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ABSTRACT OF THE DISSERTATION

Ubiquitous genome-wide variation at short tandem repeats is causally linked to changes in gene

expression, blood cell counts and serum biomarkers in human populations

by

Jonathan Bernard Margoliash

Doctor of Philosophy in Computer Science

University of California San Diego, 2024

Professor Melisssa Gymrek, Chair

Professor Alon Goren, Co-Chair

Short tandem repeats (STRs) are ubiquitous throughout the human genome and
routinely vary within human populations but have largely been excluded from genome-wide
analyses of variant contributions to human phenotypes. In my thesis work, | and my
collaborators demonstrate that current bioinformatic advances now allow for the inclusion of
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STRs in such studies. We present evidence suggesting that STRs are likely causal for 5.2-7.6%
of signals for human blood traits as well as making widespread impacts on gene expression
across different tissues. We demonstrate how to carefully interpret and maximize the reliability
of statistical fine-mapping to overcome high degrees of correlation between nearby variants,
showing its central utility for the study of complex traits. So doing, we uncover many putatively

causal STRs strongly affecting human phenotypes.
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Introduction

In this introduction | begin by providing a very brief overview of genomics, a review for
some readers, as motivation for the performance of genome-wide association studies (GWAS). |
then discuss how GWAS are conducted, what they hope to achieve, and what their limitations
are. | show how including missing variant types can help address some of those limitations and
focus on the study of short tandem repeats. Statistical fine-mapping is a recent field of work that
has proven necessary to GWAS of complex traits, so | follow with a discussion of its
development and current state. | conclude the introduction with a brief preview of the work | and
my collaborators have contributed over the course of my doctorate to the study of STRs in
GWAS. Those works are reproduced, with new forwards, in Chapters 1 through 3. | conclude

my thesis with a discussion of current and future trends in these areas.

The Human Genome

Chromosomes, Bases, RNA and Proteins

With few exceptions, each of the trillions of cells in the human body has 46 long, string-
like DNA molecules called chromosomes in its nucleus. This collection of chromosomes
possesses the striking property that it is almost identical between the different cells in the same
individual, and so it can be thought of as a single entity: that person’s genome. Most commonly,
a person's genome consists of 22 pairs of aufosomal chromosomes, or aufosomes, labeled 1
through 22, and two sex chromosomes. Chromosomes are categorized this way as any two
autosomal chromosomes with the same number are very similar, though not identical, to one

another, both within an individual and between people. Two chromosomes that are similar in



this manner are called homologs (n.) and homologous (adj.). This further allows for a conceptual
human reference genome, containing a single representative copy of each autosome and each
sex chromosome.

At the molecular level each chromosome is an enormously long string of nucleotide
molecules bound together in a line, each nucleotide either an adenosine, thymidine, cytidine or
guanosine, abbreviated A, T, C or G and collectively called bases. The first sequence of bases
making up a human genome was published in 2001, and since then the genetics community
has assigned each chromosome in the reference genome a sequence that, after many updates,
roughly corresponds to the most common sequence of bases among its homologs in the wider
population. A specific end of each chromosome has been arbitrarily selected as its start, and
bases are counted from that end forward. Any numeric location (either specifying an individual
base, or a range of bases) on a chromosome is called a locus (pl. loci). One copy each of the 22
autosomes is about 3 billion bases in length, and the sex chromosomes contain an additional
few hundred million bases (mb, megabases, also kb for kilobases). The similarity between
homologous chromosomes can be quantified in terms of bases — 99.9% of bases in two
homologous chromosomes are the same and in the same order’.

The genome contains genes which play a crucial role in the inner workings of our
bodies. Genes are sections of the genome which are transcribed into RNA molecules which
leave the vicinity of the DNA from which they were transcribed and can act elsewhere in the cell.
Genes are said to be expressed when they are transcribed, and the amount of RNA transcribed
from a gene and circulating in the cell at any one point is called that gene’s expression. The
most famously studied type of genes are protein-coding genes whose RNAs are called
messenger RNAs (mRNAs). Proteins are made from mRNA molecules through the process of
translation and are essential to the many processes that constitute the lives of cells and

organisms. The desire to understand how proteins function, how differences in genetic variation



affect those functions, and the hope to be able to change those functions through medical

interventions are the main motivations for genetics.

The Non-Coding Genome and The Genome’s Structure

Yet the genome does not just contribute to cell functions through its protein-coding
regions, that is, the 1% of the genome? residing within protein-coding genes which directly
corresponds to protein structure. Protein-coding genes also contain introns, sections within
genes that are transcribed into the mRNA but are spliced out (removed) from the mRNA before
it is translated into proteins. And the content of these introns contributes to the regulation of
splicing®.

Even among the non-intronic sections of a gene, called exons, the beginning exonic
sequence and the ending exonic sequence in each gene are also not translated into proteins.
These are called the 5’ (pronounced “five prime”) and 3’ untranslated regions (UTRs),
respectively, named after the molecular properties of each of those ends of the RN, and assist
in regulating translation*, among other functions.

Further, it is estimated that nearly 70% of human genes are transcribed into RNAs which
are not mRNAs® and thus do not code for proteins. These non-coding RNAs of these non-
coding genes, while much less studied than mRNAs, do show wide varieties of function®’, and
so also contribute an important but not well quantified portion of the functioning of our cells. In
summary, the non-coding transcribed regions of the genome, the introns, UTRs and non-coding
RNAs, play important functional roles.

The rest of the genome — the genome between genes, called the intergenic genome — is
also functional. To understand this, it is important to know a bit about chromatin, the genome’s
3D physical and chemical structure. Our chromosomes exist as double helices — two strands of
DNA running in opposite directions, with a uniform pairing of As to Ts and Cs to Gs, and vice

3



versa. This is our chromosome’s canonical secondary structure and the structure it holds when
unperturbed in the nucleus, though it can enter non-helical non-canonical secondary structures
in specific contexts. From each double stranded chromosome one strand has arbitrarily been
selected as the chromosome’s canonical forward strand, and frequently only the bases on that
strand are referred to, as the bases on the reverse complement or opposite strand can be
perfectly inferred from that information. (Though either strand can be transcribed into RNA, so
bases on the reverse strand are often referred to in the context of genes transcribed on that
strand). This also leads to the term base pair being used interchangeably with the term base.

The double stranded DNA helices are wrapped around molecules called nucleosomes,
each nucleosome being made up of eight units called histones and being wrapped by 146 base
pairs of the double helix®. The unwrapped portions of the chromosomes and the millions of
wrapped nucleosomes in turn are organized into higher order structures, eventually comprising
the complicated 3D structure that is called chromatin. This structure determines which genes
can be bound by molecular transcription machinery, and the intergenic genome influences this
structure. Thus the intergenic genome plays a crucial role in determining which genes are
transcribed and at what rate, influencing the quantity and type of RNAs circulating in a cell, and
thus influencing how many proteins and circulating, functional, non-coding RNAs are available.
Lastly, it is important to realize that two loci on a chromosome can be many bases apart but be
in close 3D contact in the chromatin structure, and so can interact. This means that portions of
the intergenic genome far from genes can still be functional.

A reductive but useful way to refer to any information known about chromatin and DNA
function is with functional annotations or features. An annotation is simply a descriptive piece of
information, assigned to a stretch of a chromosome, that has either been experimentally
validated or algorithmically predicted®. For instance, the protein-coding regions of the genome

can be thought of as regions of the genome annotated as being protein-coding. Other



annotations mark where introns and exons begin and end, and where franscription start sites —
the loci where gene transcription begins — are located.

While all cells in a human body have nearly identical copies of that person’s genome, the
chromatin structure in cells can vary substantially between cell types and tissues, can change
as the cell enters different cell states, and can change over an individual’s lifetime. Similarly,
which regions of mMRNAs are spliced out or left in can differ between cell types and tissues,
leading to different mMRNA and protein isoforms in different contexts®. Thus unlike annotations of
protein-coding regions, many annotations of chromatin structure and of splicing are given in
reference to the specific tissues, cell types, cell states and developmental time points they were
measured in. This variation in chromatin structure and splicing is part and parcel of different
cells performing different functions in different contexts.

There are a multitude of genomic annotations which | will reference at various points
throughout my thesis. The ENCODE encyclopedias, both the in-development'® and current
versions'!, are good references on annotations, as is the latest ENCODE publication. It is not
necessary to memorize the specifics of each of the following annotations for this thesis, but it is
important to understand the types of information annotations convey. Annotations often
implicate their chromosomal region in up- or down-regulating the expression of a specific gene
or nearby genes. These implications come with varying levels of certainty — for instance, a
region of the intergenic genome being marked as inaccessible can, but does not necessarily,
impact nearby gene expression. Further, these annotations often overlap one another, providing
a hierarchy of evidence — a region may be annotated as being an enhancer of gene expression
because it is more specifically annotated as both being bound by a transcription factor and
being in open chromatin. Furthermore, it is important to recognize that annotations are often
probabilistic, for example, saying that some percentage of cells in a tissue are methylated at a

specific C to G bond. Lastly, it should be noted that this is a rapidly progressing field of study;



experimental techniques for measuring new annotations, or increasing the specificity, ease, and
breadth of measuring existing annotations, are constantly in development.

High-level annotations include promoters, regions around the transcription start sites of
genes to which much of the molecular transcription machinery binds, enhancers, farther away
(more distal) regions of the genome which interact with promoters to increase gene expression,
and insulators and silencers, which are like enhancers but reduce gene expression. Enhancers,
insulators, silencers and other such annotations can be collectively grouped under the term
requlatory elements, and candidate regulatory elements are those whose function has not been
thoroughly validated.

A broad lower-level annotation is chromatin accessibility, which describes how
accessible regions of the genome are to interacting with proteins and RNAs, with the general
heuristic that non-accessible regions are less functional or need to be opened to become
functional. More specific low-level annotations include annotations that describe which sections
of the chromosome are in long range contact with one another, and often focus on the regions
of the chromosome that contact nearby promoters. There are annotations describing where
each of the few thousand unique franscription factors bind (often abbreviated as TFs), those
proteins that influence, and are often necessary for, the process of transcribing specific genes.
Nucleosome occupancy can be annotated, that is, which regions of the genome are wrapped
around nucleosomes. There are histone modification annotations, which describe the different
chemical modifications that can be made to the histones in nucleosomes which then alter the
wrapping of DNA around those nucleosomes, with specific histone modifications being
associated with enhancing or silencing gene expression. And there are annotations which
describe which bonds between C and G nucleotides (called CpG bonds) are methylated, and
thus associated with repressing gene expression, and which are not. This is by no means an

exhaustive list of genetic annotations, but it is sufficient for the purpose of this thesis.



Genetic Variation and Genetic Contributions to Human Traits

The above discussion focused on the functions of the standard genetic sequence in
different parts of the human genome. The opposite side of that coin is focusing on the variation
in the human genome, that is, the 0.1% difference in bases between people. The study of
variation is of interest because genetic variation plays an essential role in determining a portion
of the differences between people, including physical proportions such as height, the likelihoods
of suffering from various diseases, and personality traits. Of course, studying genomic functions
is complementary to studying the genetic variants causal for human traits as it explains how
those variants act. But it is often the case that research which focuses on impactful variation first
starts with measuring traits, then links them to variation in the human genome, and only then
asks what the molecular function of that genetic variation is.

In this context, any trait that varies between people is called a phenotype. A genetic
variant at a locus is a difference between the sequence of bases in different individuals at that
locus. Each differing sequence of bases at that locus is one of that variant’s alleles. The
reference allele is the allele present in the theoretical reference genome, and the alternate
alleles are the other alleles. An alternative way of categorizing alleles is referring to the major
allele, which is the most common allele for that variant in the dataset or population being studied
(often, but not always, corresponding to the reference allele), and the minor allele(s), which are
the other alleles at that variant. The minor allele frequency of a variant in a population is the
percentage of all alleles of that variant in that population which are minor alleles. A variant is
biallelic if only one alternate allele exists (at least, if only one exists in the dataset that is being
studied) and is multiallelic otherwise. A variant is said to be causal for a phenotype if which
allele is present at that locus causally affects the observed trait. Lastly, to call or genotype a
variant in a person means to determine which allele(s) that person has at that variant. A caller or
genotyper is an algorithm designed to perform that task.
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There are many types of genetic variants. The most commonly studied small genetic
variants are SNPs (single nucleotide polymorphisms, also called SNVs, single nucleotide
variants, a term used interchangeably by most authors), each of which is a change of a single
base pair to another base pair. These are also the most numerous type of genetic variant, with
an estimate of 13.75 million common SNPs (that is, SNPs with minor allele frequency > 1%) in
the world’s population™. Further, as more humans that are sequenced, it seems increasingly
likely that nearly every base in the genome has a SNP variant in some individual, amounting to
billions of loci with rare variation™.

Another small variant type commonly studied is small insertions (gains) or deletions
(losses) of base pairs compared to the reference genome, together called indels, with an
estimate of 4.4 million common indel variants in the world’s population®. Only a small minority
of these small variants are known to impact human phenotypes.

On the other side of the spectrum are large variations in DNA. The most dramatic types
of large genetic variation are in individuals who have more or fewer chromosomes than the
standard number (referred to as aneuploidies), or where a large chunk of a chromosome has
been franslocated (moved) to another chromosome. In between these two extremes are a wide
variety of types of variation, see Table Introduction.1, including tandem repeats variants, which |
focus on below. There are fewer large variants in the genome than small variants but on

average they tend to have larger impacts on human traits.

Table Introduction.1: Classes of Large Genetic Variants

Tandem Repeats Short or large sections of the genome repeated a few or many
times in sequence

Mobile Element Specific sequences of DNA that have copied and reinserted

Insertions themselves into other parts of the genome

Copy Number Variants Large sections of the genome that are duplicated in part or in
whole at other locations in the genome

Structural Variants A term encompassing all variation affecting at least 50 bases'®,
including moderate to large deletions, insertions, or inversions of
sections of chromosomes
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For this thesis it is also important to have a broad understanding of the technologies
most commonly used for calling variants. The cheapest and oldest technology important to this
work is the microarray. Microarrays are tiny chips consisting of arrays of hundreds of thousands
to millions of biomolecular probes or markers'’. Each probe is designed to bind a known,
unique, ~50 base region of DNA from the reference genome. Further, each probe is designed to
only bind to the region if that region contains a specific allele of a SNP or small indel. Thus after
exposing the probes on a microarray to DNA fragments from the cells of an individual, each
probe that is bound conveys a specific allele that individual possesses. Importantly, microarrays
are not a reading technology: they only indicate the presence or absence of alleles tested by the
array.

While reading the first human genome cost billions of dollars, in the last decade and a
half the technology of short-read whole-genome sequencing (WGS) has become ever more
affordable, with costs dropping below $1000 per individual. Short-read WGS involves taking the
genomes of thousands of cells from one individual and breaking them into short segments of
DNA, roughly 150 bases in length, called reads. The sequence of bases is read off each of
these reads, and each sequence is aligned back to the reference genome to determine where it
came from. After alignment, differences between the individual’s genome and the reference
genome indicate alternate alleles. Alternate alleles longer than the size of a single short read
can be difficult to detect, though probabilistic methodologies can infer the presence of specific
classes of alternate alleles based on the distributions of reads seen. Short-read sequencing has
dropped in cost so dramatically that while at the beginning of my thesis it was only available in
small cohorts of a few thousand individuals, it is now beginning to be applied to the largest

biobanks containing hundreds of thousands of individuals™.



The last technology | will discuss is long-read WGS. This is similar in concept to short-
read WGS except that the reads are one to multiple orders of magnitude longer than the
standard 150 base short-reads. This allows long reads to capture large genetic variation that
cannot be precisely estimated from short reads and has led to enormous breakthroughs in
variant calling®. But as of now long-read WGS only exists in cohorts of a few thousand
individuals due to its currently prohibitive cost'®'°, and thus is not sufficiently wide-spread to
support the type of analyses | have focused on in my thesis work.

Lastly, it is important to know that phenotypes can be categorized by their genetic
architectures as either Mendelian traits or complex traits. Mendelian traits, also called
monogenic traits, are those whose presence or absence is caused by variation around a single
gene. This category includes many rare and debilitating diseases such as Huntington’s disease.
On the other end of the spectrum are complex traits, also called polygenic traits, which are so-
named because they are influenced by large numbers of regions in the genome. Unlike
Mendelian traits, complex traits cannot be strongly predicted by any single genetic region, but
they can be strongly predicted by the alleles at many regions taken together. The category of
complex traits includes a wide range of phenotypes, including anthropomorphic features such
as height, and neurological diseases such as schizophrenia and bipolar disorder.

Most traits fall somewhere between these two ends of the spectrum, and many traits
share properties of both sides of the spectrum. For example, 5-10% of breast cancer cases are
caused by high-impact inherited mutations in genes such as BRCA1 and BRCAZ2, and thus are
Mendelian, while over a hundred different loci have small influences on the occurrence of breast
cancer in the more than 90% of cases with no known high-impact inherited mutation?. Yet while
the binary categorization of traits under the labels Mendelian and complex is not fully precise, it
is still useful as those categories of traits are researched in different ways?'. Once a Mendelian
variant is found, much research can be devoted to understanding the cascading network of
biological pathways it impacts. Whereas for complex traits, signals tend to be weaker, and much
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research is spent on simply trying to identify either a causal variant, a causal gene or causal

mechanism at each signal. My thesis work has been devoted to the study of complex traits.

The Limits of Our Genetic Knowledge

As much as knowledge of the human genome drives further genetic findings, the
limitations of that knowledge likewise guide genetic study. For the genome is vast and has large
tracts that remain uncharted. In 2022, the existence of 93.2% of the roughly 20,000 predicted
human protein-coding genes had been experimentally confirmed according to the Human
Proteome Project??. Yet in 2023 only 82% of those genes coded for a protein with either an
inferred molecular function, an inferred cellular location or an inferred biological process in the
Gene Ontology knowledgebase, while only 68% had experimental validation for one of those
three annotations?®. Further, in 2023, only 56.2% of genes had a known molecular reaction
categorized in the human Reactome Pathway Knowledgebase?*. These statistics overstate our
knowledge of the genome in that they ignore functional non-coding RNA molecules. But more
critically, these estimates do not measure how much information is missing about the protein-
coding genes themselves. There are many unknown isoforms of genes’, unmeasured
posttranslational modifications of proteins, and unnoticed reactions proteins are involved in.

Yet despite these limitations, understanding of the effect of genetic variation on protein
functionality is much more complete than the understanding of variant effect on non-coding
genomic functionality. The recent release of the AlphaFold algorithm marked a milestone in our
ability to predict protein structures®®, and AlphaMissense is the corresponding attempt to predict
the effect of every protein-coding SNP?. These are just the tip of a wide-range of protein variant
effect predictors. The study of protein variant effect predictors is its own field of work, and as
most of the variants | dealt with in my PhD work are not protein-coding, | refer the interested
reader to a sampling of the many articles written on this topic?’2°.
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While some variant effect predictors attempt to extend this functional insight to non-
coding genetic variation, those efforts are not nearly as successful. These difficulties are in part
due to the challenge of assaying the non-coding genome, but also because there are many cell
types, cell states, and developmental time points that need to be studied to understand the non-
coding genome’s function, and because acquiring those biological samples is expensive. The
GTEXx (Genotype-Tissue Expression) project® is, to my knowledge, the largest general purpose
repository of diverse human tissues with prior research authorization and already measured
gene expression data. Yet GTEx currently only has samples from ~900 individuals for the most
numerously sampled tissue types, and many relevant tissues only have samples from a
hundred or fewer individuals. This means that many rare variants are simply not present in the
GTEXx cohort, and study of the variation that is present has limited statistical power. Further,
GTEXx does not currently have tissues sampled from different developmental time points, in
response to different exposures, or in any of the many disease states of the body.

The current difficulty with annotating and understanding variation in the non-coding
genome is well demonstrated by a recent perspective of the Encyclopedia of DNA Elements
(ENCODE) project®!, a knowledgebase consortium dedicated to annotating the human genome.
The perspective says that “very few examples of condition-specific activation or repression
[have been found] ... Similarly, information from human fetal tissue, reproductive organs and
primary cell types is limited. In addition, although many open chromatin regions have been
mapped, the transcription factors that bind to these sequences are largely unknown, and little
attention has been devoted to the analysis of repetitive sequences.” It says that even
ENCODE’s new phase will only focus on closing this knowledge gap “in a few reference cell
lines”, relying on prediction for the rest. In sum, they say that “although very large numbers of
noncoding elements have been defined, the functional annotation of ENCODE-identified

elements is still in its infancy”.
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All this is to say that, while knowledgebase consortia such as the Human Proteome
Project, the Gene Ontology knowledgebase, the Reactome Pathway knowledgebase, and
ENCODE have produced valuable and ever-growing amounts of information about the human
genome, they are by no means complete. Thus research which prioritizes the study of genes
and variants with known functional contributions will inevitably miss large swaths of functional
genetic material whose import has yet to be discovered. This motivates alternative studies that
are unbiased by the extent of our current knowledge. My thesis work has focused on one such

method: genome-wide association studies.
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Genome-Wide Association Studies

Genome-wide association studies (GWAS), like many analyses that study the
relationship of genetic variation to human phenotypes, aim to further understanding of the
biomolecular mechanisms of causal genomic variants and of the genes and cell types causally
involved with human traits. GWAS are performed with the hope of better predicting phenotypes
and of creating information that leads to better interventions for disease phenotypes. As
knowledge of genomic function is limited, a motivating aspect of GWAS is the desire to study
the involvement of variants from all genomic regions without restricting to only variants with
known function or searching only within regions of known function. The GIANT consortium’s
recent GWAS of height, a landmark study because of the 5 million individuals it analyzed, is a
good reference for consortium-standardized GWAS protocol, and it analyzed 1.4 million
common variants from across the genome®?, or one variant roughly every two thousand bases.
This type of blanketing examination of the genome makes GWAS one of the most effective
methodologies for uncovering evidence of which genomic regions are causally involved with
phenotypes, and the information generated by GWAS can then be used as a starting point for
many follow-up analyses.

Currently, experimental assays that induce variation at spots in the genome and study
the resulting effect are too slow and costly to be performed genome-wide. Thus researchers of
genome-wide variation are pushed to statistically analyze existing variation found in nature. A
GWAS is one such analysis. GWAS are performed in biobanks where individuals have donated
their genetic and phenotypic information to science.

In a GWAS, for each alternate allele on each chromosome to be tested, each individual
is assigned a dosage: the number 0, 1 or 2 which counts how many of the individual’s two
copies of that chromosome contain that alternate allele. Most GWAS only study biallelic variants
as that is simpler and secondary alternate alleles tend to have very low minor allele frequencies,
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and thus refer to ‘variants’ being tested instead of ‘alternate alleles of variants’ being tested. As
it is so ubiquitous, | will use that terminology going forward, just noting that multiple alternate
alleles of a single variant can be individually tested.

In the prototypical GWAS of a quantitative trait, for each variant, researchers perform
ordinary least squares regression of the trait values of each person against their dosage values
for that variant, with additional covariates including sex, age, and genetic principal components.
This gives an effect size for the variant’s dosage as well as the effect size’s standard error; the
effect size can be interpreted as the average difference between the trait value of an individual
with that of another individual who has one additional copy of the alternate allele for that variant
among their chromosomes. When a binary trait is studied, such as presence or absence of a
disease, logistic regressions are performed instead of linear regressions and this changes the
interpretation of the regression coefficients, but GWAS analysis otherwise proceeds similarly.
From the effect size and standard error researchers calculate a z-score and p-value and see if
the p-value refutes, in-likelihood, the hypothesis that the effect size is exactly zero. See Figure
Introduction.1 for an example association between a phenotype and a variant. These
calculations are done individually for each alternate allele of each variant studied, leading to a
table of summary statistics — effect size, its standard error, and the derived p-value — for each
alternate allele of each variant in the genome. PLINK 233 is a standard tool for performing

GWAS described in this manner.
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Figure Introduction.1: An association between a phenotype and the genotype of a
biallelic variant. The biallelic variant is a SNP, identified by its ID rs9349379, with two alleles: A
(the major allele) and G. The variant’s possible diploid genotypes are plotted on the x-axis. The
y-axis represents the value of the (in this case unnamed) phenotype. For each genotype, the
mean and standard deviation of phenotypes from individuals with that genotype are plotted
against the y-axis. In this example, individuals with G alleles have higher phenotype values; the
p-value for the regression performed here was 0.00136. Adapted from Gupta et al.3

GWAS analyses of the last ten years have moved towards more sophisticated models
than simple linear regression, but it is important to note that the overarching framework is the
same. These days GWAS often run tests using linear mixed models (LMMs)3%%, which
incorporate random effects covariates based on a genetic measure of the relatedness of the
individuals in the study, on top of the linear model used by ordinary least squares. This boosts
statistical power by better accounting for the noise in the phenotype measurement due to
genomic factors that correlate with genetic relatedness. REGENIE is another recent method
which attempts to achieve the same goal as LMMs, but does so by linearly testing each
variant’s dosage against the residual of a prediction of the phenotype from other variation in the
genome®’. Special methods have also been developed to improve GWAS statistical reliability for
binary phenotypes, using either the Firth3”* or saddle-point® corrections to logistic regression
so that test statistics are not inflated in the presence of low counts of minor alleles in cases.

GWAS also are routinely conducted via meta-analysis, where summary statistics from multiple

underlying GWAS are reanalyzed jointly to heighten statistical power, e.g. the GIANT
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consortium height GWAS?32. Another variation on GWAS, though not new, is to test variants for
association separately within individuals of each sex, e.g.34C.

But regardless of the specific methodology, GWAS analyses share the common property
that they test variants from all genomic regions and give each variant an estimated effect size
and p-value that is unadjusted for local genetic structure (an issue discussed in more detail
below). Under this paradigm, GWAS results have largely proven to replicate across datasets
and between research groups*'#2. Further, this has led to the creation of follow-up analyses
which use GWAS summary statistics as input and are agnostic to the specific GWAS
methodology those summary statistics were created with. (An exception to this rule are GWAS
which test not only for linear associations between variants and phenotypes, but also non-linear
dominant and recessive effects, e.g.**. The statistics output from such tests would need to be
treated specially, and | do not discuss them further.)

The most direct use of GWAS summary statistics is to highlight the variants whose p-
values are below a pre-fixed threshold designed to control for the false positives that come from
performing so many independent tests. The community standard for this threshold is p <
5 x 1078; variant associations more significant than this are often referred to as genome-wide
significant. This threshold is stringent enough that GWAS must be performed in large cohorts to
have sufficient power to detect most causal signals. Once GWAS researchers identify variants
passing this threshold, they cluster them according to their genomic positions, and infer that the
genomic regions containing those clusters are causally involved with the phenotype being
studied. A region identified this way is called a signal or a hit and the variants in the region are
said to fag that signal. GWAS signals will vary between tens of kilobases in length to a few
megabases depending on the definition used, the strength of the signal and the local LD
structure (discussed below). The lead variant for the signal is the variant with the lowest p-value

among tested variants in that region.
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As an example, the GIANT GWAS identified 7,209 non-overlapping genomic segments
whose associations with human height pass this threshold®?. These have a mean size of around
90 kilobases and cover about 21% of the genome, corroborating the notion that genome-wide
scans are necessary for uncovering the diverse genetic architecture of highly polygenic traits.
These researchers believe they have identified nearly all common variation associated with
height in Europeans and use their results to explain ~45% of the variation in human height
between European individuals, but doing so required studying 5.4 million individuals. Height is a
prototypical complex trait, and many less-complex traits will require study of fewer individuals to
achieve this saturation. However, the authors of the GIANT GWAS predict that traits even more
complex than height, such as inflammatory bowel disease, schizophrenia and body mass index,
will require tens of millions of individuals to reach this level of saturation.

There are many important consequences of having to impose the incredibly strict
threshold of p < 5 x 1078, For one, it forces researchers to perform GWAS in large biobanks.
Collecting large biobanks of data is incredibly expensive, and so has only been funded by
governments and pharmaceutical companies in the wealthier parts of the world. This has
resulted in huge disparities in the size of biobanks containing people of European decent as
compared to people of African, Hispanic and South Asian descent. (Biobank Japan*, the
Taiwan Biobank*® and the China Kadoorie Biobank*® each contain more than 100,000
genotyped individuals, placing East Asians somewhere in the middle of this spectrum). This has
led to GWAS predominantly being performed on European populations and makes medical
insights derived from GWAS results less applicable to individuals of other ancestry groups. This
inequity in GWAS research is widely recognized in the field but is only slowly being overcome.

This strict p-value threshold is also especially problematic for the study of complex case-
control phenotypes with low case rates and numerous but generally weak effect sizes (e.g.
schizophrenia). A phenotype like schizophrenia has too few cases in general purpose biobanks
to detect its signals, and thus needs a genetic biobank built of specifically schizophrenic
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individuals for GWAS of schizophrenia to have sufficient power. This limits the extent to which
GWAS can provide insight into such traits.

Another consequence of this strict threshold is that rare causal variants are infrequently
strongly-enough associated with a trait to pass this threshold, even if they highly impact that
trait. As such, rare variants are often analyzed in aggregate to reduce the number of overall
tests and loosen this threshold. These aggregate rare variant analyses often accompany
GWAS, but are not the subject of my thesis; | refer the interested reader to an old but
informative review article’.

Yet once a GWAS association passes this threshold, researchers can believe that it tags
a causal genetic signal. The key insight to this is that when a parent’s genome contains two
different alleles for a variant on their two homologous copies of a chromosome, a child of theirs
will inherit one of those two at random, uninfluenced by choice or environmental factors. This
fact roughly ensures that genetic variants are randomly distributed throughout the members of a
population. Thus the genetic signals identified by a GWAS are causal for the trait being studied
— not themselves caused by the trait, nor merely correlated with it — though the causal pathway
from genetic variation to trait need not be direct.

This causal assumption does not hold when simultaneously studying multiple groups of
individuals coming from distinct ancestries. In that case, the presence or absence of an allele is
often correlated with the difference in ancestry, and thus ends up being correlated with all
genetic differences between those ancestries, as well as all traits that differ between people of
those ancestral groups, whether those differences are due to different genetic, environmental or
social factors. However, GWAS researchers uniformly include covariates, called genetic
principal components (PCs), that are indicative of ancestry and are thought to mostly account
for these correlations, and thus it is still reasonable to assume that by and large GWAS signals

identify genetic causation.
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LD Tags Causal Signals and Obfuscates Causal Variants

Equally important to understanding GWAS results is that while a variant significantly
associated with a trait more-or-less guarantees that there is a causal genetic influence on that
trait in the genomic region surrounding the variant, the variant itself is not guaranteed to be, and
is in fact unlikely to be, causal. This is due to the phenomenon of LD (linkage disequilibrium)?.
To illustrate LD, consider the example of the two homologous copies of the chromosomes 8 and
14 in a parent, call them 8a, 8b, 14a and 14b. Consider one variant on each chromosome: call
them v8 and v14, and suppose that the allele for v8 on chromosome 8a is not the same as the
allele on 8D, i.e. that v8a # v8b. Similarly assume v14a # v14b. Because the chromosomes 8
and 14 are different molecules, which allele of v8 the parent passes on to a child of theirs is
independent from which allele of v14 they pass on. This random assortment of v8a and v8b
compared to vi4a and v14b means that, even if the presence of v8a in people in one generation
was correlated with the presence of vi4a in those people, over successive generations, that
correlation would disappear, i.e. those two variants would tend towards linkage equilibrium.

But now consider another variant v8’ on chromosome 8, with alleles v8’a # v8’b. Now
v8a and v8’a are on the same molecule, as are v8b and v8’b. During the phenomenon of
recombination during meiosis, each pair of homologous chromosomes are likely to exchange
corresponding pieces of themselves. Thus if v8 and v8’ are far enough apart from one another
on chromosome 8, then similarly to variants on different chromosomes, v8 and v8’ will be
inherited relatively independently from one another, and the presence or absence of their alleles
will become uncorrelated after successive generations. But if v8 and v8’ are quite close to each
other on the chromosome, then recombination will be unlikely to occur between v8 and v8’, and
a child will likely inherit either v8a and v8’a, or v8b and v8’b, but is unlikely to inherit v8a and

v8’b or v8b and v8a. This means that even over many generations, the presence of v8a in a
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person will be strongly predictive of the presence of v8'a in that person, and vice versa. For this
reason, variants that are close together in the genome tend to remain in linkage disequilibrium.
LD is important to GWAS because if any variant in a region causally influences a trait, all
the variants in partial LD with that variant will appear correlated with that trait, with the strength
of the LDs partially determining the strength of those trait correlations. This leads to the
phenomenon where any GWAS signal will be identified by many tagging variants, all with
varying strengths. GWAS results are commonly visualized as Manhattan plots where each
variant association is a point whose genomic position is on the x-axis (successive chromosomes
arranged head-to-tail) and whose association’s —log,,(p value) is on the y-axis, so that higher
points are more strongly associated. The effect of having many tagging variants leads GWAS
signals to appear as peaks on these plots, whose visual similarity to skyscrapers lends
Manhattan plots its name. See Figure Introduction.2 as an example. Figure Introduction.3
shows a zoomed in view of an example Manhattan plot peak. Each point on a Manhattan plot

corresponds to an association similar to the example in Figure Introduction.1.
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Figure Introduction.2: A Manhattan plot. The dotted red line denotes the genome-wide
significance threshold. Each peak has been labeled with the name(s) of one or more genes at
that locus which are plausibly involved with the trait under study, though a reader should
assume there is not sufficient evidence to confidently identify the causal gene(s) at many of
these loci. Adapted from Howles et al.*®
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Figure Introduction.3: The association of variants in a genomic region with a phenotype.
This is a zoomed in view of one of the peaks from a Manhattan plot. Each point is a variant, with
its shape corresponding to an annotation of that variant (annotation names are omitted here for
clarity). The lead variant is given by its ID, rs73015013. Each variant in the region is colored by
its r> with the lead variant. The genes in the region and their directions of transcription are
displayed underneath the variants — the exons of the genes are thick bars, with the introns being
displayed as a thin line connecting them. Adapted from Sanna et al.>°
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LD between two variants is commonly measured as r? — the correlation between the
dosages of the alternate alleles at those two variants across individuals in a population. The
higher the r? value, the more both variants will appear correlated with a trait if either one is
causal for that trait. As heuristics, r? > 0.3 is often considered high enough to say two variants
are in at least partial LD, and r?> 0.8 is enough that it may be difficult to distinguish which
variant from the pair is causal for an association and not merely correlated, though these cutoffs
are arbitrary and just for the sake of intuition. LD should be handled analytically (using statistical
fine-mapping, discussed below), not heuristically. LD can also be measured by pairwise
statistics such as D' (pronounced D-prime)*®, but that measure, while more informative of the
relative historical origins of two variants, is less informative of GWAS signal tagging than the r?
measure, and thus | do not discuss it further.

LD in a region can be measured as a matrix of r? values corresponding to the pair-wise
r2 between each pair of variants. Clusters of variants which are all in high mutual r? are called
LD blocks. As seen in the discussion of figure 7 in the HapMap paper“, not all nearby variants
in a region will have similar LD values — LD values will dramatically depend on the historical
order mutations occurred in. Thus even in regions of high LD, only some variants will segregate
together in LD blocks. In addition, the farther the minor allele frequencies of two variants are
from one another, the less it is possible for them to be in high LD, and thus the less it is possible
for them to be in the same LD block. Nonetheless, LD blocks often contain tens of tightly
correlated variants spread over tens of kilobases or more. And due to tagging, GWAS signals
are biased towards appearing in significantly larger than average LD blocks®'. For example,
most of the signals highlighted in our Chapter 3 GWAS span hundreds of kilobases which, for
reference, is much larger than the median (~26kb) and mean (~67kb) lengths of genes in the
human genome®2.

It is because of LD that GWAS with a few million variants, such as the GIANT height
GWAS?*2, work at all. For there are ~18 million common SNPs and indels'®, and even ignoring
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uncommon causal variants and causal variants of other variant types, a GWAS which tests only
a few million variants is only testing a small percentage of all common variants. To account for
this, such a GWAS tests variants that are spread evenly and densely enough throughout the
genome. This way, any causal variant which is even relatively common in the population will be
in strong enough LD with one of the tested variants that the tested variant will be strongly
associated with the studied trait. This fagging allows GWAS to reliably detect causal genetic
regions without necessarily testing any causal variants.

While some GWAS rely on tagging to make sure they identify common causal signals,
others try to test many variants to increase their likelihood of being able to identify the
underlying causal variants. In the last few years biobanks have begun to generate whole
genome sequencing (WGS) data for their cohorts, allowing recent GWAS in those biobanks to
test hundreds of millions of WGS-called variants, e.g.’. However, up until recently the standard
has been for large biobanks to have called a smaller number (on the order of hundreds of
thousands to a few million) of common variants in their cohorts using microarrays, and this is
still the best data available for many biobanks. In order to test many more variants in such a
biobank, GWAS will use imputation, pairing the microarray data with WGS-called variants from
other (usually smaller) publicly available datasets called imputation panels. For example, before
it had generated WGS data for each of its participants, the UK Biobank imputed over 90 million
variants into their cohort from less than a million microarray variants®. Historically, imputation
panels would include the HapMap®*, 1000 Genomes' and Haplotype Reference Consortium
panels®®; now perhaps the largest such panel is the TOPMed imputation panel®.

Imputation is possible for the same reasons that underlie LD. If it is known from an
imputation panel that the alleles of two variants are correlated, then one of those alleles being
measured in an individual by the microarray dataset (called a hard-called allele) can be used to
help infer the presence of the other allele (called an imputed allele). Thus information about a
small number of variants can be turned into information about very many variants. Imputation
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tools are more sophisticated than this description implies; in particular, they jointly infer the
presence of sets of nearby alleles that appear together in the imputation panel, called
haplotypes, instead of instead of relying on pairwise correlations, but the underlying principle is
similar. IMPUTES5® is a tool often used for imputation, but our lab has primarily relied on
Beagle®®, which is similarly accurate, sufficiently fast and also allows for the imputation of
multiallelic variants which IMPUTES has not supported.

Imputation tools are statistical models and so, at each imputed variant, for each
individual, they estimate the probability of that person having zero, one or two alternate alleles
at that variant. This allows researchers to remove calls or variants whose which were
uncertainly imputed, which is more common when imputing rare variants from common
variation. These probabilities are also important during the testing step of a GWAS. Instead of
assigning each person the dosage that they are most likely to have at any variant (a best-guess
call), it has been shown that GWAS perform better when they test for associations with the
expected number of alleles (an average in the range 0 to 2) for each person at each imputed

variant®®

Searching for Causality and Therapeutic Implications

As discussed, random allele assortment during reproduction means that the regions
identified by GWAS are causal for the trait being studied. But while GWAS are good at
identifying causal regions, LD means that the effects measured for each individual variant are
merely correlative and cannot be assumed to be causative.

Despite this difficulty, GWAS routinely attempt to fine-map their signals, that is, to take
the causal regions they uncover and try to discover which variants, genes, tissues or cell types,
and molecular mechanisms the causal signals at those regions act through. This has been true
ever since the first widely recognized GWAS paper®, published in 2007, which spent much of
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its effort trying to identify the genes influencing disease within the causal disease signals it
discovered. This desire for fine-mapping is to be expected: geneticists aim to better understand
the human body and wish to discover better therapeutics for diseases. Yet if understanding
health and disease is a primary goal of GWAS, it is infrequently discussed by GWAS
publications. GWAS publications routinely develop hypotheses for and sometimes succeed in
experimentally confirming the biological mechanisms by which GWAS signals act, but they only
infrequently discuss the downstream health implications of those mechanisms.

I have found this disconnect to be disconcerting at times. However, an article reviewing
the first 10 years of GWAS discoveries?' can help reframe this apparent contradiction. This
review highlights the contributions GWAS have made to drug discovery in two domains: type 2
diabetes and autoimmune disorders. But as prelude to discussing these drug successes the
review first highlights the enormity of studies in the GWAS and broader genetics communities
dedicated to understanding those diseases. The large number of studies is testament to the
inherent difficulty of causally fine-mapping genetic signals, testament to the difficulty of
connecting causal signals to mechanistic understanding of underlying biological processes.
Hence it is unsurprising that there are relatively few GWAS studies which also successfully
identify the mechanisms behind the signals they discover, much less attempt or succeed at
applying such knowledge to improve health outcomes.

Even so, the review article of the first 10 years of GWAS highlights strong connections
between GWAS results and drug development, if only in a few cases. These case studies can
be paired with evidence that shows broad correlation, though not causation, between genetics
research and drug development. In 2015, 8% of drugs on the market had some level of support
from human genetic evidence at the gene level as compared to 2% of drugs in preclinical
stages®’, and in 2021, over two-thirds of drugs approved by the US FDA’s Center for Drug
Evaluation and Research had some level of support from human genetic evidence at the gene
or protein levels®?,
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Thus there is some evidence that GWAS are connected to therapeutic successes. In the
context of drug development, that moderate level of evidence is motivation enough. Drug
development is hugely expensive: drugs often fail in late stage clinical trials due to lack of
efficacy®! despite functional evidence in preclinical stages®®. Further, a reasonable fraction of
drug discoveries are still serendipitous® despite attempts to systematize the drug discovery
process. So GWAS research does not need to routinely lead to drug discovery or repurposing to
be worthwhile. Rather, any additional evidence from GWAS or other genetic analyses that can
lead to even slightly more frequent drug discovery and prioritization successes is of help.

So GWAS efforts are valuable despite not being able to directly suggest therapeutic
applications of their work. Instead, GWAS focus on taking the crucial first step of fine-mapping
as many causal variants, genes, tissues or cell types, and molecular mechanisms for as many
of their signals as possible. That guides my organization of the rest of this section of the
Introduction, where | describe how fine-mapping is performed despite confounding LD and how
these types of fine-mapping evidence interplay with one another. | begin by discussing the fine-
mapping of causal variants, next discuss complex variants missing from causal variant
analyses, and then conclude by overviewing methods for identifying causal genes. For readers
who are interested in the field of study which frames GWAS results more directly as a means to

drug repurposing, | refer them instead to this review article®®.

Causal Variants

There are two general ways GWAS attempt to identify causal variants. The first is
through strength of signal alone. Heuristically, if one variant’s association with a phenotype is
much stronger than the other variants in the region, (perhaps after conditioning on variants
already presumed to be causal), i.e. if the strength of the effect of that variant comparatively
overcomes the LD present in the region, then the variant is a good candidate for causality.
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However, studies have shown that lead variants may often not be causal®®’, which is especially
plausible in regions where multiple causal variants are present®®%°. Thus instead of heuristically
gauging signal strength, researchers often employ statistical fine-mapping, discussed in its own
section of the Introduction below, which can be used to quantitatively disentangle LD patterns
and assess the level of evidence that the lead variant is causal, as well as being able to identify
multiple causal variants in a region. A variant identified this way, either by strength of p-value or
by statistical fine-mapping evidence, can motivate follow up studies focused on resolving the
mechanism of that variant. Such is the case in a study which followed up on a specific locus
identified by a vascular disease GWAS3*.

However, it is often the case that there are many strongly trait-associated variants in a
region which are in tight LD and have similar association strengths, and that neither ranks
based on p-values nor statistical fine-mapping can sufficiently resolve the causal variant from
that cluster. In such a case, if one of the variants overlaps an annotation which gives the variant
a known or plausible mechanism of action (e.g. the variant is protein coding), then that
strengthens the hypothesis of that variant’s causality compared to the rest. In addition to
pinpointing the causal variant, if the overlapped annotation is present only in relation to one
gene in the region but not others, or in some cell type(s) but not others, this can help resolve
both the genes and cell type(s) the signal is likely to act through. This is demonstrated by a
GWAS in type 1 diabetes GWAS* as well as a GWAS in a type 2 diabetes’®.

It is important to mention that annotations must be considered within the context of LD
confounding and not instead of it. For example, one GWAS of type 2 diabetes coding variants’
demonstrated through statistical fine-mapping that at least a third of the coding variants they
found to be strongly associated with that disease were likely not themselves causal.

It is also important to realize that multiple estimates suggest that >90% of GWAS signals
lie outside of coding regions’>"3, These estimates refer to all associated variants tested by a
GWAS rather than the unknown percentage of causal variants, and thus cannot be precise.
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Nonetheless, they suggest that a large majority of GWAS signals are non-coding. As discussed
above our understanding and annotation of non-coding variation is very limited, so matching
GWAS-prioritized variants to known annotations should only be expected to succeed for a
limited subset of signals. For example, overlapping 52 type 1 diabetes GWAS signals with
chromatin accessibility signals measured in the most relevant accessible cell type only provided
evidence for 5 of the 52 signals*. Yet though this provided insight into less than 10% of the
regions studied, a strong candidate for causality was identified using this chromatin accessibility
and follow-up 3D chromatin contact mapping data.

Given all this, the most common scenario is that the top associations at a GWAS signal
cannot be distinguished due to LD confounding, and there are no annotations sufficiently
convincing as to pinpoint the causal variants from among them. For this reason, many GWAS
focus only on a few of the signals they identify, leaving the rest unresolved**’°, Even so, GWAS
generates hypothesis: GWAS provides a list of the most associated variants (or variants most
prioritized by statistical fine-mapping) and directs future research towards identifying which of
those variants might be causal. In the long run, this hopefully will lead to the identification of
more causal variant mechanisms, and the translation of that learning to understanding and
annotating the rest of the genome.

Still, it would be preferable if causal variant fine-mapping was more successful. My

thesis work on complex variants is one of many different avenues for increasing that likelihood.

Complex Variants and Missing Variants

In our lab, we use the umbrella term complex (genetic) variant to refer to any genetic
variant that is smaller than whole chromosomal loss or duplication and is not a SNP or short
indel, encompassing many distinct variant classes such as tandem repeats, copy number
variants, mobile element insertions and other structural variants. We use the term complex
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variation because these larger DNA variants are difficult to naively call from short read
sequencing and have all generally been omitted from GWAS to-date. Note that, despite using
the same word, complex variants and complex traits are different ideas.

The historical exclusion of complex variation from GWAS is partially due to their
exclusion from the reference panels used for imputation. The Haplotype Reference
Consortium’s reference panel®, widely used with ~1500 citations as of writing, only includes
SNPs. This is also true of the older HapMap reference variant set®, which despite being retired
before the beginning of my thesis work™, is still used in variety of current analyses as a
database of common variation®?7>. The TOPMed panel®® may be the largest imputation panel at
this time which does not have restricted controls, and while it includes indels in addition to
SNPs, it does not yet include complex variants™® (though the inclusion of structural variation in
TOPMed is described in a current preprint’’). To my knowledge, the only commonly used
reference panel which includes complex variants at the moment is the 1000 Genomes panel™
which has included structural variation in addition to indels since at least 2015'. Any GWAS
using variants imputed from a panel that excludes complex variation will by necessity not study
complex variation. But even beyond that, | suspect that smaller research teams look to the
variant calling methodologies of these consortia for guidance. Thus the lack of inclusion of
complex variation in these consortia likely contributes to standardizing the lack of study of
complex variation across the research community.

Prior to my thesis work, there was already evidence that SNP- and indel-based GWAS
would identify signals whose causal variants could not be identified, and which would later be
resolved to a causal complex variant common in the population which was not studied by the
initial GWAS but was tagged by its variants’®®. These findings became part of the motivation
for my thesis work, where we took a class of common complex variants, in our case short
tandem repeats (STRs), and included them in GWAS studies. In doing so, we hoped to identify
causal complex variants using GWAS, and hoped to improve the overall rate at which GWAS
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signals could be resolved to causal variants. (I discuss motivation specific to STRs in the
section of the Introduction on STRs below. Our results working with STRs are discussed in
Chapters 1 and 3.) Other examples of causal complex variants tagged but overlooked by SNP-
and indel-based GWAS have been discovered by the research community while | have pursued
my PhD studies, e.g.%'%2,

Further, while it is expected that common SNPs strongly tag most missing common
biallelic variants, our lab®8* and others®'#? have demonstrated that when a complex variant
such as an STR is present throughout the population at a range of common lengths, the
presence or absence of any individual common SNP is unlikely to be strongly correlated with
the complex variant’s length due to the SNP’s biallelic nature. This means that LD should be
less confounding for such a causal complex variant, and suggested that if we included STRs in
GWAS, we would be able to causally identify some of them through statistical fine-mapping.

The other common occurrence which leads to identifying causal variants is when they
overlap genomic annotations which strongly implicate causality, such as being in a protein-
coding region. This has allowed for the causal identification of coding complex variation®'#2, A
small subset of STRs are coding, are in 5 UTR regions, or are directly adjacent to splice sites.
All of those are more likely to be causal than the average STR, are easier to identify when they
are causal, and can help implicate causal genes.

However, my work focused on the study of STRs genome-wide. And the above
categories only make up a very small fraction of the STRs in the genome. While | will discuss
STRs in more depth below, for now it is sufficient to say that there are many mechanisms of
action hypothesized for non-coding STRs, but similar to most variant types in the non-coding
genome, these mechanisms are not well annotated or well validated. Thus in general most
causal STRs cannot be identified through annotations. And even when likely-causal non-coding
STRs would be identified by fine-mapping, without causal annotation, it would be difficult to link
them to causal genes or understand their mechanisms of action. Still, even without being able to
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annotate putatively causal STRs, we hoped in the long run that identifying them would lead to
follow up studies which could decipher the mechanisms by which they act.

There is also benefit even when statistical fine-mapping only indicates that a complex
variant is one of many variants in an LD block that may be causal for GWAS signal. For that
improves hypothesis generation at that locus, indicating that follow-up research should study
that complex variant along with all the other variants in the region when seeking to identify the
causal variant.

It is for all these reasons — identifying the occasional causal, well-annotated complex
variant, the more frequent uncovering of evidence that an unannotated non-coding complex
variant is likely causal, and the routine occurrence of identifying possibly causal complex
variants in LD with other possibly causal SNPs — that | have focused my work on complex

variant GWAS.

Causal Genes and QTL Studies

While my work has focused on identifying causal variants, GWAS researchers are more
regularly interested in identifying causal genes, as the proteins they code for are the
fundamental units which act on pathways in the body outside the nucleus, and as those proteins
can be nominated as therapeutic targets**°. The difficulty is that GWAS fundamentally do not
test genes for associations with traits. Further, there are often many candidate genes near a
GWAS signal, and distant genes cannot be ruled out as GWAS signals may act on genes over
100 kb"® or 500 kb** away. To give a sense of the magnitude of this challenge, a review from
20172" suggested that the entire research community had identified causal genes for only one
third of the hundred type 2 diabetes GWAS signals identified, and considered this a major

success story.
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One method to identify causal genes is to look for nearby genes which already have
some evidence of relevance to the trait being studied. This is the strategy taken by the
foundational GWAS study from 2007%°. A similar recommendation is given by the type 2
diabetes study mentioned above, which suggests focusing on genes which can already be
“plausibly linked to the ... phenotype””'. Yet the issue with this approach is that our knowledge
of the genome is limited, and it is often unknown which pathways a given gene is involved in.

A simple alternative is the oft discussed heuristic of nominating the gene closest to a
signal as likely enough to be causal for that signal, without having to understand the mechanism
of that causality. Unfortunately, how often this is correct is a matter of large disagreement —
different gene prioritization studies suggest this is accurate anywhere from one fifth® to one
third®87 to two thirds of the time® or more®. These estimates likely differ due to being biased
by limitations of their data, their methodologies, and which types of genetic mechanisms their
methodologies do or do not consider. Yet more fundamentally, the estimates will also vary
according to the extent to which weaker GWAS signals are or are not included in the analyses.

Instead of relying on the closest gene to be causal, researchers have tried to find
approaches that are more data driven. Perhaps the most common method is to test which
variants influence gene expression, directly addressing the limitation that GWAS do not test
gene expressions for association. This is called an expression QTL (eQTL) study®°. QTL is an
acronym for quantitative trait locus, which literally refers to any locus in the genome that is
implicated in any quantitative trait being studied. However, in the context of studies in humans,
a ‘QTL study’ most commonly refers to a study of molecular phenotypes of chromatin and
transcription, including but not limited to the expression levels of genes (eQTL studies), the
extent to which specific CpG bonds are or are not methylated® (called mQTL or meQTL
studies), or the distribution of isoforms of mMRNAs®".

QTL studies of molecular traits are similar to GWAS of organism-level traits (e.g. traits
such as height or heart failure that are properties of full organ systems or the whole body) but

33



there are a few important differences between the two. First is that QTL studies inherently test
many distinct outcomes simultaneously. For example, a QTL study of expression will individually
test the expression of each gene in the genome (~20,000 traits), and QTL studies of methylation
will individually test the methylation levels of each potentially methylated region in the genome
(over 750,000 traits®). Secondly, the number of individuals accessible to QTL researchers is
often much lower. For example, GTEx* is one of the prime sources of tissues for these
analyses, and for most tissues, GTEx only has tissue samples from a few hundred individuals.
(As an aside, the fact that human datasets of gene expression are not usually the same as the
datasets GWAS are preformed in is a main reason why human genetics researchers do not test
directly for associations between gene expression and traits).

The small number of individuals in QTL studies has downstream ramifications. QTL
studies often lack power to overcome the multiple hypothesis burden of true genome-wide
testing®?, and so only test each trait for association with nearby (called cis) genetic variants
instead of all genetic variation in the genome (which would include frans, i.e. distant, variation).
Here, the definition of nearby is up to the researcher, often in the 250kb-1mb range. Thus, like
GWAS, QTL studies test variants from across the genome for association, but instead of testing
each variant for association with a single trait, many test variants for associations only with the
molecular traits that are anchored nearby. The lack of power in molecular QTL studies also
necessitates slightly different methodologies for controlling for false positive rates. Often
researchers control for false discovery rate at a threshold such as p < 0.05,% instead of
controlling the family-wise error rate with the threshold p < 5 x 1078 as used in organism-level
GWAS.

As QTL studies often measure traits directly related to chromatin and transcription, they
are interpreted differently than GWAS, providing direct evidence of the genetic mechanisms
influenced by genetic variation, but not measuring the downstream influences of those
mechanisms on organism-level traits. For instance, one of the main pieces of my thesis work
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was performing an eQTL study of STRs, a main goal of which was to try to elucidate the
mechanisms of causal STRs (see Chapter 1). It is important to note that QTL evidence is
confounded by LD, similarly to GWAS studies, so pinpointing causal variants for QTL signals
can be difficult.

Another distinction with organism-level GWAS is that the molecular traits studied by QTL
studies often vary between tissues and cell types — for instance gene expression, genetic
methylation and mRNA splicing all can show distinct patterns in different cells. Thus QTL results
are highly circumscribed to the cells and conditions the results were generated in, and consortia
are constantly trying to expand the number of cell types that QTL studies have generated
information for3'. While the cell type specific nature of QTL studies limits their generalizability, it
can also be a boon. For if a QTL has been studied in multiple cell types and is only present in
one cell type and not others, that can help pinpoint the cell types relevant to that signal®°.

At this point, a reader may be confused as to what the difference is between a QTL
study of chromatin and a chromatin annotation. To clarify: chromatin annotations, such as
methylation levels and chromatin accessibility, are often measured in cells from one individual.
Researchers then tentatively assume the likely presence of those chromatin annotations in
other individuals. Further, researchers can hypothesize that variants in those regions may
interfere with or modulate those annotations. But these assumptions and hypotheses are rarely
verifiable from chromatin annotation information alone. On the other hand, QTL studies, such as
methylation QTL studies or chromatin accessibility QTL studies, measure the differences in
such annotations between individuals with different variants, directly testing those assumptions.
In contrast, QTL studies are not designed to identify chromatin marks which are uniform
throughout the individuals under study and not perturbed by the studied genetic variation.

A last note on QTL studies before moving back to the discussion of causal genes:
despite being called QTL studies, pQTL studies which measure the quantities of different
proteins, often follow the design and interpretation patterns of GWAS more closely than of

35



molecular QTL studies. For pQTL studies are often performed on proteins circulating in the
blood®** and blood is an easy tissue to access, so pQTL studies can have similar sample sizes
and power to organism-level GWAS. This allows pQTL studies to adopt stringent family-wise
error rate thresholds similar to GWAS instead of laxer FDR thresholds used by other QTL
studies. This also allows pQTL studies to look for trans signals in addition to cis signals.

As alluded to above, one motivation for QTL studies is to help fine-map which genes are
causal for GWAS signals. Most naively, QTLs can be used similarly to annotations, where a
researcher who identifies a GWAS signal that overlaps an eQTL signal can infer that the GWAS
signal is caused by the eQTL signal, even if they cannot identify which variants are causal for
either. A follow-up to a type 2 diabetes GWAS signal is a good example of this*°. That study
also demonstrates how this allowed them to also identify the causal cell type, as the eQTL
signal was only present in that single cell type. The counter point is also true — if they had only
studied eQTLs in non-relevant cell types, they would not have seen an eQTL signal here at all,
and not been able to connect the GWAS signal to a gene. In fact, eQTL studies can even lead
to misleading results when performed in less mechanistically relevant tissues®.

Frequently, the simple approach of overlapping GWAS and eQTL signals suffers from
the drawback of being unable to distinguish between genes causal for a GWAS signal, and non-
causal genes whose expression is correlated with the same variants, but only due to LD.
Colocalization®® is the term for statistically distinguishing between these two possibilities. As it is
in effect a type of multi-trait statistical fine-mapping, | discuss colocalization in more detail later
in that section of the Introduction dealing with that topic. Colocalization is often used in fine-
mapping GWAS signals, e.g.”® and in our work in Chapter 1. However, due to worries that eQTL
datasets are not sufficiently well powered to properly detect causal signals, when we
incorporated eQTL data with our GWAS signals in Chapter 3 we only overlapped them and did

not perform colocalization. | discuss this more in the Chapter 3 Forward.
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While overlapping and colocalization attempt to directly compare eQTL and GWAS
signal patterns, transcriptome-wide association studies (TWAS) are a different class of methods
which attempt to use variant GWAS and eQTL associations as a proxy for identifying gene
associations. Specifically, these approaches use summary statistics from GWAS and eQTL
datasets to impute gene expressions into the GWAS cohort, and then directly test the gene
expressions for associations with the GWAS trait. TWAS can then, in theory, directly show
which genes are involved with a trait. For more information, | refer the reader to a recent TWAS
review® . | only highlight here that, like other eQTL base studies, TWAS can be confounded by
data from tissues and cell types irrelevant to the trait under study®. Further, TWAS results are
also susceptible to confounding due to LD®%%, and so themselves need to be fine-mapped. Of a
few recent attempts at fine-mapping TWAS signals®®, it is exciting to see that one such
method, called cTWAS, achieves low power but very high precision in identifying causal genes
by identifying the underlying variants which are causal for gene expression'®. This is possibly
another application of identifying causal non-coding variation such as causal STRs.

Lastly, there are methods for inferring causal genes from GWAS summary statistics
aside from those that utilize eQTL data. For example, some methods cross GWAS summary
statistics with knowledgebases of gene function and molecular pathways'™'. Some methods use
all three types of data — GWAS summary statistics, eQTLs and knowledge bases'%.

Despite these efforts, causal gene prediction still remains a challenging problem — a
recent gene prioritization effort using a variety of methods found that the different methodologies
had relatively little overlap in the genes they prioritized'®®. Further, comparative studies of gene
prioritization methods often suggest that the closest-gene heuristic performs as well as or nearly
as well as methodologies which incorporate QTL and/or knowledgebase datasets®121%3, And
even making such comparisons is challenging due to the difficulty and biases in ascertaining

curated sets of known-causal genes.
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In summary, GWAS reliably generates knowledge of causal regions, while identification
of causal variants and genes remains much more challenging. Many methodologies and data
sources have been developed for those purposes. These methodologies can generate great
insight when they provide strong evidence of which variants and genes are causal, but only do
so for a relatively small proportion of GWAS signals. We envision that including STRs will
increase that proportion slightly but significantly. More frequently, GWAS signals generate
hypotheses for possible causal variants and genes and leave questions of causality for further,

often experimental, research. We aim to include STRs in those hypotheses.

Polygenic Risk Scores

One important application of GWAS is generating polygenic risk scores (PRS), also
called genetic risk scores'™, or polygenic scores®. While my thesis work does not directly
involve PRS, due to their importance to population genetics, and because we hypothesize that
the identification of causal STRs will improve PRS, | briefly discuss PRS here.

A PRS is a method that predicts either a phenotype (or future phenotype) of a person
from the knowledge of which alleles that person has at a collection of variants, along with other
covariates. PRS are called risk scores because the main interest in PRS is predicting which
individuals will get specific diseases, which can allow for preventative treatment. However, PRS
can be built for any phenotype, including those where the term risk is a misnomer. PRS, like
many predictive models throughout the fields of statistics and machine learning, can achieve
accurate predictions without identifying what subset of input features (in this case, genetic
variants), are causal for the predicted phenomena. Nonetheless, | will explain why causal STR
identification may improve PRS results.

The simplest PRS method, called pruning and thresholding, takes GWAS results,
removes all variants below a tuned threshold (thresholding), selects a single variant from each
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associated LD block (pruning), and then uses the sum of the variants’ GWAS effect sizes times
individuals’ dosages at those variants to predict those individuals’ phenotypes'®. There are
many more sophisticated PRS methods; an interested reader could look to these reviews %6197,
Further, more sophisticated PRS methods tend to perform better than pruning and thresholding,
though different PRS methods perform best for different traits and in different contexts %197,
Nonetheless, many of these methods are similar to pruning and thresholding in that they build
models from GWAS summary statistics, though they differ in how they select which variants to
include their models (up to including all tested variants) and how they up- or down-weight
GWAS effect sizes based on model priors or tuned parameters. While clinical usage of PRS is
currently highly limited, there is much discussion of the future utility of PRS in the clinic'06.198-110,
And there are currently ongoing clinical trials for using PRS to predict breast cancer'""'2 and
colorectal cancer'' that could help bridge this gap, among other efforts.

| discuss PRS here not only because they are an important use case for GWAS, but also
because they are one part of our motivation for attempting to identify causal complex variants.
This is perhaps unintuitive, as PRS are predictive methods, and they should perform equally
well whichever variants they include from any given highly correlated LD block, regardless of
whether the variants they include are causal or merely correlated. While that is true, we®84 and
others®'#2 have demonstrated that, a large subset of multiallelic STRs are not fully tagged by
individual SNPs. Thus incorporating multiallelic STRs may yield marginal improvements to PRS
for traits which those STRs are causal for. | am also encouraged that some existing PRS
models only include sparse collections of variants'%4114-118 | hypothesize that those methods
would be particularly improved by swapping out individual variants for the causal STRs they tag;
though it remains to be seen which traits, if any, those methods prove most successful for when
STRs are incorporated.

That said, our lab hypothesizes that the benefits of causal variant identification may be
most apparent for PRS transferability, which | will now define. Recall that there are huge
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disparities in the size of biobanks containing people of European decent as compared to people
of African, Hispanic and South Asian descent, with East Asian biobanks falling somewhere in
the middle. Due to these disparities, PRS used for people of non-European, non-East Asian
descent are often first trained primarily on data from European individuals. Using a PRS in a
population other than the population it was trained on is called transferring it to the target
population. Creating PRS which transfer well will remain an important need until biobank sizes
are more equitable across populations.

Currently, PRS do not transfer well''®'20 in that they show much lower accuracies in
populations they are not trained on. This is widely hypothesized to be in part due to different LD
patterns between training and target populations''®'2', Said another way, PRS effect sizes for
variants are reflections of the correlations between those variants and the causal variants they
tag, and the expectation is that those correlation patterns may change for when moving
between populations, thus rendering many of the PRS effect sizes inaccurate in the new (target)
populations. | note that differing LD patterns are not thought to be the only cause of PRS
accuracy loss between populations''. Nevertheless, the GIANT height GWAS demonstrates via
simulation that differences in LD, as well as in minor allele frequencies, may be causal for an
accuracy drop from 40% to 15% in their height PRS of Europeans vs Africans®?. These
simulation are complicated and their specifics are hard to verify due to the lack of knowledge of
the truly causal variants for GWAS traits'?2. Still, the overall point is convincing, and the upshot
is that if PRS could put more weight on causal variants as opposed to tagging variants, then
their transferring inaccuracies would hypothetically be mitigated. That is further motivation for

our attempts to identify causal STRs.
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Short Tandem Repeats

My research has focused on the inclusion in GWAS of a type of complex variant called
short tandem repeats (STRs). Above | have introduced GWAS, their role and utility in population
genetics analyses, and the benefits of including heretofore missing variants in GWAS analysis.
Here | introduce STRs.

Tandem repeats (TRs) are sections of the genome where the same sequence of bases
is repeated many times in a row, tail to head. For example, the sequence
...TTACAAACGACGACGACGTGAAC... contains four copies of an ACG repeat which can be
highlighted using bolding and capitalization: ...ttacaaACGACGACGACGtgaac... . A tandem
repeat is often discussed in terms of its repeat unit or motif, the length of that unit, the number of
copies of that unit, and the total length of the repeat. For the example above, the repeat unit
may be denoted by ACG, CGA or GAC, or if a researcher was considering the repeat on the
reverse complement strand ...CGTCGTCGTCGT... , then either CGT, GTC or TCG.
Regardless of how it is named, the length of the repeat unit in this example is 3 bases, there are
4 copies of it, and the total length of the repeat is 12 bases.

Another important facet of tandem repeats is their purity. A tandem repeat is called
impure if it contains one or more interruptions of the repeated sequence, say
...ACGACGACAACG..., where the third G from the left has been replaced by an A. My work
has focused on laying the groundwork for the study of repeats based on their lengths, and | do
not focus much on the impurities within them. Nonetheless, it is important to recognize that
impurities, in at least some instances, fundamentally change the biomolecular properties of
repeats®® 23124 and in the thesis Discussion | consider scanning for associations between
repeat impurities and phenotypes. For the rest of this thesis, it is just important to know there is
no precise agreed upon cutoff which delineates which sequences or regions of the reference
genome are repeats with many impurities and which are non-repetitive sequences of bases. As
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such, numeric claims about classes of repeats fluctuate significantly from study to study
depending on the extent of the set of variants being labeled repeats when making the claims.

My work has focused on length variation in short tandem repeats (STRs), also called
microsatellites, simple sequence repeats'?® and simple tandem repeats. Our lab ascribes to the
common definition that STRs are those tandem repeats whose repeat unit has a length of 6 or
fewer bases. Note that this definition of STRs is irrespective of the total length of the repeat,
which can range from tens of bases in common cases to hundreds or thousands of bases in
extreme cases. Also note that other research groups often use similar but not entirely identical
definitions for what constitutes an STR126:127,

From well before the whole human genome was read, STRs were used as markers in
forensics'?®, genetic linkage analyses'® and other applications as their high mutation rates
cause them to frequently exist at different lengths in different individuals. A large body of
research has also focused on repeat expansions, when an individual inherits an STR that is
mutated to be hundreds or thousands of repeat units long, well beyond what is standard in the
population. Repeat expansions in specific STRs are causal for over 50 severe Mendelian
disorders, most of which primarily affect the central nervous system, such as Huntington’s
disease and ALS'?"130.131 |n contrast with these approaches, my research has focused on the
causal properties of STRs instead of using them as markers, and has focused on common STR
variation genome-wide instead of focusing on a few known pathogenic STR expansions.

Part of the motivation for working on STRs genome-wide is their numerousness.
Somewhere on the order of 2.5%°5 to 6.77%'?* of bases in the genome lie in STRs, occurring at
1.6"32, 2.5"33 or 4.6"34 million distinct loci, depending on the definition used. These different loci
can be characterized by their repeat unit: STRs with a repeat unit that is just a single nucleotide
are called homopolymers, and are called poly-As when that nucleotide is an A. poly-As are
important as they are the most individually numerous type of repeat in the genome, with 41.3%,
47% and 50.7% of the TRs in the Ensemble-TR v2 reference panel®, human species table in
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the MicroSatellite DataBase'* and HipSTR reference' being poly-A repeats, respectively.
STRs with 2-6 base repeat units are called dinucleotide, trinucleotide, tetranucleotide,
pentanucleotide and hexanucleotide repeats, respectively.

In addition to their quantity, individual STRs have very high per-generation mutation
rates, commonly expanding or contracting by one or more repeat units. One estimate puts the
average STR mutation rate at 5.6 x 10~> mutations per locus per generation'®, much higher
than the average genome-wide rate which is roughly 5 x 10~° to 3 x 10~ mutations per base
pair per generation'®. In particular, this is driven by the large number of STRs with shorter
repeat units coupled with the fact that STRs with shorter repeat units have higher mutation rates
than STRs with longer repeat units'°. This leads to estimations that there are close to as many
new STR mutations in each individual born as new SNP mutations (54'% vs 73'") despite STR
mutations only occurring at STR loci while SNP mutations can occur anywhere in the genome.
This makes length variation in STRs a large fraction of genetic variation (see Chapter 3
Supplementary Table 3).

As mentioned above, length variation in STRs is one category of complex variation
commonly excluded from GWAS. Partially this is because some imputation reference panels do
not include any indels®*%5, of which STR variation is a subset. However, this is also due to STRs
being difficult to naively call from short read sequencing data. Two facets of STRs in particular
contribute to that difficulty. Firstly, if the process that generates reads for sequencing includes a
step called PCR which was ubiquitous in older workflows, the process will often generate
mutated reads with additional or fewer copies of the repeat. This phenomenon is known as
stutter error, and is thought to be due to the same underlying biomolecular processes that cause
repeats to mutate in the genome'3®. Stutter error leads to noisy short read sequencing data,
which can often lead to STR loci being dropped from datasets due to low call quality. This is
especially problematic for homopolymers: one estimate suggests that 17% of reads containing
homopolymers experience stutter error when processed using PCR'. Secondly, the most
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common alleles for some STRs are nearly as long or longer than the length of the short reads
used by WGS, leading to scenarios where no single read spans the repeat and thus the repeat
cannot be called by standard genotypers which rely on information from spanning reads ™.

Further, even for GWAS which impute calls from references such as TOPMed®® and
1000 Genomes" which contain indel calls, it remains unclear if the indel callers they used,
which were likely not specialized to calling STRs, are sufficiently accurate and sensitive when at
STR loci. The 1000 Genomes call set authors directly acknowledge this in their 2022
publication, saying that they “have not specifically included simple tandem repeats” in their
=50bp structural variant call set as “accurate genome-wide discovery [of such repeats] remains
a considerable challenge”'®. The publication of the HipSTR STR genotyper in 2017 showed
HipSTR to be more sensitive and accurate than the standard indel callers at the time'*2, and this
comparison only took place for repeats with total length less than 100 bases and repeat units of
length two or more, excluding the STRs most prone to read (and thus call) errors'*°. Despite
these pieces of evidence, there is need to reassess the capacity of today’s general purpose
indel callers to call STR loci.

Being part of the Gymrek lab, | have been well positioned to circumvent the challenges
of STR calling, as one of our lab’s specialties is tools for calling STRs from short-reads '32140.141,
We are not the only lab to work on this task'?2. But much research by other labs has focused on
creating tools that can detect repeat expansions'#*-'%6, which is an important use case, but one
which does not automatically lend itself to calling common alleles at STRs genome-wide. Our
lab’s specialization in STR callers also explains my focus on STRs as opposed to tandem
repeats as a whole, for tandem repeats whose repeat unit length is 7 or more, referred to as
variable number tandem repeats (VNTRs) or minisatellites (though again, definitions differ
slightly between authors), often require different callers™7:148,

Motivating us to study common length variation in STRs was the ample evidence of the
involvement of common differences in STR lengths in a wide range of genetic molecular
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mechanisms. Before the bulk of my thesis work, STRs lengths had already been shown to
modulate splicing by inducing hairpins in RNAs'® and by recruiting splicing activation factors'?,
to modulate the affinities of the binding of transcription factors®'%".152 and to tune genetic
expression through the modulation of nucleosome positioning'3. And STRs debatably were
shown to repress genes through increasing CpG methylation'*. Changing lengths in different
STR repeat unit classes had also been shown to modulate a wide-range various DNA
secondary structures, including Z-DNA'5, G-quadruplexes, hairpins and i-motifs'®®, and the
DNA-RNA hybrid structure R-loops'®’. These structures had been shown to promote the
formation of mutations™®’, interfere with transcription'® and stall DNA replication during cell
division'®®. Throughout the duration of my PhD further evidence of the mechanistic involvement
of routine variation in STR lengths was produced, with a new study demonstrating wide-spread
STR involvement with methylation'®, and another providing detailed evidence of STRs affecting
the binding affinities of large classes of transcription factors'??,

Despite the breadth and strength of this evidence, it is important to note that only a few
studies have attempted to link these STR mechanisms to GWAS signals directly in their native
chromosomal context, e.g.8°, while most others have done so either in transfected
plasmids'49:1%0.153.195.157 or via purpose-designed assays'?*151.1%, One study provided conclusive
evidence linking the functionality of STR-mediated methylation in its native chromosomal
context to human disease through the expression of a nearby gene using a CRISPR-based
model™®. But | note this study was investigating a repeat expansion disorder and not a GWAS
signal driven by STR lengths common in the general population. All this is only to say that, like
most types of non-coding variation, there is no obvious blueprint for identifying the molecular
mechanisms of non-coding STRs, nor is there strong evidence for how widespread the impact
of each of these mechanisms is expected to be.

Still, this evidence motivated our hypothesis that genome-wide analysis of STR
associations would identify STRs causal for human traits. This motivated both the paper linking
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STRs to gene expression in Chapter 1, as well as the blood traits paper in Chapter 3 that makes
up the bulk of my thesis work.

In those papers we made the choice to, for each STR variant, test for a linear
association between the phenotype under study and the sum of the lengths of the two STR
alleles at the two copies of that variant. Summing over the two homologous chromosomes is
analogous to the standard test for phenotype associations with the alternate alleles of biallelic
variants, where the number of alternate allele copies present at each locus on both
chromosomes is counted. However, the length-based testing stands in contrast to the standard
GWAS approach for multiallelic variants. In PLINK 2 alternate alleles of multiallelic variants are
tested separately’®. This fails to pool information from across alleles and thus has reduced
power to detect trends across multiple alleles, especially when three or more alleles are
common. Many GWAS tools go one step further and require multiallelic variants to be split into
multiple biallelic variants'®"62_ This confounds the presence of the reference allele with the
presence of alternate alleles aside from the one being tested. Our choice of linear length-based
testing avoids these losses of power, and our increased power to detect effects at STRs was
another motivation for our work. | do note that linear length-based testing is not perfectly
positioned to detect all, potentially non-linear, length-based trends, and | delve into alternative
testing methods further in the Discussion.

Thus we were excited to perform GWAS with STRs due to our access to high-quality
STR genotypes, our length-based testing model, and mounting previous evidence of the causal
effects of common length variation in STRs. Still, as discussed in the previous sections, GWAS
often struggles to identify causal variants. And this is amplified in the case of non-coding
variants, especially STRs, which have so much mechanistic heterogeneity that it is routinely
unclear what mechanisms any given associated STR may operate by. This challenge of

distinguishing associated from causal STRs had already hampered our analyses in the past'®.
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For that reason, and due to the need to quantitatively measure the probability of STR causality,

our studies relied on statistical fine-mapping to select for causal STRs.
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Statistical Fine-Mapping

As detailed above, fine-mapping of GWAS signals is the attempt to isolate the causal
variant(s) and gene(s) in those signals from the many non-causal variants and genes they are in
LD with. In this section | focus on statistical fine-mapping and specific statistical fine-mapping
methods, called statistical fine-mappers. Each of these methods is built on a statistical model of
the genetic associations in a genomic region. They use the associations between variants in a
region and a trait, as well as LD patterns between the variants, to fit those models, and from the
fitting they probabilistically decipher which of those variants are likely causal for the trait and
which are merely in LD with other causal variants. While | note that there are tools for identifying
causal genes which borrow from the field of statistical fine-mapping’®, and while causal variant
identification can sometimes lead to causal gene identification, statistical fine-mappers have
focused primarily on the discovery of causal variants, and that will be the focus of this section. |
also note that some PRS models borrow from statistical fine-mapping'"4, but again my focus
here is on methods whose aim is to pinpoint causal variation.

Statistical fine-mapping has important strengths in comparison to other fine-mapping
techniques. Wet-lab experiments that test mechanistic hypotheses are the gold standard of
identifying and validating causal variants, genes and mechanisms. Yet despite constant
technological advances, wet-lab experimentation both has limited throughput and often is costly
and time-consuming'®*'%%, In contrast to wet-lab based approaches, statistical fine-mapping is
fast and cheap — with run times from seconds to hours depending on locus size, instead of
weeks to months or years. There are also fine-mapping approaches which mine patterns of
variant and gene function from existing knowledgebases and are roughly as fast and cheap as
statistical fine-mapping. However, they rely on existing knowledge, while statistical fine-mapping

is largely unbiased by existing hypotheses or information.
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In turn statistical fine-mapping methods have their own drawbacks. The largest of these
is that statistical fine-mapping results are not self-validating — the process of statistical fine-
mapping does not innately develop understanding of what is going on at a locus, it simply
produces a result and asks the researcher to trust that result. Like all fine-mapping techniques,
statistical fine-mapping methods cannot distinguish the causal variant(s) at some loci. For
statistical fine-mapping methods, this is when the signal being detected is weak enough that
there is not enough statistical power to pull apart variants in high LD with one another. In
practice, this means that while GWAS researchers already look for ever-larger datasets to
increase their power to detect weak signals, at some loci, statistical fine-mapping applications
will need even more data than that to successfully resolve those signals to their causal
components. But when statistical fine-mapping cannot fully deconvolute LD blocks, it attempts
to output lists of potentially causal variants as short as possible so that few follow-up wet-lab
experiments are needed to test them.

Statistical fine-mapping is a field whose basic premises have changed in the last fifteen
years and which has continued developing during the course of my PhD studies, so | will briefly
trace its history before explaining the model that underpins current statistical fine-mappers.
Statistical fine-mapping grew out of analyses of GWAS results in the late 2000s and early
2010s. The foundational 2007 Wellcome GWAS®° is a prime example of a study which
recognized the problem of LD confounding but did not perform statistical fine-mapping. That
study took its GWAS associated variants that passed a specific p-value threshold and attempted
to heuristically identify which of them were likely causal by which of them tagged known biology,
lacking any straightforward way of making quantitative statements about causality probabilities.
In subsequent years, an easy method for computing Bayes factors from GWAS summary
statistics was derived'®®. This lead to the development of a method which could calculate
posterior probabilities of causality for each variant in a GWAS signal region from just GWAS
summary statistics'®’, later called the approximate Bayes factor (ABF) method'®®. These
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posterior probabilities of causality allowed for the quantitative interpretation of GWAS summary
statistics as predictors of causality.

Yet ABF makes the simplifying assumption that only one causal variant exists within
each GWAS signal, and even in the early 2010s, many GWAS were using conditional forward
stepwise regressions'®®-""" to identify regions which likely contained multiple causal variants.
Conditional forward stepwise regression iteratively regresses out the effects of all variants
already marked as causal in a region (or in the genome), then designates as causal the variant
with the strongest remaining association in the region (or in each region) and repeats until the
new conditional summary statistics no longer pass a preset threshold.

However, the assumptions of this forward stepwise approach fail to hold up. In particular,
it always designates the lead variant in a region as causal, despite estimates suggesting that
this is often not the case®*®’ and despite knowing that the lead variant in a region with more
than one causal variant may not be causal, and instead strongly associated due to being in
partial LD with the multiple causal variants®°. (I note that conditional regression can be useful
for determining if a preselected set of variants explains all the GWAS signal in a region, but it is
not reliable for determining if those variants are causal. We use conditional regression for this
purpose in Chapter 3.) The COJO stepwise regression method'’2 was developed to circumvent
some of the drawbacks of forward stepwise methods by allowing for a potential backtracking
step. But even this more sophisticated method has been shown to have worse precision and
recall than more modern fine-mapping methods'8173,

CAVIAR'® from 2014 is the first fine-mapper, to my knowledge, that addressed both
these problems by simultaneously assessing the chance of causality of multiple variants.
CAVIAR’s statistical model set the stage for many future statistical fine-mapping methods, so |
describe it here. CAVIAR assumes that the measured trait value for each individual
(represented as the vector y) is a noisy linear combination of individuals’ measured genotype
dosages (matrix X) and the variants’ unmeasured effect sizes (vector ), and is normally
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distributed with inferred variance a2. This can be stated as the formula y~N (X, ¢2I). Ordinary
least squares regression with multiple predictors uses this model too, as do many PRS
methods. But unlike those methods, which fit § in a relatively unconstrained manner, CAVIAR
and its successors enforce priors that makes g sparse, i.e. force § to contain few non-zero
elements. These statistical fine-mapping methods then fit this model to genetic data, perform
calculations to infer the posterior probability that any given entry in  is non-zero, and interpret
that as the probability that the corresponding genetic variant is causal. | note that while the
model above involves the genotypes of individuals, given by X, most current statistical fine-
mapping methods can be fit to just GWAS summary statistics and a matrix describing the LD of
variants in a region to one another, and so can be run without access to privileged information
about individuals. Under this one overarching methodology set forth by CAVIAR, statistical fine-
mappers differ in which priors they use to enforce the sparsity of 8, how they explore space of
possible combinations of causal configurations (that is, which elements of g are non-zero), and
how they summarize that exploration.

Fine-mappers report their results as PIPs and credible sets. PIPs (posterior inclusion
probabilities) are numbers between 0 and 1 assigned to each variant that summarize the fine-
mapper’s posterior belief that the variant is causal. This is the same information that the ABF
method first reported, and in doing so formalized the use of GWAS for causal inference, though
ABF did not use the term PIP and made simplifying assumptions to come to this information.

While the meaning of PIPs has remained stable throughout recent statistical fine-
mapping history, the meaning of the term credible set has changed over successive
publications. Now credible setis commonly used to refer to a collection of variants where the
fine-mapper guarantees with some preset probability that at least one variant in the collection is
causal'™, though even these guarantees differ between fine-mappers. Generally, fine-mappers

return one credible set for each independent signal they identify in a GWAS region. A credible
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set containing only one variant can be interpreted to mean that that variant is likely to be causal,
and a credible set containing many variants indicates those variants could not be sufficiently
distinguished from one another due to confounding LD.

CAVIAR was the tool we chose to use for our paper in Chapter 1, being state of the art
at the time we performed those analyses. However, while CAVIAR introduced the modern fine-
mapping framework, it took the very simplistic approach of attempting to model every possible
configuration of causal variants with a preset maximum number of causal variants. It would
calculate a posterior likelihood based on how well each such configuration fit the data, and then
calculate a PIP for each variant as the sum of the likelihoods of each configuration in which that
variant was causal. This brute-force approach made CAVIAR very slow, and unable to consider
more than two simultaneously causal variants for many genomic signals.

CAVIARBF'”, a tool based on CAVIAR by different authors, improved on CAVIAR’s
theoretical framework in showing the similarities between CAVIAR’s model and the model of
ABF. CAVIARBF also increased the speed of CAVIAR’s posterior probability calculations.
However, CAVIARBEF still tried to enumerate all possible configurations, which increases
exponentially with the number of causal variants allowed. Thus CAVIARBF could only
reasonably allow for examining up to three simultaneously causal variants.

FINEMAP'7¢ in 2016 improved upon CAVIARBF by implementing a stochastic method
for searching what it considers to be plausible causal variant configurations, instead of
examining all such configurations. For this reason, FINEMAP is able to consider an effectively
unbounded number of causal variants and still runs incomparably faster than CAVIARBF. This
has made FINEMAP a common choice among current statistical fine-mapping methods.
However, | note that both data presented in Chapter 3 and unpublished correspondence with
FINEMAP’s author suggest that, at a relatively small percentage of loci, FINEMAP’s predictions
may differ dramatically across repeated runs. This suggests that FINEMAP’s speed may come
at the cost of marginal, but significant and unstated losses in replicability.
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SuSIE'"4177 published in 2020 and incorporated alongside FINEMAP in our work in
Chapter 3, uses a similar overarching model to CAVIAR’s, but importantly uses a different prior
and exploration method than the CAVIAR family of tools. It enforces a prior that each GWAS
region is composed of multiple independent signals. In this prior, each signal contains exactly
one causal variant, though the prior allows for uncertainty as to what that causal variant is.
SuSiE fits the distribution of uncertainty in each signal one signal at a time, fitting against the
residual of the previously fit signals. In this way, each variant is assigned a chance of being the
causal for each signal, though interpretable SuSiE signals generally only contain a few variants
whose chance of being causal is hon-negligible. Once all signals have been fit, SUSIE restarts
the fitting procedure by dropping the fit of the first signal and refitting it against the residual of all
the remaining signals, and proceeds to refit each signal in this manner, multiple times over, until
the overall fit converges. While this is a stepwise method, SuSIE attempts to avoid the pitfalls of
forward stepwise methods both by incorporating uncertainty and through mandatory
reassessment of already-fit signals. Yet there is some marginal evidence that SuSiE may be
slightly less precise than FINEMAP, possibly due to its stepwise approach,

The benefit SUSIE gains from its methodology is that it can estimate multiple credible
sets independently, in that the probability of causality assigned to variants in one credible set is
mostly independent from the choice of causal variants from other credible sets. In contrast,
FINEMAP’s credible sets are all reported with the assumption that every causal variant for each
other signal in the region has been identified with certainty, and the only uncertainty is which
variant is causal for the current signal. The clarity in its model has led SuSiE to be another

commonly used statistical fine-mapping tool today alongside FINEMAP.

Validation of Statistical Fine-Mappers
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Before | discuss other developments in statistical fine-mapping, it must be said that
current statistical fine-mapping tools are largely unvalidated, and so each tool’'s claims of
accuracy must be treated carefully. This lack of validation is because validating statistical fine-
mapping algorithms is inherently difficult — they give inferences about the causality of variants in
situations where such inferences cannot be readily confirmed by other means.

To skirt this issue, the majority of statistical fine-mapping developers use simulations as
a means of quantifying their algorithms’ efficacies'6%174-176.178.179 These researchers attempt to
mimic real conditions by building simulations off of variant dosages drawn from real genetic
databases. They then decide which of those variants will be simulated as causal, providing
ground truth data which fine-mapping results can be evaluated against. From there they
simulate phenotype data from those causal variants, including a healthy dose of external noise
in those simulations, run their fine-mapping tools on the phenotype and genotype data, and
compare their tools’ results to the ground truth. These comparisons are often used to show that
a new statistical fine-mapper’s credible sets are smaller than preceding algorithms’, and that
they contain the causal variant(s) more frequently.

However, many simplifying assumptions are made in these simulations. They universally
assume that variant associations with the outcomes are truly linear and that there is no
interaction between variants. These assumptions bias simulations to unknown extents, reducing
their credibility as sources of validation, and fine-mapping methods papers rarely attempt to
quantify the sensitivity of their methods to violations of these assumptions. (Note that | do not
take issue with fine-mapping models making linearity assumptions — model misspecification
may be acceptable if the model’s output avoids large numbers of false-positives, but simulation
misspecification is problematic because it is purporting to quantify the level of misspecification).
Another difficult to justify assumption often made by statistical fine-mapping simulations is that

no rare variants are causal'’4176.178,
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Seemingly to provide orthogonal validation to simulations, many statistical fine-mapping
publications run their algorithms genome-wide against real phenotype data and summarize how
their algorithms behave'’3'7°, often pointing to their new tool’s increased precision compared to
competing methods. However, there are no external datasets to validate these genome-wide
summaries against, and increased precision does not necessarily correlate with increased
accuracy.

An alternative approach is to identify regions with some amount of experimental
evidence suggesting which variants in the region are causal, and to validate statistical fine-
mapping tools on those regions. Unfortunately, due to the difficulty in curating such data, this is
much less common in the literature, and papers which perform this type of validation do so at
small scale'®5176,

While statistical fine-mapping is widely used, our paper in Chapter 3 and a recent
publication from the same month'® both demonstrate that statistical fine-mappers are less
reliable than they purport to be. To my knowledge, these are the first publications on that topic. |
go into more detail on this in Chapter 3 and the overall thesis Discussion. A separate recent
work has shown that statistical fine-mapping can be highly unreliable specifically when applied
to summary statistics from meta-analyses of multiple GWAS'. In the Discussion | also describe
opportunities for building a benchmark for statistical fine-mapping tools and for predicting
scenarios where statistical fine-mapping is unreliable. Both projects could help allay the current
lack of validation in the field of statistical fine-mapping.

Lastly, it should be stated that all the statistical fine-mapping tools described here always
attempt to identify causal variants from among the tested variants. This approach cannot
succeed if the causal variants have not been included in and tested by the GWAS providing the
summary statistics, and statistical fine-mapping simulations rarely take this into account. The
inclusion of complex variation in GWAS, include my work on STRs, attempts to address that
problem.
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Statistical Fine-Mapping with Varying Datasets and Data Types

Researchers attempting to fine-map GWAS results often bring in other sources of data,
whether that data consists of genetic annotations or signals from other related phenotypes.
Statistical fine-mapping algorithms have similarly developed to incorporate these sources of
data to help deconvolute LD. In this section | describe those methods and their caveats.
Unfortunately, these approaches suffer the same validation issues as the field of statistical fine-
mapping as a whole. So while publications introducing these methods tend to claim their
methods have greater power than methods which don’t incorporate outside data sources, those
claims should be weighed carefully.

Perhaps the most common extension of statistical fine-mapping is to incorporate genetic
annotations, called functionally informed statistical fine-mapping. The intuition behind this is that
variants overlapping annotations of known genetic functionality are more likely to be causal than
the average variant which has no prior functional evidence, so statistical fine-mappers could
combine the information from GWAS summary statistics and LD matrices with the information
provided by annotations. Functionally informed statistical fine-mapping methods include
SparsePro'®', CARMA'®2 EMS'8, PolyFun'®, BFMAP'8® and fastPAINTOR'78.186.187 The central
challenge these methods all tackle differently is how they learn to weight information from
different classes of annotations.

A drawback to functionally informed statistical fine-mapping is that the process is no
longer hypothesis-free, and becomes biased towards identifying causal variants whose
mechanisms are at least partially documented and biased against identifying variants whose
mechanisms are unknown. This did not suit the purposes of my thesis, whose goal was to
identify understudied causal non-coding STRs. Whether researchers choose to utilize
annotations in statistical fine-mapping will depend on whether a hypothesis-free or hypothesis-
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driven search better fits their goals. Possibly a two-step approach, comparing annotation-free
with annotation-driven statistical fine-mapping results, would allow researchers maximum insight
into which data sources are driving their results at each locus. This is demonstrated by a type 2
diabetes GWAS'?, though that effort uses conditional regressions instead of more modern
statistical fine-mapping approaches.

Multi-trait statistical fine-mapping, also called multi-outcome statistical fine-mapping or
colocalization, attempts to run statistical fine-mapping on multiple traits simultaneously so as to
jointly determine which variants are causal for which traits. Multi-trait statistical fine-mapping is
desirable as it can identify whether distinct traits share etiology at a region or not (this goal is
often called colocalization). Multi-trait statistical fine-mapping can also have greater power to
fine-map a causal variant if the different phenotypes being jointly fine-mapped share a causal
variant but have different sources of noise. Applications of multi-trait statistical fine-mapping
include jointly analyzing traits with partially shared genetics (e.g. different types of irritable bowel
disease), jointly analyzing the same trait measured in different settings (e.g. expression data for
a gene measured in multiple different tissues), or jointly analyzing traits at different levels of
granularity to build mechanistic hypotheses (e.g. colocalizing QTL data with GWAS of organism-
level traits).

Many colocalization methods were developed in the early 2010s under the assumption
of a single causal variant per locus. Even after method development efforts moved away from
that assumption, many multi-trait fine-mappers were limited by the assumptions they made
regarding the sharing of causal variants between traits. PAINTOR'® required that all causal
variants be shared between the traits, MFM®, flashfm'”® and coloc with SuSIiE'® require the
user to specify a prior likelihood of shared effects between traits, though such a choice is often
difficult to motivate, and SuSiE? (“SuSiE squared”, by different authors than SuSiE)'®°® fine-maps
two traits, assuming that the signal for the second trait is caused by the signal for the first trait
(e.g. assuming a molecular QTL signal is the underlying mechanism for a organism-level trait
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signal). Most biological systems are complicated, making these sorts of assumptions and priors
difficult to justify, and users of these methods should at least demonstrate that their conclusions
are not overly sensitive to these assumptions. Alternatively, one limited set of scenarios where
these methods may be of particular value is when it is known that the studied traits must share
etiology and the goal of multi-trait fine-mapping is simply to use multiple datasets to improve
statistical power to identify causal variants.

More recently, multi-trait statistical fine-mappers mvSuSIiE'®® and CAFEH"'"" have been
developed to learn rates of causal sharing between traits from the data they are being trained
on. | have limited exposure to these methods, but they look promising as attempts to move
beyond limiting assumptions around causal variant sharing rates. | discuss the tie in between
mvSuSiE and our work in the Chapter 1 Forward. Note that care must be taken to check
whether multi-variate statistical fine-mapping methods require all traits to be measured on all
individuals (e.g. mvSuSiE, possibly CAFEH) which precludes them from being used to jointly
fine-map eQTL and GWAS signals, whether they require that traits be measured on separate
cohorts (PAINTOR) or if they allow arbitrary sharing of individuals between cohorts (e.g.
flashfm).

Lastly, there has been plenty of recent work on multi-ethnic statistical fine-mapping, also
called trans-ancestry statistical fine-mapping, which is designed specifically to identify causal
variants for traits studied in multiple distinct human populations. Due to differences in LD
between populations, these efforts can have important gains in power over fine-mapping efforts
performed in homogeneous populations. Unfortunately, a review of such methods is beyond the
scope of this thesis.

In sum, GWAS is a hypothesis-free method for interrogating genetic contributions to
human traits. Complex variants such as STRs have been omitted from most GWAS studies but
causally effect many phenotypes. And statistical fine-mapping is a main tool by which causal
variants with unknown mechanisms, such as STRs, can be identified at GWAS loci.
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Contributed Research

Upcoming are Chapters 1-3 which contain full reprints of papers | have contributed to, in
publication order, and which constitute the bulk of my doctoral work. In the first | contribute to an
effort led by Stephanie Fotsing which provides evidence for the causal contribution of STRs
towards gene expression levels, showing that common variation in STRs likely contributes to
organism-level phenotypes. In the second Nima Mousavi and | coauthor a tool to ease the
inclusion of STRs in biocinformatics analyses and pipelines. In the last, | lead the effort where we
use extensive fine-mapping to suggest that common length variation of STRs across the
genome is causally involved in a wide variety of blood traits and biomarkers in humans.

In each chapter | provide a forward. In the forwards | do not attempt to fully restate the
results of each paper; the papers are apt records of their own results framed from the time
points at which they were published. Rather | use the forwards to reflect on the works and
attempt to place them within the context of my dissertation and the way this field has changed
over time. | encourage the reader to read these forward sections in tandem with the abstracts,

introductions and conclusions of the papers included.
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Chapter 1: The Impact of Short Tandem Repeat

Variation on Gene Expression

Forward to the Reprint

This chapter contains a full reprint of the paper The Impact of Short Tandem Repeat
Variation on Gene Expression which was first authored by Stephanie Fotsing, to whom | was
second author. In it we indicate that over a thousand STRs influence gene expression through
the tools of association testing and statistical fine-mapping, using data from the Genotype
Tissue Expression project (GTEx)*. We further demonstrate that many of these associations
plausibly drive signals previously identified by GWAS which omitted STRs. (As an aside: in this
paper we use the term fine-mapping to refer specifically to statistical fine-mapping).

This paper was conceived at a time when genetic data in large biobanks was still based
on array data, not sequencing, and our lab had yet to complete its first set of analyses
demonstrating that an STR reference panel could be used to accurately impute STR genotypes
into array data®3. Rather, GTEx was a relatively new resource that provided a valuable source of
sequencing data in which STRs could be genotyped and a large source of gene expression data
against which STR hypotheses could be tested. If performing large-scale STR GWAS was
currently out of reach, then showing that STRs were causal for changes in gene expression,
and thus would be likely to influence the traits those genes were causal for, was an important
steppingstone towards that goal.

This is remarkably distinct from the current research landscape. GTEX is likely still the
largest research-accessible biobank of a wide variety of healthy human tissues from a range of
individuals that have already been assayed for gene expressions. But GTEX is limited in the

tissues it assays, by the small numbers of individuals it assays, its lack of tissues sampled
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during exposure to important environmental conditions and its lack of diseased tissues. Further,
GTEXx only has tissues from adults. Sampling tissues from children at differing developmental
time points is necessary to be able to study effects which may potentially be only visible during
development, though collecting such tissues is clearly very challenging and is the subject of an
ongoing effort’®2. Thus, though it is expected that a majority of causal non-coding variant effects
are mediated through gene expression, it can be expected that GTEx will only identify some of
those effects. Further, this suggests that not finding expression modulation evidence in GTEXx is
not sufficient to refute expression modulation as a mechanistic hypothesis.

Further, since we began this project, population-level biobanks have become huge®
relative to the size of GTEx. We have also developed well tested reference panels from which
tandem repeats can be imputed®#* into array data in those biobanks, to say nothing of
biobanks which already have short tandem repeats called from whole genome sequencing’.
Thus | expect GWAS of organism-level traits to be relatively more conclusive than eQTL
analyses for the foreseeable future.

Nonetheless, this paper fundamentally succeeded. It is one of the earliest efforts which
developed causal evidence of the effects of STR lengths on gene expression across the
genome. It laid a roadmap for connecting such links to GWAS hits. And this paper provided a
list of putatively causal STRs to be further studied for mechanistic insights.

Having identified STRs statistically fine-mapped to impact gene expression, this paper
attempted to identify trends among those STRs. It most successfully showed that CG-rich
repeats in 5 UTR and promoter regions are likely to influence expression through stabilizing
non-canonical DNA secondary structures. It inferred a few other trends statistically, such as
nucleosome positioning signals and strand biases in AT repeats. However, this paper could not
leverage those trends to infer how changes in the lengths of individual STRs might

mechanistically impact gene expressions. This challenge is a fundamental limitation of all
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papers studying non-coding variation across the genome, and is magnified by the many distinct
mechanisms an STR, or any other non-coding variant, may act by.

| joined this project after it had already been conceived and drafted by Stephanie,
Melissa, Alon and the other co-authors. | thoroughly updated the paper with Melissa and Alon in
response to reviewer comments and performed the mash'®® analysis to improve our cross-
tissue analyses. | found the redrafting process to be a wonderful introduction to these research
areas as it required me to understand the totality of the paper at a detailed and authoritative
level, and | thank Melissa and Alon for introducing me to the field in this way.

While our initial paper draft identified a lack of shared STR expression effects across
tissues, the mash analysis led us to reevaluate those results. Specifically, we concluded that
STR expression effects are in fact commonly shared across tissue-clusters (Chapter 1 Figure
1d, Extended Data Figure 4, and Supplementary Figures 12 and 13), and that the lack of
sharing noted in the first draft of the paper was likely due to small sample sizes in each
individual tissue leading to large false-negative rates, and not lack of shared biology.

While the reexamination of effect sizes through mash was a success, we did not
incorporate those results into our statistical fine-mapping analysis, instead running that on the
per-tissue effect sizes. This meant that statistical fine-mapping results could not take advantage
of the increased power from mash-derived effect sizes, and we likely fine-mapped fewer
expression-associated STRs because of that.

Our subsequent paper on STR causality in blood traits (Chapter 3) again ran statistical
fine-mapping multiple times when the goal was to identify a single causal STR. There, the
different runs were not in different tissues but in highly related traits (e.g. red blood cell count
and percentage of red blood cells among all blood cells). The dataset used in Chapter 3 was
sufficiently large that the power concerns of the Chapter 1 analyses no longer applied. However,
in Chapter 3, fine-mapping results that differed between very similar traits were difficult to
interpret. For instance, if an STR causally increases red blood cell count, then it should also
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causally increase red blood cell percentage. So it is difficult to reconcile cases where fine-
mapping marks it as causal for red blood cell count but not for red blood cell percentage.

The solution to both issues, the desire for increased power by sharing data, either
sharing eQTL data across tissue or GWAS signal data across traits, and the desire for a
consistent fine-mapping result across those tissues/traits, is multi-trait statistical fine-mapping.
However, as discussed in the fine-mapping section of the thesis Introduction, up until recently all
multi-trait fine-mapping methods have required priors for how often causal variants are shared
across tissues/traits, and the choice of these priors can be very difficult to justify. Thus it is
heartening to see this corner of GWAS analysis come full circle with mvSuSIiE'®*, which
incorporates mash output as a prior for input to SuSIE, giving a principled approach to setting of
priors to multi-trait statistical fine-mapping and potentially mitigating these issues for future

GWAS and eQTL studies.
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The impact of short tandem repeat variation on
gene expression
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Short tandem repeats (STRs) have been implicated in a variety of complex traits in humans. However, genome-wide studies of
the effects of STRs on gene expression thus far have had limited power to detect associations and provide insights into puta-
tive mechanisms. Here, we leverage whole-genome sequencing and expression data for 17 tissues from the Genotype-Tissue
Expression Project to identify more than 28,000 STRs for which repeat number is associated with expression of nearby genes
(eSTRs). We use fine-mapping to quantify the probability that each eSTR is causal and characterize the top 1,400 fine-mapped
eSTRs. We identify hundreds of eSTRs linked with published genome-wide association study signals and implicate specific
eSTRs in complex traits, including height, schizophrenia, inflammatory bowel disease and intelligence. Overall, our results sup-
port the hypothesis that eSTRs contribute to a range of human phenotypes, and our data should serve as a valuable resource

for future studies of complex traits.

link genetic variation to gene expression changes as potential

molecular intermediates that drive disease and variation in
complex traits. Recent studies have identified tens of thousands of
eQTLs (genetic variants associated with expression of nearby genes)
across multiple human tissue types'”. Most of these have focused
on biallelic SNPs or short indels. Yet multiple studies dissecting
genome-wide association study (GWAS) loci have found repetitive™*
and structural variants’” to be the underlying causal variants, high-
lighting the need to consider additional variant classes beyond SNPs.

Short tandem repeats, consisting of consecutively repeated units
of 1-6base pairs (bp), represent a large source of genetic variation.
STR mutation rates are orders of magnitude higher than those of
SNPs® and short indels’, and each individual is estimated to har-
bor around 100 de novo mutations in STRs'’. Expansions at sev-
eral dozen STRs have been known for decades to cause mendelian
disorders', including Huntington’s disease and hereditary ataxias.
Importantly, these pathogenic STRs represent a small minority of
the more than 1.5 million STRs in the human genome'?. Due to bio-
informatics challenges of analyzing repetitive regions, many STRs
are often filtered from genome-wide studies". However, increasing
evidence supports a widespread role of common variation at STRs
in complex traits, such as gene expression'*-".

STRs may regulate gene expression through a variety of mecha-
nisms'®. For example, the CCG repeat implicated in fragile X syn-
drome was shown to disrupt DNA methylation, altering expression
of FMRI (ref. ¥). Yeast studies have demonstrated that homopoly-
mer repeats act as nucleosome positioning signals with downstream
regulatory effects”*”’. Dinucleotide repeats may alter affinity of
nearby DNA-binding sites”’. Furthermore, certain STR repeat units
may form noncanonical DNA and RNA secondary structures such
as G-quadruplexes”, R-loops* and Z-DNA?.

We previously identified more than 2,000 STRs for which the
number of repeats was associated with the expression of nearby

| xpression quantitative trait loci (eQTL) studies attempt to

genes', termed expression STRs (eSTRs). However, the quality of
the datasets available for that study reduced our power to detect
associations and prevented accurate fine-mapping of individual
signals. STR genotypes were based on low coverage (4-6X) whole-
genome sequencing data performed using short reads (50-100bp),
which are unable to span many STRs. As a result, STR genotype calls
exhibited poor quality with less than 50% genotyping accuracy'.
Additionally, the study used a single cell type (lymphoblastoid cell
lines) with potentially limited relevance to most complex traits™.
‘While our study and others'*!° demonstrated that eSTRs explain a
sizable portion (10-15%) of the cis heritability of gene expression,
the resulting eSTR catalogs were not powered to robustly implicate
eSTRs over other nearby variants.

Here, we leverage deep whole-genome sequencing (WGS) and
gene expression data collected by the Genotype-Tissue Expression
Project (GTEx)' to identify more than 28,000 eSTRs in 17 tissues. We
employ fine-mapping to quantify the probability of causality of each
eSTR and characterize the top 1,400 (top 5%) fine-mapped eSTRs.
We additionally identify hundreds of eSTRs that are in strong link-
age disequilibrium (LD) with published GWAS signals and impli-
cate specific eSTRs in height, schizophrenia, inflammatory bowel
disease and intelligence. To further validate our findings, we dem-
onstrate evidence of a causal link between height and an eSTR for
the gene RFT1 and use a reporter assay to experimentally validate an
effect of this STR on expression. Finally, our eSTR catalog is publicly
available as a resource for future studies of complex traits.

Results

Profiling expression STRs across 17 human tissues. We per-
formed a genome-wide analysis to identify associations between
the number of repeats at each STR and expression of nearby
genes (expression STRs, or €STRs, which we use to refer to a
unique STR by gene association). We focused on 652 individuals
from the GTEx' dataset for which both high-coverage WGS and
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RNA-sequencing of multiple tissues were available (Fig. 1a). We
used HipSTR” to genotype STRs in each sample. After filtering low
quality calls (Methods), 175,226 STRs remained for downstream
analysis. To identify eSTRs, for each gene and for each STR within
100kilobases (kb) of that gene, we performed a linear regression
between the average length of the STR in each person and nor-
malized expression of the gene, controlling for sex, population
structure and technical covariates (Methods and Supplementary
Figs. 1-3). Analysis was restricted to 17 tissues where we had data
for at least 100 samples (Supplementary Table 1 and Methods) and
to genes with median reads per kilobase of transcript, per million
mapped reads (RPKM) greater than 0. Altogether, we performed an
average of 262,593 STR-gene tests across 15,840 protein-coding
genes per tissue.

Using this approach, we identified 28,375 unique eSTRs asso-
ciated with 12,494 genes in at least one tissue at a gene-level false
discovery rate (FDR) of 10% (Fig. 1b, Supplementary Table 1 and
Supplementary Data 1). The number of eSTRs detected per tis-
sue correlated with sample size as expected (Pearson r=0.75;
P=0.00059; n=17), with the smallest number of eSTRs detected
in the two brain tissues, presumably due to their low sample sizes
(Extended Data Fig. 1). eSTR effect sizes previously measured in
lymphoblastoid cell lines were significantly correlated with effect
sizes in all GTEx tissues (P<0.01 for all tissues, mean Pearson
r=0.45). We additionally examined previously reported eSTRs**-*
that were mostly identified using in vitro constructs. Six of eight
examples were significant eSTRs in GTEx (P<0.01) in at least one
tissue analyzed (Supplementary Table 2).

eSTRs identified above could potentially be explained by their
tagging nearby causal variants. To prioritize potentially causal
eSTRs we employed CAVIAR®, a statistical fine-mapping frame-
work. CAVIAR models the relationship between LD structure
and association statistics of local variants to quantify the posterior
probability of causality for each variant (which we refer to as the
CAVIAR score). We used CAVIAR to fine-map eSTRs against all
SNPs nominally associated (P<0.05) with each gene under our
model (Methods and Fig. 1a). On average across tissues, 12.2% of
eSTRs had the highest causality scores of all variants tested.

We ranked eSTRs by their best CAVIAR score across tissues and
chose the top 5% for downstream analysis (1,420 unique eSTRs with
best CAVIAR score >0.3). We hereby refer to these as fine-mapped
eSTRs (FM-eSTRs) (Supplementary Table 1 and Supplementary
Data 2). Expected gene annotations are more strongly enriched
in this subset compared to the entire set (Extended Data Fig. 2),
and stricter thresholds reduced the power to detect eSTR-enriched
features described below. Of the FM-eSTRs in each tissue, on aver-
age 78% explained gene expression variation beyond that explained
by the best SNP (ANOVA ¢<0.1). Furthermore, on average, each
FM-eSTR had a CAVIAR score 0.41 higher (41% higher posterior
probability) than the top-scoring SNP (Supplementary Fig. 4).
Multiple STRs with known disease implications™*~** were captured
by this list (Fig. 1¢). In many cases, FM-eSTRs show clear relation-
ships between the number of repeats and gene expression across a
wide range of repeat lengths (Extended Data Fig. 3).

To minimize power differences across tissues and enable cross-
tissue comparisons of eSTR effects, we applied multivariate adap-
tive shrinkage (mash'') (Fig. 1a). Mash takes the per-tissue effect
sizes and standard errors computed above as input and recomputes
posterior estimates for each, while considering cross-tissue effect-
size correlations. We compared FM-eSTR mash effect sizes across
all pairs of tissues (Fig. 1d) and recovered previously observed rela-
tionships’. Tissues with similar origins (for example, adipose-vis-
ceral/adipose-subcutaneous) are highly concordant, whereas whole
blood effects are less correlated with other tissues. These tissue shar-
ing patterns are similar to those obtained using unadjusted effect
sizes of single-tissue eSTRs (Supplementary Fig. 5). We further
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examined tissue sharing of FM-eSTRs by counting, for each
FM-eSTR, the number of tissues for which mash computed a poste-
rior Z-score with an absolute value >4. Most eSTRs are either shared
across all tissues analyzed or are shared by only a small number of
tissues (Extended Data Fig. 4), again similar to previously reported
SNP analyses in this cohort’.

FM-eSTRs demonstrate unique genomic characteristics. We
next sought to characterize properties of STRs that might provide
insights into their biological function. We reasoned that genomic
characteristics that distinguish FM-eSTRs from all analyzed STRs
would support the hypothesis that a subset of them are acting as
causal variants. While results below are presented for FM-eSTRs
as defined above (CAVIAR score >0.3), we also provide results
recomputed using a range of score thresholds in the Supplementary
Information. These results show that the major characteristics of
FM-eSTRs identified below are robust to the precise threshold used.

We first considered whether the localization of FM-eSTRs
differs from that of STRs overall (Fig. 2a,b and Extended Data
Fig. 5). Overall, the majority of FM-eSTRs occur in intronic or
intergenic regions, and only 11 FM-eSTRs fall in coding exons
(Supplementary Table 3). However, compared to all STRs, those
closest to transcription start sites and near DNase I hypersensi-
tive (HS) sites are more likely to be FM-eSTRs (Fig. 2c,d and
Extended Data Fig. 6). FM-eSTRs are strongly enriched at 5 UTRs
(odds ratio (OR) =5.0; Fisher’s two-sided P=4.9x107%), 3" UTRs
(OR=2.78; P=5.85X%107") and within 3kb of transcription start
sites (OR=3.39; P=3.94X 1077%). These enrichments are consider-
ably stronger for FM-eSTRs compared to all eSTRs (Supplementary
Table 4), suggesting, as expected, that FM-eSTRs are more likely to
be causal.

We next examined nucleosome occupancy in the lymphoblas-
toid cell line GM12878 and DNA accessibility (measured by DNase-
seq) in a variety of cell and tissue types within 500bp of FM-eSTRs
(Extended Data Fig. 7). As expected from previous studies®, regions
near homopolymer repeats are strongly nucleosome depleted. STRs
with other repeat lengths also show distinct patterns of nucleo-
some positioning (Extended Data Fig. 7a—c). Nucleosome occu-
pancy is broadly similar for FM-eSTRs compared to all STRs. Yet
FM-eSTRs are generally located in regions with higher DNase-seq
read count compared to non-eSTRs (Mann-Whitney U-test two-
sided P=3.9x 107" in GM12878; Extended Data Fig. 7d-f). DNase
I HS signal around homopolymer FM-eSTRs shows a periodic pat-
tern in multiple cell and tissue types, with peaks located at multiples
of 147 bp upstream and downstream from the STR (Extended Data
Fig. 7d). Given that 147 bp is the length of DNA typically wrapped
around a single nucleosome®, we hypothesi