution-causing inputs) fixed, an increase in z must have come about

because of reductions in abatement efforts ya by firms, and hence there is an increase

22 Note that, as in the previous section, a (generally different) non-negative correlation between
the intended and unintended outputs effected by an input that causes pollution could also be derived.
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in resources diverted towards production of other intended outputs y (assuming, of

course, that firms are operating in a weakly efficient way).

From our analysis above, we can derive the reduced-form functional representa-

tion of the technology T . By substituting out abatement efforts from the function f

in (3.13), we can rewrite T equivalently as

T =
{
〈x1, x2, y, z, ya〉 ∈ Rn+m+2

∣∣ f̃(x, y, z) ≤ 0 ∧ ya ≥ h(x, y−j , z)
}
, (3.21)

where

f̃
(
x, y, z

)
:= f

(
x, y, h(x, y−j , z)). (3.22)

Using (3.21), we can define a reduced-form technology in the space of intended and

unintended outputs and inputs as

T̃ := {〈x1, x2, y, z〉 ∈ Rn+m+1
+ | f̃(x, y, z) ≤ 0}. (3.23)

The input and output approaches in the conventional literature model a reduced-

form technology—quite in the spirit of T̃—in the space of intended and unintended

outputs and inputs that exhibits a positive correlation between intended and unin-

tended outputs but satisfies all of the standard free disposability assumptions with

respect to intended outputs and inputs. The technology is modeled only in reduced

form because, although this literature attributes the positive correlation to abatement

options available to firms, abatement activities are not explicitly modeled.

In the case of the by-production, it is easy to check that, in the neighborhood

of a point 〈x, y, z〉 that satisfies f̃(x, y, z) = 0, the trade-off between an intended
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and an unintended output, −f̃j
(
x, y, z

)
/f̃k
(
x, y, z

)
, is given by (3.20) and hence is

non-negative. This is consistent with conventional modeling of the reduced form of

a pollution-generating technology. However, the derivative of the function f̃ with

respect to a pollution-causing input i = n1 + 1, . . . , n is

f̃i(x
1, x2, y, z) = fa(x

1, x2, y, ya)hi(x, y
−j , z) + fi(x

1, x2, y, ya). (3.24)

Given (3.18) and the sign conventions in (3.14), the sign of f̃i is ambiguous, contrary

to the conventional literature, where it is signed as per a normal input. As seen in

Theorems 1 and 2 in Section 3, this follows from the fact that the residual generating

technology T2 (and hence the by-production technology T = T1∩T2) violates standard

free disposability in such inputs.

4. Data-based pollution-generating technologies.

The foregoing analysis reveals that modeling the phenomenon of by-production

requires more than one implicit production relation among inputs and outputs. One

of these relations captures intended production activities of firms (that is, describes

the set T1), while the other captures the inevitability of residual generation when firms

engage in intended production (that is, describes the set T2). The former identifies

an upper bound for the intended outputs of firms for every given level of inputs,

while the latter identifies a lower bound for pollution generation given every level of

intended outputs and inputs that are responsible for causing pollution.
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In this paper, we adopt a data envelopment analysis (DEA) approach to con-

structing pollution-generating technologies.23 These methods have become increas-

ingly common in recent years.24 Assuming (as we do in this paper) constant returns

to scale, this approach essentially envelops the data in the “smallest” or “tightest

fitting” convex cone. Additionally, in the case of conventional inputs and outputs,

the technology is the free disposal hull of this convex cone,25 but the problem is

more complicated in the case of pollution-generating technologies, where some goods

violate the free disposability assumption.

To lay out these concepts formally, we consider a more general model than the

one presented above, incorporating multiple pollution-generating inputs and multiple

pollutants. We restrict ourselves to the case where pollution is caused by the use of

certain inputs by firms.26

First augment the notation in Section 2 as follows:

(i) p decision making units (DMUs),27 indexed by d.

23 See attached working paper version of this paper for comments on the econometric approach to
modeling by-production.
24 The survey of these methods for modeling pollution generating technologies by Zhou, Ang, and

Poh [2008] contains 150 references.
25 See, e.g., Färe, Grosskopf, and Lovell [1994] for details and generalizations to other alternative

returns to scale assumptions.
26 The data set used below for our empirical application does not contain information on abate-

ment. Extension to the case where some intended outputs also cause pollution is straightforward.
In Section 7 we consider a numerical example to illustrate the extension to the case with abatement
efforts of firms.
27 Here we follow the standard nomenclature in the literature on technical efficiency measurement.

The generic DMU could be a firm, a plant belonging to a specific firm, or any of a number of types
of units of study.
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(ii) m intended outputs, indexed by j, with quantity vector y ∈ Rm
+ . The p × m

matrix of observations on intended output quantities is denoted by Y .

(iii) n inputs, indexed by i. The first n1 are non-pollution-generating, while the

remaining n2 = n − n1 are pollution generating. The quantity vector is x =

〈x1, x2〉 ∈ Rn
+. The p × n matrix of observations on the input quantities is

denoted by X = 〈X1, X2〉.

(iv) m′ pollutants, indexed by k, with quantity vector z ∈ Rm′
+ . The p×m′ matrix

of observations on pollutants is denoted by Z.

For illustrative purposes, we posit an example for a very simple special case with

five decision making units, one intended output, one unintended output, and one

input:

Example 1: p = 5, m = 1, n = n1 = 1, and m′ = 1. The (artificial) data are as

follows:
DMU x y z

1 1 2 4
2 1 3/2 1
3 1 2/3 2
4 2 3 5
5 2 2 3

(4.1)

In the conventional output approach to modeling pollution-generating technolo-

gies, all intended outputs and inputs are assumed to satisfy standard disposability

conditions, but two key assumptions are made regarding the unintended outputs. The

first,

〈x, y, z〉 ∈ T̃ ∧ λ ∈ [0, 1] =⇒ 〈x, λy, λz〉 ∈ T̃ , (4.2)
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is called “weak disposability”, a concept originally attributable to Shephard [1953,

1974]. The second,

〈x, y, z〉 ∈ T̃ ∧ z = 0 =⇒ y = 0, (4.3)

is called “null jointness”. Weak disposability and null-jointness imply that (a) while

pollution is not freely disposable, it is possible to jointly and proportionately decrease

pollution and the intended outputs and (b) production of any positive level of intended

output always results in positive amounts of the residual being generated. This

literature is predicated on the belief that these two assumptions can capture the fact

that, starting at any efficient point of the technology, it is not possible to decrease

pollution without decreasing the production of the intended outputs, and hence that,

together, they model the positive reduced-form correlation between pollution and

other intended outputs. The standard DEA construction of a pollution-generating

technology (based on the assumptions of weak disposability and null-jointness) first

formulated by Färe, Grosskopf, and Pasurka [1989], is given by

T̃WD =
{
〈x, y, z〉 ∈ Rn+m+m′

+

∣∣ λX ≤ x ∧ λY ≥ y ∧ λZ = z for some λ ∈ Rp
+

}
.

(4.4)

The production possibility set satisfying weak disposability for Example 1, with

x = 1 is shown in Panel 4 of Figure 7 (where points A and B are the 〈z, y〉 combinations

for DMUs 2 and 1, respectively, and the other DMU vectors fall below the frontier.
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Denote the overall technology T1 ∩ T2 that satisfies by-production by TBP . We

assume that T1 satisfies free disposability of inputs and intended outputs (as defined

in (2.2) and (2.3)) and that it is closed, convex, and satisfies constant returns to

scale. In addition, T1 satisfies the following assumption, which we call “independence

of T1 from z” and which states that pollution does not directly affect production of

intended outputs:28

〈x, y, z〉 ∈ T1 =⇒ 〈x, y, z̄〉 ∈ T1 ∀ z̄ ∈ Rm′
+ . (4.5)

The intended-output technology T1 that satisfies these assumptions is obtained

in a standard way using DEA techniques as follows:

T1 =
{
〈x, y, z〉 ∈ Rn+m+m′

+

∣∣ λX ≤ x ∧ λY ≥ y for some λ ∈ Rp
+

}
. (4.6)

We assume T2 satisfies costly disposability of pollution and inputs that cause

pollution (as defined in (3.6)) and constant returns to scale. Also note that, since we

have assumed that only x2 affects residual generation, T2 also satisfies “independence

of T2 from x1 and y”:

〈x, y, z〉 ∈ T2 =⇒ 〈x̄1, x2, ȳ, z〉 ∈ T2 ∀ 〈x̄1, ȳ〉 ∈ Rn1+m
+ . (4.7)

The DEA version of T2, which satisfies these assumptions, is obtained as

T2 =
{
〈x1, x2, y, z〉 ∈ Rn1+n2+m+m′

+ | µX2 ≥ x2 ∧ µZ ≤ z for some µ ∈ Rp
+

}
. (4.8)

28 This assumption would have to be relaxed if, e.g., the presence of pollution could adversely
affect labor productivity in producing intended outputs. See Murty [2010b].
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The first inequality in (4.8) reflects costly disposability of inputs that cause pollution

and the second reflects costly disposability of pollution. Since T2 is independent of

x1 and y, no inequalities need to be specified for x1 and y.

A data set coming from pollution-generating units must simultaneously belong to

both T1 and T2. The overall technology that exhibits by-production is the intersection

of T1 and T2:

TBP =
{
〈x1, x2, y, z〉 ∈ Rn1+n2+m+m′ | λ[X1 X2] ≤ 〈x1, x2〉, λY ≥ y,

µX2 ≥ x2, µZ ≤ z,

for some 〈λ, µ〉 ∈ R2p
+

}
.

(4.9)

The above construction of TBP using activity analysis involves two sets of production

relations. These are reflected in the two different intensity vectors λ and µ, each of

which is applied to the same data set.

These sets under the assumptions of Example 1 are depicted in the first three

panels of Figure 6. Noting that T1 is independent of z and T2 is independent of y,

Panels 1 and 3 of Figure 6 show the DEA constructions of projections of T1 (in the

space of the input and the intended output) and T2 (in the space of the input and

the unintended output), respectively.29

Panels 2 and 4 of the same figure show the combinations of intended and unin-

tended outputs that are feasible with x = 1, under the by-production (BP) and the

29 With an abuse of notation, but with no confusion, we also call these projections T1 and T2 in
Figure 6. Panels 1 and 3 of this figure are drawn under the maintained assumption of constant
returns to scale.
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weak disposability (WD) approaches, respectively. It is clear from Panel 2 that, in

the case of BP, the output possibility set has only one efficient point, e = 〈1, 2〉 (the

efficient frontier of the output possibility set is a singleton). This gives the minimum

level of the unintended output and the maximum level of the intended output that

can be produced when x = 1 and corresponds to efficient points of T1 and T2 as seen

in Panels 1 and 3.30 On the other hand, Panel 4 shows that the efficient frontier of

the output possibility set satisfying weak disposability OAB has a far greater number

of points. This illustrates that the efficient frontier of the output possibility set under

the BP approach is smaller than under the WD approach.

5. Measuring technical efficiency.

Two conventional efficiency indexes have been extensively employed in the DEA

pollution literature: the output-oriented hyperbolic (HYP) index employed in the

original DEA pollution study of Färe, Grosskopf, and Pasurka [1986] and the output-

oriented directional-distance-function (DDF) index employed in more recent stud-

ies (e.g., Färe, Grosskopf, Noh, and Weber [2005]).31 These indexes are “output-

30 Note that, while e is not a point in our artificial data set, the data are used to find e. The rest of
the frontier of the output possibility set in Panel 2 reflects the fact that TBP satisfies standard output
free disposability in the direction of the intended output and costly disposability in the direction of
pollution.
31 The HYP efficiency index was formulated for standard technologies by Färe, Grosskopf, and

Lovell [1985, pp. 110–111]. The DDF index was adapted from the shortage function of Luenberger
[1992] to the measurement of efficiency by Chambers, Chung, and Färe [1996] and Chung, Färe, and
Grosskopf [1997]. For a comparison of the properties of these two efficiency indexes, among others,
see Russell and Schworm [2010].
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oriented” because they measure efficiency in (intended and unintended) output space

(i.e., in the output direction).

For each technology T = T̃WD, TBP and for each decision making unit (d =

1, . . . , p), the output-oriented HYP efficiency index is defined by

EH

(
xd, yd, zd, T

)
= min

β>0

{
β |

〈
xd, yd/β, βzd

〉
∈ T

}
, (5.1)

and the output-oriented DDF index of inefficiency is defined by

IDD

(
xd, yd, zd, T

)
= max

{
β |

〈
xd, yd + βgy, z

d − βgz
〉
∈ T

}
, (5.2)

where g = 〈gy, gz〉 ∈ Rm+m′
+ is the arbitrary (output) “direction vector.” EH maps

into the (0,1] interval, while EDD maps into R+. For points on the frontier of

T , EH(x, y, z, T ) = 1 and IDD(x, y, z, T ) = 0.32 The vectors
〈
xd, yd/

∗
β,
∗
βzd
〉

and〈
xd, yd +

∗
βgy, z

d −
∗
βgz

〉
, where

∗
β is the solution value in each case, are referred to

as “reference points”; they are comparison vectors for assessing the efficiency of a

particular production vector.

5.1. Inadequacies of conventional efficiency indexes for the by-production approach:

the hyperbolic and directional-distance-function indexes.

Using our proposed BP approach under the assumptions that T1 is independent

of z and T2 is independent of y, the HYP and DDF efficiency indexes in (5.1) and (5.2)

32 Note that an HYP output-oriented index of inefficiency can be defined by 1/EH(x, y, z, T ),
which lies in the interval [1,∞).
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implicitly decompose total (in)efficiency into (in)efficiency in intended production and

environmental (in)efficiency:

EH(x, y, z, TBP ) = min
β>0
{β| 〈x, y/β, βz〉 ∈ TBP}

= min
β>0
{β|〈x, y/β, βz〉 ∈ T1 and 〈x, y/β, βz〉 ∈ T2}

= max{β1, β2}, where

β1 = min
β>0
{β|〈x, y/β, z〉 ∈ T1} =: E1

H(x, y, z, TBP ) and

β2 = min
β>0
{β|〈x, y, βz〉 ∈ T2} =: E2

H(x, y, z, TBP )

(5.3)

and

IDD(x, y, z, TBP ) = max
β
{β| 〈x, y + gyβ, z − gzz〉 ∈ TBP}

= max
β
{β|〈x, y + gyβ, z − gzβ〉 ∈ T1 and 〈x, y + gyβ, z − gzβ〉 ∈ T2}

= min{β1, β2}, where

β1 = max
β
{β|〈x, y + gyβ, z〉 ∈ T1} =: I1

DD(x, y, z, TBP ) and

β2 = max
β
{β|〈x, y, z − gzβ〉 ∈ T2} := I2

DD(x, y, z, TBP ).

(5.4)

If max {β1, β2} = β1 6= β2 for the HYP output-oriented measure of efficiency,

the data point is compared to a reference point that is weakly efficient in intended

production but is not weakly environmentally efficient. If max {β1, β2} = β2 6= β1,

the reference point is weakly environmentally efficient but not weakly efficient in

intended production. A similar logic applies in an obvious way for the DDF measure of

inefficiency. Thus, the reference points with which different data points are compared
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to measure (in)efficiency may not be fully efficient when the BP approach is used,

and we argue below that they typically are not fully efficient.

Consider the quantity vector of DMU 3 in Example 1, represented by point

a = 〈az, ay〉 = 〈2, 2/3〉 in the output possibility set corresponding to x = 1 in Panel

2. If the BP approach is used to measure HYP efficiency, (5.3) and Panels 1 to 3

show that β1 = 1/3 and β2 = 1/2 so that max{β1, β2} = β2.33 This implies that the

reference point that is being used to measure efficiency of 〈2, 2/3〉 is e′ = 〈1, 4/3〉. In

contrast to the fully efficient point e, e′ is environmentally efficient but not efficient

in intended production. On the other hand, the HYP efficiency of a using the WD

approach in Panel 4 is .47, and the reference point is e′′, which is technologically

efficient with respect to the WD technology.34

Suppose that, as is common in the literature, we adopt a direction vector g =

〈gz, gy〉 = 〈1, 1〉 =: 1 to compute the DDF index of inefficiency for DMU 3. If the BP

33 The intuition as to why the efficiency measure chooses β = β2 = max{β1, β2} as a full measure
of output efficiency is that, while 〈2β2,

2
3β2
〉 is feasible both with respect to T1 and T2 with x = 1,

〈2β1,
2

3β1
〉 is feasible only with respect to T1 and not T2, as it implies a reduction in the level of the

unintended output z below the minimum that x = 1 can produce.
34 The frontier of the output possibility set in Panel 4 can be represented functionally by

y ≤ 3
2
z 0 ≤ z ≤ 1

y ≤ z

6
+

4
3

1 ≤ z ≤ 4.
(5.5)

The HYP efficiency index in this case will choose a reference point that either lies on line-segment
OA (for z ∈ [0, 1]) or on line-segment AB (for z ∈ [1, 4]). The reference point will be of the form
〈2β, 2

3β 〉. Suppose, the reference point is on OA, then (5.5) implies that it should solve 2
3β = 3

22β

and this yields β =
√

2
3 = 0.471. If it is on AB then (5.5) implies that it should solve 2

3β = 2β
6 + 4

3 and
this yields β =

√
6 − 2 = 0.449. However, for this case, (5.5) implies that the underlying reference

point, 〈0.899, 1.483〉, is not feasible. Hence, HYP efficiency associated with a is 0.471, which takes
us to the reference point e′′ = 〈0.943, 1.414〉 lying on OA.
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approach is employed, then β1 is implicitly defined by 2
3 + β1 = 2, so that β1 = 4/3.

Similary, β2 is implicitly defined by 2 − β2 = 1 so that β2 = 1. Thus, the DDF

inefficiency score of DMU 3 is max {β1, β2} = β2 = 1, and this leads to a reference

point 〈1, 5/3〉 that is environmentally efficient but not efficient in intended production.

Now consider the quantity vector of DMU 2 represented by point b = 〈1, 3/2〉 in

the output possibility set corresponding to x = 1 in Panel 2. For the HYP measure,

program (5.3) and Panels 1 to 3 of Figure 6 imply that β2 = 1 while β1 = 3/4 < 1.

Thus, the conventional HYP measure computed using the BP approach gives DMU 2

an efficiency score β = 1 even though DMU 2 is not efficient in both the environmental

and the intended output dimensions: it is only environmentally efficient.35

These examples illustrate a fundamental problem with the conventional mea-

sures of efficiency when using the BP approach for constructing the technology: the

efficiency score for a firm may take the value 1 for HYP measures or 0 for the DDF

measure even though the firm is not weakly efficient in both environmental and in-

tended output directions. In addition, the reference point with which the firm is

compared may not be weakly efficient in both these dimensions, resulting in an un-

derstatement (overstatement) of overall inefficiency (efficiency).

It is well known that the HYP and DDF indexes do not satisfy the indication

condition: score equal to 1 or 0, respectively, if and only if the point is (fully) effi-

35 Similarly, it is easy to verify that the conventional DDF measure of inefficiency also gives DMU
2 an inefficiency score of 0.
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cient.36 But, because of another problem, the DDF is particularly unsuitable for use

as an inefficiency index for a BP technology. The inefficiency scores obtained from

the DDF measure are very sensitive to the choice of the direction vector g = 〈gz, gy〉.

While computing the DDF index of inefficiency, the direction and size of vector g are

held fixed across all data points.37 For this choice of g, the DDF inefficiency indexes

for DMUs, 1, 2, and 3 in Example 1, are obtained as below:

DMU β1 β2 β = min{β1, β2}
1 0 3

gz
β1 = 0

2 1/2
gy

0 β2 = 0

3 4/3
gy

1
gz

β2 if gy < 4gz/3
β1 if gy > 4gz/3

(5.6)

Thus, except when a DMU is environmentally efficient or efficient in intended pro-

duction, the DDF measure chooses β1 or β2 as the overall measure of inefficiency

depending on the choice of the direction vector g. It is a common practice in the

literature to choose g = 1. In this example with g = 1, the DDF measure selects

the environmental inefficiency component for DMU 3 as the overall measure of ineffi-

ciency. It is, of course, obvious that the DDF inefficiency score is sensitive, in general,

to the choice of the direction vector. This sensitivity seems to be more salient in the

BP approach, however, since the choice of g is typically tantamount to predetermin-

ing a choice between the selection of the environmental or the intended production

36 See Russell and Schworm [2010].
37 The components gy and gz of g are interpreted to be measured in the units in which intended

output and pollution are measured, respectively, so that the inefficiency scores can be interpreted
to be independent of units of measurement.
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inefficiency components as the measure of overall inefficiency.38

Many (in)efficiency indexes have been proposed in the literature.39 In empirical

work on pollution-generating technologies, however, HYP and DDF are among the

more widely used of these conventional indexes. Given the above problems with

these two indexes under the BP approach, we propose, in the next subsection, a

modification of another conventional efficiency index that is better behaved for use

in measuring efficiency on BP production technologies.

5.2. A proposed efficiency index for by-production technologies: modification of the

Färe-Grosskopf-Lovell index.

The previous subsection shows that the principal problem with the widely used

hyperbolic and directional-distance-function efficiency indexes applied to BP tech-

nologies is the endemic understatement of the degree of inefficiency.

The index we propose for measuring efficiency on by-production technologies is

motivated by the input-oriented index proposed by Färe and Lovell [1978] and ex-

tended to the full 〈input, output〉 space for standard technologies (with no unintended

outputs) by Färe, Grosskopf, and Lovell [1985, pp. 153–154]. The key feature of this

index is that the reference points it uses to assign efficiency scores to the DMUs are

38 It is well known that the HYP inefficiency index can be interpreted as an alternative kind of DDF
inefficiency index in which the direction vector varies across DMUs and, in particular, is equated to
the quantity vector 〈z, y〉. This alteration alleviates the above problem with the conventional DDF
index (where g is held fixed across all DMUs). (See Chambers, Chung, and Färe [1996].)
39 See Russell and Schworm [2010] for an analysis of these indexes and their properties.
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all efficient, in contrast to the the HPY and DDF indexes, for which the reference

points are all weakly efficient.40 Define

y � θ = 〈y1/θ1, . . . , ym/θm〉 (5.7)

and

γ ⊗ z = 〈γ1z1, . . . , γm′zm′〉. (5.8)

As our modification is minor, we continue to refer to it as the (output oriented)

Färe-Grosskopf-Lovell (FGL) index and define it as follows:

EFGL(x, y, z, T ) :=
1

2
min
θ,γ

{∑
j θj

m
+

∑
k γk
m′

∣∣∣ 〈x, y � θ, γ ⊗ z〉 ∈ T} . (5.9)

This index maps into the (0,1] interval and is equal to 1 if and only if the output

vectors are technically efficient.

In the case of BP technologies, and under the assumption that T1 is independent

of z and T2 is independent of y, the index decomposes as follows:

EFGL(x, y, z, TBP ) :=
1

2
min
θ,γ

{∑
j θj

m
+

∑
k γk
m′

∣∣∣ 〈x, y � θ, γ ⊗ z〉 ∈ TBP}
=

1

2
min
θ,γ

{∑
j θj

m
+

∑
k γk
m′

∣∣∣ 〈x, y � θ, γ ⊗ z〉 ∈ T1 ∧ 〈x, y � θ, γ ⊗ z〉 ∈ T2

}
=

1

2
min
θ

{∑
j θj

m

∣∣∣ 〈x, y � θ, z〉 ∈ T1

}
+

1

2
min
γ

{∑
k γk
m′

∣∣∣ 〈x, y, γ ⊗ z〉 ∈ T2

}
=:

1

2

[
E1
FGL(x, y, z, T1) + E2

FGL(x, y, z, T2)
]

=:
1

2
[β1 + β2] = β,

(5.10)

40 This feature is attributable to the fact that The Färe-Grosskopf-Lovell index involves a maximal
contraction/expansion of inputs/outputs in coordinate-wise directions (rather than in a maximal
radial or hyperbolic direction). Hence, all the slack in inputs and outputs is removed. (Of course,
the input-oriented or output-oriented version of this index takes up all slack only in the input or
output space, leaving the possibility of residual slack in outputs or inputs.)
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where the third identity follows from independence of T1 from z and independence

of T2 from y. This index is one-half of the sum of the average maximal coordinate-

wise expansions of intended-output quantities and the average maximal coordinate

wise contractions of unintended-output quantities subject to the constraint that the

expanded/contracted output-quantity vector remain in the production possibility set

for a given input vector.41 Under our independence assumptions, the index decom-

poses into the sum of a standard intended-output-oriented index defined on T1 (β1)

and an environmental index defined on T2 (β2).

The properties of this proposed index can be illustrated using the artificial data in

Example 1 above. Consider first the case of DMU 3, represented by point a in Panel 3

of Figure 6. It is clear that E1
FGL(1, 2/3, 2, T1) = 1/3 and E2

FGL(1, 2/3, 2, T2) = 1/2,

so that EFGL(1, 2/3, 2, TBP ) = 5/12 < EH(1, 2/3, 2, TBP ) = 1/2. Moreover, the

reference point for a is the fully efficient point e in Panel 3; thus, unlike the HYP

and DDF indexes, this proposed index takes up all the slack in the measurement of

efficiency. Consider now the quantity vector of DMU 2 represented by point b =

〈1, 3/2〉 in Panel 3. Although this point is not fully efficient, the values of both HYP

and DDF are equal to 1. On the other hand, for this DMU, E2
FGL(1, 3/2, 1, T2) = 1

but E1
FGL(1, 3/2, 1, T1) = (3/2)/2 = 3/4, so that EFGL(1, 3/2, 1, TBP ) = 7/8. These

examples illustrate the fact that the proposed index corrects the principal problem

41 Note that, instead of weighting each index equally, one could adopt different weights (summing
to 1) if there were a reason to give more importance to one type of efficiency than the other.
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with the HYP and DDF indexes in the measurement of efficiency on BP technologies.

In particular, the FGL efficiency scores will typically be lower than the HYP efficiency

scores.42

It can also be verified that, for DMU 3, EFGL(1, 2/3, 2, TWD) = .47, and the

associated reference point is e′′ in Panel 4 of Figure 6. Hence, the FGL efficiency score

for DMU 3 under the WD approach is higher than under the BP approach. Further,

e′′ is technologically infeasible under the BP approach, while the analogous reference

point e for DMU 3 under the BP approach is technologically infeasible under the WD

approach. The output quantity vector associated with DMU 2 is efficient under the

WD approach (EFGL(1, 2/3, 2, TWD) = 1 and it involves no slack viz-a-viz the WD

technology). But, this vector is only weakly efficient under the BP approach and hence

FGL gives DMU 2 a lower efficiency score. Thus, the efficiency scores for DMUs and

the associated reference points for FGL efficiency index are typically quite different

across the BP and WD approaches. In particular, if a DMU is judged efficient by the

FGL index under the BP approach, this index will also judge it efficient under the

WD approach. But the converse is not true. This implies that the FGL efficiency

scores under the WD approach will typically be at least as high as those under the

BP approach.

42 This is true for both WD and BP technologies.
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6. Empirical application.

We now illustrate the implementation of the modified FGL index on a BP tech-

nology constructed with an actual data base. We use annual data for 92 coal-fired

electric power plants from 1985 to 1995.43 This data base includes observations for

one intended output: net electricity generation (in kWh); two unintended outputs:

sulfur dioxide (SO2) and nitrogen oxide (NOx) (in short-tons); two non-polluting in-

puts: the capital stock and the number of employees; and three pollution-generating

inputs: the heat content (in Btu) of coal, oil, and natural gas consumed at each power

plant. Thus p = 92, m = 1, m′ = 2, n1 = 2, and n2 = 3.

The various efficiency indexes are calculating by executing mathematical pro-

gramming problems. In particular, the appropriate objective function in (5.1), (5.2),

or (5.9) is optimized subject to the constraints in (4.4), (4.6), or (4.8), respectively.44

The results depicted in Table 2 underscore the sensitivity of the the DDF measure

to the choice of the direction vector (illustrated above using Example 1). In our data

set, the consequence of choosing g = 1 is that the DDF measure of inefficiency picks

up the environmental inefficiency component as the overall measure for most DMUs.

43 A detailed description of the data can be found in Pasurka [2006].
44 Recall that the BP approach involves decompositions of (in)efficiency indexes (see (5.3), (5.4),

and (5.10)). As an example, the linear programs for calculating the FGL index under by-production
can be found in the attached working-paper version at page 27. We should note that calculation
of the HYP and FGL indexes on WD technologies employ the linear approximation used by Färe,
Grosskopf, and Pasurka [1986] and much of the subsequent literature. Owing to the relatively large
dimensionality of our data set, calculation of solutions to the nonlinear programs needed to calculate
these indexes explicitly on WD technologies is impractical. In the case of the BP approach, however,
the programs required to computations all three (in)efficiency indexes—HYP, DDF, and FGL—are
linear and hence pose no such calculation problems.
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Table 2 reports the (in)efficiency scores of a sample of ten DMUs for the year 1985

under the BP approach. The magnitudes of the HYP efficiency figures for β1 and

β2 for these firms are reasonably comparable (ranging from 0.7416 to 1.000 for β1

and from 0.3052 to 1.000 for β2), so that the operation β = max{β1, β2} is, in some

sense, non-discriminatory in choosing between β1 and β2. The magnitudes of β1 and

β2 for the DDF measure, however, are in orders ranging from 108 to 1010 and from

103 to 105, respectively, so that, except when β1 = 0, the operation β = min{β1, β2}

predominantly favors β2 over β1. Primarily for this reason we do not present further

results for the DDF measure of inefficiency.

Table 3 contains the mean values of the HYP and FGL efficiency indexes for each

year in our sample. Columns (1) and (2) pertain to the WD technology and Columns

(3)–(8) pertain to the BP technology underlying our data set. The BP approach is

our proposed method of constructing pollution-generating technologies and the FGL

index is our proposed method of calculating efficiency on BP technologies.

Columns (1) and (2) and Columns (5) and (8) of Table 3 show that, under

both the WD and BP approaches, the HYP index runs higher than the FGL index.

As in Example 1, this comparison reflects the fact that the expansion/contraction

to the frontier of the latter takes up all the slack in outputs, thus comparing the

output quantity vector to a reference vector on the efficient frontier, whereas the

expansion/contraction of the former leaves some slack, comparing the output quantity

vector to a point on the frontier but not necessarily in its efficient subset.
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Table 3 also indicates that, for our data set, both the HYP and FGL efficiency

estimates are consistently higher for the WD technology than for the BP technology,

a phenomenon that we explained above using Example 1. These differences in the

efficiency scores across the BP and WD technologies suggest that, for both HYP and

FGL measures, the reference points with respect to which efficiency is measured are

different under the two approaches. In particular, in the FGL case, all the reference

points are efficient, whereas for the HYP case, all are only weakly efficient. Thus,

our results show that the sets of efficient and the sets of weakly efficient points differ

across WD and BP technologies.

In the case of our particular data set, regardless of the index used, Table 3 also

shows that the degree of inefficiency in the pollution technology T2 is much larger

than that in the intended-production technology T1: apparently, the DMUs in our

data set are less concerned about the environmental dimension of their production

activities or environmental efficiency is more difficult to achieve.

The FGL index records greater pollution-generation inefficiency than does the

HYP index. An obvious expanation could again be the differences in the way in which

the two indexes treat slacks in outputs.45

Table 4 provides counts of weakly efficient and efficient firms using the HYP and

FGL indexes, respectively, for the two technologies. Columns (1) and (6) and Columns

45 Note that the (output oriented) HYP and FGL indexes take the same values for the intended
production technology T1 because, with only a single intended output, they collapse to the same
index.
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(2) and (10) provide a comparison across WD and BP technological specifications

of numbers of firms that receive an efficiency score of 1 under the HYP and FGL

measures, respectively. The table shows that, for both the HYP and FGL indexes,

the WD technological specification results in a larger number of firms receiving an

efficiency score 1 than does the BP technological specification. This seems consistent

with the findings from Example 1: the frontier of the output possibility set is larger

under the WD specification than under the BP specification. Hence, the probability

of a DMU being assigned an efficiency value of 1 is greater under the WD approach

than under the BP approach.

Columns (3)–(10) of Table 4 also help to compare the performance of FGL and

HYP indexes under the BP approach. First, it is not surprising that the HYP index,

which allows slack to remain in reference output vectors, judges at least as many

DMUs to be efficient (environmentally, in intended production, and overall) as does

the FGL measure. This comparison is indicated by comparing Column (3) with

Column (7), Column (4) with Column (8), and Column (6) with Column (10).46

Second, it follows that all the DMUs that are judged environmentally efficient by

FGL are a subset of the DMUs judged environmentally efficient by HYP. Finally, as

demonstrated by Example 1, the HYP index gives efficiency score 1 to DMUs that

are efficient in intended outputs or are environmentally efficient or are both. Hence,

46 In particular, with respect to the intended production technology T1, since there is only one
intended output, there is no slack remaining in the reference vector when the HYP index gives a
DMU an efficiency score of 1. Hence, Columns (3) and (7), are identical.
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Column (6) is obtained by adding Columns (3) and (4) and subtracting Column (5)

from this sum. On the other hand, as also demonstrated by Example 1, FGL is more

demanding in judging a DMU efficient: it gives efficiency score 1 to a DMU if and

only if it is efficient both environmentally and in intended production. Thus, Column

(10) is equal to Column (9).

Table 5 shows how the rankings of firms on the basis of their efficiency scores

compare across the two efficiency indexes HYP and FGL, across the two technolog-

ical specifications, and across the environmental and intended-production efficiency

scores. Columns (1) and (2) of Table 5 show that, for both HYP and FGL, the

Spearman correlation coefficients between the efficiency scores under the WD and

BP approaches are moderately high and positive: the rank correlation coefficients lie

in the range .5 to .71 and .66 to .89 for the HYP and FGL measures, respectively.

In the light of the significant conceptual differences between the two approaches (in

particular, the differences in the frontiers of the BP and WD technologies), which

are reinforced strongly by our empirical findings above, the BP approach seems to

make a larger difference in the levels than in the ranking of the efficiency scores of

the DMUs.

Table 5 also allows comparison of rankings under the the HYP and FGL in-

dexes applied to BP technologies. Given that in our data set there is only a single

intended output, there are no differences in the efficiency scores for intended produc-

tion obtained from the HYP and FGL measures. Hence, the Spearman correlation
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coefficients in Column (4) are all equal to 1. Our data set also exhibits high rank

correlations between environmental efficiency scores obtained from the FGL and HYP

measures: as seen in Column (5), the rank correlation coefficients lie in the range .87

to .99. Nevertheless, the rank correlation coefficients between overall efficiency scores

obtained under FGL and HYP are on the lower side: as seen in Column 3, these lie

in the range .42 to .72. This could be explained by the differences in the way HYP

an FGL indexes aggregate over environmental and intended output efficiency scores.

In Example 1, we saw that the HYP gives an efficiency score of 1 to a DMU that is

environmentally efficient but not efficient in intended production or vice-versa. The

FLG index, however, penalizes such DMUs for the slack in production of the intended

or the unintended output and gives them a lower score. Thus, the strength of the as-

sociation between the rankings of DMUs on the basis of their overall efficiency under

the HYP and FGL measures is not clear: in our particular data set, the association

is low.

Columns (6) and (7) of Table 5 show the rank correlation coefficients between ef-

ficiency scores in intended and unintended productions for the HYP and FGL indexes

under the BP approach. These values are all negative and low; e.g., the Spearman

correlation coefficients range between -.08 to -.28 and -.01 to -.27 for the HYP and

FGL indexes, respectively. Negative correlation values indicate that DMUs that are

more efficient in intended production are also likely to be more environmentally ineffi-

cient, and vice-versa. This may suggest that the DMUs face some trade-offs between
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efficiency in intended production and in pollution generation. In our data set, how-

ever, these trade-offs are weak, as the correlation values are very low. Thus, one may

conclude that most DMUs in our data set do not face significant trade-offs between

intended production and residual generation and can improve simultaneously on both

environmental and intended output efficiencies.

7. By-production versus weak disposability: Comparisons of DEA formu-

lations in the presence of abatement efforts.

The WD approach explains the positive correlation between intended outputs

and pollution through abatement efforts of firms that are not modeled. Hence, it

considers only a reduced form of the overall technology in the space of inputs and all

unintended and intended outputs other than the abatement output. In this section,

we extend the DEA formulation of a BP technology to include abatement efforts made

by firms and derive the DEA analogue of its reduced form defined in (3.23). With

the help of an example, we then compare the reduced forms of the two technologies.

A DEA version of the BP technology in the presence of an abatement output is

derived as follows: With respect to the intended technology T1, abatement is a stan-

dard output that satisfies standard output free disposability. The residual-generating

mechanism T2, on the other hand, satisfies costly disposability of abatement output.
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Thus,

TBP = T1 ∩ T2, where

T1 =
{
〈x1, x2, y, ya, z〉 ∈ Rn1+n2+m+1+m′

+ | λ[X1 X2] ≤ 〈x1, x2〉, λY ≥ y, λA ≥ ya,

for some λ ∈ Rp
+

}
, and

T2 =
{
〈x1, x2, y, ya, z〉 ∈ Rn1+n2+m+1+m′

+ | µX2 ≥ x2, µA ≤ ya, µZ ≤ z,

for some µ ∈ Rp
+

}
,

(7.1)

where A is the vector of abatement outputs for the p firms.

Holding all input quantities fixed at x, we next derive a DEA version of the

reduced form of TBP . Precisely, this is the projection of the output possibility set of

TBP (corresponding to input-quantity level x) defined in the 〈z, y, ya〉 space into the

〈z, y〉 space.

Noting that technology T1 is independent of z, the DEA construction of the

projection of the output-possibility set for technology T1 (corresponding to input

level x) into the 〈ya, y〉 space is denoted by P̂1(x).47 In a similar manner, noting that

technology T2 is independent of y, we define the DEA construction of the projection

P̂2(x) of T2 into the 〈ya, z〉 space.48

47 This is the set of all combinations 〈ya, y〉 that are possible with input level x for technology T1.
48 This is the set of all combinations 〈ya, z〉 that are possible with input level x for technology T2.

84



The DEA versions of the WD technology (see (4.4)) and the reduced form of

TBP in the 〈z, y〉 space, for a fixed level x of input quantities, are defined as follows:

P̂BP (x) =
{
〈z, y〉 ∈ Rm+m′

+ | ∃ ya ∈ R+ such that 〈ya, y〉 ∈ P̂1(x) ∧ 〈ya, z〉 ∈ P̂2(x)
}

P̃WD(x) =
{
〈z, y〉 ∈ Rm+m′

+ | 〈x, y, z〉 ∈ T̃WD

}
.

(7.2)

In Example 2 below, we compare P̂BP (x) and P̃WD(x). It is assumed that

n2 = 1, n1 = 0, m = m′ = 1, and x = 1.

Example 2: p = 8. The (artificial) data are as follows:

DMU x ya y z
1 1 0 8 9
2 1 1 7 6
3 1 2 6 8
4 1 3 6 3
5 1 4 1 2
6 1 5 4 0
7 1 6 2 0
8 1 7 1 11

(7.3)

After plotting the data, we find that P̂1(1) and P̂2(1) can be represented functionally

by piece-wise linear functions:

ψ1(ya) = 8− 2

3
ya if ya ∈ [0, 3] ψ2(ya) = 9− 3ya if ya ∈ [0, 1].

= 9− ya if ya ∈ [3, 5] =
15

2
− 3

2
ya if ya ∈ [1, 5]

=
23

2
− 3

2
ya if ya ∈ [5, 7] = 0 if ya ≥ 5.

(7.4)

The sets P̂1(1) and P̂2(1) are shown in Panels 1 and 2 of Figure 7. (7.2) implies that

P̂BP (1) (shown in Panel 3 of Figure 7) is constructed as follows:

P̂BP (1) =
{
〈z, y〉 ∈ R2

+| z ≥ ψ2(ya) ∧ y ≤ ψ1(ya) ∧ ya ∈ [0, 7]
}
. (7.5)
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Note that the construction of P̂BP (1) involves explicit reference to the abatement

output.49 No reference was made, however, to data on ya in the DEA construction

of P̃WD(1) in Panel 4 of Figure 7.

Moreover, while weak disposability holds for P̃WD(1), the data are such that null

jointness is violated. This can be rationalized by the fact that the abatement output

of a firm can completely mitigate pollution even when it is producing positive amounts

of the intended outputs.50 Further, the boundary of P̃WD(1) has a negatively sloped

region, indicating a negative correlation between intended and unintended outputs in

that region. The frontier of P̂BP (1), on the other hand, is everywhere non-negatively

sloped.

8. Conclusions.

Pollution is an unintended output that cannot be freely disposed of. Underlying its

production are a set of chemical and physical reactions that take place in nature when

firms engage in the production of intended outputs. These natural reactions define

nature’s residual generation mechanism, which is a relation between the residuals

generated and some inputs that are used or some intended outputs that are produced

by the firm: hence, the inevitability of a certain minimal amount of pollution being

49 In particular, we have been able to express the frontier of P̂BP (1) as a vector-valued function
of ya.
50 This could be true, e.g., in the presence of abatement activities such as recycling of wastes or

if all wastes are biodegradable and can hence be completely eliminated.
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generated when firms engage in intended production. We call this phenomenon by-

production of pollution. The larger is the scale of intended production, the greater

are the pollution-causing inputs being used or the greater are the pollution-causing

intended outputs being produced, and hence, the more is the pollution generated.

This provides the fundamental explanation for the positive correlation that is observed

between intended production and residual generation.51

Standard approaches in the existing literature, on the other hand, usually at-

tribute the observed positive correlation between pollution generation and intended

production to resource-costly abatement options of firms. Such options, however,

are not explicitly modeled, and only a reduced form of the technology is considered.

Pollution is either treated as an input satisfying standard input free disposability or

is considered as an output that is weakly disposable.

To capture the phenomenon of by-production, we model pollution-generating

technologies as a composition of two technologies: an intended-production technol-

ogy and a residual-generation technology. The former describes how inputs are trans-

formed into intended outputs, is assumed to be independent of the level of pollution,

and satisfies standard free-disposability properties. The latter reflects nature’s resid-

ual generation, violates standard disposability properties with respect to goods that

result in (affect) pollution generation, and exhibits costly disposability with respect

51 Some of the literature has adopted physical science terminology to describe these relationships
in terms of the “material balance” condition (see Ayres and Kneese [1969] and, more recently, Coelli,
Lauwers, and van Huylenbroeck [2007].
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to pollution. As a result, the overall technology violates standard disposability with

respect to inputs that cause (affect) pollution generation and exhibits costly dispos-

ability with respect to pollution. In these ways, a by-production technology, which

is based on multiple production relations, is different and better able to capture

the observed trade-offs in production than the usual input and output approaches to

modeling pollution-generating technologies based on just a single production relation.

We formulate DEA specifications of technologies that satisfy by-production, with

or without pollution-abatement activities, and employ them to measure technical ef-

ficiency of firms. In the context of by-production, standard measures of efficiency

decompose very naturally into environmental and intended output efficiencies. How-

ever, we find that, in the context of by-production, the commonly used indexes of

(in)efficiency, the hyperbolic and the directional-distance-function index, overstate

efficiency. In the existing set of (in)efficiency indexes proposed in the literature,

we find that a modification of an index proposed by Färe, Grosskopf, and Lovell

[1985] corrects the flaws in the hyperbolic and directional-distance-function indexes

for measurement of efficiency for by-production technologies. A comparison of the

values of this index with those of the hyperbolic and directional-distance-function

indexes, using a database for electric power firms, supports our arguments about the

inadequacies of the latter.

Appendix.
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Implicit function theorem: Let f : Rn
+ ×Rm

+ → Rm be a continuously differentiable

vector valued function with image f(x, y) = z, where x ∈ Rn
+ and y ∈ Rm

+ . Let

〈x̄, ȳ〉 ∈ Rn+m
+ be such that f(x̄, ȳ) = 0 and the m × m matrix of first derivatives,

∇yf(x̄, ȳ), is full ranked (has a non-zero determinant). Then there exist neighbor-

hoods U and V around x̄ and ȳ in Rn
+ and Rm

+ , respectively, and a continuously

differentiable function Φ : U → V with image Φ(x) = y such that, for all x ∈ U , we

have f(x,Φ(x)) = 0 and the m×n matrix of first derivatives, ∇xΦ(x), is obtained as

∇xΦ(x) = − [∇yf(x,Φ(x))]−1 ∇xf(x,Φ(x)).
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Abstract

In a recent paper, Murty, Russell, and Levkoff [2011] introduce the con-

cept of “by-production.” The by-production approach differs significantly in

two respects from previous studies, which treat unintended output either as

a freely disposable input or as an weakly disposable, null-joint output. This

study reconsiders a quadripartite decomposition of emissions fluctuations us-

ing a mixed-period distance function approach following in the spirit of Pa-

surka [2006], which assumed weak disposability and null-jointness of unintended

production. Using an input-output panel data set of coal-fired electric power

plants, this study implements a quadripartite decomposition utilizing two com-

mon efficiency indexes: the hyperbolic index and a modification of the Fare,

Grosskopf, Lovell [1985] coordinate-wise graph space index. The indexes are

computed using data envelopment (DEA) methods. Lastly, we distinguish be-

tween efficiency in intended production and environmental efficiency (efficiency

in unintended production). This distinction is important in implementation

of the factor decomposition since, in general, the two notions provide differing

results - firms that tend to be environmentally efficient are typically inefficient

in intended production and vice versa.

1 Introduction

In a recent paper, Murty, Russell, and Levkoff [2011] (MRL) introduce the concept

of “by-production.” Technologies that exhibit the property of by-production satisfy
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a “costly disposability” condition, and violate standard free disposability with re-

spect to goods that cause pollution. Moreover, MRL shows that in general, more

than one implicit production relation is needed in order to properly identify all of

the technological trade-offs associated with by-production of ”bad” outputs. The

necessity of more than one implicit production relation to model by-production of

unintended outputs has direct implications on specifications of the DEA technology

and efficiency measurement. This study models by-production technologies in an

application of decomposing pollution emissions by coal-fired electric power plants.

Following Pasurka [2006], this study takes a distance function approach in model-

ing the joint by-production of both good and bad outputs. This study decomposes

changes in bad output production resulting from changes in technical efficiency, tech-

nical progress, and the input-output mix in a manner similar to growth accounting

studies of total factor productivity. This study also tries to help resolve some debate

on the measurement of technical efficiency in the presence of unintended outputs.

The remainder of the study is organized as follows: The rest of the first section

provides background on disposability and conducts a survey of previous decomposi-

tion studies related to firm emissions. The following section explains the derivation of

the joint by-production model used in decomposing emissions via Data Envelopment

Analysis (DEA) under the assumption of residual by-production. Section 3 outlines

the efficiency indexes used to calculate the decomposition, the decomposition compo-

nents, and discusses issues related to using a mixed-period distance function. Section
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4 presents the results of the index decomposition for the various technological as-

sumptions and concludes with a discussion related to firm response to the 1990 Clean

Air Act Amendment. The study concludes with Section 5.

1.1 Previous Studies

The literature on decomposing factors associated with changes in pollutant emissions

has been extensive. Many other studies have carried out analyses related to carbon

emissions using either index decomposition (ID) models1 similar to the one herein or

structural decomposition analysis (SDA) models2, which utilize input-output tables3.

While carbon emissions are of great importance in the environmental literature, this

study focuses on NOx and SO2 emissions. NOx and SO2 emissions are now subject to

federal cap and trade policy under the Acid Rain Ruling, which was established under

Title IV of the 1990 Clean Air Act Amendment to reduce acid deposition. We discuss

the implications of this policy in the last section of results. Unllike studies analyzing

only CO2 emissions, where the production frontier consists of a single combination of

good and bad output production for a given technology and input-intended output

combination, when NOx and SO2 emissions are generated, abatement activities allow

for multiple combinations of good and bad outputs for a given technology and input-

1See Lin and Chang [1996], Selden et al. [1999], Viguier [1999], Hammer and Lofgren [2001],

Bruvoll and Medin [2003], and Cherp et al. [2003].
2See Leontief and Ford [1972], Meyer and Stahmer [1989], Wier [1998], Wier and Hasler [1999].
3For a comparison of these models, see Hoekstra and ven der Bergh [2003]
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intended output vector. Carbon emission reductions, on the other hand, require either

substitution between types of fuels or substitution of non-fuel inputs for fuel inputs.

Aiken and Pasurka [2002] specify a joint production model and attempt to quantify

variations in SO2 emissions associated with changes in technical efficiency, the output

mix, and production levels in the United States manufacturing sector during the

80’s and 90’s. Pasurka [2003] extends this analysis by calculating the change in SO2

emissions associated with the lack of free disposability of pollutants. Throughout

the remainder of the paper, the standard technology set will be denoted by T , input

vectors are denoted by x ∈ RI
+, intended output vectors by y ∈ RJ

+, and unintended

output vectors by z ∈ RK
+ .

1.2 Disposability

Past studies focused on capturing the positive relationship between intended produc-

tion and residual generation of by-products typically treated pollution in one of two

fashions: either as a standard input as in Baumol and Oates [1975], Cropper and

Oates [1992], Pittman [1981], and Barbera and McConnell [1990], or as a weakly

disposable, null- joint output as in Pittman [1983], Fare, Grosskopf, Lovell, and Pa-

surka[1989], Pasurka[2006], and Fare, Grosskopf, and Pasurka [1986].

A technology satisfies weak disposability of outputs if4

〈x, y, z〉 ∈ T =⇒ 〈x, λy, λz〉 ∈ T ∀λ ∈ [0, 1].

4This was first formalized by Shephard [1953]
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This implies that while pollution is not freely disposable, it is possible to reduce, in

tandem, pollution and intended outputs.

Null jointness is satisfied if

〈x, y, z〉 ∈ T ∧ z = 0 =⇒ y = 0.

This condition implies that any positive level of intended production always generates

some residual by-product.

This study follows in the spirit of Pasurka [2006], in which NOx and SO2 emis-

sions are decomposed. Pasurka [2006] operates under the assumption of weak dispos-

ability and null-jointness of unintended output production. We alter these assump-

tions herein.

In addition to much of the previous work done on emissions decomposition, there

have been several studies within the DEA literature focused on calculating relative

efficiencies in production when “bad” outputs exist. Fare, Grosskopf, Lovell, and

Pasurka [1989] modify the Farell [1956] approach to handle asymmetric treatment of

good and bad outputs by also treating unintended production as weakly disposable.

However, MRL shows that weak disposability of unintended outputs is incon-

sistent with the trade offs implied by the by-production process. It is reasonable to

purport that, in the case of pollution generating firms, there are specific character-

istics about stages in the production process of applying a technology to a set of

inputs to produce some desired output that can set reactions in motion in nature and

inevitably result in the generation of pollution as a by-product (e.g., the use of gas,
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fuel, or coal generates NOx and SO2 emissions which in turn react to the atmosphere

causing acid rain). MRL define these natural reactions that occur contemporaneously

with intended production as by-production. In the case of technologies exhibiting this

property, it is clear that one can observe a certain minimal amount of the by-product

for a particular level of input and/or output utilization. Inefficiencies in the produc-

tion process can lead to excess generation past this minimal amount of by-product.

This means that the technology should also satisfy what is known as a costly dispos-

ability condition5

〈x, y, z〉 ∈ T ∧ z̄ ≥ z =⇒ 〈x, y, z̄〉 ∈ T.

That is, inefficiencies in unintended production lead to levels of residual generation

that are larger than the lower bound for a given input-intended output combination

and technology. This condition highlights the possibility of inefficiencies arising within

the process of residual generation itself. As a preliminary discussion, lets consider

first, the flaw associated with utilizing only one implicit production relation when the

technology satisfies costly disposability. The technology set is given by6

T = {〈x, y, z〉 ∈ RI+J+K
+ |f(x, y, z) ≤ 0},

where f is differentiable and vectors satisfying f(x, y, z) = 0 are points on the bound-

ary of the technology set. Any vectors satisfying f(x, y, z) < 0 are inefficient pro-

duction vectors. The standard differential restrictions imposed on the technology

5first formalized by Murty [2010]
6We abstract from including abatement output as it is not in our data set. For a theoretical

discussion including abatement output, see Murty, Russell, and Levkoff [2011]
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are

fx(x, y, z) ≤ 0

fy(x, y, z) ≥ 0

fz(x, y, z) ≤ 0.

The first two differential restrictions are the standard free disposability of inputs and

intended outputs respectively

〈x, y, z〉 ∈ T ∧ x̄ ≥ x =⇒ 〈x̄, y, z〉 ∈ T

〈x, y, z〉 ∈ T ∧ ȳ ≤ y =⇒ 〈x, ȳ, z〉 ∈ T

The third differential restriction captures the costly disposability condition.

Next, consider an efficient vector 〈x̂, ŷ, ẑ〉 such that f(x̂, ŷ, ẑ) = 0 and fz(x̂, ŷ, ẑ) <

0. Then by the implicit function theorem, there exist neighborhoods U ⊆ RI+J+K−1
+

and V ⊆ R+ around 〈x̂, ŷ, ˆz−k〉 ∈ RI+J+K−1
+ and ẑk ∈ R+ and a function ϕ : U → V

such that

ẑk = ϕ(x̂, ŷ, ˆz−k)

and

f(x, y, ϕ(x, y, z−k), z−k) = 0.

where z−k is the vector z with the kth element purged.

Then the ceteris paribus trade off between any input and unintended by-product

zk implied by the implicit function theorem is given by

∂ϕ(x, y, z−k)

∂xi
= −fx(x, y, z)

fz(x, y, z)
≤ 0 ∀i, k
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Clearly, this non-positive trade off between inputs and residual pollution is inconsis-

tent with the phenomena of by-production, especially the case in which the usage of

input i results in residual generation. That is, if pollution is generated as a by-product

of input usage, then the usage of inputs should correspond in a positive fashion to

the residual generation of pollution.

Likewise, the ceteris paribus trade off between any intended output and unin-

tended by-product zk implied by the implicit function theorem is given by:

∂ϕ(x, y, z−k)

∂yj
= −fy(x, y, z)

fz(x, y, z)
≥ 0 ∀j, k

If the trade off between intended production and pollution is strictly positive, this

implies the existence of a wide variety of technically efficient 〈y, z〉 combinations that

are possible with fixed levels of all inputs. This is also incongruent with the by-

production phenomena since by-production itself implies that only one technically

efficient, minimal level of pollution should exist given a fixed level of inputs.

Finally, the implied trade off between one pollutant and another along the effi-

cient frontier is given by:

∂ϕ(x, y, z−k)

∂z−k
= −fz(x, y, z)

fz(x, y, z)
≤ 0 ∀k

This implies that pollutants are substitutable for one another and that there exists a

rich menu of 〈zk, z−k〉 for a given input and intended production vector. Again, this

trade off is not consistent with the fact that the residual generation mechanism may

be specific to the utilization of particular inputs (ie: coal) and one combination of

inputs may not be able to produce such a rich menu of unintended by-product.
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Clearly, these trade offs are not consistent with the phenomena of by-production.

Moreover, it seems that the single equation implicit specification of a pollution gener-

ating technology seems to treat residual generation like any other input: increases in

levels of the by-product holding all other inputs fixed increases output; secondly, pol-

lution is a substitute for all other inputs in the production process so that decreases

in non-polluting inputs can be easily substituted with pollution to generate the same

level of output.

To reconcile this seeming paradox between by-production and implicit trade offs,

MRL utilize multiple production relations to model the residual generation mecha-

nism as an independent and separate process from intended production and resolve

the paradoxical trade offs highlighted above. That is, MRL suggest specifying two

production relations - one for intended production and another for residual genera-

tion of the by-product. The by-production technology is then the set of vectors in the

intersection of these two technology sets. Under the by-production specification, the

reduced form technology satisfies free disposability with respect to intended outputs

and non-pollution causing inputs. It violates free disposability with respect to pol-

lution causing inputs and satisfies the costly disposability condition with respect to

residually generated, unintended outputs. A few studies have already explored some

of these ideas.7 Forsund [2009] utilizes a welfare maximization problem to show that

optimal policy is ambiguous when only a single production relation is used to model

7Frisch [1965] provides some foundation on using multiple production relations.
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a pollution generating technology.

The next section describes the technology under by-production and the impli-

cations for data envelopment. The following sections discuss the choice of distance

functions to be used in the quadripartite decomposition.

2 By-production Technology

This section explains the construction of the by-production technology and the deriva-

tion of the DEA technology to be utilized in calculating relative efficiencies. In order

to correct for the aforementioned flaws using the single equation, implicit production

relation when costly disposability is invoked, MRL specify a by-production technol-

ogy as the intersection of two technological mechanisms: one governing the intended

production process and another governing the residual generation mechanism. MRL

show that the reduced form by-production technology corrects the trade off distor-

tions present when only one implicit production relation is used to model residual

generation of pollutants. First, we specify a partition among the inputs in the fol-

lowing fashion: x = 〈x−ı, xı〉 where x−ı is the input vector purged of the first I ′ ≤ I

inputs that are associated with the pollutants z and let xı denote the subset of the

input vector that are associated with the residual generation of pollutants8. Then we

8In general, we need not restrict ourselves to the case where only input usage causes pollutants.

For example, the production of the output of say, cheese, could in some sense cause an unintended

odor from the presence of the output, not necessarily the input usage. Murty, Russell, and Levkoff
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specify the technology as

TBP = T1 ∩ T2,

where

T1 =
{
〈x−ı, xı, y, z〉 ∈ RI+J+K

+

∣∣ f(x−ı, xı, y) ≤ 0
}
,

T2 =
{
〈x−ı, xı, y, z〉 ∈ RI+J+K

+

∣∣ g(z, xı) ≥ 0
}
,

where f and g are continuously differentiable functions.9 T1 is the standard technology

set specifying the ways in which inputs are transformed into intended outputs. The

standard free disposal properties can be imposed on this set by assuming that

fx(x, y) ≤ 0 ∀ i = 1 . . . I

fy(x, y) ≥ 0 ∀ j = 1 . . . J

T2 is nature’s residual-generation set reflecting the physical and chemical mechanism

underlying the production of pollutants. T2 satisfies costly disposability with respect

to pollution as the function g(z, xı) defines the minimum level of bad outputs gener-

ated by a given level of input usage and satisfies

gxı(z, xı) ≤ 0 ∀ ı = 1 . . . I ′

gz(z, xı) ≥ 0 ∀ k = 1 . . . K

[2011] address this issue as well and show that is trivial to adjust the model to capture this behavior
9We assume that TBP is non-empty. In fact, as long as a production vector in T1 is feasible given

the same component of pollution generating input causes some amount of pollution through T2, then

the intersection will not be null. If the no free lunch assumption holds, then the zero vector lies in

both T1 and T2, so that TBP is non-empty.
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to reflect the fact that increases in input usage associate with bad output production

will increase this minimal amount. However, notice that T2 violates standard free

disposability of inputs that are associated with pollution and satisfies a completely

different condition with respect to these inputs:

〈x−ı, xı, y, z〉 ∈ T2 ∧ z̄ ≥ z ∧ x̄ı ≤ xı =⇒ 〈x−ı, x̄ı, y, z̄〉 ∈ T2

This condition reflects that fact that inefficiencies arising in the residual generation

process imply that it may be possible to either reduce input usage to generate the

same level of pollutant or reduce pollution generation for a given level of input usage.

Thus, we can infer that TBP satisfies free disposability with respect to all in-

tended outputs and inputs not associated with residual generation. However, the

reduced form by-production technology violates standard free disposability with re-

spect to inputs associated with residual generation and satisfies costly disposability

with respect to residual generation of pollutants.

2.1 Constructing the DEA Technologies

In this section, we describe the fundamental differences between the weak dispos-

ability/null jointness and by-production approaches with respect to the DEA tech-

nologies. We consider the case where only input usage causes pollution since this is

the case relevant to our data set. Construction of the DEA technologies requires the

following elements:

(i) D decision making units (DMUs), indexed by d.
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(ii) J intended outputs, indexed by j, with quantity vector y ∈ RJ
+. Let Y be

the

D ×K matrix of intended output observations.

(iii) I inputs, indexed by i. The first I ′ are polluting inputs, indexed by ı. The

remaining I − I ′ inputs are non pollution-generating. The quantity vector is

x = 〈xı, x−ı〉. The D × I matrix of input observations is then partitioned into

X = 〈X ı, X−ı〉 ∈ RI
+.

(iv) K pollutants indexed by k, with quantity vector z ∈ RK
+ . Let Z be the

D ×K

matrix of pollution observations.

The standard DEA construction of a pollution-generating technology satisfying

weak disposability and null-jointness, as formulated by Fare, Grosskopf, and Pasurka

[1989] is given by

TWD =
{
〈x, y, z〉 ∈ RI+J+K

+ |λX ≤ x ∧ λY ≥ y ∧ λZ = z for some λ ∈ RD
+

}
The by-production technology is constructed in two stages. First, T1 is constructed

as follows:

T1 =
{
〈x, y, z〉 ∈ RI+J+K

+ |λX ≤ x ∧ λY ≥ y for some λ ∈ RD
+

}
Next, construct T2 by:

T2 =
{
〈xı, x−ıy, z〉 ∈ RI+J+K

+ |µX ı ≥ xı ∧ µZ ≤ z for some µ ∈ RD
+

}
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The by-production technology is defined as the set of vectors lying within the inter-

section of T1 and T2 and can be written as:

TBP =
{
〈xı, x−ıy, z〉 ∈ RI+J+K

+ |λ[X ı X−ı] ≤ 〈xı, x−ı〉 ∧ λY ≥ y ∧ µX ı ≥ xı ∧ µZ ≤ z

for some 〈λ, µ〉 ∈ R2D
+

}

3 Efficiency Measurement and Decomposition

This study will utilize two different distance functions in implementing the quadri-

partite decomposition 10. The popular hyperbolic index will first be implemented

as in Pasurka [2006]. The second index used only for the by-production technology,

is a modification of the Fare, Grosskopf, and Lovell [1985] coordinate-wise efficiency

index as utilized by MRL to characterize efficiencies in by-production technologies.

The advantage of this index is that it satisfies an indication axiom that the hyperbolic

does not, and that it is easily decomposable into measures of efficiency in intended

production and inefficiency in unintended residual generation of by-products.

3.1 Distance Functions: Weak Disposability vs. By-production

The most popular efficiency index used in decomposition studies is the hyperbolic

efficiency index. Pasurka [2006] measures producer efficiency under weak disposability

10Although, within these two categories of distance functions, we will actually compute seven

different indexes, five of which utilize mixed-period distance functions to run the decomposition.
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and null jointness by employing the hyperbolic index:

D−1HY P (x, y, z, TWD) = max
β>0
{β| 〈x, yβ, βz〉 ∈ TWD}

That is, efficiency is measured by crediting the producer for expanding both intended

and unintended outputs to the boundary of the technology set. However, this implies,

that a producer will be ranked more efficiently if they are able to produce more (not

less) pollution for a given input and intended output combination. we argue, this

is not conceptually consistent with the idea that pollution has negative societal im-

plications11. Before considering by-production technologies, we correct the direction

of measurement under weak disposability by employing the subsequent decomposi-

tion utilizing the hyperbolic efficiency index whereby the producer is credited for

expansions of intended output and retractions of unintended output:

D−1HY P (x, y, z, TWD) = min
β>0
{β| 〈x, y/β, βz〉 ∈ TWD}

This hyperbolic efficiency index is a distance function calculated by measuring the

radial expansion of intended outputs and radial contraction of unintended outputs,

in a fashion we argue is similarly applicable to by-production technologies.

Under the by-production technological specification, one can think of measuring

the distance from two different frontiers. Thus, two notions of efficiency arise under

by-production: efficiency in intended production, as measured by the expansion of an

intended output vector toward the production possibilities frontier, and environmental

11Although there are other reasons why this approach has been taken in the past. See Pasurka

[2006]
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efficiency, as measured by retracting unintended pollution to its minimally possible

level given an input-intended output vector. We calculate the hyperbolic index by

solving the following optimization problem:

DHY P (x, y, z, TBP ) = min
β>0
{β| 〈x, y/β, βz〉 ∈ TBP}

= min
β>0
{β|〈x, y/β, βz〉 ∈ T1 and 〈x, y/β, βz〉 ∈ T2}

= max{β1, β2} where

β1 = min
β>0
{β|〈x, y/β, z〉 ∈ T1} =: D1

H(x, y, z, TBP )

β2 = min
β>0
{β|〈x, y, βz〉 ∈ T2} =: D2

H(x, y, z, TBP )

The equalities after the first equation follow from the independence of T1 and T2. Note

that β1 measures efficiency in intended production while β2 measures environmental

efficiency. That is, if DHY P = β1, then the reference point in the by-production

technology set is efficient (weakly) in intended production, but not environmentally

efficient. If DHY P = β2, then the reference point in the by-production technology

set is environmentally efficient (weakly), but not output efficient. Therefore, it is

important for policy makers and researchers to distinguish between these two notions

of efficiency as the objectives of producers and policy makers may not coincide.

The second distance function that will be used in computing efficiency is a modi-

fication of a graph space 12 index first introduced by Fare, Grosskopf, and Lovell[1985].

Define y � β = 〈y1/β1, . . . , yJ/βJ〉 and γ ⊗ z = 〈γ1z1, . . . , γKzK〉. In the case of by-

12Graph space refers to the full space of inputs and outputs
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production and assuming independence of T1 and T2 the by-production index proposed

by MRL decomposes as follows:

DFGL(x, y, z, TBP ) :=
1

2
min
β,γ

{∑
j βj

J
+

∑
k γk
K

∣∣∣ 〈x, y � β, γ ⊗ z〉 ∈ TBP}
=

1

2
min
β,γ

{∑
j βj

J
+

∑
k γk
K

∣∣∣ 〈x, y � β, γ ⊗ z〉 ∈ T1 ∧ 〈x, y � β, γ ⊗ z〉 ∈ T2}
=

1

2
min
β

{∑
j βj

J

∣∣∣ 〈x, y � β, z〉 ∈ T1}+
1

2
min
γ

{∑
k γk
K

∣∣∣ 〈x, y, γ ⊗ z〉 ∈ T2}
=:

1

2

[
D1
FGL(x, y, z, T1) +D2

FGL(x, y, z, T2)
]

This index differs significantly from the hyperbolic in that no ”slack” is left in the

technology13. In the hyperbolic index, only one constraint involving β binds with

equality. However, DFGL is measured through coordinate-wise expansions and con-

tractions of intended output and pollution respectively. That is, DFGL takes up all of

the slack in the technology, and additionally, satisfies weak indication.14, which the

hyperbolic does not.

13The weight of 1/2 is used here. Any weights on (0,1) would suffice to preserve the indication

property for by-production technologies. An index satisfies weak indication if it is equal to unity if

and only if the vector lies on the efficient frontier of the technology set.
14An index satisfies indication if it equals unity if and only if the observation is on the efficient

frontier of the technology set. See Levkoff, Russell, and Schworm[2010] for a discussion of this

property and its relationship to the FGL index.
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3.2 Quadripartite and Pentipartite Emissions Decomposition

In this section, the quadripartite decomposition of emissions is described and extended

to a pentipartite decomposition by considering fuel and non-fuel input growth. Let

zt+1
k /ztk represent the gross rate of change in pollutant k between periods t and t+ 1.

Then, using distance functions, we can rewrite the gross rate of emissions change as

follows:

zt+1
k

ztk
=
D(xt+1, yt+1, zt+1, T t+1

BP )(zt+1
k /D(xt+1, yt+1, zt+1, T t+1

BP ))

D(xt, yt, zt, T tBP )(ztk/D(xt, yt, zt, T tBP ))

which can be rewritten as

zt+1
k

ztk
=

[(
D(xt+1, yt+1, zt+1, T t+1

BP )

D(xt, yt, zt, T tBP )

)]
×
[(

D(xt, yt, zt, T tBP )

D(xt, yt, zt, T t+1
BP )

)(
D(xt+1, yt+1, zt+1, T tBP )

D(xt+1, yt+1, zt+1, T t+1
BP )

)]1/2
×
[(

D(xt, yt, zt, T t+1
BP )

D(xt+1, yt, zt, T t+1
BP )

)(
D(xt, yt+1, zt+1, T tBP )

D(xt+1, yt+1, zt+1, T tBP )

)]1/2
×
[(

zt+1
k /D(xt+1, yt+1, zt+1, T t+1

BP )

ztk/D(xt+1, yt, zt, T t+1
BP )

)(
zt+1
k /D(xt, yt+1, zt+1, T tBP )

ztk/D(xt, yt, zt, T tBP )

)]1/2
= TECHEFF t+1

t × TECHCHANGEt+1
t × INPUTGROWTH t+1

t ×OUTPUTMIX t+1
t,k

where TECHEFF t+1
t is the index component associated with variations in techni-

cal efficiency (movements toward or away from the frontier), TECHCHANGEt+1
t

is the index component associated with technical change (shifting of the frontier),

INPUTGROWTH t+1
t is the index component associated with variations in input

usage, and OUTPUTMIX t+1
t is the index component associated with changes in

the output mixture (movements along the frontier). It is important to note that

TECHEFF t+1
t , TECHCHANGEt+1

t , and INPUTGROWTH t+1
t have equal effects
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on all pollutants being emitted by a given producer and only the k subscript ap-

pears on OUTPUTMIX t+1
t,k ). Thus, the OUTPUTMIX t+1

t,k component accounts

for all variation in emissions across bad outputs for a producer. If any of the

components have a value larger than unity, then increased emissions of the pol-

lutant are associated with that component. If the component’s value is less than

unity, this indicates decreased bad output production associated with the compo-

nent. INPUTGROWTH t+1
t can be further decomposed to analyze factors related

to growth of fuel and non-fuel inputs:

INPUTGROWTH t+1
t =

[(
D(xtF , x

t
NF , y

t, zt, T t+1
BP )

D(xtF , x
t+1
NF , y

t, zt, T t+1
BP )

)(
D(xtF , x

t+1
NF , y

t, zt, T t+1
BP )

D(xt+1
F , xt+1

NF , y
t, zt, T t+1

BP )

)]1/2
×
[(

D(xtF , x
t
NF , y

t+1, zt+1, T tBP )

D(xtF , x
t+1
NF , y

t+1, zt+1, T tBP )

)(
D(xtF , x

t+1
NF , y

t+1, zt+1, T tBP )

D(xt+1
F , xt+1

NF , y
t+1, zt+1, T tBP )

)]1/2

where the set of inputs x = 〈xF , xNF 〉 is partitioned into the set of fuel inputs xF and

non-fuel inputs xNF . We can also rewrite this expression as:

INPUTGROWTH t+1
t =

[(
D(xtF , x

t
NF , y

t, zt, T t+1
BP )

D(xtF , x
t+1
NF , y

t, zt, T t+1
BP )

)(
D(xtF , x

t
NF , y

t+1, zt+1, T tBP )

D(xtF , x
t+1
NF , y

t+1, zt+1, T tBP )

)]1/2
×
[(

D(xtF , x
t+1
NF , y

t, zt, T t+1
BP )

D(xt+1
F , xt+1

NF , y
t, zt, T t+1

BP )

)(
D(xtF , x

t+1
NF , y

t+1, zt+1, T tBP )

D(xt+1
F , xt+1

NF , y
t+1, zt+1, T tBP )

)]1/2
= NONFUEGROWTH t+1

t × FUELGROWTH t+1
t

to observe how changes in fuel usage are associated with emissions reductions. Note

that both of the above decompositions utilize the mixed-period distance function:

using production vectors from period t and the technology form period t + 1 or vice
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versa. Using mixed period distance functions presents complications with solution

feasibility when calculating indexes under the assumption of weak disposability, and

are addressed in the next section.

3.3 Modeling the Best Practice Frontier Using Panel Data

As was discussed in the previous section, the pentipartite decomposition employs

seven different distance functions for a given technological specification, five of which

involve mixed periods. As is true for Malmquist-Luenberger productivity indexes,

some of the solutions to the mixed period distance functions may be infeasible.15 To

mitigate this problem, Pasurka[2006] ”pools” the technology by using a three period

rolling window, so that the technology in period t is derived from observations from

periods t, t − 1, and t − 2. While this does lessen the frequency of the infeasibility

problem 16, the problem still exists and is further exacerbated by the large number

of different mixed period distance functions utilized for each year. If any one out of

the five has an infeasible solution for any given year, then the firm must be removed

from the sample as the decomposition between those two years cannot be calculated.

Pasurka[2006] removed more than 20% of firms in the sample due to this problem,

dramatically limiting the analytical power of the results. Another down side to using

the rolling window technology is that the size of the window restricts the use of all

15There may exist vectors such that 〈yt+1, zt+1〉 /∈ Tt(xt+1). If β is bounded above by unity, then

solutions to these programs will not be feasible.
16Relative to using only a one period window.
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years of data.17

There are three alternatives to remedy this problem. The first, is allowing the

efficiency scores to exceed unity, and characterizing hyper-efficient18 points in the

technology set. However, interpretation of this notion is not clearly understood in

applications to the decomposition literature.

Another solution, is to allow observations from the entire panel horizon to define

the best practice technology. This guarantees never running into an infeasibility

problem. However, it removes all dynamics from the frontier - if the frontier is

generated from all observations, it will not change from period to period and will

not allow us to assess differences between technical efficiency and technical progress.

In fact, there is vacuously no technological progress if all observations are used in

constructing the technology.

The third solution, and the one employed herein, is to use the sequential tech-

nology so that the technology in period t includes observations from the current and

all previous periods. Unlike the pooled window specification, which allows for the

possibility of technological regress or implosion, the sequential technology assumes

no possibility of technological implosion - if a vector was feasible in the past, then it

is feasible in the present. There may be some applications where allowing for implo-

17A rolling window using W periods of observations in constructing the technology means that

the first period that can be fully analyzed in implementing the decomposition is period W and

information is lost from periods before W .
18Not technologically feasible in a given period.
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sion is warranted. However, for our purposes herein, it is not likely that technological

regress has occurred in the electricity generation industry. Some may argue that gov-

ernment regulation may prevent past observations from being feasible. However, this

argument is no longer discussing technological feasibility, but rather policy feasibil-

ity.19 Unlike the polled rolling window production set, the other advantage of using

the sequential production set is that it no longer limits the time period in which we

can begin conducting the analysis. We immediately extend Pasurka[2006] to the se-

quential technology and show that his results are robust to the choice of technological

dynamics. For the remainder of the study, the sequential frontier is employed.20

4 Data Analysis and Results

4.1 Description of the Data

This section describes the data utilized in the analysis of the by-production model.

Observations from 92 coal-fired power plants from the years 1985 through 1995 are

used to construct the efficiency indexes and to estimate the by-production technol-

ogy. Each observation (electrical plant) produces one intended output, net electrical

19We can reconcile this argument by defining another set of policy feasible vectors and define the

technology over the intersection of the production set and the feasible policy vector set, the latter

of which may implode.
20We include the results for the three-period rolling window for each index as well in the appendix

to show that the results, in general, are robust to the assumption regarding the use of the sequential

frontier.

119



generation, measured in kWh, and two unintended outputs, sulfur dioxide (SO2) and

nitrogen oxides (NOx), measured in short tons. The inputs used by each plant consist

of the capital stock, the number of employees, and the heat content of coal, oil, and

natural gas, measured in Btus.21 In order to model homogeneous production tech-

nologies via data envelopment, coal must provide a minimum of 95 percent of the Btu

of fuels consumed by each plant22.

The number of employees is calculated as an average taken from data in the

U.S. Federal Energy Regulatory Commission Form 1 survey. Additionally, the FERC

1 survey also collects information on the historical cost of plants and equipment and

does not consider investment expenditures. Thus, variation in the value of plants

and equipment reflect the value of additional plant and equipment less the value of

depreciated plant and equipment. In constructing the capital stock in each period

for each plant, this study assumes that changes in the costs of plants and equipment

reflect net investment23. Historical costs are converted to constant dollar values via

the HWI24. The net constant dollar capital stock is then the sum of the ratios of

net investment to HWI over all previous years. Thus, in the first year of operation,

21This study ignores the consumption of fuel inputs other than coal, oil, and natural gas if the

consumption of these fuel inputs constitutes less than .0001 percent of a plant’s total fuel consump-

tion.
22Otherwise, the firm is not considered to be a coal-fired electric plant. DEA assumes that

technologies are homogeneous across decision making units
23See Yaisawarng and Klein [1994] and Carlson et al. [2000] for studies that operates under the

same assumption
24See Whitman, Requardt, and Associates, LLP [2002]
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the net investment of a power plant is equal to the aggregate value of its plant and

equipment.

The U.S. Department of Energy’s Form EIA-767 survey provides the information

on fuel consumption and net electrical output, which is utilized to derive estimates

of SO2 and NOx emissions25.

4.2 Hyperbolic Index Under Weak Disposability and Null

Jointness

The hyperbolic index program under weak disposability and null jointness, as imple-

mented by Pasurka [2006], is calculated by solving the following optimization problem

25A common criticism of DEA in this type of environment is that it does not consider measurement

error, of which there most likely is in deriving emissions estimates based on observables in the

production process.
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using the sequential frontier:26

For each plant d′ and for each year τ , solve:

Dd′,τ
HY P (x, y, z, TWD) = max

λ,β
β s.t.

τ∑
t=1

D∑
d=1

λd,ty
j
d,t ≥ βyjd′,t ∀j = 1 . . . J

τ∑
t=1

D∑
d=1

λd,tx
i
d,t ≤ xid′,t ∀i = 1 . . . I

τ∑
t=1

D∑
d=1

λd,tz
k
d,t = βzkd′,t ∀k = 1 . . . K

λ ≥ 0.

Results of computing the decomposition factors for this index are listed in the ap-

pendix in Table 627. Table 6 contains geometric means of each decomposition com-

ponent across all years for each firm. Table 7 shows geometric means across all firms

in the sample for each factor in the decomposition by two-year pairs. Note that the

relative magnitudes and impacts of the factors using the sequential frontier are the

same using the pooled frontier.28 Tables 6 and 7 confirm that technical change, on

average, is associated with increased emissions. Moreover, these results are consis-

tent with Pasurka [2006] in that changes in the output mix are most associated with

26Note that for each of the following programs, changing the index range on the first summation

in any constraint from t = 1 to t = τ −W + 1 where W is the rolling window size, will correspond

to the same index calculated under the rolling window, pooled technology.
27We maintain the assumption of constant returns to scale throughout this study.
28In fact, this is the case with every index calculated in considering the decomposition. We report

only the sequential frontier results as there is minimal infeasibility problem to consider.
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emissions reductions. Changes in bad outputs per unit of intended output can be the

result of a regulatory induced change, requiring the producer to mitigate pollutants

relative to intended production. Again, the results suggest that changes in the output

mix, or movements along the production frontier, account for greater reductions in

SO2 than for NOx emissions.

Note that the above program29 credits producers for expanding both intended

and unintended output production as increases in efficiency. However, under by-

production, being able to produce more pollutant for a given input vector is not

more efficient, but less. Thus, we first correct for the direction maintaining weak

disposability by considering crediting a producer for expanding intended outputs and

contracting unintended outputs by solving:

For each plant d′ and for each year τ , solve:

Dd′,τ
HY P (x, y, z, TWD) = min

λ,β
β s.t.

τ∑
t=1

D∑
d=1

λd,ty
j
d,t ≥ yjd′,t/β ∀j = 1 . . . J

τ∑
t=1

D∑
d=1

λd,tx
i
d,t ≤ xid′,t ∀i = 1 . . . I

τ∑
t=1

D∑
d=1

λd,tz
k
d,t = βzkd′,t ∀k = 1 . . . K

λ ≥ 0.

Results for this program are reported in Table 8.30 The one clear difference once we

29as in Pasurka [2006]
30Since this problem is non-linear in the constraint set, and due to the size of the choice variable
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switch to crediting producers for retracting unintended outputs, is that input growth

of fuel inputs is now associated with increased emissions. Again, the results from

Table 8 suggest that changes in the output mix account for greater reductions in SO2

than for NOx emissions, but the effect of the output mix for SO2 is slightly lower under

retractions of pollutants and the effect of the output mix for NOx is slightly higher.

Thus, by not retracting output, the weakly disposable, null-joint index decomposition

tends to understate the effect of fuel growth on emissions increases over the panel

horizon, understate the effects of output mix changes on reductions of NOx, and

overstate the effects of the output mix on reductions of SO2 emissions, relative to the

case where producers are credited for retracting unintended outputs.

set, we use a first order Taylor series approximation to the output constraint around β = 1 as is

standard practice and utilized in Fare, Grosskopf, Lovell, and Pasurka [1989]. Blank cells indicate

firms with some component of the decomposition yielding an infeasible LP problem.
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4.3 Hyperbolic Index Under By-production

Under the assumption of by-production, and crediting producers for expanding out-

puts and retracting unintended outputs, the hyperbolic index is calculated as follows:

For each plant d′ and for each year τ , solve:

Dd′,τ
HY P (x, y, z, TBP ) = max{β1, β2} where

β1 = min
λ,β

β s.t.

τ∑
t=1

D∑
d=1

λd,ty
j
d,t ≥ yjd′,t/β ∀j = 1 . . . J

τ∑
t=1

D∑
d=1

λd,tx
i
d,t ≤ xid′,t ∀i = 1 . . . I

λ ≥ 0.

and

β2 = min
µ,β

β s.t.

τ∑
t=1

D∑
d=1

µd,tzd,t ≤ βzkd′,t ∀k = 1 . . . K

τ∑
t=1

D∑
d=1

µd,txd,t ≥ xid′,t ∀i = 1 . . . I ′

µ ≥ 0.

If the max{β1, β2} = β1, then the counter factual reference point on the frontier is

efficient in intended output, but inefficient in unintended output. That is, in minimiz-

ing β, the constraint on intended output binds before the constraint on unintended

output. If max{β1, β2} = β2, then the counter factual reference point on the frontier
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is efficient in retracting unintended output to its minimally necessary level, but it is

inefficient in expansions of intended output. It is important to note that in this study,

we do not take the max when running the decomposition. This is because mixing

notions of intended and unintended efficiency does not make sense when evaluating

relative distance functions. However, we report the decomposition results for β1 and

β2 separately as it is crucial to differentiate between these notions of efficiency. The

results for these two hyperbolic indexes are reported in Table 9 by two year pairs,

and in Tables 10 and 11 by firms averaged across years.

4.4 The By-production Coordinate-wise Index: A Modifica-

tion of the FGL Index

Lastly, we calculate, for by-production technologies, a proposed modification of the

Fare, Grosskopf, and Lovell[1985] graph space index that measures a coordinate-wise

average of intended output expansions and unintended output retractions. This index

measures joint efficiency by taking a weighted average of efficiency scores for intended

and unintended production. However, this index is easily decomposable into intended

output efficiency (D1
FGL) and unintended output efficiency (D2

FGL). The algorithm
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for computing this index is given by:

For each plant d′ and for each year τ , solve:

Dd′,τ
FGL(x, y, z, TBP ) = min

β,γ,λ,µ

1

2

{∑J
j=1 βj

J
+

∑K
k=1 γk
K

}
s.t.

τ∑
t=1

D∑
d=1

λd,ty
j
d,t ≥ yjd′,t/βj ∀j = 1 . . . J

τ∑
t=1

D∑
d=1

λd,tx
i
d,t ≤ xid′,t ∀i = 1 . . . I

τ∑
t=1

D∑
d=1

µd,tz
k
d,t ≤ γkz

k
d′,t ∀k = 1 . . . K

τ∑
t=1

D∑
d=1

µd,tx
i
d,t ≥ xid′,t ∀i = 1 . . . I ′

λ, µ ≥ 0.

In general, this problem is non-linear. However, since we have only one intended

output in our data set, and by independence of T1 from T2 , D1
FGL and D2

FGL can be

calculated separately by running the following linear programs:

[D1,d′,τ
FGL (x, y, z, TBP )]−1 = max

β,λ
β s.t.

τ∑
t=1

D∑
d=1

λd,ty
j
d,t ≥ βyjd′,t

τ∑
t=1

D∑
d=1

λd,tx
i
d,t ≤ xid′,t ∀i = 1 . . . 5

λ ≥ 0
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D2,d′,τ
FGL (x, y, z, TBP ) = min

γ,µ

γ1 + γ2
2

s.t.

τ∑
t=1

D∑
d=1

µd,tz
k
d,t ≤ γkz

k
d′,t ∀k = 1, 2

τ∑
t=1

D∑
d=1

µd,tx
i
d,t ≥ xid′,t ∀i = 3, 4, 5

µ ≥ 0

Then DFGL = 1
2
D1
FGL + 1

2
D2
FGL. Again, we give equal weights to intended output

efficiency and unintended output efficiency, but the policy maker is free to choose

weights more appropriate for any particular use.31 Results for the coordinate-wise

modification of the FGL index are reported in Table 9 by two-year pairs and in Table

12 by firms.

4.5 Efficiencies of By-production Technologies

Perhaps the most striking difference between the treatment of technologies as weakly

disposable and null-joint verses by-production, is the size of the efficient frontier.

Since the by-production technology lies at the intersection of two manifolds implied

by T1 and T2, the efficient frontier is smaller in dimension32. This results in far fewer

firms operating efficiently. In fact, there is no single firm in the sample that received

an efficiency score of unity for both β1 and β2 using the hyperbolic and no firm

with an efficiency score of unity using the coordinate-wise index. Moreover, Table

31ie: A regular interested in environmental efficiency may choose to put greater weight on D2
FGL

32see MRL for a discussion related to this issue
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13 includes both rank and product moments between intended output efficiency and

unintended output efficiency for both the hyperbolic and coordinate-wise indexes.

The large negative correlations provides evidence consistent with the idea that firms

in general, face a trade off between efficiency in intended and unintended output.

That is, firms that tend to operate efficiently in terms of intended output expansions

tend to operate relatively inefficiently in terms of unintended output reductions and

vice versa.

4.6 Evidence of Firm Response to Title IV of the 1990 Clean

Air Act Amendment

The use of fossil fuels in energy generation is one of the primary sources of NOx

and SO2 atmospheric by-products that lead to the creation of acid rain when they

react with water in the air. While Title IV of the 1990 Clean Air Act Amendment

was passed in 1990, the first phases of action required by firms related to emissions

reductions was not mandated until January of 1995. The Acid Rain Ruling specifically

mandated emissions reductions in two phases, requiring aggregate reductions of 10

million tons per year of SO2 and 2 million tons per year of NOx relative to the levels

prevailing in the 1980’s. In the 10 years following the implementation of Phase I

in 1995, annual emissions of SO2 fell by almost 23% while annual emissions of NOx

fell by more than 33%. Currently, both NOx and SO2 allowances are subject to the
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federal cap and trade system under the 2005 Clean Air Interstate Rule (CAIR)33.

End-of-pipe abatement efforts and fuel switching are important methods utilized by

electricity generating firms to remain in compliance with the Acid Rain Ruling. Phase

I required very specific reductions in SO2 across 110 power plants in the United States

listed in Table A of section 404 of U.S.7651c 1990 Clean Air Act. Fortunately, 34 of

the 92 plants in our sample are present on this list and are highlighted in the rows

of the appendix tables. Also at the bottom of Tables 2-5, we have considered the

geometric averages across firms and decomposition components before and after the

initial 1990 ruling. However, while the first phase of mandated reductions did not go

into effect until 1995, the firms that would be forced to comply were made aware of the

necessity when the ruling was made in 1990. Thus, the timing of the data set at hand

provides us with an interesting perspective to identify whether or not firms would

anticipate and adjust their emissions earlier to be ready for the 1995 implementation

of Phase I. Unfortunately, Phase I also mandated specific NOx reductions for specific

firms, but there is not information available on the levels of reduction specific to a

given firm as the mandated reduced levels depend on the various types of boilers used.

Observing tables 7 and 9, it is clear that regardless of how the technology is spec-

ified, the variations in the output mix play a much more significant role in explaining

reductions after the 1990 Amendment was announced. For the weak disposability

technology as used in Pasurka[2006], the OM factors drop from .9920 and .9973 be-

33despite the fact that the program was suspended and then re-implemented in 2008
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tween 1985-1990 to .9452 and .9727 between 1990-1995 for SO2 and NOx, respectively.

The decomposition under the three by-production indexes shares this trend as well.

In Table 9, when we consider only efficiency in intended output, we observe decreases

in the OM components from .9965 and 1.0018 between 1985-1990 to .9573 and .9851

from 1990-1995 for SO2 and NOx, respectively. Measuring only environmental effi-

ciency in Table 9, we can also see the effects of the output mix for both pollutants

contributes dramatically to the reduction in emissions during the 1990-1995 period

from .9982 and 1.0035 in 1985-1990 to .9015 and .9277 during 1990-1995 for SO2 and

NOx, respectively. In fact, all by-production decompositions in Table 9 share this

trend, even when joint efficiency is considered. However, the decomposition factors

when only considering environmental efficiency contradict one another for the by-

production technologies with respect to the effects of input growth before and after

the policy change. From 1985-1990, the IG component of Table 9 for enviromental

efficiency switches from contributing to reductions in emissions to contributing to

increases during the 1990-1995 period.

However, there is one major respect that the weakly disposable, null-joint tech-

nological specification and decomposition differs from its by-production counterparts.

Observing Table 7, note that the OM effect contributes to reductions of both pollu-

tants over both the 1985-1990 and 1990-1995 periods. However, Table 9 illustrates

that the OM effect for NOx was actually contributing to increased emissions during

the 1985-1990 period, and the direction of this effect changed after the 1990 Clean
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Air Act Amendment was passed.

5 Conclusion

This study not only implements a previous decomposition with a novel modeling phi-

losophy for pollution-generating technologies, but it also contributes to the discussion

of efficiency measurement when some outputs are not necessarily socially desirable.

We have extended Pasurka[2006] to the sequential frontier, and show that his results

are, for the most part, robust to the sequential technological specification over the

entire sample duration relative to when the three period, pooled, rolling window was

used. Moreover, we have extended the analysis by implementing the same decompo-

sition under by-production, and show that efficiency measurement for by-production

technologies is not straightforward, and the criteria used to measure producer effi-

ciency has direct implications on how producers seem to respond to abatement man-

dates. The final section of the results provided evidence of firm responses to the 1990

Clean Air Act Amendment related to Title IV’s Acid Rain Rule, despite the fact that

Phase I of the program was not implemented until 1995.
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 142 

 
Table 8 (*blank cells indicate infeasible programming problems) 
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Table 8 (cont; *blank cells indicate infeasible programming problems) 
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Concluding Remarks 
 

 

 This dissertation has made three major contributions to the literature.  The 

first contribution, introduced in Chapter 1, was correcting a vital flaw of the coordinate-

wise “Russell” measure of technical efficiency that occurred at the boundary of output 

space.  Without the proposed adjustment herein, this measure is left with no desirable 

properties when zero output values are frequent in the data.  We have implemented the 

theoretical contribution empirically by analyzing a high frequency data set with zero 

output values, Babe Ruth’s 1923 season relative batting performance.  We observe that in 

general, our modification tends to lower relative efficiency scores and is indicative of an 

upward bias in the index values when the proposed modification is not implemented.  

This contribution was presented first as an introduction to applications of index number 

theory as the coordinate-wise index is applied in the following studies. 

 The second contribution the dissertation makes is in the realm of 

technological modeling.  Chapter 2 introduces the concept of by-production, which we 

argue more adequately captures the tradeoffs implied by the natural physical and 

chemical processes implied by utilization of pollution-generating inputs (or outputs).  The 

key was utilizing multiple production relations to identify separately, the intended 

production set and nature’s residual generation set, and to define the reduced form by-

production technology as the feasible production vectors in the intersection of these two 

sets.  Accordingly, we also show that this novel specification of pollution-generating 
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technology has direct implications on DEA estimation, which we derive herein.  More 

importantly, the by-production specification requires us to distinguish between technical 

efficiency in intended production, and technical efficiency in unintended production.  The 

identification of this dichotomy is important, as many of the more popular indexes 

utilized in growth decomposition analysis and efficiency measurement are not 

appropriate for applications over by-production technologies.  Moreover, we show 

empirically, that firms tending to be efficient in intended output production tend to be 

inefficient in terms of pollution reduction, and vice versa. 

The final contribution this dissertation has made is in the realm of index 

decomposition.  In Chapter 3, we apply the by-production specification of a pollution-

generating technology derived in Chapter 2 to analyze factors related to emissions 

reductions of sulfur dioxide and nitrogen oxides by coal-fired, electric power plants using 

a panel data set.  First, we extend previous results derived under more the more primitive 

assumptions of weak disposability and null-jointness to the sequential frontier and show 

that prior results are not sensitive to the specification of the dynamics in the technology.  

Secondly, maintaining weak disposability and null-jointness, we juxtapose the results of 

models that credit producers for expanding unintended outputs to those that credit 

producers from retracting unintended outputs.  Lastly, we apply the index decomposition 

under the assumption of by-production, and show that the index decomposition results 

are extremely sensitive to the notion of efficiency (intended production or unintended 

production) used to capture distances from the frontier.  The final study concludes by 

validating empirically, that energy firms required to comply with the 1990 Clean Air Act 



 154 

Amendment typically began readjusting input-output allocations long before the binding 

requirement became active in 1995. 
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