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Abstract

Genome-wide association studies (GWAS) have focused primarily on populations of European 

descent, but it is essential that diverse populations become better represented. Increasing diversity 

among study participants will advance our understanding of genetic architecture in all populations 

and ensure that genetic research is broadly applicable. To facilitate and promote research in multi-

ancestry and admixed cohorts, we outline key methodological considerations and highlight 

opportunities, challenges, solutions, and areas in need of development. Despite the perception that 

analyzing genetic data from diverse populations is difficult, it is scientifically and ethically 

imperative, and there is an expanding analytical toolbox to do it well.

Keywords

GWAS; ancestry; diversity; cross-ancestry; trans-ancestry; trans-ethnic; population genetics; 
admixed populations; psychiatry; complex disease

A disproportionate majority (>78%) of participants in published genome-wide association 

studies (GWAS) are of European descent (Popejoy and Fullerton, 2016; Sirugo et al., 2019), 

with 71.8% of these individuals having been recruited from just three countries: the United 

States, the United Kingdom, and Iceland (Mills and Rahal, 2019). Studies of major 

psychiatric disorders are no exception, having focused largely on populations of European 

ancestry (Figure 1). Conducting GWAS in individuals of European ancestry was a practical 

starting point given the availability of samples and limited funding, genotyping technologies, 
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and analytic methods. However, there is now widespread acknowledgement of the need for 

more diverse samples and for improved analytic methods. Broadening diversity of studied 

populations will improve the effectiveness of genomic medicine by expanding the scope of 

known human genomic variation and bolstering our understanding of disease etiology. 

Consensus in the field points to many benefits of increased representation of more diverse 

populations for locus discovery, fine-mapping, polygenic risk scores, and addressing existing 

health disparities (Duncan et al., 2018; Hindorff et al., 2018a; Lam et al., 2018; Martin et al., 

2019; Walters et al., 2018).

With increasing representation of global populations in GWAS, there is an opportunity for 

advanced methods development and a need for consensus “best practices” for analyzing the 

emerging complex datasets. Here, we provide background on the scientific and ethical 

importance of including underrepresented groups in genetics research and offer guidance for 

whole-genome analysis of ancestrally diverse study cohorts. We summarize currently 

available resources and make recommendations for avoiding practices that could lead to 

false-positives, loss of statistical power, or misinterpretation of results. Because this primer 

represents a collaborative product of the Cross-Population Special Interest Group of the 

Psychiatric Genomics Consortium (PGC) (https://www.med.unc.edu/pgc/cross-population/), 

we have framed our discussion within the context of psychiatric genetics. Nevertheless, the 

points and recommendations outlined herein are applicable to any complex biomedical 

phenotype.

Genetic ancestry is estimated from DNA and provides information about shared 

demographic history at the population level. Individuals with similar ancestral origins have 

shared genomic signatures due to migration of common ancestors, mutations and 

recombination, genetic drift, and natural selection. These processes yield differences in 

allele frequencies and linkage disequilibrium (LD) patterns across populations (Barrett and 

Cardon, 2006; International HapMap Consortium, 2005) that must be properly addressed to 

avoid false positive genetic findings. In addition to ancestral diversity, the current lack of 

racial and ethnic diversity, which are related but distinct from ancestry (see Box 1), hinder 

the development of more complete etiological models (Banda et al., 2015; Medina-Gomez et 

al., 2015; Race, Ethnicity, and Genetics Working Group, 2005). In complex disease research, 

race and ethnicity can provide information about social, cultural, and environmental factors 

that affect risk for disease, including having a lived experience of social injustice. Given that 

these socio-cultural measures are often inappropriately used as a proxy for genetic ancestry, 

researchers and clinicians should be careful to distinguish among them in order to tease 

apart specific biological, environmental, and social determinants of health.

Inclusion of diverse study participants in genomics research has yielded important scientific 

insights for a range of human traits and diseases. The resolution of fine-mapping improves 

through cross-ancestry analysis (Wojcik et al., 2019). Estimates of effect-sizes derived from 

cohorts of diverse ancestries tend to be more accurate than from those of a single ancestry 

(Li and Keating, 2014). Genetic risk prediction attenuates with increasing divergence 

between the discovery and target populations, indicating that polygenic risk scores (PRS) 

based on Eurocentric GWAS are not equally predictive when applied to non-European 

populations (Duncan et al., 2018; Martin et al., 2019). Conversely, constructing individual-
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level scores from cross-ancestry meta-analysis results improves overall prediction (Grinde et 

al., 2019; Márquez-Luna et al., 2017).

Besides the strong scientific justifications for broader inclusion, there are important ethical, 

legal, and public health reasons for bolstering diversity in genomics (Hindorff et al., 2018b). 

Understanding how genetic risk and social inequities interact to influence disparities in 

disease risk and outcomes will be critical to improving public health.

Moreover, while integration of genomics into healthcare has the potential to improve disease 

prediction and optimize treatments, a lack of diversity will limit the utility of precision 

medicine efforts: individuals of non-European descent are more likely to receive ambiguous 

test results from genetic screening (e.g., variants of unknown or uncertain significance) 

(Petrovski and Goldstein, 2016) and false positive diagnoses (Manrai et al., 2016). There is 

also a higher chance of false negative diagnoses in individuals from ancestral backgrounds 

that are not well represented in clinical databases, due to missing information about 

additional disease-causing variants currently not on testing panels (Minster et al., 2016; 

Moltke et al., 2014; Wheeler et al., 2017). Similarly, the potential benefits of 

pharmacogenetics cannot be fully realized until there is equitable representation across 

ancestries, as some therapeutics may be more effective and/or safer in certain populations 

because of differences in allele frequency, effect size, and penetrance of variants associated 

with drug metabolism (Roden et al., 2011). Here, we provide an accessible framework for 

analyzing these data, while acknowledging that there are several important methodological 

areas in need of further development. Key terminology is bolded and defined in Box 2.

Methodological Considerations

In the analysis of multi-ancestry datasets, a significant concern is false positive genetic 

signals due to inflated test statistics from population stratification, which occurs when 

disease prevalence and allelic frequency differences are correlated within or between study 

cohorts (Marchini et al., 2004). Two typical strategies exist for addressing this challenge 

while analyzing samples from multiple major/admixed populations: (1) Empirically assign 

samples to major continental and/or admixed populations using genome-wide data, analyze 

each population separately, and conduct cross-ancestry meta-analysis (stratified meta-
analysis approach), and (2) analyze samples from multiple populations together, most 

commonly with a mixed model (joint mixed model approach). The choice between these 

approaches is perhaps the most broadly impactful decision currently facing analysts of 

genome-wide data from multiple populations since it impacts methodological considerations 

in all analysis steps from quality control, to reference alignment in imputation, to association 

model, to the suitability of results for secondary analyses. We highlight elements of GWAS 

where the choice between the stratified meta-analysis and joint mixed model approaches is 

particularly salient. Figure 2 shows a general workflow for each approach.

Genotyping Technologies

Most genome-wide DNA microarrays were designed for individuals of European ancestry. 

The differences in LD structure and allele frequency among populations can lead to 

significantly worse coverage for other ancestry groups. For example, at imputation accuracy 
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r2>0.8, the Affymetrix UK Biobank array covers 84% of the variants that have minor allele 

frequencies (MAF) > 1% in samples of European ancestry but only 46% of those for 

samples of African ancestry (Nelson et al., 2017). The large genetic diversity in African 

populations means that a larger number of variants are needed on arrays in order to provide 

similar coverage as in other populations (Barrett and Cardon, 2006). To address this issue, 

some groups, such as China Kadoorie Biobank (Chen et al., 2011), have designed 

population-specific arrays. Multi-ancestry arrays, such as the Multi-Ethnic Global Array 

(MEGA), Global Screening Array (GSA), and the H3Africa array (Mulder et al., 2018) were 

designed based on panels with more diverse ancestries, and are therefore recommended. An 

alternative strategy is to sequence whole genomes; low-depth sequencing has received recent 

attention for application in diverse samples due to cost-effectiveness and higher coverage 

with acceptable error rates ((Gilly et al., 2018; Peterson et al., 2017a); see Rare Variants).

Quality Control

Quality control (QC) of GWAS data aims to remove low quality data and technical artifacts 

in order to reduce the risk of false positive associations. In diverse ancestry cohorts, the main 

issue is that many common QC criteria assume the sample comes from a homogeneous 

population. Applying standard QC procedures without adjustment for population structure 

leads to the erroneous removal of too many variants and samples from minority subgroups 

and admixed samples, reducing statistical power.

QC criteria that are dependent on population allele frequencies can generally be adapted for 

application in diverse cohorts by either stratifying the cohort into major populations prior to 

filtering (the stratified meta-analysis approach) or by adjusting the QC measure to allow for 

varying allele frequencies (the joint mixed model approach; see Figure 2). For example, 

individuals are often removed based on excess autosomal heterozygosity, as a potential 

indication of sample contamination, but the standard heterozygosity statistic assumes each 

variant’s expected allele frequency is constant across individuals. In diverse cohorts, 

regressing this heterozygosity statistic on principal components prior to identifying outliers 

can avoid excessive exclusions of individuals from subgroups in the cohort. Step-by-step 

considerations for common QC criteria, including sample QC workflows for the stratified 

meta-analysis and joint mixed model approaches, are given in Supplemental Methods I (see 

also Supplemental Table S2, Supplemental Figure 1). In addition to these pre-imputation QC 

steps, post-imputation QC steps should also consider ancestry (see Imputation).

Inferring Population Structure

Estimating the genetic population structure of a cohort typically serves two primary goals in 

GWAS: 1) to characterize the ancestral diversity of the cohort as a descriptive measure and 

2) to provide a quantitative estimate of population structure that can be used in QC and in 

GWAS association models to reduce the risk of false positives. We focus here on use for 

description and QC, and later discuss methods for controlling for population structure (see 

Genome-wide Association).

For cohorts with diverse ancestral backgrounds, we can estimate population structure based 

on genome-wide data. Currently the most common tool for estimating continuous population 
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structure is principal component analysis (PCA); a listing of other approaches is included in 

Supplemental Methods II. PCA is a statistical method for reducing the complexity of high-

dimensional data (e.g., thousands of measured variants across the genome) into orthogonal 

axes (principal components, PCs) that explain the largest fraction of variability in the data. 

The spread of data across these axes provides a visual guide to sub-structure among samples; 

when data points are estimated from each individual’s genetic markers, the PCs illustrate 

population structure. These PCs can be computed within the cohort, or can be estimated 

from an external reference (e.g., The 1000 Genomes Project (1KGP); (Sudmant et al., 2015)) 

and the GWAS sample can be projected onto the PC axes to allow comparison with the 

ancestries of known reference populations (Peterson et al., 2017b). However, the latter 

approach can be limited by the number and diversity of populations represented on the 

reference panel, highlighting the need for many additional diverse population references to 

be generated. PCs may also be used to control for ancestry structure in other QC metrics (see 

Quality Control and Supplemental Table S2).

This sample-wide estimation and visualization of genetic ancestry can be used to empirically 

assign genetically similar samples into more homogenous groups. This assignment is 

necessary for the stratified meta-analysis approach to GWAS of diverse cohorts, and is 

intended to reduce the risk of false positive genetic signals due to inflated test statistics from 

population stratification. Assigning samples to more homogeneous groups for analysis 

reduces stratification by limiting the degree of population structure remaining in the sample. 

Samples with a specific admixture can be assigned into their own major ancestral group, 

instead of being excluded from the analysis or forced into other ancestry groups, provided 

there are adequate numbers of individuals in the sample with comparable admixed 

backgrounds. However, it is often the case that genomic outliers (which tend to be from 

under-represented or admixed backgrounds) might need to be excluded if there is an 

insufficient number of other individuals who fall into a similar cluster. These assignment 

methods will not provide - and are not intended to provide - detailed ancestral background 

information for each individual. Rather, they provide a working solution to reduce false 

positives due to population stratification (Hellwege et al., 2017). We stress that sample group 

assignment and identifying appropriate reference population panels can be difficult, 

particularly for admixed ancestry, thus requiring careful inspection of data and methods 

(Medina-Gomez et al., 2015).

Imputation and Population Reference Panels

GWAS arrays genotype a portion of common variation. Genotype imputation is a cost-

effective computational approach for inferring genotypes or genotype probabilities at 

variants that have not been directly genotyped on GWAS arrays, based on comparisons to 

genetic data from external reference samples. Imputation increases the number of markers 

available for association testing and can harmonize cohorts genotyped on different arrays for 

meta-analysis.

Imputation accuracy relies on having an appropriate reference panel that includes 

haplotypes from the population studied. Matching alleles and allele frequencies in the study 

cohort with reference panels as part of pre-imputation QC also relies on using reference data 
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from a matched ancestral background. Reference panels with better coverage of haplotypes 

from the population of the genotyped cohort will yield a greater number of well-imputed 

variants for GWAS, especially among lower frequency variants (Ahmad et al., 2017; Howie 

et al., 2012). Table 1 lists major imputation panels that are currently publicly available. We 

note that although many ongoing projects are aiming at more diverse populations 

(Supplemental Table S3), additional efforts in more populations are needed to expand the 

diversity of imputation reference panels (Kelleher et al., 2018).

Current imputation methods are summarized in Supplemental Methods III. Joint imputation 

using the largest applicable reference panel is expected to perform at least as well as 

subsetting that reference panel to match the target population (Ahmad et al., 2017; Howie et 

al., 2012), possibly due to maintaining a larger sample size for phasing. Use of the same 

reference panel for all cohorts also avoids potential confounding with varying imputation 

quality. However, it may be necessary to consider imputation quality separately within 

subsets of individuals even if the samples are jointly imputed since imputation accuracy for a 

variant may vary widely across individuals of different ancestries.

Genome-wide Association

The core of GWAS analysis is testing the association between each variant and a target 

phenotype. As noted, a primary consideration for association testing in diverse cohorts is 

whether to stratify samples into major population groups or to analyze the full cohort jointly 

(assuming imputation was also done jointly). In either case, the major concern is proper 

control of population stratification to ensure that observed associations reflect genetic effects 

of each locus rather than correlations with ancestry.

Joint analysis using a mixed model approach is attractive because all participants are 

included irrespective of ancestry. Ideally, mixed model approaches control for population 

stratification by modelling distant relatedness between individuals due to ancestry (Sul et al., 

2018; Wojcik et al., 2019). Several implementations exist and some are listed in 

Supplementary Methods Section IV and Supplementary Table S4. Mixed models may yield 

greater statistical power, both through increased sample size and by controlling for the 

variance explained by the genetic relatedness between individuals (i.e., a random effects 

component; (Loh et al., 2018)). However, there is evidence that basic mixed models may not 

fully control for population structure in diverse cohorts, especially if there is an 

environmental component to phenotypic associations with ancestry beyond the modelled 

genetic relatedness (Conomos et al., 2018; Heckerman et al., 2016; Zhang and Pan, 2015). 

Non-genetic factors such as environmental exposures may be correlated with ancestry due to 

a shared local environment (familial or community effects) or due to the relationship 

between ancestry and socio-cultural factors such as race and ethnicity. More methodological 

development is needed before mixed models or other strategies for joint GWAS of a diverse 

cohort can be confidently recommended as robust.

When stratifying by population backgrounds, covariates such as PCs should still be used to 

correct for population stratification. Conventional linear or logistic regression with these 

covariates can be used for association testing as long as QC included exclusion of related 

individuals; mixed models or other alternatives with PC covariates may be applied in family-
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based samples stratified by ancestry (Walters et al., 2018). Computing these PCs separately 

within each ancestry subset instead of the full study ensures better control for residual 

structure specific to that subset (e.g., fine structure, genotyping/technical artifacts), but at the 

cost of potentially reduced control for stratification related to population structure shared 

across subsets (Patterson et al. 2006). For analyses of admixed or multi-ancestry cohorts, 

PCs may still be included in the regression but additional covariates may be required to 

control for stratification that is not linear in PCA space (Conomos et al., 2018; Heckerman et 

al., 2016; Zhang and Pan, 2015). For example, race and ethnicity are often correlated with 

socio-economic status and other environmental risk factors for disease. Self-reported 

ethnicity or other variables that capture trait heterogeneity on the basis of socio-cultural 

factors may also be appropriate to consider as covariates in those instances (Banda et al., 

2015; Medina-Gomez et al., 2015). Directly controlling for local ancestry tracts in variant-

level association analyses may further improve power and reduce false positives in admixed 

samples (Li & Keating 2014).

The meta-analysis approach, combining separate analyses of samples stratified by similar 

genetic background, currently has several pragmatic advantages. First, computational 

pipelines developed for single-ancestry analyses can be used for each cohort. Separate 

analysis also naturally provides ancestry-specific results, which may be valuable for 

secondary analyses including PRS (Bulik-Sullivan et al., 2015; Lam et al., 2018). Reduced 

environmental variability within a subset may also improve power. On the other hand, 

splitting each cohort may be challenging due to continuous gradients of admixture or small 

sample sizes within an ancestry group. This loss of information from excluding individuals 

from diverse genomic backgrounds is a missed opportunity for discovery and validation of 

GWAS findings, and thus additional approaches need to be developed and leveraged.

Meta-analysis of GWAS Summary Statistics

Traditional meta-analytic approaches for GWAS rely on fixed-effects models that assume a 

given variant has the same true marginal effect size across all studies. This assumption is 

likely to be violated in meta-analyses across diverse cohorts. Even when the causal genetic 

effect of a variant is constant across populations, as seems common in cross-ancestry GWAS 

to date (Huang et al., 2017; Lam et al., 2018), marginal effect sizes may show heterogeneity 

when LD structures are different. Further heterogeneity across cohorts from different 

populations may arise due to differences in genetic background (e.g., gene × gene 

interactions) and/or environmental context (e.g., gene × environment interactions), as well as 

differences in study design (e.g., imputation artifacts, phenotyping). As a result, it is 

generally appropriate to model this cross-cohort heterogeneity in meta-analysis by using a 

random effects or trans-ancestral meta-analysis model (Supplementary Methods Section 5, 

Supplementary Table S4).

Fine-mapping

A trait-associated locus from GWAS typically implicates a large genomic region with many 

variants of similar significance. This set may contain a few causal variants, while the 

association of other variants is driven by their LD with the causal one(s). Fine-mapping 

refines GWAS loci to a smaller set of likely causal variants to facilitate interpretation and 
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follow-up studies (Schaid et al., 2018). Fine-mapping studies in samples of European 

ancestry have made important advances, with some loci resolved even to single-variant 

resolution (Huang et al., 2017; Mahajan et al., 2018). Because fine-mapping assumes the 

causal variant(s) have been observed, non-European populations face a unique challenge due 

to the lack of representation of many variants as a result of incomplete sampling from these 

populations, suboptimal chip design, and limited imputation performance.

Combining samples across ancestries has an advantage for fine-mapping: the LD patterns 

that differ across populations can improve the resolution, assuming that many causal variants 

are shared across populations, which has been shown true for some traits, including 

schizophrenia (Lam et al., 2018; Marigorta and Navarro, 2013; Wojcik et al., 2019). Non-

causal variants tagging the causal variants have marginal different effects across populations 

if LD is different, thus allowing the causal variant to be distinguished from non-causal 

variants. Furthermore, in certain populations (e.g., African), LD blocks are generally 

smaller, so fewer non-causal variants will tag the causal variants, improving the resolution of 

fine-mapping (International HapMap Consortium, 2005; Schaid et al., 2018).

Most fine-mapping algorithms (Huang et al., 2017; Schaid et al., 2018) can be applied to 

samples from multiple ancestries combined through meta-analysis. However, this strategy 

does not take full advantage of genomic diversity across populations. An alternate Bayesian 

fine-mapping strategy (Lam et al., 2018) more precisely mapped the schizophrenia genetic 

associations through explicitly modeling diversity in LD between East Asian and European 

samples. This approach works on a presumption that the causal variants and their effect sizes 

are identical across populations, which is not always true. PAINTOR (Kichaev and Pasaniuc, 

2015) relaxes this presumption by allowing the effect size to vary across populations, 

although the causal variant still needs to be the same. Fine-mapping methods will benefit 

from continued development that appropriately models LD and relies on fewer assumptions.

Polygenic Risk Scores in Diverse Populations

PRS are individual-level estimates of the relative genetic contribution to a phenotype, 

computed for each genotyped individual in a target sample based on GWAS results from a 

discovery sample. PRS are useful for validating GWAS results in external cohorts and have 

the potential to provide individualized risk prediction from genetic data (Khera et al., 2018; 

Martin et al., 2019). The predictive value of PRS profiling depends both on the statistical 

power of the discovery (training) dataset— specifically, enrichment in the genome-wide 

distribution of association test statistics that is attributable to aggregate, additive genetic 

effects — and the relevant characteristics of the target (testing) dataset.

In particular, PRS accuracy is also a function of recent human demographic history, such 

that a greater proportion of phenotypic variance is explainable in target populations that are 

genetically more similar to the population studied in the discovery GWAS. Stated another 

way, with increasing genetic “distance” between the discovery and target datasets, there is 

often attenuation of polygenic predictive value. Furthermore, because most participants in 

large GWAS have been broadly European (Figure 1), most PRS currently perform best in 

target samples of European ancestries, with markedly worse performance in other 

Peterson et al. Page 9

Cell. Author manuscript; available in PMC 2020 October 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



populations, especially in individuals of African descent (Duncan et al., 2018; Martin et al., 

2019).

A practical question is how to construct polygenic scores for recently admixed individuals or 

individuals who are genetically distant from those in the largest existing GWAS. Use of 

trans-ancestry meta-analytic results to weight alleles can increase prediction accuracy 

(Grinde et al., 2019), and MultiPred is an approach that combines PRS based on European 

training data with PRS based on training data from the target population (Márquez-Luna et 

al., 2017). Current methods development is focused on improving handling of allele 

frequency differences and LD within and across populations. Given current limitations in 

understanding similarities and differences in polygenic risk across populations, caution is 

advised in interpreting differences in PRS across ancestries (Novembre and Barton, 2018).

Heritability and Genetic Correlation

GWAS can provide insights into the genetic architecture of human traits, including SNP 
heritability and genetic correlation. Several methods have been proposed for estimating 

these parameters from genotype data (Supplemental Table S4; Supplemental Methods 

Section V), but estimation and interpretation of these quantities is more challenging in 

diverse populations. Heritability estimates may differ between populations due to variation 

in both environmental factors and population genetic forces. Cross-population differences in 

phenotype measurement (Section XI) may further complicate interpretation. In evaluating 

shared genetic variance across populations, genetic correlation between groups can be 

defined either as the correlation of allelic effect sizes (genetic-effect correlation) or the 

correlation of the relative contribution to total phenotypic variance (genetic-impact 

correlation), and for all variants or for common variants present in a study. Each value is 

potentially informative, but divergence in allele frequencies and LD patterns between 

populations will lead to differences between these parameters (Galinsky et al., 2019).

As detailed in the supplement, most common methods for estimating SNP heritability and 

genetic correlation either require modification or may not be suitable for use in multi-

ancestry studies. Methods relying on relatedness estimation (e.g., genomic relatedness 

matrix restricted maximum likelihood; GREML) require estimation methods robust to 

population structure (Conomos et al., 2018; Thornton et al., 2012), and methods modelling 

LD (e.g., LD Score regression; LDSC) require either ancestry-matched reference panels or 

individual level data for LD calculations (Luo et al., 2018). Ancestry-matched reference 

panels, along with the large GWAS sample sizes required for robust estimation using these 

methods, may be especially challenging to acquire for studies in underrepresented or 

admixed groups.

Beyond these most common methods, local ancestry tracts in admixed population samples 

can be leveraged to estimate heritability (Zaitlen et al., 2014) and both genetic-effect and 

genetic-impact correlations of observed variants can be estimated using Popcorn (Brown et 

al., 2016) if LD information is available and the two populations are relatively 

homogeneous. Recent studies estimating cross-ancestry genetic effect correlations have 

found moderate to high correlations for most phenotypes (Bigdeli et al., 2017; Brick et al., 
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2019; Lam et al., 2018). The extent to which these cross-ancestry genetic correlations reflect 

consistent effects at any particular locus remains a question for fine mapping analyses.

Rare Variant Association Analysis

Rare SNPs and structural variants have been implicated in complex disease (Bomba et al., 

2017). Due to their more recent origin, rare variants tend to be more geographically 

clustered and can be population specific. They can also be particularly important from both 

clinical and biological perspectives because some confer a large increase in disease risk. 

However, there is severely limited power to identify trait associations of individual rare 

variants. Therefore, aggregation methods such as burden tests, variance-component tests, 

and hybrid tests have been developed to test the combined effect of several variants. Using 

this approach, variants can be combined within genes or regulatory genetic elements (Gilly 

et al., 2018; Kuchenbaecker and Appel, 2018). Ancestry groups may carry different driving 

variants at the same locus, as demonstrated by the association of different functional variants 

in ADH1B with alcohol use disorder in African Americans compared with European and 

Asian Americans (Edenberg and McClintick, 2018). Therefore, aggregate testing can be 

particularly suitable to projects involving different ancestral groups because they focus on 

functional units rather than individual variants and it is not necessary to observe the same 

variants or frequencies across cases. Meta-analysis methods have been developed that are 

able to encompass heterogeneous genetic effects across studies and are applicable to cross-

ancestry meta-analysis (Lee et al., 2013; Tang and Lin, 2015).

Association testing for rare variants is particularly sensitive to population stratification, and 

adjusting for fine-scale patterns of population stratification can be difficult with traditional 

methods (Zhang et al., 2013). In simulation studies, adjusting for PCs failed to fully control 

inflation for collapsing and variance-component methods (Persyn et al., 2018). Mixed 

effects models that have been developed for related samples might improve on this (Jiang 

and McPeek, 2014). However, this area requires further methods development.

Non-Genetic Contributors to Trait Variability

Diversity in social, cultural, and environmental factors also affect disease risk, and can 

contribute to confounding in genetic studies. In the case of complex traits with strong 

environmental influences, such as psychiatric conditions, the need to account for non-

genetic contributors to disease is important. Unfortunately, measurement of environmental 

factors can be difficult, so proxy measures such as zip code or insurance status can be used 

to model non-genetic risk factors such as air quality or accessibility to quality health care. 

PCs calculated from genotypes can control for population structure due to genetic 

relatedness, but this approach alone may not capture the social and environmental factors 

that are encompassed in self-reported “race” and “ethnicity”, even though these measures 

can be correlated with genetic ancestry. Self-reported measures of diversity can help in the 

modeling of societal determinants of health, such as increased stress due to the experience of 

racism and inequality and related variability in environmental factors (e.g., socio-economic 

status) that affect disease risk. However, the reliance on race and ethnicity as proxy variables 

for environmental effects or in order to control for population structure may be 

inappropriate. Better understanding and measurement of causal environmental risk factors is 
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critical in order to advance discovery methods beyond these over-simplified and potentially 

harmful constructs of non-genetic contributors to trait variability.

Investigating complex traits in diverse populations, especially when samples are pooled from 

different research sites or cultural contexts, requires consistency and equivalence in the 

underlying construct and assessment measures across groups. Differences and variability in 

phenotypic measurement between study sites and populations may affect both gene 

discovery and the transferability of genetic findings between populations. Most psychiatric 

classification systems and diagnostic measures have been developed and validated in 

individuals from industrialized, Western societies (Henrich et al., 2010). This presents a 

substantial challenge for global and cross-cultural collaborations. Investigations into cross-

cultural differences in the prevalence of major depression, for instance, have suggested that 

although there is a shared underlying disorder construct across groups (Kendler et al., 2015; 

Simon et al., 2002), individuals may differ culturally in terms of the level of 

symptomatology reached prior to seeking help (Simon et al., 2002). The inclusion and 

consideration of diverse populations in the development, validation, and deployment of 

diagnostic measures used in genetic studies is therefore critical for ensuring an unbiased 

picture of disease etiology (Supplemental Methods VII).

Despite known large effects of environmental exposures on complex disease risk, there have 

been limited efforts to incorporate these factors into large-scale genetic studies. Appropriate 

modeling of the environment is especially critical when a phenotype or trait of interest is 

influenced by gene-by-environment interactions (GxE). That is, genetic risk factors not 

only alter average risk but also influence sensitivity to the effects of environmental 

adversities. However, the majority of GxE studies have been underpowered and conducted 

using samples of primarily European descent, which limits the assessment of GxE and 

thereby the identification of modifiable targets for intervention and prevention among 

understudied groups (Duncan et al., 2014). We note that the statistical definition of GxE 

depends on the choice of modelling on an additive or multiplicative scale (Kendler and 

Gardner, 2010). Greater representation of diverse individuals is critically needed in order to 

increase our understanding of how the interrelated contributions of genes and environment 

vary across social and cultural groups, and how these factors may interact.

Perspectives and Recommendations

The lack of diversity in genetic studies is problematic for a variety of ethical and scientific 

reasons. Continued reliance on samples that only represent a fraction of genomic, socio-

cultural, and environmental diversity limits our understanding of disease biology and may 

ultimately contribute to widening global health disparities. Greater ancestral diversity in 

study samples has the potential to accelerate the discovery of causal risk variants and is 

critical for a greater understanding of the biological causes of disease, including gene-by-

environment interactions. In this Primer, we have highlighted the challenges and benefits of 

working with diverse populations, recommended practices based on current methods, and 

have noted specific areas that are in need of further methodological development (Box 3). In 

summarizing progress, remaining challenges, and requisite next steps, we consider three 

main domains: 1) researcher participation, 2) data resources, and 3) analytic methods.
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Researcher Participation

It is essential that cross-population research is carried out with careful consideration of its 

ethical, legal, and social implications (ELSI). This includes an ethos of trust-building, 

transparency, bi-directional knowledge sharing, and community engagement. This is 

especially true in low and middle income (LMIC) settings and in work with minority groups 

– contexts in which mistrust of researchers is warranted given historical mistreatment and 

ethical violations. As there is no single overarching legislative framework that covers this 

area, we draw attention to literature that (i) articulates key issues (e.g., consent-taking, data-

sharing, sample governance, equal partnership, capacity building, community engagement, 

participants’ advisory boards (Akinhanmi et al., 2018; Claw et al., 2018; Parker and 

Kwiatkowski, 2016) and (ii) proposes effective working solutions to them (Beaton et al., 

2017; Campbell et al., 2017; de Vries et al., 2015). Additionally, there is a need to overcome 

traditional barriers to research empowerment for under-represented groups. H3ABioNet 

(https://www.h3abionet.org/), GINGER (https://ginger.sph.harvard.edu/), AMARI (https://

amari-africa.org/), MIND (https://minds-uf.org/), and BRAIN (https://

advance.washington.edu/brains) are examples of initiatives that embed the targeted delivery 

of skills and training within broader programs of research. Additional funding mechanisms 

that support such an approach would be particularly beneficial.

Data Resources

There is a critical need for extensive collaborative efforts to generate large-scale discovery 

cohorts of diverse ancestry. Limited diversity in genetics research is a major factor limiting 

our ability to address important scientific questions. The 1KGP (Sudmant et al., 2015) serves 

as one of the most widely-used resources in genetics research, but expanding those reference 

panels is a priority. Here, we provide a selected catalogue of extant and emerging sources of 

whole-genome sequence data (Table 1 and Supplemental Table S3), to facilitate improved 

matching of diverse study cohorts to appropriate reference panels. Notably, some sources of 

non-European data are under-utilized, such as minority groups within the UK Biobank. 

Although diverse ancestry groups only account for about 5% of this data, that fraction 

amounts to over 35,000 samples of non-European and admixed ancestry (Bycroft et al., 

2018) and yet only 7.3% of publications since 2008 that used this data included any of these 

diverse samples. Thus, there are opportunities to make better use of these and other existing 

resources.

Additionally, substantial efforts are needed for efficient and ethical international sample and 

data sharing. This is an issue under active debate, as countries have different approaches to 

weighing concerns about the privacy of individuals against the collective benefits of science, 

and the regulatory landscape of individual-level genotype data has been uneven. For 

example, while the UK allows open access of individual-level genotype data with a valid 

scientific proposal, other countries, such as Denmark, Iceland, and China, tightly regulate 

the sharing of such data. Some GWAS consortia, including the Enhancing NeuroImaging 

Genetics through Meta-Analysis (ENIGMA) and Social Science Genetic Association 

Consortium (SSGAC), overcame these regulatory challenges using essentially a “federated 

sharing model” (Fiume et al., 2019). Without sharing individual-level genotype data, a study 

in these consortia follows the prespecified analytic protocol and contributes its summary 
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statistics to the meta-analysis, allowing the participation of studies that do not have 

permission to share individual-level data. Researchers should be aware of such options and 

restrictions, and we recommend regular review of policies as scientific advances may change 

the ground on which they are based. The practice of sharing summary statistics is 

increasingly important, and facilitates meta-analyses and other secondary analyses like 

polygenic risk scoring and estimation of cross-trait genetic correlations. Journals and 

funding agencies should require sharing of summary statistics whenever it is ethically and 

legally possible.

Future directions for improving analytic methods

Many of the analytic challenges involved in genetic studies of diverse populations (Box 3) 

can be addressed by recent advances in methodologies. We reflect on two key issues that 

remain unresolved and are likely to be beneficial directions for methodological 

development: 1) the division of individuals into major population groups for analysis and 2) 

the extension of common secondary analyses of GWAS results to accommodate results from 

cross-population studies.

A primary question currently faced in genetic analyses of diverse cohorts is whether to 

follow a ‘combining’ approach (analyzing all individuals together, regardless of ancestry) or 

a ‘stratifying’ approach (dividing the cohort into major population groups for separate 

analysis, followed by cross-ancestry meta-analysis; Figure 2). Concerns regarding joint 

analysis methods (e.g., mixed models) include inadequate control for confounding 

population stratification and the limited options for secondary analyses such as polygenic 

risk scoring and genetic correlation estimates. To the extent that stratifying individuals into 

major population groups remains a feature of cross-population analyses, future methods and 

theoretical work may continue to refine standards for how best to assign individuals to more 

homogenous groups. The best solution currently available combines a priori analysis plans, 

exploratory examination of the data, and involving collaborators with expertise in analyzing 

globally representative datasets. Future work will benefit from increasing diversity in 

reference panels, formalizing how major populations should be defined for the purposes of 

genetic analyses, and evaluating the performance of such methods. Continued 

methodological work should help resolve the tension between these approaches, clarifying if 

and when stratifying samples is necessary and providing improved methods for joint 

analysis of diverse cohorts that addresses population stratification.

Many post-GWAS statistical methods have limited portability to association results from 

diverse and admixed populations, due to complexities with LD patterns. Caution should be 

taken in the downstream analysis of cross-population GWAS meta-analyses, as many 

common approaches such as gene-based testing (e.g., MAGMA (de Leeuw et al., 2015)), 

heritability and genetic correlation estimation (e.g., LD Score regression (Bulik-Sullivan et 

al., 2015)), and predicted gene expression (e.g., S-PrediXcan (Barbeira et al., 2018)) rely on 

external reference panels that may not be compatible with the ‘combining’ approach. Even 

methodologies such as Popcorn (Brown et al., 2016) that are specifically designed for cross-

population analyses typically assume single-population summary statistics as input. 

Furthermore, it is unclear whether annotations of GWAS results based on observed 
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associations in external studies (e.g., gene expression, Hi-C contacts, methylation) may also 

need to evaluate population specificity or include diverse samples to improve 

generalizability across populations. For example, 85% of GTEx eQTL annotations are from 

individuals of European ancestry (GTEx Consortium, 2013) and other functional genomics 

resources may be similarly limited.

The above-described methods of cross-population aggregation and comparison rely on an 

assumption that complex diseases are phenotypically similar across global populations and 

that measurement of such disorders is culturally unbiased. Given that we know these 

assumptions are not always accurate, the best practical steps are to be aware of potential 

phenotypic and environmental differences across populations and involve multi-disciplinary 

teams with expertise in global societal determinants of health and cultural competency. 

Suitable methods – such as those that account for cultural context of phenotype 

ascertainment and GxE – should then be developed and implemented to more precisely 

measure and treat disorders across cultures.

Conclusion

There is a growing need for investment in policies and practices to support the inclusion of 

diverse research participants and thus maximize the global potential of genetics research and 

precision medicine. Broadening participation of both study populations and researchers from 

many regions of the globe and LMIC in particular will likely be tremendously beneficial. 

Within the arenas of available data and analytic methods, short-term goals include improved 

sharing and openness of data. Longer-term goals include identifying ways in which the 

complex practical, cultural, social, legal and ethical issues inhibiting sample collection from 

under-represented populations are best resolved. Early, often, and meaningful engagement of 

stakeholders from diverse patient groups and communities, multi-disciplinary investigators 

including those with expertise in community-based participatory research, research 

institutions, scientific editors and reviewers, and funding agencies will all be critical to the 

success of these short- and long-term objectives towards fostering an environment of 

inclusive research. Knowing that the lack of representation of diverse populations in genetics 

research will hinder our understanding of disease etiology, it is clear that this is both an 

important ethical and scientific growth area for genomics research.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Box 1:

Race, Ethnicity, and Ancestry: Interpretation and Relevance for Genetic 
Diversity.

‘Race’, ‘ethnicity’ and ‘ancestry’ are often used interchangeably, yet they have no universal definitions. 
We provide brief descriptions of our usage below. For extensive discussion in the context of genomics, 
including recommendations from professional organizations see: (Banda et al., 2015; Mersha and Abebe, 
2015; Race, Ethnicity, and Genetics Working Group, 2005).

Race

A culturally and politically charged term, for which definitions and meaning are context-
specific. Race is related to individual and/or group identity, and is often linked to stereotypes 
of visible physical attributes such as skin and hair pigmentation. The concept of ‘race’ is 
tightly linked to social power dynamics and has historically been used to justify hierarchies of 
power, discrimination, and oppression in an unequal society. Social and cultural conditions 
may differ among racial groups, on average, and these differences may lead to environmental 
effects such as chronic stress and unequal access to goods and services including healthcare 
and nutrition. These inequities can affect environmental risk for complex diseases and/or 
potentially interact with genetics to affect risk.

Ethnicity

Describes people as belonging to cultural groups, usually on the basis of shared language, 
traditions, foods, etc. Ethnicity has often been used interchangeably with ‘race,’ and is 
similarly ambiguous. To the extent that traits are affected by social and environmental 
differences, ‘ethnicity’ has previously served as a proxy for health and disease risk at the 
population level as a result of social, cultural, and community effects described above. There 
is no universal agreement on a system of ‘ethnic’ groupings worldwide. Some ‘ethnic’ groups 
may share genetic factors due to similar ancestral origins, other groups may be more social 
and cultural in nature.

Ancestry

Meaning varies by context. Here we use the term to denote genetic ancestry, a description of 
the population(s) from which an individual’s recent biological ancestors originated, as 
reflected in the DNA inherited from those ancestors. Genetic ancestry can be estimated via 
comparison of participants’ genotypes to global reference populations, so incomplete 
availability of these references can create biased estimates. We note that different methods of 
calculating genetic ancestry can yield different results. Thus, discrete labelling of ancestral 
populations over-simplifies the complexity of human genetic variation and demography. 
Nevertheless, accounting for systematic differences in allele frequencies and LD is necessary 
for genetic analyses. In this paper, diversity in genomics is described primarily in terms of 
‘ancestry’.
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Box 2:

General Terminology.

Term Definition/Comment

Admixed 
Population

A population of individuals with ancestors from two or more populations. Admixed can 
also be used to refer to individuals.

Fine-mapping Analytical procedures designed to refine GWAS loci to a smaller set of likely causal 
variant candidates to facilitate interpretation and follow-up studies.

Genetic 
Correlation

The correlation of genome-wide genetic effects between two phenotypes, which is 
often estimated for a subset of genomic variants (e.g. SNPs in a GWAS).

Genotype 
Imputation

Estimation of genotypes at genetic sites that have not been directly measured, using 
data from a reference panel to infer genotypes based on LD and haplotype structures. 
Accuracy depends on availability of suitable reference panels.

GWAS Genome-wide association study. Analysis of common genetic variants across the whole 
genome for association with a phenotype.

GxE Gene by environment interaction refers to genetic effects on a phenotype that vary 
based on environment, or vice-versa.

Haplotype A group of alleles that are correlated with one another because they are inherited 
together on a chromosome.

HWE

Hardy-Weinberg equilibrium, the expected balance of genotypes within a population 
assuming random mating, infinite population size, and no mutation, migration, or 
selection. Tests of deviations from HWE are used in quality control to detect technical 
issues with genotyping. Note that there are also non-technical reasons for deviation 
from HWE (e.g., selection, population structure, admixture, nonrandom mating).

LD
Linkage disequilibrium. Alleles in LD are physically linked on a chromosome, which 
leads to non-random coinheritance such that their frequencies in a population are 
correlated.

Major 
Population

A group of individuals with shared genetic ancestry. A heuristic simplification of the 
complexity of human demography, but useful for describing groups that are likely to 
have relatively similar allele frequencies and LD patterns due to shared ancestry. 
Common examples used in practice include continental ancestry groups or “super 
populations” as defined by the 1000 Genomes Project (e.g., African, Admixed 
American, East Asian).

PCA

Principal component analysis. PCA of genotype data is commonly used to examine 
population structure in a cohort by determining the average genome-wide genetic 
similarities of individual samples. Derived PCs can be used to group individuals with 
shared genetic ancestry, identify outliers, and as covariates to reduce false positives due 
to population stratification.

Population 
Stratification

Underlying population structure within a sample that is correlated with a phenotype, 
which can confound genetic association tests.

PRS
Polygenic risk score. A value computed from an individual’s genotype data that 
quantifies genetic influences on a particular phenotype; also known as polygenic score 
(PGS), genetic risk score (GRS), or risk profile score (RPS).

Reference Panel
A set of genetic variants from a population. Reference panels are used to design arrays, 
impute genotypes, catalogue genetic variants, and identify regions that are similar and 
different between populations.

SNP Heritability Proportion of phenotypic variance that is explained by additive genetic effects of a set 
of SNPs.
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Box 3:

Common pitfalls, recommendations, and methods in need of development.

Method Pitfall Recommendation Needs

Genotyping Many genotyping 
platforms do not 
cover non-
European variation 
well.

Use or design population-
specific array or multi-
ancestry array; high array 
density can improve 
coverage in groups with 
high diversity

Continue improving 
coverage of diverse 
ancestries on genotyping 
arrays

Consider low-depth whole-
genome sequencing

Encourage ongoing 
development and sharing 
of pipelines for analysis of 
low-depth sequencing data

QC Unnecessary loss 
of data and/or 
incorrect 
inferences by using 
a one-size-fits-all 
approach

See Figure 2 for specific 
recommendations for each 
QC step and Supplemental 
Table 2

Improve availability and 
convenience of 
implementing proposed 
QC methods robust to 
population structure

Imputation Inaccurate 
imputation due to 
poor matching of 
reference panel to 
sample

Consider matching the 
ancestry of the reference 
panel as closely as possible 
to the sample ancestry if 
using a single ancestry 
sample. Consider the largest 
reference panel possible for 
imputation of multiple or 
admixed samples

Continue expanding 
diversity of imputation 
panels,through collection 
of whole-genome 
sequencing data, creation 
of imputation panels from 
that data, and promoting 
public sharing/
accessibility of those 
panels

GWAS Poor control of 
population 
stratification

Consider standard linear/
logistic regression methods 
for analysis of single 
ancestry groups followed by 
meta-analysis. Consider 
mixed model approaches for 
admixed or multi-ancestry 
analyses

Continue investigating 
causes of - and solutions to 
- current incomplete 
control of population 
stratification from 
principal components and 
mixed models

Include PCs as covariates 
even when single ancestry 
groups analyzed. PCs should 
be computed individually 
for each major population 
group within a multi-
ancestry cohort and included 
as covariates in the 
regression model. 
Additional covariates should 
be considered for the multi-
ancestry analysis

Meta-analysis False negative and 
false positive 
findings, effect 
heterogeneity

Use a random-effects (with 
possible bias towards the 
null), or modified random-
effects meta-analysis model

Continue to investigate 
and find solutions to 
improve power for the 
detection of heterogeneous 
effects

Fine-mapping LD improperly 
handled when all 
samples are meta-
analyzed across 
populations

Use fine-mapping methods 
that explicitly model 
population- specific LD

Continue to develop fine-
mapping methods that rely 
on fewer assumptions, and 
thoroughly evaluate their 
performance

Uneven genome 
coverage across 
populations 
because of the 
genotyping array 
and the imputation 
reference panel

See recommendations for 
Genotyping and Imputation 
above

Peterson et al. Page 23

Cell. Author manuscript; available in PMC 2020 October 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Method Pitfall Recommendation Needs

Polygenic 
risk scores

Loss of accuracy in 
target population 
with increasing 
genetic distance 
from discovery 
cohort

Extrapolation of PRS from 
one ancestry to another is 
problematic with current 
approaches and data

Large discovery cohorts 
for all populations are 
needed. Develop methods 
for computing PRS that 
are not biased when 
applied across populations, 
potentially incorporating 
LD information and/or 
local ancestry information 
among diverse populations

Rare variants Population 
stratification; low 
power to detect 
associations

Aggregate tests can improve 
power and handle separate 
causal variants in different 
populations

Approaches with better 
control of population 
stratification; more data on 
diverse populations needed

Heritability 
estimates

Differences in 
MAF and LD 
structures

For GREML, use 
admixture-aware relatedness 
estimation for admixed 
samples

Currently no method based 
entirely on summary 
statistics can handle 
admixed/diverse samples. 
Evaluate options for 
developing estimation 
methods with reduced 
requirements for access to 
genotype data or ancestry-
matched LD reference 
panels

Different 
environments

For LDSC, consider using 
cov- LDSC if in-sample 
genotype data is available 
Caution when comparing 
estimates between groups

Cross-
ancestral 
genetic 
correlation

Requires large 
sample sizes and 
dense array; 
estimates 
influenced by 
genetic distance 
between groups

Use Popcorn or GREML 
with admixture-aware 
estimation of genetic 
relatedness

Improve robustness and 
user- friendliness of 
software for summary 
statistics; increase 
diversity of LD reference 
panels

Phenotypic 
measurement

Lack of 
consideration of 
potential 
measurement 
differences across 
groups

Consider and test for 
equivalence across 
populations. Be cautious 
when meta-analyzing or 
comparing across groups in 
which culturally sensitive 
measurement has not been 
demonstrated.

Interdisciplinary 
collaborations with local 
researchers across 
populations to continue 
developing and validating 
phenotypic measures

GxE Lack of 
consideration of 
environmental 
factors that are 
relevant

Consider environmental 
factors that may be of 
particular relevance to 
different socio-cultural 
groups (e.g., “racial/ethnic” 
discrimination).

Large samples of diverse 
individuals and assessment 
of a broad range of 
environmental exposures 
and socio-cultural 
experiences

Consider running analyses 
separately for each group to 
gain understanding of GxE 
processes within 
populations, and be cautious 
when making comparisons 
across populations
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Figure 1. Diversity in GWAS of psychiatric disorders compared to global diversity.
Participant numbers were extracted from the largest consortium publication(s) for each 

psychiatric disorder and are shown as fractions of the total sample size for each disorder. 

Note: Sample sizes are given in parentheses. Numbers reflect cases and controls combined. 

MD=major depression (490,999), SCZ=schizophrenia (205,661), PTSD=post-traumatic 

stress disorder (188,932), BIP=bipolar disorder (51,710), ADHD=attention deficit 

hyperactivity disorder (55,230), AUT=autism (46,350), AD=alcohol dependence (52,848), 

AN=anorexia (14,477). *For schizophrenia, the African American samples from an earlier 

publication (2009, International Schizophrenia Consortium) were not included in the most 

recent PGC schizophrenia publication (2014). Ancestry information for each participant was 

based on principal components analysis of genetic data. See Supplemental Table S1 for 

consortium studies and references.
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Figure 2: Flow chart for quality control, imputation, and association analysis in diverse 
population samples.
This flowchart depicts the general analysis framework for genome-wide association studies 

of participants with diverse ancestral backgrounds. Note: boxes with red headers indicate 

analyses done in samples with diverse ancestral backgrounds and blue denotes analysis done 

within samples in major population groups. The left path shows a strategy for the stratified 
meta-analysis approach and the right path shows steps for the joint mixed model approach 
[see Supplemental Table 2 for more detailed quality control (QC) considerations].

Peterson et al. Page 26

Cell. Author manuscript; available in PMC 2020 October 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Peterson et al. Page 27

Table 1:

Listing of currently available imputation reference panels.

Reference Panels Haplotypes Ancestries Sites Availability

TOPMed 125,568 African 32%, Asian 10%, European 
40%, Hispanic 16%

463,000,000 forthcoming

Haplotype Reference Consortium 
(HRC; Version 1.1 2016)

64,940 predominantly European 39,635,008 *, **

African Genome Resources 9,912 African populations + 1000 
Genomes Project

93,421,145 **

UK10K 7,562 British population 24,128,798 **

1000 Genomes Project Phase 3 
(version 5)

5,008 African 26%, Admixed American 
14%, East Asian 20%, European 
20%, South Asian 20%

85,167,453 *, **, mathgen.stats.ox.ac.uk/
impute

Consortium on Asthma among 
African-ancestry Populations in 
the Americas (CAAPA)

1766 Admixed African populations 31,163,897 
(autosomes only)

*

Genome of the Netherlands 
(GoNL)

998 Dutch population ~20,000,000 nlgenome.nl

Note:

*
available via Michigan imputation server (https://imputationserver.sph.umich.edu).

**
available via Sanger imputation server (https://imputation.sanger.ac.uk). A listing of ongoing projects for imputation panels can be found in 

Supplemental Table S3.
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