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Abstract

In laser wakefield accelerators, electron motion is driven by intense forces that depend on the

plasma density. Transverse oscillations in the accelerated electron orbits produce betatron radia-

tion. The electron motion and the resulting betatron radiation spectrum can therefore be controlled

by shaping the plasma density along the orbit of the electrons. Here, a method based on the use of

a plasma with a longitudinal density modulation (density depletion or step) is proposed to increase

the transverse oscillation amplitude and the energy of the electrons accelerated in a wakefield cav-

ity. For fixed laser parameters, by appropriately tailoring the plasma profile, the betatron radiation

emitted by theses electrons is significantly increased in both flux and energy.
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I. INTRODUCTION

Laser-driven, plasma-based accelerators are promising candidates for compact electron

accelerators [1–3]. In a laser wakefield accelerator (LWFA), an intense laser pulse drives a

large amplitude wave (wakefield) in a plasma with an ultrahigh electric field (10-100 GV/m)

suitable for accelerating electrons to relativistic energies. At ultrahigh intensities, the laser

pulse expels all of the plasma electrons from the region of the axis, forming a highly nonlinear

wake consisting of an ion cavity (also referred to as the bubble or blow-out regime)[4–6].

Electrons from the background plasma can become trapped in this cavity and accelerated

to high energies. Experiments on LWFAs have demonstrated the production of high quality

electron bunches at the 100 MeV [7–10] and 1 GeV [11] levels over mm and cm scale plasmas,

respectively. Such high quality electron bunches can subsequently generate x-rays through

a variety of mechanisms [12], including betatron radiation [13–22], Thomson scattering [18],

and synchrotron and free electron laser radiation [23] by passing the electron bunch through

an undulator magnet. Since both the electron bunch and x-ray pulse are ultrashort (fs

duration) and intrinsically synchronized to the drive laser pulse, such sources are ideal for

use in pump-probe experiments for ultrafast science.

Betatron radiation [13–22] is emitted by an electron bunch accelerated in a plasma-

based accelerator as a result of the transverse focusing fields of the wake. These focusing

fields induce transverse oscillations (referred to as betatron motion) in the orbits of the

accelerated electrons. The wavelength of this oscillation is the betatron wavelength λβ,

which for a cavitated wake is given by λβ ' (2γ)1/2λp, where γ is the relativistic factor of

the accelerated electron and λp = 2πc/ωp is the plasma wavelength, with ωp = (4πe2n/m)1/2

the plasma frequency and n the plasma density. Consequently, this betatron motion leads

to the emission of synchrotron radiation (referred to as betatron radiation). For a small

amplitude betatron oscillation, this radiation is emitted at a frequency ω ' 2γ2ωβ, where

ωβ = 2πc/λβ is the betatron frequency. For example, a 100 MeV electron (γ ' 200)

undergoing a small amplitude betatron oscillation in a plasma of density n = 2× 1019 cm−3

(λp ' 7.3 µm and λβ ' 150 µm) will emit betatron radiation at an energy h̄ω ' 660 eV.

This radiation will be confined to a cone angle of θ ∼ 1/γ. Betatron radiation has been

observed from plasma-based accelerators with both electron beam drivers [14, 20] and laser

drivers [17, 21, 22].
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Two important parameters [13] that characterize the features of betatron radiation are

the betatron strength parameter aβ (analogous to the undulator strength parameter in a

conventional synchrotron) and the critical frequency ωc. In practical units, these can be

written as

aβ ' 1.3× 10−10(γn[cm−3])1/2rβ[µm], (1)

h̄ωc[keV] ' 1.1× 10−23γ2n[cm−3]rβ[µm], (2)

where rβ is the amplitude of the betatron orbit. For aβ � 1, e.g., for a small amplitude

betatron oscillation, betatron radiation is emitted at the fundamental frequency ω ' 2γ2ωβ.

However, for aβ > 1 betatron radiation is emitted within a broadband spectrum character-

ized by the critical frequency ωc beyond which the radiation intensity rapidly diminishes.

The radiation is emitted in the direction of the electron velocity within a vertical angle

(normal to the plane containing the betatron orbit) of θv[rad] ' 1/γ and a horizontal angle

(within the plane of the orbit) of θh[rad] ' aβ/γ. In the typical parameter regime of current

laser-plasma experiments, aβ
>∼ 10 and the betatron radiation consists on a femtosecond

flash of broadband x-ray radiation extending up to the 10 keV range, collimated within a

few tens of milliradians. As an example, the parameters γ = 200, n = 2 × 1019 cm−3, and

rβ = 2 µm give aβ ' 16 and h̄ωc ' 18 keV.

To increase the photon energy of the betatron radiation, it is necessary to increase the

critical frequency ωc via increasing γ, n, and/or rβ. One straightforward method for increas-

ing ωc is to increase the electron energy γ. Although in principle this can be accomplished

by using higher power lasers in longer plasmas, this approach may not be practical, since

experiments are typically limited by the maximum available power of the laser system. Fur-

thermore, using a cavitated wake in an initially longitudinally uniform plasma is inefficient

for the production of betatron radiation for two reasons. First, the transverse amplitude

of the electrons orbits in the ion cavity is of the order of 1 micron [21], whereas the di-

ameter of the ion cavity is of the order of the laser spot size in the plasma, which can be

several microns. Second, the electrons outrun the wake after the dephasing length [1] and

are decelerated, whereas the laser pulse and ion cavity can propagate over a longer distance.

In this article we propose methods based on tailoring the longitudinal profile of the plasma

density to shift the spectrum of the betatron radiation to higher energies. To approaches

are investigated. In the first method, a region of depleted density is introduced in an
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otherwise initially uniform plasma. Accelerated electrons that enter the depleted region at

the proper phase in their betatron oscillation will increase their transverse displacement,

thus exiting the depleted region with a larger betatron amplitude. In addition, an increased

betatron amplitude also implies that the axial electron velocity is lowered, which increases

the dephasing length and the electron energy. Thus, a region of depleted density can lead to

increases in both rβ and γ, thereby increasing ωc. In the second method, a longitudinal step

density profile is used wherein the density in the latter portion of the plasma is increased.

The increased density decreases the radius of the cavitated wake (i.e., decreases the plasma

wavelength), which increases the dephasing length and the electron energy gain [24, 25].

Thus, a step function density profile can increase both n and γ, thereby increasing ωc.

Numerical examples based on test particle orbits will be presented that indicate that the

betatron radiation spectrum can be shifted from the 10 keV range toward the 100 keV range

without increasing the drive laser pulse energy.

The remainder of this paper is organized as follows. Some of the basic properties of

betatron radiation are reviewed in Sec. II. Modifications to the electron orbits as a result

of modifying the longitudinal density profile with either a depletion region or a density step

are presented in Sec. III. These results are obtained from numerical studying the motion of

test electrons in analytically specified wakefields in the cavitated (blow-out) regime. The

betatron spectrum generated from the orbits in the the modified density profiles are pre-

sented in Sec. IV for both single electrons and for a collection of test particles in an electron

bunch. A discussion is presented in Sec. V.

II. BASIC PROPERTIES OF BETATRON RADIATION

An electron undergoing betatron oscillations in a plasma focusing channel, such as that

produced in a laser wakefield accelerator, will emit synchrotron radiation. In the absence of

an accelerating field, properties of the betatron radiation have been calculated in detail [13].

Here, we summarize the properties of betatron radiation from a single electron oscillating

in the focusing fields of a plasma channel in the blowout regime. In the blowout regime, in

which all of the plasma electrons have been expelled from the region near the propagation

axis, the transverse force on a highly relativistic electron is described by an effective radial

electric field given by Er = (k2
pr/2)E0, where kp = ωp/c and E0 = kpmc2/e. A highly
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relativistic electron will then execute transverse betatron oscillations in the (x, z) plane

given by x(t) ' rβ sin(kβct) with a transverse velocity vx ' ckβrβ cos(kβct), where kβ =

kp/(2γz0)
1/2 is the betatron wavenumber in the blow-out regime, rβ is the amplitude of the

betatron orbit, γz0 = (1+u2
z0)

1/2, and pz0 = mcuz0 is the axial momentum, which is constant

in the absence of an axial accelerating field. Provided the number of betatron periods Nβ

that the electron undergoes is large, Nβ � 1, radiation is emitted in a series of harmonics

and with frequencies centered about the resonant frequencies

ωN =
2γ2

z0Nckβ

(1 + a2
β/2 + γ2

z0θ
2)

, (3)

where

aβ = γz0kβrβ (4)

is the betatron strength parameter, N is the harmonic number and θ the observation angle

with respect to the propagation axis, assuming γ2
z0 � 1, θ2 � 1, and (1 + a2

β/2)/γ2
z0 � 1.

The intrinsic frequency width ∆ωN about ωN of the radiation emitted along the axis (θ = 0)

is given by ∆ωN/ωN = (NNβ)−1. Radiation with frequencies in ∆ωN about ωN are confined

to a cone angle ∆θ given by ∆θ2
I ' (1 + a2

β/2)/(γ2
z0NNβ).

An important parameter characterizing the properties of the betatron radiation is the

betatron strength parameter, aβ. For a2
β � 1, the emitted radiation will be narrowly peaked

about the fundamental resonant frequency, ω1 (N = 1). As aβ approaches unity, emitted

radiation will appear at harmonics of the resonant frequency as well, ωN = Nω1. When

aβ � 1, high harmonic (N � 1) radiation is generated and the resulting synchrotron

radiation spectrum consists of many closely spaced harmonics. Hence, in the asymptotic

limit, i.e., aβ � 1, the gross spectrum appears broadband, and a continuum of radiation is

generated that extends out to a critical frequency, ωc, beyond which the radiation intensity

diminishes. In particular, the asymptotic (a2
β � 1) spectrum along the axis (θ = 0) is given

by
d2I(0)

dh̄ωdΩ
' (6/π2)αfNβγ2

z0ξ
2K2

2/3(ξ) , (5)

where d2I/dωdΩ is the energy radiated per unit frequency (dω) and per unit solid angle

(dΩ), αf = 1/137, K2/3 is a modified Bessel function with argument ξ = ω/ωc, and

ωc ' 3aβγ2
z0ckβ = 3crβk2

βγ3
z0 (6)
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is the critical frequency (corresponding to a critical harmonic number of nc = 3a3
β/4). The

function Y (ξ) = ξ2K2
2/3(ξ) is maximum at ξ = 1/2 and decreases rapidly for ξ > 1. Half

the total power is radiated at frequencies ω < ωc/2 and half at ω > ωc/2. For frequencies

ω � ωc, the radiation intensity increases as (ω/ω0)
2/3, and for ω � ωc, the radiation

intensity decreases exponentially as exp(−2ω/ωc). Furthermore, the average angular spread

for the frequency integrated spectrum in the vertical direction (normal to plane of containing

the betatron orbit) is θv ∼ 1/γz0, whereas in the horizontal direction (in the plane of

containing the betatron orbit), θh ∼ aβ/γz0. In particular, in the vertical plane, integrating

the radiation spectrum over the vertical angle θv yields

d2I(0)

dh̄ωdθh

' 2
√

3

π
αfNβγz0

ω

ωc

∫ ∞

2ω/ωc

dξK5/3(ξ) . (7)

A highly effective method for shifting the radiation spectrum to high photon energies is

to increase the critical frequency, ωc. In the blow-out regime,

ωc = (3/2)crβk2
pγ

2
z0 ∼ rβn0γ

2
z0. (8)

The critical frequency, and hence the photon energy of the betatron radiation, can be in-

creased by increasing the betatron orbit amplitude rb, the plasma density n0, and/or the

electron energy γz0.

The above results neglect the effects of an axial accelerating field. With acceleration, the

axial electron momentum pz will increase. Assuming that pz varies slowly over a betatron

period, the local betatron wavenumber is kβ ' kp/(2γ)1/2 and varies slowly via γ, and the

amplitude of the betatron oscillation is given by rβ ' rβ0(γ0/γ)1/4, i.e., the orbit amplitude

decreases as γ increases, where rβ0 and γ0 are the initial values at the channel entrance

[19]. Here the approximation γz = (1 + p2
z/m

2c2)1/2 ' γ has been made. As the electron

accelerates, the critical frequency is shifted to higher values, ωc ∼ γ7/4 and the betatron

spectrum broadens.

III. ELECTRON MOTION IN A DENSITY TAILORED WAKEFIELD

In a laser wakefield accelerator, the most straightforward method for enhancing the elec-

tron energy is to use higher laser powers and longer plasmas. However, this may not always

be practical. Here, we consider two methods for enhancing the betatron radiation for fixed
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laser parameters, both of which rely on tailoring the plasma density profile. The first is

to introduce zero density spatial gaps between uniform plasma density sections, so as to

increase the betatron orbit of the electrons. The second is to introduce a higher density

region behind a lower density region, so as to increase the electron energy. Both methods

should increase the average critical frequency and thus shift the betatron radiation spectrum

to high photon energies.

Here we consider electron motion within an idealized model of a laser wakefield accelerator

in the blow-out regime [4–6]. A laser pulse with strength parameter a0 > 1 propagates in

an underdense plasma, expelling electrons from the region of the axis, creating an ion cavity

and a highly nonlinear wake. The phase velocity of the wake is assumed to be equal to

the laser group velocity in the plasma vg. We assume the cavity to be a sphere [6] of

radius rb = (2
√

a0/π)λp, with the electromagnetic fields (axial Ez and radial Er electric

fields and an azimuthal Bθ magnetic field) of the wake within the blow-out region given

by Ez/E0 = kpζ/2, Er/E0 = kpr/4, and Bθ/E0 = −kpr/4, where ζ = z + rb − vgt such

that ζ = 0 and r = 0 corresponds to the center of the blow-out sphere (cavity), ζ = rb

corresponds to the front of the cavity, and ζ = −rb corresponds to the back of the cavity.

The equation of motion for a test electron that is being accelerated inside the cavity is

dp

dt
= F‖ + F⊥ = −

mω2
p

2
ζẑ −

mω2
p

2
(xx̂ + yŷ) , (9)

assuming −rb ≤ (ζ, x, y) ≤ rb (the test electron resides within the cavity), where p is the

momentum and (x, y, z) are the coordinates of the test electron. The electron is initially

injected at the back of the cavity zi = −2rb, with a transverse positions xi and yi, and a

velocity vi. Without lack of generality we assume vyi
= 0 and yi = 0, which restricts the

test electron orbit to the (x, z) plane. The first term, F‖, is responsible for the electron

acceleration in the longitudinal direction ẑ. As the electron becomes relativistic, its velocity

becomes greater than vg; the term −ζ = (vgt−z−rb) decreases and the accelerating force is

reduced. The length for the electron to reach the middle (ζ = 0) of the cavity and become

decelerated (vgt− z > rb) corresponds to the dephasing length Ld. The second term, ~F⊥, is

the focusing force that creates transverse oscillating across the cavity axis at the betatron

frequency ωβ = ckβ ' ωp/
√

2γ, assuming γz ' γ. Initially defined by the initial conditions

at the injection into the cavity, the betatron amplitude rβ decreases at the first stage of the

electron acceleration.
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Since the forces in the cavity are directly dependent on the plasma density, an appropriate

modulation of the density can be used to modify the relativistic electron orbit in such a way

that the betatron radiation is shifted to high photon energies. Here, the methods proposed

are based on a density modulation along the laser axis ẑ. Axial modulations in the density

can be formed either mechanically by guiding/blocking the gas flow [26] from a gas jet

(n1 = 0), or by laser machining (0 < n1 < n0 or oppositely n1 > n0) [15, 16]. We will

consider two specific cases (see Fig. 1): a finite density depletion and a density step.

For the first case (a density depleted region inserted between two regions of uniform

density), betatron radiation can be enhanced as follows. In a density depleted region, the

longitudinal and transverse forces are reduced (or eliminated in the case of zero density).

An electron entering this depleted region will ballistically drift at constant energy and at

a constant angle. If the length of the depleted region is sufficiently long, the transverse

displacement of the electron entering the second region of uniform density can be greater

than that in the first uniform region. Hence, the electron can enter the second uniform

region with a larger betatron amplitude rβ then before the depleted region. Since rβ has

increased, so will the critical frequency of the emitted betatron radiation, ωc ∼ rβ. In

addition, a larger betatron amplitude rβ increases the transverse path the electron covers,

which in effect decreases the axial electron velocity, i.e., vz ' vz0[1− (k2
βr2

β/2) cos2 ωbt] [13].

This results in a longer dephasing length (the time for the electron to reach the middle of

the cavity is longer), which increases the axial electron energy and consequently the critical

frequency ωc ∼ γ7/4. The dephasing length Ldp can be estimated by Ldp(vz−vg) ' rb, where

vg is the group velocity of the laser pulse, i.e., vg/c ' 1−ω2
p/2ω

2 in the linear one-dimensional

limit. This gives

Ldp ' (2ω2/ω2
p)rb(1− k2r2

β/4γ)−1, (10)

assuming a constant energy electron, where Ldp0 = (2ω2/ω2
p)rb is the dephasing length in the

absence of a betatron oscillation. Hence, increasing the betatron orbit from an amplitude

of rβ1 to an amplitude rβ2 will increase the dephasing length by an amount ∆Ldp, where

∆Ldp/Ldp0 ' (k2/4γ)(r2
β2 − r2

β1), (11)

assuming k2r2
β/4γ < 1. A substantial increase in the dephasing length can result when γ

is near k2r2
β/4, however, γ is not constant (e.g., increasing ) due to the wakefield. For high

electron energies, γ � k2r2
b/4, the increase in the dephasing length will be small.
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An alternative method for increasing the dephasing length and the electron energy is to

introduce a region of higher density. For simplicity, consider an axial plasma density profile

that is a step function in which the density increases from a value n0 to a value n1. As

the electron is accelerated through the first (lower density) region, it outruns the wake and

approaches the center of the blow-out cavity at which point the accelerating field is zero.

The distance required to reach the center of the cavity defines the dephasing length. If the

density is increased just prior to the electron reaching the center of the cavity, the cavity

radius (proportional to the plasma wavelength) decreases, and the center of the cavity is

suddenly shifted forward closer to the drive laser pulse. Hence, increasing the density can

increase the dephasing length and the electron energy gain [24, 25]. The increase in the

dephasing length is ∆Ldp ' (2ω2/ω2
p1)(rb0 − rb1), where the subscripts 0 and 1 refer to the

values in the density regions n0 and n1, respectively. Since ωp ∝ n1/2 and rb ∝ n−1/2,

∆Ldp/Ldp0 = (n0/n1)[1− (n0/n1)
1/2], (12)

which is independent of the electron energy (assuming γ > ω/ωp), neglects the effects of

the betatron orbit, and assumes that the laser intensity a0 is constant. Since the wakefield

scales with density as Ez ∝ n1/2, the final electron energy at dephasing scales as ∆γdp/γdp0 =

(n0/n1)
1/2[1 − (n0/n1)

1/2]. Furthermore, the betatron period λβ ∝ n−1/2 is reduced in the

higher density region, which increases the number of betatron oscillations and hence the flux

of the emitted radiation.

Figure 2 shows the electron orbits obtained by numerically integrating Eq. (1) for four

cases: (a) a uniform density case with n1 = n0, (b) a plasma with a narrow depleted region

of density n1 = n0/10, (c) a plasma with a wider depleted region of density n1 = 0, and

(d) a plasma with a density step with n1 = 1.5n0. In these two-dimensional simulations,

the betatron orbit is in the x-z plane with an initial amplitude xi = 2 µm, initial momenta

pxi
= 0 and pzi

/mc = 10, with n0 = 2× 1019 cm−3.

Simple expressions for the location of the density depleted region z1 and the length of

the depleted region L = z2 − z1 that maximize the electron betatron amplitude and energy

can be estimated as follows. If we assume that F‖ is negligible in the depleted region from

z1 to z2 (0 < n1 < n0) and that the electron has a constant energy γ(z1), then the equation

of motion reduces to an harmonic oscillator and the transverse motion is given by

x(t) = x1 cos(ωβ1t + φ), (13)
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vx(t) = −x1ωβ1 sin(ωβ1t + φ), (14)

where x1 = (x2 + v2
x/ω

2
β1

)1/2 is a constant of motion corresponding to the amplitude of the

betatron oscillation [29], ωβ1 = ωβ(n1, γ(z1), x1) is the betatron frequency in the region of

density n1, and φ is a constant phase term. In the region [z1 : z2], the amplitude |x1| of the

betatron motion depends on the electron energy and position at z1. It oscillates at 2ωβ1 in

the range

x1 =

 x0(n0/n1)
1/2, for x(z1) = 0,

x0, for x(z1) = x0,
(15)

where x0 is the betatron amplitude before z1 and where we have used the relation

vx(z1)/ωβ1 = x0(n0/n1)
1/2. In order to maximize x1, the position z1 must be chosen to

have x(z1) = 0 and the length L must match one quarter of a betatron period (λβ1/4),

which gives

L =
λp(n1)

4

√
2γ(z1). (16)

In Fig. 2(b), the density depletion starts at z1 = 190 µm. At that position the electron has

an energy γ = 150 and x0=0.6 µm. In agreement with the simulation, the above expressions

give x1 = 1.9 µm and L = 100 µm.

For the case n1 = 0, the electron is in a force free region for z ∈ [z1 : z2]. The electron

motion is ballistic and the transverse amplitude is given by

x1 =
vx(z1)

vz(z1)
L ∼ aβ0

γ(z1)
L, (17)

where aβ0 = aβ(n0, γ(z1), x0). The transverse orbit x1 is limited by the size of the cavity.

If x1 exceeds the transverse dimension of the cavity it is not trapped at z2. This gives the

condition

L <
vz(z1)

vx(z1)
rb(z1) ∼

γ(z1)

aβ0

rb(z1), (18)

where rb(z1) is the radius of the ion cavity at the position z1. In the example of Fig. 2(c),

the density depletion is placed at z1 = 416 µm. At that position the electron has an energy

γ = 258. Here, we have chosen the thickness of the depleted density slice to be L = 220 µm,

which gives x1 = 4 µm.

In the case of the density step, the transverse orbit amplitude, within the harmonic

oscillator approximation, is given by Eq. (13). In the longitudinal direction, the radius of

the cavity is reduced to rb(n1) and the condition for the electron to remain trapped in the
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cavity at the density transition is then

z1 > vgt− 2rb(n1). (19)

In addition to the modification of the electron orbit amplitude, a consequence of the

density modulation is an energy gain with respect to the reference case of uniform density

(n1 = n0). Figure 3 shows the electron energy as a function of time for the three cases that

correspond to those in Fig. 2 (b)-(d). The insert of Fig. 3 shows the normalized acceleration

force F‖. For the reference case, F‖ linearly decreases as a function of time and the electron

outruns the wake after ∼ 1 mm. Its maximum energy is γ0 = 380. In the case of the density

depletion, the increase of the electron energy occurs from a modification of the dephasing

length. Because of the longer path the electron has to cover, dF‖/dt is lowered and the time

for the electron to reach the dephasing phase of the plasma wave is increased. This clearly

appears on the inset of Fig. 3. As a result, the maximum electron energy is increased. For

the example in Fig. 3, the electron energy becomes γ1 = 520 in the case n1 = 0 and γ1 = 440

for n1 = n0/10. For the density step, the principle is different since betatron amplitude is

not increased. Here, the reduction of the cavity size causes the electron to slip back to the

accelerating phase of the wake. The accelerating force is suddenly increased at the step and

exceeds E0 owing to the higher density. For the example in Fig. 3, the maximum electron

energy reaches γ1 = 520 and then decreases from dephasing.

IV. BETATRON RADIATION FROM A SINGLE ELECTRON

As described in Sec. II, many of the important features of betatron radiation are char-

acterized by the betatron strength parameter aβ ∝ (γn)1/2rβ and the critical frequency

ωc ∝ γ2nrβ. As discussed in Sec. III, the amplitude of the electron motion in the ion cavity

is of the order of 1-2 µm. This results in maximum aβ parameters typically on the order

aβ ∼ 10. The modification of the electron trajectories described above, through tailoring of

the density profile, allows both aβ and ωc to increase so as to efficiently produce betatron

radiation at higher frequencies.

With the knowledge of the trajectory parameters it is then straightforward to obtain the

betatron x-ray beam features. In the presence of the density modulation, the critical x-ray

energy is up-shifted owing to the increase of either rβ, γ, or n. The maximum increase of
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the critical frequency is given by the ratio

Rωc =
ωc1

ωc0

'


(γ1/γ0)

2(n0/n1)
1/2, for 0 < n1 < n0,

(γ1/γ0)
2(x1/x0)L, for n1 = 0,

(γ1/γ0)
2(n1/n0), for n1 > n0,

(20)

where ωc1 and ωc0 are respectively the maxima of the critical frequency along the prop-

agation with and without a density modulation. Also, note that for the n1 = 0 case,

(γ1/γ0)
2x1L/x0 ∼ (γ2

1/γ
3
0)Laβ0/x0. Figure 4 shows the spectral intensity, integrated over

the vertical angle [Eq. (7)], for n1 = n0, n1 = n0/10, n1 = 0 and n1 = 1.5n0. In the case

n1 = 0, the spectrum extends above 100 keV. Using the results of Figs. 2 and 3, which

give x0 = 0.6 µm, x1 = 4 µm, γ0 = 380 and γ1 = 520, we obtain Rωc ' 12. In the case

n1 = n0/10, we have γ0 = 380, γ1 = 440 (Fig. 3), which give Rωc ' 4. Finally, for the case

n1 = 1.5n0, the maximum energy reached by the electron is γ = 520 and Rωc ' 2. The

analytical results are in good agreement with the numerical results.

The gain of energy and flux provided by the modification of rβ and γ is lowered by losses

in the case of the density depletion. Indeed, for n1 = 0 the electron is not accelerated and

does not emit radiation over L. This is also the case for n1 = n0/10, but with L shorter

(for n1 = n/10 the acceleration and radiation emitted are negligible). On the other hand, in

the case of the density step there are no losses and, owing to the reduction of the betatron

period for z > z1, the electron undergoes more betatron oscillations and the flux is further

increased. The most appropriate density modulation depends on the x-ray energy range

and varies depending on n1 and L. In our particular example, n1 = 0 is suitable for x-ray

energies >∼ 20 keV, n1 = n0/10 for energies ∈ [∼ 10 :∼ 20] keV and n1 = 1.5n0 for energies

< 10 keV.

The position z1 of the density modulation strongly affects the radiated energy because it

determines the betatron amplitude x1 and the energy of the electron. Figure 5 shows the

radiated energy dI(z1)/dθh =
∫

dω(d2I/dωdθh) (integrated over vertical angle and frequen-

cies) as a function z1 for the three cases. Here, dI(z1)/dθh is normalized by the maximum

radiated energy obtained in the case n1 = 0. On each graph, we also show dI(z1)/dθh

for the reference case n1 = n0. In the case of the density depletion, the radiated energy

oscillates with x1 at 2ωβ1. As seen before, the modulation must be placed at z1 satisfying

x(z1) = 0. Oppositely, for x(z1) = x0, the amplitude of motion is not increased and the

radiated energy is lower than the reference case because of losses. For the density step,
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the dependence is opposite. The amplitude is maximum when x(z1) = x0 and oscillates in

the range [x0/
√

1.5 : x0]. Therefore, the radiated energy oscillates at 2ωβ1, but since there

are no losses, the flux always remains above the reference flux. For all cases, the radiated

energy globally decreases with z1 because the fraction of the propagation length over which

the electron benefits from a larger rβ and γ is shortened.

The angular distribution of the betatron radiation in the horizontal plane (the plane

containing the betatron orbit) depends on the betatron amplitude, is characterized by the

angle θh ' aβ/γ, and is hence affected by the density modulation. The consequence of the

larger betatron amplitude is an increase in the x-ray beam divergence in the plane of the

electron motion. The increase of divergence compared to the reference case is given by the

ratio

Rθh
=

 (γ0/γ1)
1/2(x1/x0), for the depletion case,

(γ0/γ1)
1/2(n1/n0)

1/2, for the step case,
(21)

where γ1 and γ0 are respectively the maxima of the electron energy with and without mod-

ulation. For n1 = 0, n1 = n0/10 and n1 = 1.5n0, we obtain Rθ = 5.7, Rθ = 3 and Rθ = 1.3.

Figure 6 represents the angular profile of radiation produced by the electron trajectories of

Fig. 2. The intensity represents the total radiated energy dI/dΩ =
∫

dωd2I/dωdΩ per unit

solid angle dΩ. Even considering the increase of the divergence, the radiated energy at the

angle of maximum emission is enhanced.

V. BETATRON RADIATION FROM AN ELECTRON BUNCH

In the case of an electron beam composed of many electrons with different energies,

transverse and longitudinal positions, and divergences, there are no phase relations between

the electrons. Therefore, according to Fig. 5, a fraction of the electrons will benefit from

the effect of the density modulation to produce more betatron radiation, whereas others will

not, depending on the phase of the betatron oscillation of a given electron as it enters the

depletion region. Here we consider ∼ 500 electrons initially distributed within a cylindrical

spatial region with initial radii ri ≤ 2 µm, initial longitudinal positions −rb ≤ zi ≤ −rb/4,

and with initial transverse momenta −5 ≤ pxi/mc ≤ 5. The trajectories of all the electrons

are shown in Fig. 7 for the same parameters as Fig. 2.

The phase mixing initially introduced prevents coherent betatron oscillations of the elec-
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trons, as shown on Fig. 7(a), which plots the electron trajectories for the case of no density

modulation. In addition, the spread in the initial longitudinal position results in a broad

electron distribution. The trajectories for the n1 = n0/10, n1 = 0 and n1 = 1.5n0 cases are

shown in Figs. 7(b), (c) and (d), respectively. It is clear that the electrons have a range of

betatron amplitudes x1 as they enter the density transition.

The corresponding spectra of the radiation emitted by the electron bunches are shown in

Fig. 8. They have been normalized so they can be compared to Fig. 4, which is equivalent to

the case of a fully coherent oscillation of all the electrons. The difference observed between

Figs. 4 and 8 can be explained using the results of Fig. 5. In the cases of the density depletion,

the radiated energy from a single electron varies rapidly with z1 (which determines the phase

of the betatron oscillation as it enters the density transition) and because of the large phase

variation of the electrons in the bunch at z1, it is lowered compared to Fig. 4. In the case

of the density step, the radiated energy only slightly varies with z1 and it remains very

similar to Fig. 4. The x-ray spectra that can be obtained will depend on the electron bunch

parameters, and will vary between Figs. 4 and 7.

VI. DISCUSSION

Methods have been investigated for enhancing both the flux and photon energy of beta-

tron radiation by modifying the longitudinal plasma density profile while holding the laser

parameters constant. Two specific types of density profiles were examined. The first is to

introduce a region of depleted density in an otherwise initially uniform plasma. The second

is a step function profile, wherein the density is increased in the latter portion of the plasma.

The density depletion region, if positioned properly in the plasma, increases the betatron

amplitude of significant fraction of the accelerated electrons. The increased betatron ampli-

tude also implies a decreased axial velocity and hence an increased dephasing length and a

increased energy gain. Thus a depletion region can increase both rβ and γ, and hence ωc. A

step profile with increased density decreases the plasma wavelength, thereby increases the

dephasing length and the energy gain. Thus a density step can increase both n and γ, and

hence ωc.

Numerical studies were carried out to determine the motion of test particles in analytically

specified fields for cavitated wakes including the effects of density tailoring. The cases of a
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single electron and of an electron beam were investigated. The type of density modulation

depends on the energy range desired and can be either a density dip or step. Several

potentially significant effects were not modelled. In particular, laser evolution was not

included in this study. For example, the propagation of the laser through the density depleted

region has not been treated. If the plasma density is too low, guiding of the laser pulse may

not occur (through relativistic self-focusing and/or channel guiding). In that case, the laser

diffracts and if the laser intensity is too low at z2, the cavitated wake does not immediately

reform and loss of accelerated electrons becomes significant. It is therefore necessary to have

L smaller than the Raleigh length. Similarly, laser pulse depletion has not been modelled.

In the highly nonlinear regime, the pump depletion length may not significantly exceed

the dephasing length, which will limit the applicability of density tailoring to enhance the

energy gain beyond the dephasing limit in a uniform plasma. Inclusion of these effects

requires self-consistent simulation of laser propagation, wakefield generation, and electron

acceleration.

In this article, we have only discussed the two simple configurations of density tailoring:

The use of a single depleted region or the use of a single density step. Other configurations

may be more efficient for enhancing the betatron emission, such as the use of multiple

depletion regions or the use of a density profile which is continuously increasing. For example,

consider the use of two depletion regions. First, in the case n1 = 0, the use of two depletion

regions can mitigate limitations due to the laser diffraction and electron loss. The sum of

the lengths of two dips is less than that of a single region alone, since vx is higher after the

first region. Second, for n1 = n0/10, the transverse oscillation amplitude can be increased

in successive modulations up the the maximum value of rβ. This can significantly increase

the x-ray flux and energy.

Density tailoring, through a variety of possible configurations, can be used to control the

the electron orbits and produced more efficiently betatron radiation. For fixed drive laser

parameters, it is found that the betatron radiation spectra can be shifted from the 10 keV

range to the 100 keV range. In the 100 keV energy range, the betatron source could become

a pioneering and promising tool for the applications requiring energetic, ultrashort pulse

and micrometer source size x-ray radiation.
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Figure 1: Schematic of the density modulations considered. The density varies along the

direction of the laser. The initial density is n0. In the case of a density depletion, n1 < n0

whereas n1 > n0 in the case of the step.

Figure 2: Electron orbits for the cases n1 = n0 (A), n1 = n0/10 (B) and n1 = 0 (C),

n1 = 1.5×n0 (D). The initial conditions are xi = 2 µm, pxi
= 0, pzi

/mc = 10, n0 = 2× 1019

cm−3 and a0 = 2.

Figure 3: Electron energy as a function of time for the trajectories of Figure 2. The insert

represents the normalized acceleration force F‖.

Figure 4: Spectral intensity, integrated over the angles, for n1 = n0, n1 = n0/10, n1 = 0

and n1 = 1.5× n0. The condition are the same as Figure 2.

Figure 5: Normalized total radiated x-ray energy as a function of the position of the

modulation z1 for n1 = n0/10, n1 = 0 and n1 = 1.5× n0. The line on each figure represents

the energy in the reference case n1 = n0.

Figure 6: Spatial distribution of the radiation integrated over the energy for the electron

orbits of Figure 2.
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