
UC San Diego
UC San Diego Previously Published Works

Title
Compression of Structured High-Throughput Sequencing Data

Permalink
https://escholarship.org/uc/item/4tf2t741

Journal
PLOS ONE, 8(11)

ISSN
1932-6203

Authors
Campagne, Fabien
Dorff, Kevin C
Chambwe, Nyasha
et al.

Publication Date
2013

DOI
10.1371/journal.pone.0079871

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4tf2t741
https://escholarship.org/uc/item/4tf2t741#author
https://escholarship.org
http://www.cdlib.org/

Compression of Structured High-Throughput
Sequencing Data
Fabien Campagne1,2*, Kevin C. Dorff1, Nyasha Chambwe1,2, James T. Robinson3, Jill P. Mesirov3

1 The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, The Weill Cornell Medical College, New York, New York, United States

of America, 2 Department of Physiology and Biophysics, The Weill Cornell Medical College, New York, New York, United States of America, 3 The Eli and Edythe L. Broad

Institute, Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts, United States of America

Abstract

Large biological datasets are being produced at a rapid pace and create substantial storage challenges, particularly in the
domain of high-throughput sequencing (HTS). Most approaches currently used to store HTS data are either unable to
quickly adapt to the requirements of new sequencing or analysis methods (because they do not support schema evolution),
or fail to provide state of the art compression of the datasets. We have devised new approaches to store HTS data that
support seamless data schema evolution and compress datasets substantially better than existing approaches. Building on
these new approaches, we discuss and demonstrate how a multi-tier data organization can dramatically reduce the storage,
computational and network burden of collecting, analyzing, and archiving large sequencing datasets. For instance, we show
that spliced RNA-Seq alignments can be stored in less than 4% the size of a BAM file with perfect data fidelity. Compared to
the previous compression state of the art, these methods reduce dataset size more than 40% when storing exome, gene
expression or DNA methylation datasets. The approaches have been integrated in a comprehensive suite of software tools
(http://goby.campagnelab.org) that support common analyses for a range of high-throughput sequencing assays.

Citation: Campagne F, Dorff KC, Chambwe N, Robinson JT, Mesirov JP (2013) Compression of Structured High-Throughput Sequencing Data. PLoS ONE 8(11):
e79871. doi:10.1371/journal.pone.0079871

Editor: Frederique Lisacek, Swiss Institute of Bioinformatics, Switzerland

Received April 10, 2013; Accepted September 27, 2013; Published November 18, 2013

Copyright: � 2013 Campagne et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This investigation was supported by grant UL1 RR024996 (National Institutes of Health (NIH)/National Center for Research Resources) of the Clinical and
Translation Science Center at Weill Cornell Medical College, by grant LLS 6304-11 from the Lymphoma and Leukemia Society Translational Research Program, and
by R01 MH086883 (NIH/National Institute of Mental Health). The Tri-Institutional Training Program in Computational Biology and Medicine provided support for
NC. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: fac2003@campagnelab.org

Introduction

Many scientific disciplines, including high-energy physics,

astronomy and more recently biology, generate increasing

volumes of data from automated measurement instruments. In

biology, modern high-throughput sequencers (HTS) are producing

a large fraction of new biological data and are being successfully

applied to study genomes, transcriptomes, epigenomes or other

data modalities with a variety of new assays that take advantage of

the throughput of sequencing methods [1,2,3]. In addition to

sequenced reads, data analyses yield secondary data, such as

alignments of reads to reference genome. Sequencing throughput

has more than doubled every year for the last ten years [4]

resulting in storage requirements on the order of tens of terabytes

of primary and secondary high throughput sequencing data in a

typical laboratory. Major sequencing centers in the USA and

worldwide typically require several tens of petabytes of storage to

store reads and secondary data during the lifetime of their projects.

Before study publication, read and alignment data are deposited in

sequence archives to enable other groups to reanalyze the data.

While improvements in sequencing throughput and experimental

protocols continue to generate ever-larger volumes of HTS data,

pressing questions remain. Namely, how to store these data to

minimize storage costs, maximize computational efficiency for

data analysis, increase network transfer speeds to facilitate

collaborative studies, or to facilitate reanalysis or perusal of data

stored in archives.

A popular method for storing read data is in FASTQ files [5].

Such files are text files typically compressed with GZIP or BZip2

compression and hold both nucleotide bases of the reads as well as

quality scores. The latter indicate the reliability of each base call

and are central to many analyses, such as genotyping. Compressed

text files have critical problems: they are slow to parse, and they do

not support random access to subsets of the reads, a feature that is

critical to support parallelization of the alignment of the reads to a

reference genome.

Most analyses require aligning read data to a reference genome,

a process that yields HTS alignment data. When computed, HTS

alignment data has traditionally been stored in a variety of file

formats. Early text formats were quickly abandoned in favor of

binary formats, and among these, the BAM (Binary Alignment/

Map) format has become very popular and is now widely used [6].

A key problem with BAM is that the BAM format cannot be

seamlessly adapted to support new applications. For instance,

developers of TopHat fusion were not able to extend the BAM

format to store information about gene fusions, and instead had to

create a variant of the SAM text format (http://tophat.cbcb.umd.

edu/fusion_manual.html#output). Developers of new analysis

software based on BAM cannot seamlessly extend BAM for new

applications because various programs that read/write BAM,

developed worldwide, would need to be manually modified for

PLOS ONE | www.plosone.org 1 November 2013 | Volume 8 | Issue 11 | e79871

each change to the specification, a process that is all but practical.

Another key weakness of the BAM format is that BAM files

require approximately the same amount of storage as the

unaligned reads, for each alignment represented in the format.

The CRAM format, developed for the European Nucleotide

Archive, was developed to try and compress HTS alignments

better than can be achieved with BAM. CRAM achieves strong

compression of alignment files using custom developed compres-

sion approaches parameterized on characteristics of simulated

HTS alignment data [7]. A key innovation of CRAM was the

recognition that different applications need to preserve different

subsets of the data contained in a BAM file. Preserving different

subsets of the information can yield substantial storage savings for

these applications that do not require all the data. However,

CRAM shares a key weakness with BAM. Namely, it is unable to

seamlessly support changes to the data format. Changes to extend

the file format require manual coding and careful design of custom

compression approaches for the new data to be stored. An

additional problem is that CRAM cannot compress HTS

alignments when they are not already sorted by genomic position.

This is a significant problem because alignments are first

determined in read order before they can they be sorted by

genomic position. This problem limits the usefulness of the CRAM

format to HTS archives, and prevents its use as a full replacement

of the BAM format. We believe that these weaknesses are serious

drawbacks because the HTS field is progressing very rapidly,

sequencing throughput increases exponentially and new experi-

mental advances often require extensions to the data schemas used

to store and analyze the new types of data.

In summary, current approaches are unable to strongly

compress HTS data while supporting the full life-cycle of the

data, from storage of sequenced reads to parallel processing of the

reads and alignments during data analysis to archiving of study

results. In this manuscript, we present a comprehensive approach

that addresses these challenges simultaneously and a robust

software implementation of these methods.

Results

Overview
We have devised a novel approach for compressing HTS data.

We benchmarked this approach against BAM and CRAM

compression of HTS alignment data. The approach was

integrated in a comprehensive software system, which includes

the Goby framework (this manuscript http://goby.campagnelab.

org), IGV [8], BWA [9] and GSNAP [10], and demonstrates proof

of principle for compression, visualization and analysis of HTS

data with these new approaches. The following sections describe

these results.

Structured data schemas
We developed structured data schemas to represent HTS read

and alignment data (Figure S1A in File S1) with Protocol Buffers

technology (PB) [11]. PB automates reading and writing structured

data and provides flexibility with respect to changes in the

schemas. Extending the schema requires editing a text file and

recompiling the software. The new software is automatically

compatible with versions of the software that are unaware of the

schema extension. PB schema flexibility therefore provides the

means to evolve the file formats over time as a collaborative effort

without breaking existing software.

Large datasets
We extended PB with methods to store large datasets and to

define configurable compression/decompression methods (called

codecs, see Methods). We developed codecs for general compres-

sion methods (PB data compressed with the GZip or BZip2

methods, Figure 1A), and a Hybrid codec that provides very strong

compression of alignment data, while retaining the flexibility of PB

schema evolution (see Figure S1B in File S1 and Methods). Finally,

we group data in tiers according to the most likely use of each kind

of data (Figure 2) and have developed a framework and a set of

tools (see [12] and Methods) to support efficient computation with

HTS data expressed in these formats. In the next sections, we

describe our contributions to the compression of HTS alignment

data.

General compression
General compression approaches are widely used and were

developed to compress unstructured data (e.g., streams of bytes

such as text in a natural language). The most successful general

compression approaches employ probabilistic compression, where

smaller sequences of bits are used to represent symbols with high

probability in the input data, and longer sequences are used to

represent symbols of lower probability (the mapping from

sequences of symbols to sequences of bits is called a code).

Arithmetic coding can yield near-optimal codes (i.e., streams of

bits of length close to the theoretical lower bound), given a model

of symbol probabilities. However, the question of how to construct

effective probabilistic models of unstructured data is a difficult one

because the models have to be inferred from observing the stream

of unstructured data. Since the cost of inferring the model grows

with model complexity, progress in compression ratios has often

been obtained at the expense of compression speed.

Structured data compression
In this manuscript, we demonstrate that when presented with

structured HTS alignment data (data organized according to a

well-specified schema, see Figure S1A in File S1 for an example), it

becomes possible to leverage the data structure to facilitate model

inference. We have devised and present several such techniques:

separate field encoding, field modeling, template compression, and

domain modeling (see illustration of these new methods on Figure

1B-E).

Separate Field Encoding
This encoding reorganizes the dataset into lists of field values

(Figure 1B). Where a traditional approach to compressing

structured data often applies a general compression method to a

serialized stream of structured data (Figure 1A), we reasoned that

compression could benefit from inferring a model for each field of

a data structure separately (Figure 1B). Leveraging the structure of

the data makes it possible for model inference to detect regularities

in successive values of the same field. Field encoding requires

compressing blocks of messages together. We call each such block

a chunk of PB data and typically encode 10,000–100,000 messages

per block.

Field modeling
This technique is useful when the value of one field can be

calculated or approximated from the value of another field of the

same data structure (Figure 1C). In this case, this approach stores

the difference between the approximated value and the actual

value.

Compression of Sequencing Data

PLOS ONE | www.plosone.org 2 November 2013 | Volume 8 | Issue 11 | e79871

Template compression
This technique detects that a subset of a data structure (the

template) repeats in the input (Figure 1D). It then stores the

template, the number of times the template repeats and separately

the fields that differ for each repetition. Template compression can

be thought of as a generalization of run-length encoding to

structured data.

Domain modeling
This technique requires a human expert to conduct a detailed

analysis of the input data. In the case of HTS data, we developed

an efficient representation of references between messages stored

in the same PB chunk (Figure 1E).

Evaluation
We sought to evaluate the effectiveness of these approaches to

compress HTS data by comparing them with general compression

approaches (Gzip and BZip2) and with the BAM and CRAM

approaches. To this end, because the compression effectiveness of

any compression approach is expected to vary with input data, we

assembled a benchmark of ten different datasets spanning several

popular types of HTS assays: RNA-Seq (single-end and paired-end

reads), Exome sequencing, whole genome sequencing (WGS), two

DNA methylation assays: RRBS (reduced representation bisulfite

sequencing) and whole genome Methyl-Seq (see Benchmark

datasets in Materials and methods and Table S1 in File S1).

Briefly, we found that combining all these approaches into the

method labeled H+T+D (see Figure 1, H: Hybrid approach, T:

template compression, D: domain modeling) yields the most

competitive compression for HTS alignment data.

General Compression Benchmark
We evaluated the H and H+T approaches against general

compression approaches when storing HTS alignment data. Table 1

Figure 1. Structured Data Compression Techniques. We present the techniques that we devised for compressing structured High-Throughput
Sequencing (HTS) data. We use a combination of general compression techniques (panel A) and of techniques that take advantage of the information
provided by a data schema (B-E). (A) General compression techniques convert structured data to streams of bytes (serialization, typically done one
message at a time) and then compressing the resulting stream of bytes with a general purpose compression approach such as Gzip and Bzip2. We
use such techniques alone (Gzip and Bzip2 codecs) or in combination with structured data compression (Hybrid codecs, labeled H, H+T or H+T+D
according to the technique used). (B) Separate field encoding reorganizes blocks of messages in lists of field values before compressing each field
independently. The technique requires compressing blocks of PB messages, or PB chunks. (C) Field Modeling helps compress data by expressing the
value of one field as a function of other fields and constants. (D) Template Compression Technique. Here, the data structure is used to detect subset
of messages that repeat in the input messages. Fields that vary frequently are ignored from the template. The template values are stored with the
number of template repetitions and the values needed to reconstruct the input messages. (E) Domain Modeling Technique. Alignment messages
refer to each other with message links (i.e., references between messages) represented here as pair-link messages with three fields: position, target-
index and fragment-index of the linked message. We realized that within a PB chunk, it is possible to remove the three fields representing the link
and replace them with an integer index that counts how many messages up or down stream is the linked message in the chunk. Links from an entry
in a chunk to an entry in another chunk cannot be removed and are stored explicitly with the three original fields.
doi:10.1371/journal.pone.0079871.g001

Compression of Sequencing Data

PLOS ONE | www.plosone.org 3 November 2013 | Volume 8 | Issue 11 | e79871

presents the results of this benchmark. We tested the H and H+T

variants of our approach (i.e., Figure 1B-D) and compared the

evaluation metrics with those obtained when compressing the same

data with the strong BZip2 general compression method [13,14].

We measured file sizes and compression effectiveness, as well as

compression and decompression times (Table 1: comparison with

BZip2, Table S2 in File S1: comparison to GZip) of the approaches

compared. Each dataset is publicly available and all software

required to replicate these results are freely available (see http://data.

campagnelab.org/home/compression-of-structured-high-throughput-

sequencing-data). Our benchmark results clearly establish that the

H+T approach results in the smallest file sizes of either GZip or

BZip2 compression. Compression ratios improve substantially when

compared to BZip2 with faster compression speed. Decompression

speed is only 36% slower than BZip2. These results are significant

because BZip2 is often considered as one of the most effective

Figure 2. A comprehensive approach to store HTS data during the analysis life-cycle. This diagram illustrates how HTS data stored with
the approaches described in this manuscript support common analysis steps of a typical HTS study. HTS reads (Tier I) are stored in files ending with
the.compact-reads extension. These files can be read directly by alignment programs and facilitate efficient parallelization on compute grids. When
the reads are aligned to a reference genome, alignment files are written in sets of two or three files. Files ending with.entries contain alignment
entries. Each alignment entry describes how a segment of a read aligns against the reference genome. Files ending in.header contain global
information about the reads, the reference genome, and the alignment (See Figure S1A in File S1 for the data schema that precisely describes these
data structures). An optional.tmh file stores the identity of the reads that matched the reference so many times the aligner did not output matches
for them. Aligned reads can be sorted with the ‘sort’ Goby tool, producing a.index file with enough information to support fast random access by
genomic position. A permutation file (extension.perm) can also be produced to improve compression of sorted files (see Methods). Files in Tier II are
stand-alone and can be transferred across the network for visualization (e.g., IGV). Files in Tier III are available for some specific types of analyses that
require linking HTS alignments back to primary read data.
doi:10.1371/journal.pone.0079871.g002

Table 1. Benchmark against BZip2 general compression.

Storage Efficiency Compression Times Decompression Times

Sample ID H H+T H+T+D H H+T H+T+D H H+T H+T+D

HZFWPTI 60% 55% 42% 74% 80% 71% 138% 122% 138%

UANMNXR 59% 54% 41% 85% 88% 83% 139% 117% 135%

MYHZZJH 28% 24% 22% 40% 29% 34% 141% 101% 148%

ZHUUJKS 31% 26% 24% 39% 36% 34% 157% 110% 145%

EJOYQAZ 65% 56% 51% 51% 52% 52% 144% 119% 152%

JRODTYG 162% 88% 74% 46% 37% 42% 225% 95% 108%

ZVLRRJH 173% 96% 69% 93% 78% 93% 235% 119% 128%

XAAOBVT 95% 57% 46% 67% 70% 77% 120% 103% 138%

UCCWRUX 79% 51% 40% 79% 80% 70% 139% 114% 132%

HENGLIT 61% 59% 45% 94% 105% 104% 129% 113% 137%

Average 81% 57% 45% 67% 66% 66% 157% 111% 136%

Storage efficiency is calculated as the ratio of the size of compressed data with each method (H, H+T or H+T+D) vs BZip2 compressed data size, expressed as a
percentage. A storage efficiency of 50% indicates that the specific method compressed the dataset to half the size of method BZip2 compression. Compression/
Decompression time ratios measure the ratio of the time it takes a specific method to compress/decompress a dataset compared to the time it takes the BZip2
compression method for the same dataset. A ratio of 200% indicates that the specific method is twice slower than BZip2. See Fig. 1 for a description of the H, H+T and
H+T+D methods.
doi:10.1371/journal.pone.0079871.t001

Compression of Sequencing Data

PLOS ONE | www.plosone.org 4 November 2013 | Volume 8 | Issue 11 | e79871

compression algorithms that remains sufficiently fast for practical

use. Approaches that can achieve more than 10–15% better

compression than BZip2 (i.e., 90–85% of the bzip2 baseline size,

substantially larger than the results we report) are orders of

magnitude slower for compression or decompression and are for this

reason not practically useful for most applications. Here, we show

that using the H+T+D approach (Hybrid codec with Template

compression and domain specific optimizations, a lossless approach,

see Figure 1E and Methods), we can compress structured alignment

data to an average 45% of the size of BZip2 compressed data in

66% of the time needed by BZip2.

CRAM benchmark
Table 2 compares performance metrics for storing alignments

with the Hybrid codec or with CRAM. We find that the method

H+T compression yields files smaller than those obtained with the

CRAM approach (average 73% of baseline). Interestingly, we

noted that H+T compression is storing redundant information in

the form of explicit forward and backward links between

alignment entries (see pair links and splice links attributes in

Figure S1A in File S1). The domain optimization technique

described in Figure 1E, takes advantage of this observation and

further increases compression of HTS alignment data (H+T+D

approach) to an average 58% of the CRAM file sizes. Importantly,

H+T+D appears to compress RNA-Seq and methylation HTS

data much more effectively than CRAM (compressing these five

datasets to 36% the size obtained with CRAM 2.0). Our results

suggest that the CRAM approach may have been over-optimized

to store WGS datasets to the extent that the optimizations become

detrimental when compressing other types of HTS alignment data.

Since the H+T+D approach adapts to the structure of the data, it

does not suffer from this problem and yields substantial

improvements when storing gene expression and epigenetic HTS

datasets.

Compression Fidelity
When developing a new compression approach, it is critical to

verify compression/decompression fidelity. We verified compres-

sion/decompression fidelity for the H+T and H+T+D approaches

across all the benchmark datasets by comparing decompressed

data to input data (see Methods). When tested in the same

conditions, we found that CRAM 2.0 either failed to compress, or

decompress, four out of the ten benchmark datasets (the CRAM

2.0 software crashed with an exception on these datasets). We

previously had run the same benchmark comparing an earlier

version of Goby to CRAM 0.7 (see pre-print http://arxiv.org/

abs/1211.6664). CRAM 0.7 was able to compress and decompress

all datasets, but with substantial data fidelity problems (http://

arxiv.org/abs/1211.6664). Taken together, these observations

suggest that CRAM 2.0 is still an experimental implementation

of the approach published by Fritz et al [7] and indicates that the

H+T+D approach is the current state of the art for compression of

HTS alignment data.

HTS data analysis solutions
A compression approach such as H+T+D is only part of a

solution to support efficient analysis of HTS data. A comprehen-

sive approach must also provide support for storing reads, storing

alignments during their analysis (including unsorted alignments),

and most importantly, it must provide tools that support the data

formats and make it possible to conduct data analysis with

compressed data.

Comprehensive solutions for HTS data storage and
analysis

Figure 2 presents the elements of a comprehensive approach to

HTS data management. These elements include the Goby

framework [12], and extensions to widely used HTS analysis

programs such as the GSNAP [10] and BWA aligners [9], or the

Table 2. Benchmark against a CRAM baseline.

Compression ratio A/B = size(A)/size(B)*100%

H+T/ H+T+D/ Notes

Sample ID Kind CRAM2.0 S2 CRAM2.0 S2

HZFWPTI Exome 86.48% 65.77%

UANMNXR Exome 87.85% 66.61%

MYHZZJH RNA-Seq 19.43%(!) 18.09% (!) (!) CRAM 2.0 failed when decompressing
this dataset.

ZHUUJKS RNA-Seq 22.97% 20.95%

EJOYQAZ RNA-Seq 73.92% 67.77%

JRODTYG RRBS 34.04% 28.51%

ZVLRRJH Methyl-Seq (*) (*) (*) CRAM 2.0 failed when compressing
this dataset.

XAAOBVT WGS 106.39% 86.43%

UCCWRUX WGS 117.84%(!) 92.49% (!)

HENGLIT WGS 103.98%(!) 79.78% (!)

Exome 87.17% 66.19%

RNA-Seq 38.77% 35.60%

bisulfite 34.04% 28.51%

WGS 109.40% 86.23%

Average All 72.54% 58.49%

doi:10.1371/journal.pone.0079871.t002

Compression of Sequencing Data

PLOS ONE | www.plosone.org 5 November 2013 | Volume 8 | Issue 11 | e79871

Integrative Genomics Viewer [8]. Goby provides state of the art

compression approaches, a rich application-programming inter-

face to read and write HTS datasets and a program toolbox (see

[12]). This toolbox can support the life-cycle of a HTS data

analysis project, from alignment, to sorting and indexing the

alignments by genomic position, to viewing aligned data in its

genomic context with the Integrative Genomics Viewer.

Multi-tier data organization
These tools organize data in a multi-tier file organization. All

reads (mapped or unmapped) are stored in Tier-I files and only

differences between the reads and the reference sequence in

alignment files (Tier II and III). This data organization reduces

size considerably for Tier II alignments (in our benchmark up to

3–4% of the original BAM size for spliced RNA-Seq datasets, see

Table 3), while keeping all the information that is typically stored

in the BAM format in between the reads and alignment files.

Combined, Tiers I and II capture all information currently stored

in BAM files, but requires only 49% of the storage capacity needed

by the now popular FASTQ/BAM storage scheme (Table 3). The

benefit of a multi-tier organization increases with the number of

alignments performed against the same set of reads (Table 3). See

Methods for details about multi-tier data organization and further

discussion of its advantages.

Discussion

We have presented new methods for storing, compressing and

organizing HTS data. A key advantage of these methods is their

ability to support seamless schema extensions, which makes it

possible for data formats to evolve to meet the needs of the

scientific community. These methods can be combined with

compression methods to reduce the footprint of the datasets.

General compression methods such as GZip and BZip2 provide

universal compression for any data schema. However, we have

shown here that taking advantage of the structure of the data can

yield state of the art compression of HTS alignment data. We

anticipate that several of the techniques that we have introduced

here can be generalized to arbitrary data schemas. For instance,

separate field encoding, field modeling and template compression

are techniques that could be used to develop fully automatic codec

compilers (such compiler would analyze a data schema and yield a

state of the art compression codec for the specific schema). We do

not expect domain modeling to generalize to arbitrary schemas

because it requires a detailed expertise about the data, but note

that when used in combination with the other compression

approaches described here, it has produced the new state of the art

for compression of HTS alignment data.

Popitsch et al have recently included the Goby framework in a

HTS compression benchmark [15]. Unfortunately, the setting

used in that benchmark parameterized Goby to compress data

with the Gzip compression codec (see [15] supplementary material

where command lines used for Goby do not change compression

from the default Gzip mode). The benchmark conducted by

Popitsch et al therefore did not benchmark NGC against the state

of the art Goby H+T+D approach available at the time the study

was conducted. Data comparing NGC with Goby H+T+D was

submitted in response to Popitsch et al (submitted for publication).

While the advantage of our approach may seem modest when

compared to CRAM (11% smaller files on average over ten

datasets), our approach combines several advantages over CRAM:

it provides seamless support for data schema evolution and

supports writing alignments before they are sorted (i.e., as required

to implement alignment programs). Furthermore, the compression

advantage appears strongly dependent on the type of dataset

compressed. We see a strong compression advantage for our

approaches on RNA-Seq and RRBS datasets (average 21%

advantage over 5 datasets). Similarly to CRAM, our approach

requires the compression of blocks of HTS alignment data.

CRAM uses blocks of one million entries. In our benchmark, we

used blocks of 100,000 entries. We found that increasing block size

improves the compression efficiency of our approach, however,

large blocks also significantly slow down the performance of

interactive visualization for the compressed alignments (e.g.,

visualization in IGV). To our knowledge, CRAM compressed

alignments do not currently support interactive visualization, nor

are any tools developed to directly analyze data represented in

CRAM format. This is in contrast with the H+T+D approach that

Table 3. Benchmark against a BAM baseline.

Tier 2 Only Tiers 1+2

Sample ID Kind H+T+D/BAM
(CR-BZip2 +H+T+D)/
(FASTQ-Bzip2 + BAM)

Multi-tier storage with three alignments: (CR-
BZip2 + 3 x H+T+D)/(FASTQ-BZip2 + 3x BAM)

HZFWPTI Exome 6.06% 43.35% 23.06%

UANMNXR Exome 5.85% 43.22% 22.89%

MYHZZJH RNA-Seq 2.64% 29.00% 13.14%

ZHUUJKS RNA-Seq 3.14% 39.92% 18.98%

EJOYQAZ RNA-Seq 12.32% 54.17% 32.45%

JRODTYG RRBS 22.45% 68.89% 44.92%

ZVLRRJH Methyl-Seq 24.94% 60.57% 41.47%

XAAOBVT WGS 7.48% 49.30% 27.34%

UCCWRUX WGS 6.42% 49.70% 27.26%

HENGLIT WGS 9.17% 53.78% 31.67%

Average 10.05% 49.19% 28.32%

This table provides compression size ratios calculated for Tier 2 HTS alignments stored with approach H+T+D, with reads (Tier 1+2), or without (Tier 2 only). Reads are
stored as PB data compressed with the BZip2 codec (R-BZIP2) or in FASTQ format compressed with Bzip2. The method H+T+D is configured to preserve soft-clips and
their quality scores.
doi:10.1371/journal.pone.0079871.t003

Compression of Sequencing Data

PLOS ONE | www.plosone.org 6 November 2013 | Volume 8 | Issue 11 | e79871

supports direct visualization and analysis with a number of HTS

software tools [12]. Extending tools to support reading and writing

the new file formats can be done by an experienced programmer

in one or two days.

Participants to the Sequence Squeeze Competition have

presented new techniques to improve the compression of HTS

reads data [16]. Because the Goby software can be extended with

codecs, it can provide a test bed for developing and testing new

read compression techniques, such as those developed for the

challenge. We note that improved compression of reads data poses

significant practical problems. For instance, codecs must be

implemented in a variety of programming languages to make it

possible to link with aligner programs written in these languages,

because these tools must be able to decompress data on the fly to

calculate alignments. For these reasons, our study has initially

focused on improving compression of alignment data, while using

general compression codecs with robust optimized implementation

for read data.

A key feature of the data management approach that we

presented here is it ability to support iterative schema extensions.

With this approach, file formats do not need to be defined once

and for all (such as in an exhaustive format specification), but can

be designed iteratively over time. For instance, the Goby read

format was designed initially only to support single end reads.

When paired end experimental designs became more popular, the

read format was extended to store pair sequences and pair quality

scores. Another iteration of the design added meta-data to the read

file to store information about the sequencing platform and date of

sequencing. Importantly, only the features of the file format that

are needed at a given time need to be designed and implemented.

This makes it easier to design systems that meet evolving

requirements, or distributed systems where different version of

file formats and program need to interoperate reliably.

The multi-tier data organization that we introduce here makes

it possible to reduce some of the computational burden of working

with HTS data. Because Tier II alignment file sizes are greatly

reduced (by a factor about 10), alignments can be transmitted

through the network much faster than would be possible with the

BAM format. This is a consequence of both better compression

and multi-tier data organization. Multi-tier data organization

facilitates visualization of the data as well as collaborative projects

that require only access to aligned data (Tier II). For instance,

alignments can be loaded through HTTP quickly with IGV.

Multi-tier organization also improves the performance of cluster/

cloud computing analysis pipelines that require staging of data on

compute nodes before computations can take place.

Conclusions

Since Goby formats offer state of the art compression of HTS

data and are seamlessly extensible for new applications, we

propose that they are strong candidates to replace the FASTQ and

BAM formats. Importantly, Goby file formats and software have

been leveraged to implement the GobyWeb scalable analysis and

data management system [17]. We expect that the structured data

compression approaches described here can be applied to a variety

of scientific and engineering fields that need to store structured

data.

Materials and Methods

The HTS data management approach that we have developed

combines novel methods (described in Figure 1 and main text of

the manuscript) with a number of standard engineering techniques

applied to HTS data:

N Schemas to organize HTS reads and alignments as structured

data (see Figure S1 in File S1)

N The Protocol Buffers (PB) middleware to automate reading

and writing structured data and to provide flexibility with

respect to changes in the schemas [11].

N A storage protocol to store collections of billions of structured

messages and support semi-random access to the messages in a

collection. The protocol makes it possible to implement

Codecs that compress/decompress the PB encoded collections.

(Figure S1B in File S1)

N GZip and BZip2 codecs

N A Hybrid codec that provides state of the art compression of

alignment data, while retaining the flexibility of PB schema

evolution.

N A multi-tier data organization that groups data in tiers

according to the most likely use of each kind of data (Figure 2).

N A framework (see http://goby.campagnelab.org/) to support

efficient computation with data expressed in these formats.

N A set of tools to work with reads and alignment data in these

formats, including

N Tools to import/export alignments from/to the BAM format.

N Tools to import alignments written in the MAF format (produced

by the Last aligner [18]).

N Tools to import/export reads from/to the FASTA/FASTQ/

CSFASTA formats for single-end or paired-end data [12].

N Integrations into the BWA [9] and the GSNAP [10] aligners to

natively load short reads and produce alignment results in these

formats.

N Various tools to help process alignments, including sorting,

indexing, concatenating several alignments, or merging alignments

performed against different reference sequences [12].

N Extensions to the Integrative Genome Viewer (IGV [8]) to load

and display the alignment format and display these data along side

other data sources in a genomic context.

Protocol Buffers
Protocol Buffers (PB), developed by others, is a software

middleware designed ‘‘to encode structured data in an efficient

yet extensible format‘‘ (see http://code.google.com/p/protobuf/).

PB offers data representation capabilities similar to the Extensible

Markup Language (XML), but that are simpler and significantly

more computationally efficient. PB schemas provide a formal data

representation language that can express primitive language types

as well as complex types of data and their relationship to form

messages (equivalent to objects in an OO language or structures in

languages such as C). PB provides compilers for a variety of

languages that transform schemas into program components

suitable to represent data in memory, as well as serialize these data

(i.e., write messages to a buffer of bytes) or de-serialize messages

(i.e., read a buffer of bytes to reconstitute well-formed messages).

Figure S1A in File S1 presents the PB schemas we devised for

storing reads and alignments, respectively. The latest schemas can

be obtained at http://github.com/CampagneLaboratory/goby/

blob/master/protobuf/Alignments.proto and http://github.com/

CampagneLaboratory/goby/blob/master/protobuf/Reads.proto.

We use Unified Modeling Language (UML) conventions similar to

those described in [19] to document the relationships between

messages used to store reads or alignments. Rather than encoding

complex information in strings (e.g., sequence variations stored as

Compression of Sequencing Data

PLOS ONE | www.plosone.org 7 November 2013 | Volume 8 | Issue 11 | e79871

‘‘CIGAR’’ strings in BAM), we decompose the information into

different PB messages that are simple to process computationally.

Protocol Buffers were initially developed to transmit small

messages in client-server environments where software needs to be

upgraded asynchronously. As such they provide strong capabilities

for schema evolution. For instance, it is possible to add a new

message field to a copy of the AlignmentEntry schema, write

software that populates the new field, and send data files with this

new schema to third parties. Such third parties will be able to use

older versions of the software to extract all but the new data

structure in the data files. Reading data from the new field will

require new software, but third parties can decide if and when they

upgrade.

Because PB was initially developed for small messages it would

be natively unsuitable for serializing or deserializing the very large

collections of messages needed to store billions of reads or

alignments. We introduce a storage protocol that addresses this

deficiency while retaining the schema evolution capabilities of PB.

Large Collection Storage Protocol
To work around the message size limitation of PB, we introduce

the Goby Large Collection Storage Protocol (GLCSP), depicted in

Figure S1B in File S1. Briefly, this protocol represents collections

of PB messages with N elements as K collections of N/K messages.

In the benchmark, we used K = 100,000 so large collections are

represented with chunks that contain at most 100,000 messages.

Large collections are represented as sequences of chunks. GLCSP

supports semi-random access since it is possible to start reading

into a GLCSP formatted file at any position and scan until the

start of another chunk is encountered. The next chunk found can

be decompressed with the codec associated with the registration

code found at the start of the chunk (an error to decompress the

chunk indicates a false positive delimiter detection, which will be

statistically quite infrequent, but needs to be handled appropriately

to resume scanning for the next chunk). A termination chunk with

8 successive 0xFF bytes followed by four 0x00 bytes is written

immediately before the end of file.

GZip codec
The GZip codec, used since Goby 1.0, simply encodes PB

serialized data with GZip compression. The implementation of the

GZip codec in Goby uses the standard Java classes: java.util.

zip.GZIPInputStream and java.util.zip.GZIPOutputStream.

BZip2 codec
The BZip2 codec, introduced in Goby 2, encodes PB serialized

data with BZip2 compression. The implementation of the BZip2

codec in Goby uses the Apache ant implementation: classes named

org.apache.tools.BZip2.CBZip2InputStream and org.apache.tools.

BZip2.CBZip2OutputStream.

Hybrid Codec
The Goby 2 hybrid codec encodes PB serialized data in two

serialized streams: the ACT stream and the Left-Over PB stream.

ACT stands for Arithmetic Coding and Template. This new

compression approach, described below, consists of compressing

collections of K structured messages by serializing fields of the

structure messages with arithmetic coding compression. An ACT

codec must be implemented for each different kind of schema. At

the time of writing this report, we have implemented an ACT

codec for the alignment schema described in Figure S1A in File

S1. Since PB supports seamless evolution of PB schemas, the

hybrid codec must be able to store data that could not be handled

by a given ACT implementation (for instance data from fields that

have been added to the schema after the ACT implementation

was compiled, possibly by a third-party). The hybrid codec stores

such data in the Left-Over PB stream. To this end, PB data is

serialized and compressed with GZip (Figure 1A).

Arithmetic Coding and Template (ACT) Compression
This approach takes as input a collection of structured messages

and produces a stream of bytes with compressed data. This is

achieved by considering each field of the messages independently

and collecting the successive values of the field when traversing the

collection from the first PB message to the last. We reduce each

field type to a list of integers. Such lists are compressed as

described in section Integer List encoding. Field types are handled

as follows. Fields that are recognized by an implementation of

ACT (produced against a specific version of the data schema) are

removed form the input PB message. Input PB messages that

remain non-empty after processing all fields that the codec is

aware are written to the Left-Over PB collection output. This

simple mechanism suffices to guarantee that older versions of the

software do not erase new data fields needed by more recent

versions of the software. Fields that are recognized by an ACT

implementation are processed as follows, according to their type:

Integer fields. Fields that have a small number of distinct

values across all elements of the input collection are written with

arithmetic coding list compression (see below). We first introduce

the coding techniques used by our integer list compression

approach. Fields that follow a uniform distribution (i.e., queryIn-

dex) are written with minimal binary coding.

String fields. String values are converted to list of integers by

successively encoding the first character of each string field, then

the second, and so on until the length of each string is reached.

The length of each string is recorded in a separate integer list.

Floating number fields. Floating numbers (32bits) are stored

as their integer representation in an integer list.

Cost of Model Inference
It is important to note that ACT does not eliminate the cost of

model inference. Where other approaches incur this cost when

presented with a new data file, ACT incurs most the cost once for

every data schema, and a much smaller cost for each dataset (for

instance when deciding to use run-length encoding for a field of a

given dataset). The cost of model inference incurred for the

schema is thus amortized over many data files represented with the

schema.

Run Length Encoding
Integer lists are scanned to determine if run-length encoding

would be beneficial. To this end, a ‘lengths’ and ‘values’ list is

created from each integer list to code. The ‘length’ list stores the

number of times a given value repeats. The ‘values’ list simply

contains the values of the input list. When the sum of the ‘lengths’

and ‘values’ list is smaller than the input list, run-length encoding is

used (i.e., we separately write ‘lengths’ and ‘values’ lists as

described in the section Integer List Compression). Otherwise, the

input list is written directly with as a list of integers (see Integer List

Compression).

Nibble Coding
Nibble coding is a variable length encoding technique that

represents small integers with a small number of bits. We use the

Nibble coding implementation provided in the DSI utilities

(http://dsiutils.dsi.unimi.it/, Sebastiano Vigna and Paolo Boldi).

Compression of Sequencing Data

PLOS ONE | www.plosone.org 8 November 2013 | Volume 8 | Issue 11 | e79871

The following description is copied from the documentation of the

DSI package

‘‘Nibble coding records a natural number by padding its binary

representation to the left using zeroes, until its length is a multiple

of three. Then, the resulting string is broken in blocks of 3 bits, and

each block is prefixed with a bit, which is zero for all blocks except

for the last one.’’

Minimal Binary Coding
A minimal binary code is an optimal code for the uniform

distribution and is used to encode query indices (used to link

alignment data to read data, see multi-tier organization sections).

Briefly, knowing the range of values to be encoded, one can write a

natural number in binary code using m bits, where m suffices to

encode the maximum value. The value of m is determined by

calculating the most significant bit of the maximum value of the

list. Minimal binary coding is performed with the DSI utilities.

Query indices are written as q-min_q, where q is a query index in

a PB collection, and min_q is the minimum value observed in the

same collection. The parameter m is detemined as max_q – min_q

+1, where max_q is the maximum query index observed in the

collection.

Arithmetic Coding
An arithmetic coder is a compression method that yields a code

of near optimal length given a specific symbol probability

distribution. Arithmetic coders can estimate symbol probabilities

adaptively. We use an arithmetic coder implementation derived

from that offered by MG4J [20]. However, the Goby implemen-

tations of the arithmetic decoder have been optimized for large

symbol alphabets (the MG4J decoder has complexity of decoding a

symbol O(n), where n is the number of symbol, while the Goby

implementation has complexity O(log(n)).

Integer List Compression with Arithmetic Coding
Lists of integers are first inspected to determine if run-length

encoding is beneficial. If this is the case, the list is processed as two

lists as previously described. Each integer list is then encoded as

follows. We write the number of elements of the list with nibble

coding, followed by the sign bit (one zero bit if all symbol values

are positive, or a one bit if they contain negative values), followed

by the number of symbols (nibble coding), the value of each

symbol (nibble coding after applying a bijection to map negative

integers to natural numbers, when the sign bit was 1). The index of

the symbol for each value of the list is then written in sequence

using arithmetic coding.

Boolean List Compression
Booleans are converted to the integer value zero or one to

produce a list of integers, and further processed as described in the

previous section.

Lists of Structured Messages
PB supports messages that contain other structured messages.

Goby schemas use this capability to encode sequence variations

and links (see Figure S1A in File S1). We compress lists that refer

to other messages with as many lists of integers as required to

compress each field of the linked message type. Additionally, for

each source message, we store the number of elements of the

destination message that belongs to the source. For instance, when

an AlignmentEntry message includes three SequenceVariation

messages, we add the number three to the list that stores the

number of sequence variations per entry. We then inspect each

SequenceVariation message in the order they appear in the

sequenceVariations field and append to the list associated with

each field (readIndex, position). Since the traversal order is fixed,

this approach can reconstruct both links and linked objects by

decoding three sequence variations from the field elements,

consuming three readIndex or position values for the entry

message.

Template Compression
Template compression is a generalization of the run-length

encoding technique for input structured messages. Briefly, for each

type of message, we choose the set of fields that will not be

included in the template (non-template fields). These fields should be

chosen as those fields that change the most from one entry to the

next. The value of each non-template field is recorded to its

respective integer field list and the field is removed from the PB

message. In the current implementation, we remove the fields

queryIndex, position and toQuality to yield the template. After

removing all non-template fields, we are left with a template

message. We check if the previously encoded message has the

same value as the current template message and if yes increment

the number of times the template is to be emitted (we do not emit

individual fields for the template in this case). If not, we emit

individual fields. A more formal description is given under section

‘Algorithm template compression’.

Benchmark datasets
Benchmark datasets were obtained from public databases

whenever possible. Accession codes are provided in Table S1 in

File S1. The larger files were trimmed to keep only about twenty

million reads. Reads that did not map where filtered out. The

exact reduced datasets used for the benchmarks can be obtained

from http://data.campagnelab.org/

Benchmarks datasets were constructed from public datasets

(accession codes: NA12340, NA20766, NA18853, NA19172,

GSM675439, GSM721194, ERP000765, ERP000765,

SRR065390).

Alignments
Alignments were obtained in BAM format. For samples

MYHZZJH and ZHUUJKS, we obtained reads from [21] and

realigned against the 1000 genome reference sequence (corre-

sponding to hg19) with GSNAP (version 2012.01.11), allowing for

spliced alignments (options for de-novo and cDNA splice detection

were enabled). The resulting BAM output is available from http://

data.campagnelab.org/.

Benchmark methodology
We developed a set of Bash and Groovy scripts to automate the

benchmarks. These scripts are distributed with the benchmark

datasets to make it possible to reproduce our results and to assist

with the testing and development of new codecs. Scripts copy all

data files to local disk before timing execution, and write results to

local disks as well, to remove possible variability induced by

network traffic. Compression ratio A/B for methods A and B are

calculated as the file size obtained when compressing a benchmark

file with method A divided by the file size obtained when

compressing the same file with method B. Compression ratio are

shown as percentage, where 50% indicates that method A

compresses the data to 50% the size achieved by the baseline

method B. Compression ratios are deterministic, so we do not

repeat these measures. Compression speed is measured with the

Linux time command (using ‘real time’), subtracted with the time

Compression of Sequencing Data

PLOS ONE | www.plosone.org 9 November 2013 | Volume 8 | Issue 11 | e79871

taken to read the same input file on the same machine (this time is

measured as the time taken to compress the input with a ‘null’

codec, a codec that writes no output). Decompression speed is

measured as the execution time of the Goby compact-file-stats

mode. This mode decompresses the successive chunks of an

alignment file and estimates and reports statistics about the entries

in the alignment. Compression and decompression speeds are

largely deterministic, varying only by a few percentage from run to

run. We omitted standard errors for clarity because repetitive runs

showed virtually no variation in our test environment.

CRAM parameter settings
We used three parameter settings in our evaluation of CRAM

2.0. The settings are called S1, S2 and S3, where S1 is the most

lossy format. These settings are as follows: S1: the most lossy

compression, does not keep soft clips nor unmapped placed reads

(default command line arguments with logging at the INFO level: -

l INFO). Setting S2: intermediate lossy compression, keeps soft

clips and unmapped placed reads, keeps quality scores for

mutations and insertion deletions (command line arguments: -l

INFO --lossy-quality-score-spec N40). Setting S3: lossless com-

pression, like S2 but also keeps quality scores for the complete

reads, the BAM attribute tags and preserve unmapped reads

(command line arguments: -l INFO --capture-all-tags --lossy-

quality-score-spec N40-R40-U40).

Goby parameter settings
BAM files were converted to Goby file format with the sam-to-

compact tool. Files were initially written with the GZIP codec, and

re-compressed with each codec using the concatenate-alignment

tool (see benchmark scripts). We used the following parameters to

measure compression with the ACT approach:

To create files comparable with CRAM2.0 S2, we preserved

soft-clips and quality scores over variations (option --preserve-soft-

clips of the Goby sam-to-compact tool). To create files comparable

with CRAM2.0 S3, we preserved soft-clips and quality scores over

the entire read (options --preserve-soft-clips --preserve-all-mapped-

qualities of the Goby sam-to-compact tool).

The following settings were used with the concatenate-

alignment tool:

- Compression with gzip codec: -x MessageChunksWriter:co-

dec = gzip -x AlignmentWriterImpl:permutate-query-indices = -

false -x AlignmentCollectionHandler:ignore-read-origin = true --

preserve-soft-clips.

- Compression with bzip2 codec: -x MessageChunksWriter:co-

dec = bzip2 -x AlignmentWriterImpl:permutate-query-indices = -

false -x AlignmentCollectionHandler:ignore-read-origin = true

- Compression with ACT H approach: -x MessageChunks-

Writer:codec = hybrid-1 –x MessageChunksWriter:template-com-

pression = false –x AlignmentCollectionHandler:enable-domain-

optimizations = true –x AlignmentWriterImpl:permutate-query-

indices = false -x AlignmentCollectionHandler:ignore-read-origi-

n = true

- Compression with ACT H+T+D approach: -x Message-

ChunksWriter:codec = hybrid-1 –x MessageChunksWriter:tem-

plate-compression = true –x AlignmentCollectionHandler:enable-

domain-optimizations = true -x AlignmentWriterImpl:permutate-

query-indices = false -x AlignmentCollectionHandler:ignore-read-

origin = true

Multi-tier data organization
A critical advantage of a multi-tier file organization is the ability

to study a dataset with multiple alignment methods. With single

file organization (e.g., BAM or lossless CRAM), multiple analyses

result in duplicating data. Indeed, projects that produce BAM

alignments typically already have read data in FASTQ format.

The read data are duplicated in each new BAM file that a project

produces with a different alignment approach. With multi-tier

organization, only alignments are stored for each analysis, further

increasing storage efficiency for projects that align reads with

multiple methods. Table 2 indicates that multi-tier organization

can yield substantial storage savings when compared to a

FASTQ/BAM storage scheme. It is worth noting that each

schema includes fields that provide meta-data to assist tracking

relations between data files (See Figure S1A in File S1, MetaData

message in the read schema, and ReadOriginInfo in the alignment

schema).

Preserving read trackability
Multi-tier organization must preserve the identity of a read

across tiers. This is necessary to link back specific analysis results to

raw data. In the BAM format, read-names link alignment results to

the primary read data. This solution is effective, but wasteful: it

requires storing long strings of characters (,15 characters in most

current datasets, or 6+ bytes at least if unique integers are written

as strings) whose only function is to maintain read identity. In the

Goby multi-tier organization, read identity is maintained with an

integer index. This index tracks read identity during the entire life

cycle of HTS data. Special considerations must be taken to

guarantee that preserving this index during the data life-cycle does

not degrade compression performance. We discuss these methods

in the next section.

Query Index and Permutations
Goby maintains the link between alignments and primary read

data with an integer, called a query index (See Figure S1A in File

S1, ReadEntry message type). When an alignment program

processes a Goby reads file, the query index field of the read entry

is written to the alignment entry to preserve the link to the raw

data (see Figure 1B, AlignmentEntry). Sorting the alignment will

result in shuffling query indices, and can seriously degrade

compression performance of a sorted alignment (because com-

pression of a sequence of uniformly distributed 32 bit integers

requires 32 bits per integer). We avoid this problem by permuting

the original query indices to small indices that monotonically

increase in genomic order. The small indices are still uniformly

distributed, but in a much reduced range, and therefore can be

compressed more effectively (with the minimal binary coding

method). Permutations are written to disk in a specialized data

structure that makes it possible to retrieve the original query index

corresponding to any small index (stored in a.perm file in Tier III).

Permutation files are only necessary for those applications that

need to track read indices back to primary read data. Tier II

alignments can be used in isolation or together with data from Tier

III, depending on the needs of the application. We note that

CRAM did not address the issue of storing read identity because

(1) CRAM can only compress sorted alignments, (2) Converting a

BAM file to CRAM does not maintain a mapping between read

index and read name.

Compression/decompression fidelity
We routinely test whether the H+T and H+T+D compression

approaches implemented in Goby are able to recover the input

dataset after decompression. To this end, the Goby source code

includes a regression test suite that compares alignment datasets

after round-trip compression/decompression. The regression suite

is run after each modification of the project source code and helps

Compression of Sequencing Data

PLOS ONE | www.plosone.org 10 November 2013 | Volume 8 | Issue 11 | e79871

control that current and future versions of the software have

perfect data fidelity over representative test datasets.

Algorithm Coding and Template compression
Inputs:

A collection of PB messages in a GLCSP chunk

Outputs:

A number of integer lists, one for each field of the PB messages

Init:

T = nil

C = 0

for each message m in PB chunk:

for each non template field g of m:

emit g to integer list corresponding to g field

remove g from m

end

if g equals T then

C+ = 1

continue with next message

else

emit C to integer list corresponding to message count field

for each field e of m:

emit e to integer list corresponding to e field

end

T = m

C = 1

end

end

Supporting Information

File S1 Supporting Tables and Figures. This file contains

Table S1, Table S2 and Figure S1. Table S1: Details of the

Benchmark Datasets; Table S2: General Compression Benchmark

relative to GZip; Figure S1: Structured data schemas and Large

Collection Storage Protocol.

(PDF)

Acknowledgments

We thank Dr. Thomas Wu (Genentech Inc.) for help with the GSNAP

implementation, and Dr. Olivier Elemento for critical feedback on earlier

revisions of this manuscript.

Author Contributions

Conceived and designed the experiments: FC. Performed the experiments:

FC KCD. Analyzed the data: FC KCD NC. Contributed reagents/

materials/analysis tools: NC JTR JPM. Wrote the paper: FC. Read and

approved the final manuscript: FC KCD NC JTR JPM.

References

1. Mangone M, Manoharan AP, Thierry-Mieg D, Thierry-Mieg J, Han T, et al.
(2010) The landscape of C. elegans 3’UTRs. Science 329: 432–435.

2. Agrawal N, Frederick MJ, Pickering CR, Bettegowda C, Chang K, et al. (2011)

Exome sequencing of head and neck squamous cell carcinoma reveals
inactivating mutations in NOTCH1. Science 333: 1154–1157.

3. Shearstone JR, Pop R, Bock C, Boyle P, Meissner A, et al. (2011) Global DNA
demethylation during mouse erythropoiesis in vivo. Science 334: 799–802.

4. Mardis ER (2011) A decade’s perspective on DNA sequencing technology.
Nature 470: 198–203.

5. Cock PJ, Fields CJ, Goto N, Heuer ML, Rice PM The Sanger FASTQ file

format for sequences with quality scores, and the Solexa/Illumina FASTQ
variants. Nucleic Acids Res 38: 1767–1771.

6. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, et al. (2009) The Sequence
Alignment/Map format and SAMtools. Bioinformatics 25: 2078–2079.

7. Hsi-Yang Fritz M, Leinonen R, Cochrane G, Birney E (2011) Efficient storage of

high throughput DNA sequencing data using reference-based compression.
Genome Res 21: 734–740.

8. Robinson JT, Thorvaldsdottir H, Winckler W, Guttman M, Lander ES, et al.
(2011) Integrative genomics viewer. Nat Biotechnol 29: 24–26.

9. Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-
Wheeler transform. Bioinformatics 25: 1754–1760.

10. Wu TD, Nacu S (2010) Fast and SNP-tolerant detection of complex variants and

splicing in short reads. Bioinformatics 26: 873–881.
11. Varda K (2008) Protocol Buffers. Available: http://code.google.com/p/

protobuf/.

12. Campagne F, Dorff K, Chambwe N, Robinson JT, Mesirov JP, et al. (2012)

Compression of structured high-throughput sequencing data. Preprint at arXiv.

Available: http://arxiv.org/abs/1211.6664.

13. Burrows M WD (1994) A block-sorting lossless data compression algorithm.

Digital Equipment Corporation.

14. Effros M. PPM Performance with BWT Complexity: A Fast and Effective Data

Compression Algorithm; 2000; Washington, DC, USA.

15. Popitsch N, von Haeseler A (2012) NGC: lossless and lossy compression of

aligned high-throughput sequencing data. Nucleic Acids Res 41: e27.

16. (2012) Sequence Squeeze Competition. Available: http://www.sequencesqueeze.

org/.

17. Dorff KC, Chambwe N, Zeno Z, Shaknovich R, Campagne F (2012) GobyWeb:

simplified management and analysis of gene expression and DNA methylation

sequencing data. arXiv http://arxivorg/abs/12116666.

18. Kielbasa SM, Wan R, Sato K, Horton P, Frith MC (2011) Adaptive seeds tame

genomic sequence comparison. Genome Res 21: 487–493.

19. Skrabanek L, Murcia M, Bouvier M, Devi L, George SR, et al. (2007)

Requirements and ontology for a G protein-coupled receptor oligomerization

knowledge base. BMC bioinformatics 8: 177.

20. Boldi P, Vigna S. MG4J at TREC 2005. In: Buckland EMVaLP, editor. Special

Publications; 2005. NIST.

21. Pickrell JK, Marioni JC, Pai AA, Degner JF, Engelhardt BE, et al. (2010)

Understanding mechanisms underlying human gene expression variation with

RNA sequencing. Nature 464: 768–772.

Compression of Sequencing Data

PLOS ONE | www.plosone.org 11 November 2013 | Volume 8 | Issue 11 | e79871

